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Abstract. The Oriented Supersingular Isogeny Diffie–Hellman is a post-
quantum key exchange scheme recently introduced by Colò and Kohel.
It is based on the group action of an ideal class group of a quadratic
imaginary order on a subset of supersingular elliptic curves, and in this
sense it can be viewed as a generalization of the popular isogeny based
key exchange CSIDH. From an algorithmic standpoint, however, OSIDH
is quite different from CSIDH. In a sense, OSIDH uses class groups which
are more structured than in CSIDH, creating a potential weakness that
was already recognized by Colò and Kohel. To circumvent the weakness,
they proposed an ingenious way to realize a key exchange by exchang-
ing partial information on how the class group acts in the neighborhood
of the public curves, and conjectured that this additional information
would not impact security.

In this work we revisit the security of OSIDH by presenting a new at-
tack, building upon previous work of Onuki. Our attack has exponential
complexity, but it practically breaks Colò and Kohel’s parameters unlike
Onuki’s attack. We also discuss countermeasures to our attack, and ana-
lyze their impact on OSIDH, both from an efficiency and a functionality
point of view.

Keywords: Post-quantum cryptography · Isogenies · Cryptographic group
actions

1 Introduction

Cryptographic group actions have recently attracted much interest owing
to their supposed quantum-resistance and to their versatility. Brassard and
Yung [11] initiated the study of group actions in cryptography, but it was Cou-
veignes [18] and Rostovtsev and Stolbunov [39] who independently exhibited
the first post-quantum key exchange based on a group action. The invention of
CSIDH3 [13], the first efficient post-quantum group action, spurred a wave of
interest on the topic. Among the many applications of CSIDH, we may cite the
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3 The “Commutative Supersingular Diffie–Hellman”, pronounced sea-side.
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signature scheme CSI-FiSh [7], threshold [21] and ring [6] signatures, oblivious
transfer [22,33], oblivious PRFs [8] and hash proof systems [2]. As of today,
all known post-quantum group actions are obtained from isogenies of elliptic
curves, either ordinary or supersingular, and are all understood as instances of
the celebrated theory of complex multiplication.

Drawing inspiration from CSIDH, Colò and Kohel recently proposed a gener-
alization they called OSIDH, for “Oriented Supersingular Diffie–Hellman” [17].
Like CSIDH, OSIDH is based on the action of the class group of a quadratic
imaginary order on a set of supersingular curves. But while CSIDH’s group
action is fully determined by the Frobenius endomorphism, OSIDH’s action is
determined by an arbitrary endomorphism which they call an orientation. Be-
sides the added technicalities involved in working with orientations, to complete
a key exchange in OSIDH Alice and Bob need to exchange significantly more
information than in CSIDH. Colò and Kohel conjectured nevertheless that this
additional information does not adversely affect the security of the cryptosystem.

In this work, we present a new classical attack that casts doubts on the
viability of OSIDH. Albeit exponential in complexity, we give evidence that it
breaks in practice the parameters that Colò and Kohel suggested would match
the security of CSIDH-512.4 The only exponential step in our attack is an SVP
computation in a lattice that depends exclusively on the system parameters. The
attack can be countered by increasing the dimension of the lattice and the other
parameters accordingly, however we argue that this patch is of dubious interest
for post-quantum cryptography: besides making OSIDH prohibitively expensive,
it makes it at best as secure as lattice based schemes, without the efficiency, the
versatility and the security reductions that go with them.

A more advanced countermeasure is to stretch parameters to a point where,
according to standard heuristics, no short enough vectors exist in the lattice. This
countermeasure is less costly, yet we argue that it does not completely rescue
OSIDH. Indeed, our attack shows that OSIDH fails at satisfying the standard
axioms of a cryptographic group action, and thus powerful schemes such as CSI-
FiSh [7] cannot be securely built on it. This pretty much confines OSIDH to the
role of a key exchange of mostly theoretical interest, for the time being.

On the positive side, we argue that, because OSIDH is not properly speaking
a cryptographic group action, Kuperberg’s quantum algorithm does not appear
to apply to it. It is conceivable, then, that the best quantum algorithm against
OSIDH would have exponential, rather than subexponential, complexity.

1.1 Overview

The theory of complex multiplication establishes a link between the abelian
extensions of quadratic imaginary number fields and elliptic curves. If O is an
order in a quadratic imaginary number field, an elliptic curve is said to have

4 CSIDH-512 was originally claimed to match the NIST-1 security level. Recent works
have questioned the quantum security of CSIDH [9,36], but to this day CSIDH-512’s
classical security claim still holds unchanged.
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complex multiplication (CM) by O when its endomorphism ring is isomorphic
to O. For example, ordinary curves over finite fields always have CM by some
quadratic order.

An isogeny ϕ : E → E′ between two curves with CM by the same order O
is called horizontal [30]. The same way it identifies elements of O to endomor-
phisms, CM identifies (invertible) ideals of O to isogenies. Invertible fractional
ideals of O form an abelian group, and their identification with isogenies defines
a group action on the set of elliptic curves with CM by O by

a · E := E′,

where ϕa : E → E′ is the isogeny associated to a ⊂ O. By this definition,
principal ideals of O act trivially, and the fundamental theorem of CM states
that the ideal class group Cl(O)—the quotient of the invertible by the principle
ideals—acts faithfully and transitively on the set of elliptic curves with CM by
O. See [19,41,47] for more details.

The correspondence with isogenies lets us evaluate the action of Cl(O) effec-
tively. A prime q that splits in O factors as a product (q) = qq̄ of prime ideals of
norm q. These are the only two ideals of norm q in O, and to each corresponds
an isogeny of degree q. As long as we can compute the two horizontal isogenies
of degree q starting from E, we can thus evaluate the action of q and q̄. Which
isogeny corresponds to which ideal can be determined by looking at how the
Frobenius endomorphism of E acts on the kernels of the isogenies.

This is the idea at the heart of Couveignes’ [18] and Rostovtsev and Stol-
bunov’s [39] key exchange schemes: On the one hand the group action can be
evaluated efficiently; on the other hand it is assumed to be hard, given two curves
E,E′ with CM by O, to find the element a ∈ Cl(O) such that a · E = E′, or,
equivalently, a horizontal isogeny ϕ : E → E′.

However, computing isogenies has complexity polynomial in the degree, and
thus only for a small fraction of all ideals we can efficiently evaluate the CM
action. We can work around this limitation by fixing a list of ideals of small
norm q1, q2, . . . , qt, and representing elements of Cl(O) as linear combinations
of these generators:

a =

t∏
i=1

qeii .

Provided enough generators, any element a can be represented by an exponent
vector (e1, . . . , et) of small norm, and the CM action can thus be evaluated using
only

∑t
i=1 |ei| efficient isogeny computations.

Although any element of Cl(O) may be represented in this factored form, it
is not necessarily the case that such representation can be easily computed for
any input.

In [2], this is called a Restricted Effective Group Action (REGA), as opposed
to Effective Group Actions (EGA) where the action of any group element can
be efficiently evaluated. It is believed that REGAs are less powerful than EGAs,
as some protocols are only known for the latter [21], and many others are much
less efficient when instantiated from the former [20,7,2,6].
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Given a set of generators q1, . . . qt, it is natural to introduce the relation
lattice

L =

(e1, . . . , et)

∣∣∣∣∣∣
t∏

j=1

[qi]
ei = [1] in Cl(O)

 . (1)

Then, by definition Cl(O) ' Zt/L, i.e. two exponent vectors represent the same
element of Cl(O) if and only if they differ by an element of L. If L can be
computed, then any exponent vector e can be transformed in an equivalent
vector e′ = e− c of small norm by finding a close vector c ∈ L to e. This is the
idea behind CSI-FiSh [7], and a general technique to transform any REGA into
an EGA, assuming these computations can be done efficiently.

OSIDH. Supersingular curves have endomorphism rings isomorphic to maxi-
mal orders in a quaternion algebra, but these contain infinitely many quadratic
imaginary orders, which make it possible to define a CM group action on subsets
of supersingular curve. For example, when p ≡ 3 [8] and p > 3, the endomor-
phism ring of any supersingular curve defined over a prime field Fp contains a
subring isomorphic to O := Z[

√
−p]. This is, in fact, the subring of Fp-rational

endomorphisms of the curve. CSIDH [13] uses precisely this case to define a
supersingular analogue of Couveignes and Rostovtsev–Stolbunov. The identifi-
cation of the Frobenius endomorphism with

√
−p makes it possible to compute

the CM action exactly like in the ordinary case; moreover, the shift to super-
singular curves enables a range of optimizations that make CSIDH vastly more
practical.

OSIDH seeks to replicate the ideas of CSIDH, but using a different quadratic
order O ↪→ End(E). To do so, it needs to construct a quadratic order O with
exponentially large class group, and compute a curve in the associated CM orbit.
This is done by starting from a maximal quadratic order with small class group,
e.g. Z[i], for which it is easy to find an associated supersingular curve E0. Then,
a chain E0 → E1 → · · · → En of descending (i.e. not horizontal) isogenies of
degree ` is taken, to which is associated a chain of increasingly small orders Oi :=
Z + `iO. Colò and Kohel call the inclusion Oi ↪→ End(Ei) an Oi-orientation of
Ei, and, since Oi+1 ⊂ Oi, the whole chain E0 → · · · → En is On-oriented. At
each descending step the size of the class group Cl(Oi) is multiplied roughly
by ` (see [19, Theorem 7.24]), and it is proved that Cl(On) acts faithfully and
transitively on the set of (primitively) On-oriented curves (see Theorem 1).

The action of Cl(On) on descending chains E0 → · · · → En can be com-
puted efficiently using the same techniques as above (with a set of generating
prime ideals). However Colò and Kohel remark that the inverse problem, that
of computing the element a ∈ Cl(On) mapping a chain to another, is not hard,
unlike in CSIDH. Ideally, one would like to only publish the final element of the
chain En, and act with Cl(On) on it. However in doing so the information on
the orientation is lost, and thus the action of Cl(On) cannot be computed.

Colò and Kohel suggest, instead, to publish En along with the information on
how a list of generators q1, . . . , qt ∈ Cl(On) acts on En up to a bounded distance.
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Namely, they publish En along with horizontal chains qei ·En for all 1 ≤ i ≤ t and
−r ≤ e ≤ r for some pre-determined bound r. From this information, the action
of exponentially many elements of Cl(On) on En can be evaluated efficiently.
Remarkably, the analogous information in CSIDH is publicly available, so it
may be believed that publishing qei · En in OSIDH does not harm security.

Our contribution. We show that the additional information conveyed by the
horizontal isogeny chains in OSIDH can be leveraged to recover the descending
chain E0 → · · · → En, and thus the secret.

Our attack builds upon the work of Onuki [35], who showed that being able
to evaluate a single endomorphism of On on points of En is enough to recover
the descending chain. For this, it is necessary to express the endomorphism as a
cycle En → · · · → En of small degree isogenies, equivalently as a product

∏
i q
ei
i .

To find such an isogeny cycle, Onuki resorts to an expensive meet-in-the-middle
procedure, which seems difficult to put into practice.

We observe that finding a product
∏
i q
ei
i corresponding to a cycle amounts

to finding a vector in the relation lattice L defined in Eq. (1). A basis for L can
be computed from the description of On, without involving any elliptic curve
computations, and in polynomial time, thanks to the special structure of On. To
obtain an effectively computable isogeny cycle, the vector in L must be short, so
that we can use the published horizontal chains. Such a short vector, if it exists,
can be found by an SVP computation: this is the only step in our attack which
has exponential complexity, namely in the number t of public generators. After
the short vector is found, all subsequent steps in Onuki’s attack take polynomial
time.

In practice, following CSIDH, Colò and Kohel suggested t = 74 for an instan-
tiation of OSIDH deemed to be as secure as CSIDH-512. This falls well short of
the dimension needed to thwart SVP attacks, and indeed in our experiments we
were able to construct the lattice and find a short vector in less than one hour
on an ordinary laptop.

A simple countermeasure is to increase the number of primes t and # Cl(On)
accordingly, until the relation lattice becomes large enough to stop SVP compu-
tations, however this appears to be extremely expensive. A cheaper countermea-
sure would be to keep t relatively small, but increase the size of Cl(On) so that no
short enough vectors are expected to exist in L. We argue that, no matter what
solution is chosen, one desirable property of CM group actions is lost: CSI-FiSh
was made possible by the computation of the relation lattice of CSIDH-512; fur-
thermore, each CSI-FiSh signature solves a CVP problem in dimension t = 74.
Neither of these is possible with OSIDH after we apply one of the patches above.
It seems, indeed, that the security of OSIDH is fundamentally in conflict with
the possibility of evaluating the CM group action for any possible input, and
thus that it cannot be used as a foundation for protocols based on EGAs or even
REGAs.
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Plan. In the next section we present the mathematical foundations of OSIDH,
then in Section 3 we present the protocol itself. In Section 4 we present our
attack, and in Section 5 the countermeasures against it, and their consequences,
both positive and negative, for OSIDH.

2 Oriented supersingular elliptic curves

We start by briefly recalling the mathematical framework of OSIDH, presented
in detail by Colò–Kohel [17] and Onuki [35].

2.1 Oriented elliptic curves and isogenies

Let K be a quadratic imaginary field and E an elliptic curve defined over a
finite field. A K-orientation of E is an embedding ι : K ↪→ End(E) ⊗ Q. If O
is an order of K, we say that (E, ι) is an O-orientation if ι(O) ⊆ End(E). An
O-orientation is primitive if O is maximal for this inclusion, or in other words,
if ι(O) = End(E) ∩ ι(K).

Example 1. The elliptic curve E : y2 = x3 + x defined over Fp (p ≡ 3 [4]) has a
Q(i)-orientation, mapping i =

√
−1 to the endomorphism

φ : (x, y) ∈ E 7−→ (−x, ay) ∈ E,

with a ∈ Fp2 such that a2 = −1. This is a primitive Z[i]-orientation.

When E is ordinary, End(E)⊗Q is itself a quadratic imaginary field, hence,
there is only one K-orientation (up to complex conjugation). The case of super-
singular elliptic curves is more interesting: End(E)⊗Q is a quaternion algebra
and we can embed infinitely many quadratic fields inside, so there are infinitely
many orientations of E.

Let (E, ιE) and (F, ιF ) be two K-oriented elliptic curves. An isogeny ϕ :
E −→ F is K-oriented if ϕ∗(ιE) = ιF , where ϕ∗(ιE) is the K-orientation of F
defined as follows:

∀α ∈ K, ϕ∗(ι)(α) =
1

deg(ϕ)
ϕι(α)ϕ̂.

A K-oriented isogeny λ : (E, ιE) −→ (F, ιF ) is a (K-oriented) isomorphism if it
has an inverse isogeny F −→ E that is also K-oriented (F, ιF ) −→ (E, ιE).

Let ϕ : (E, ιE) −→ (F, ιF ) be a K-oriented isogeny, O := ι−1E (End(E)) and
O′ := ι−1F (End(F )), so that ιE is a primitive O-orientation and ιF is a primitive
O′-orientation. We say that ϕ is horizontal, ascending or descending, respectively
when O = O′, O ( O′ or O ) O′. There is no reason for this to be verified in
general, except when ϕ has prime degree. In that case, the index relating O and
O′ also divides deg(ϕ) [30, Chapter 4, Proposition 21]. Finally, an isomorphism
is always horizontal.
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2.2 Class group action

Let K be a quadratic imaginary field and O be an order of K. Let p be a
prime number. We consider the set SSprO (p) of isomorphism classes of primitively
O-oriented supersingular elliptic curves defined over Fp.

Proposition 1. [35, Proposition 3.2] SSprO (p) is not empty if and only if p does
not split in K and is prime to the conductor of O.

In the following, we shall assume that SSprO (p) is not empty. We define a
group action of Cl(O) on SSprO (p). Let a ⊆ O be an ideal of norm prime to p and
(E, ι) be a primitively O-oriented supersingular elliptic curve defined over Fp2 .
We define the a-torsion subgroup by

E[a] :=
⋂
α∈a

ker(ι(α)).

By [42, Proposition III.4.12], there exists a separable isogeny ϕa : E −→ F of
kernel E[a]. If a is an invertible O-ideal (i.e. one whose norm is prime to the
conductor of O), then ϕa is a horizontal isogeny by [35, Proposition 3.5]. In that
case, we write

a · (E, ι) := (F, (ϕa)∗(ι)).

A separable isogeny being determined by its kernel up to isomorphism [42, Propo-
sition III.4.11], we easily get that the isomorphism class of a ·(E, ι) only depends
on a and the isomorphism class of (E, ι).

Furthermore, if b is another invertible O-ideal of norm prime to p and if
ϕb : F −→ G has kernel F [b], then ker(ϕb◦ϕa) = E[ab], by [47, Proposition 3.12]
or [34, Proposition 7.28]. Hence, if we set

a−1 · (E, ι) := a · (E, ι),

we define an action of the group of fractional O-ideals prime to p on SSprO (p).
Since the action of principal ideals is trivial, we get an action of the ideal class
group

Cl(O)× SSprO (p) −→ SSprO (p).

This action is faithful [35, Theorem 3.4], but not transitive.

Example 2. The orientation of Example 1 and its composition with the complex
conjugation are two non-isomorphic Z[i]-orientations. But the ideal class group
Cl(Z[i]) is trivial, so the orbits contain only one element. Hence, the group action
of Cl(Z[i]) on SSprZ[i](p) cannot be transitive.

This example illustrates the general case (see [35, Proposition 3.3]): there are
always two orbits related by complex conjugation (or equivalently by the action
of the p-th Frobenius isogeny). In [35, § 3.2], Onuki constructs one of these orbits
“canonically”, as the image of Ell(O), the set of isomorphism classes of elliptic
curves defined over C with complex multiplication by O by a reduction modulo
p map: ρO : Ell(O) −→ SSprO (p) (that he defines properly). Onuki also proves
that:
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Theorem 1. [35, Theorem 3.4] The group Cl(O) acts faithfully and transitively
on ρO(Ell(O)).

Since Cl(O) also acts freely and transitively on Ell(O) (see [41, Proposi-
tion II.1.2]) it follows that ρO is injective. In the following we shall restrict our
attention to the ideal class group action on the orbit ρO(Ell(O)).

2.3 Oriented supersingular isogeny graphs

Let Ell(K) be the union of Ell(O) for every order O of K with conductor prime
to p and SSK(p) be the set of K-oriented supersingular elliptic curves up to
K-oriented isomorphism. Then, we have an injective map

ρ : Ell(K) −→ SSK(p)

naturally induced by the maps ρO : Ell(O) −→ SSprO (p) for all orders O of K
with conductor prime to p.

We say that two K-oriented isogenies are K-equivalent if they are equal up
to multiplication on the right and on the left by K-oriented isomorphisms. Let
` 6= p be a prime number. The K-oriented supersingular `-isogeny graph G`(K, p)
is the graph whose set of vertices is ρ(Ell(K)) and whose edges are K-oriented
`-isogenies up to K-equivalence.

By the injectivity of ρ, this graph is isomorphic to the `-isogeny graph of
elliptic curves over C with complex multiplication by an order of K. It follows
that G`(K, p) is infinite (unlike the supersingular `-isogeny graph over Fp) and
that every `-isogeny from a vertex of G`(K, p) has codomain in G`(K, p).

In addition, as Kohel proved [30, Chapter 4, Proposition 23], the connected
components ofG`(K, p) have a volcano structure (see Figure 1). From each vertex
on the crater, there are 1 +

(
∆K

`

)
horizontal and 1/[O× : (Z+ `O)×]

(
`−

(
∆K

`

))
descending `-isogenies up to K-equivalence. From each vertex outside of the
crater, there are ` descending and one ascending `-isogeny up to K-equivalence.

Unlike the supersingular `-isogeny graph, G`(K, p) is infinite because vertices
carry additional information: the K-orientation. Hence, the graph G`(K, p) re-
folds when we forget orientations and consider j-invariants only (see Figure 1).
Equivalently, the forgetful map ρ(Ell(K)) −→ SS(p) is not injective (SS(p) be-
ing the set of supersingular elliptic curves over Fp, up to isomorphism). This is
inconvenient because in OSIDH, K-oriented elliptic curves are represented by
their j-invariants only in order to use modular polynomials. Luckily, we have:

Theorem 2. [17, Proposition 13] When restricted to the union of Ell(O) with
|disc(O)| < p, the forgetful map becomes injective.

2.4 Effective computation of the ideal class group action

Let ` be a small prime (6= p). For all i ∈ N, let Oi := Z+ `iOK . OSIDH is based
on the ideal class group action of Cl(On) on the canonical orbit ρ(Ell(On)) for
n ∈ N big enough. By Theorem 1, this is a cryptographic group action.
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Fig. 1. On the left: Representation of a connected component (with volcano struc-
ture) of G2(Q(i), 79), the Q(i)-oriented supersingular 2-isogeny graph over F792 up to
depth 4. On the right : Supersingular 2-isogeny graph over F792 (left graph refolded).
NB: Elliptic curves with the same color have the same j-invariant.

Unfortunately, there is no known algorithm to compute the group action on
ρ(Ell(On)) directly. Colò and Kohel’s trick is to work in the K-oriented super-
singular `-isogeny graph. Instead of considering a vertex (En, ιn) ∈ ρ(Ell(On))
alone, we consider the descending chain of K-oriented `-isogenies in the graph:

(E0, ι0) −→ · · · −→ (En, ιn),

with (Ei, ιi) ∈ ρ(Ell(Oi)) for all i ∈ J1 ; nK.
Let q ⊆ OK be an ideal of norm prime to ` and p. Then, we have a commu-

tative diagram of K-oriented isogenies:

(E0, ι0)

��

// (E1, ι1)

��

// · · · // (En−1, ιn−1)

��

// (En, ιn)

��
(F0, ι

′
0) // (F1, ι

′
1) // · · · // (Fn−1, ιn−1) // (Fn, ι′n),

where (Fi, ι
′
i) := (q ∩ Oi) · (Ei, ιi), for all i ∈ J0 ; nK, the down arrows are the

isogenies associated to the q ∩ Oi and the arrows between the (Fi, ι
′
i) are `-

isogenies. Such a diagram is called an `-ladder of degree q := N(q) and the chain
at the bottom (Fi, ι

′
i)0≤i≤n is also denoted by q · (Ei, ιi)0≤i≤n.

When the norm q is a small prime number, the descending `-isogeny chain
(Fi, ι

′
i)0≤i≤n can be easily computed, assuming (Ei, ιi)0≤i≤n is known. The end-

ing element is the result of the group action by q∩On we wanted to compute in
the first place: (Fn, ι

′
n) := (q ∩On) · (En, ιn). Assuming that p > q`2n|disc(K)|,

we can perform this computation with j-invariants only and omit the orienta-
tions (this is a consequence of Theorem 2, see [35, Theorem 6.2]).

Assume that j(Fi) is known. Then, j(Fi+1) is solution of the modular equa-
tions:{

Φ`(j(Fi), x) = 0
Φq(j(Ei+1), x) = 0

⇐⇒ gcd(Φ`(j(Fi), x), Φq(j(Ei+1), x)) = 0. (?i)
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For i big enough, Eq. (?i) admits only one solution [35, Theorem 6.2], so we can
easily go down the chain of Fi.

To compute the first values of j(Fi) we cannot use Eq. (?i) because there are
multiple solutions (both j(Fi) = j(q ·Ei) and j(q ·Ei) are solutions). Hence, we
explicitly compute the torsion subgroups Ei[q∩Oi] and use Vélu’s formulas [46].
Colò and Kohel choose K so that Cl(OK) is trivial (K = Q(i) or Q(

√
−3) in

practive), so that j(F0) = j(E0) and we save the first computation.
With this algorithm, we can compute the ideal class group action, as visual-

ized in Figure 2.

E0ρ(Ell(O1))ρ(Ell(O2))

ρ(Ell(On−1)) ρ(Ell(On))

En

E1

E2

En−1

q ∩ On · En

q ∩ O1 · E1

q ∩ O2 · E2

q ∩ On−1 · En−1q

Fig. 2. Action of the prime ideal q on the descending `-isogeny chain.

3 Oriented Supersingular Isogeny Diffie–Hellman

The material of this section mostly replicates Colò and Kohel [17]. Nonetheless,
in Section 3.3 we give a more detailed account of the attack on their straw man
key exchange [17, § 5.1], and we improve it using lattice reduction.

3.1 The OSIDH setup

As explained in Section 2.4, we choose a quadratic imaginary number field K
such that Cl(OK) is trivial (K = Q(i) or K = Q(

√
−3)), ` a small prime and p

a large prime that does not split in K (cf. Proposition 1). Let Oi := Z + `iOK
for all i ∈ N∗ and n ∈ N∗ large enough. OSIDH uses the group action of Cl(On)
on the orbit ρ(Ell(On)).

According to the terminology of [2], this is a restricted cryptographic group
action (REGA), because we can use the algorithm of Section 2.4 with (prime)
ideals of small norm only. Hence, we choose a set of generators: let q1, . . . , qt be
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small distinct primes, distinct from `, and all splitting in K, and let qj be prime
OK-ideals lying above qj for all j ∈ J1 ; tK. We assume that the qj ∩On genrate
Cl(On).

3.2 A straw man key exchange scheme

With the setup of the previous section, let (Ei, ιi)0≤i≤n be a public descending
`-isogeny chain (represented as a list of j-invariants) such that E0 is primitively
OK-oriented.

Alice and Bob separately choose secret exponents e1, . . . , et and f1, . . . , ft
lying in the integer range J−r ; rK (where r is a small positive integer) and
respectively compute the action of

a :=

t∏
j=1

q
ej
j and b :=

t∏
j=1

q
fj
j

on (Ei, ιi)0≤i≤n step by step, using the method of Section 2.4.
Then, Alice sends a · (Ei, ιi)0≤i≤n to Bob (as a list of j-invariants) and Bob

sends b · (Ei, ιi)0≤i≤n to Alice. In the end, Alice computes a · (b · (Ei, ιi)0≤i≤n)
and Bob computes b · (a · (Ei, ιi)0≤i≤n), so that both parties share the chain

a · (b · (Ei, ιi)0≤i≤n) = b · (a · (Ei, ιi)0≤i≤n) = ab · (Ei, ιi)0≤i≤n.

We shall now see that this protocol is insecure: given knowledge of the chain
(Ei, ιi)0≤i≤n and of, say, a · (Ei, ιi)0≤i≤n, an attacker can recover the secret ideal
class [a].

3.3 Inverting the class group action on descending chains

Given two chains (Ei, ιi)0≤i≤n and (Fi, ι
′
i)0≤i≤n := a · (Ei, ιi)0≤i≤n with a secret

ideal class [a] ∈ Cl(On), we explain how to recover [a]. As Colò and Kohel
indicate [17, § 5.1], there are two methods to do that. The first one exploits the
chains to recover the full endomorphism rings End(En) and End(Fn) [24,48],
then computes a connecting ideal between those quaternion orders [31], and
finally finds an equivalent ideal in On. The second method, which we are now
going to illustrate, only uses the ideal class group action.

For i ∈ J0 ; n− 1K, suppose that we know an ideal of ai =
∏t
j=1 q

ei,j
j of OK ,

such that

ai · (Ek, ιk)0≤k≤i = (Fk, ι
′
k)0≤k≤i.

Then [a∩Oi] = [ai∩Oi] in Cl(Oi) and ai∩Oi is determined up to multiplication
by principal ideals of Oi, i.e. by elements of Oi. We look for an ideal ai+1 =∏t
j=1 q

ei+1,j

j of OK such that

ai+1 · (Ek, ιk)0≤k≤i+1 = (Fk, ι
′
k)0≤k≤i+1.
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Then, [ai+1 ∩ Oi] = [a ∩ Oi] = [ai ∩ Oi] is in Cl(Oi), i.e. ai+1 ∩ Oi ≡ ai ∩
Oi mod P (Oi). Hence, to determine ai+1, one only has to find an ideal bi =∏t
j=1 q

dj
j such that bi ∩ Oi is principal and

[(ai · bi) ∩ Oi+1] · Ei+1 = Fi+1. (?)

Then, we can set ai+1 := ai · bi, so that ei+1,j := ei,j + dj for all j ∈ J1 ; tK.
Both ai+1 ∩ Oi+1 and bi ∩ Oi+1 are determined up to principal ideals of Oi+1,
thus [bi ∩ Oi+1] is in the kernel of the surjective group homomorphism

[c] ∈ Cl(Oi+1) −� [cOi] ∈ Cl(Oi),

whose order is ` for i ≥ 1 and 1
[O×K :O×1 ]

(
`−

(
∆K

`

))
for i = 0 (by [19, Theorem

7.24]), so we only have to test a few values for bi until Eq. (?) is satisfied.

However, we have to make sure that all the values of bi to be tested can be
expressed in terms of the qj , and that the exponents ei+1,j of ai · bi are short
enough to make the computation of [(ai · bi) ∩ Oi+1] · Ei+1 practical.

Expressing ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj. We need to
investigate the structure of the ideal class groups, which turns out to be very
simple.

Lemma 1. One of the following results hold:

(i) For all n ≥ 1, Cl(On) is cyclic.

(ii) For all n ≥ 2, Cl(On) ' (Z/`Z)× (Z/hn−1Z) with

hn−1 := # Cl(On−1) =
`n−2

[O×K : O×1 ]

(
`−

(
∆K

`

))
,

where ∆K := disc(K).

The last case only happens when ` = 2 or when ` ≥ 3 ramifies in K (this
condition is necessary but not sufficient).

Proof. See appendix A.

The result above leads to a straightforward way to express ker(Cl(Oi+1) −�
Cl(Oi)). The strategy is to first use Algorithm 1 to compute a basis of Cl(On)
i.e. a generator or a pair of generators without non trivial relations. Then to use
Algorithm 2 to express the kernels for i ∈ J0 ; n− 1K. Both algorithms require
discrete logarithm computations in the class group, however these only take
polynomial time in n, since the order is smooth [38].



On the security of OSIDH 13

Algorithm 1: Computing a basis of Cl(On).

Data: q1, · · · , qj , n.
Result: A basis of Cl(On).

1 Compute the order dj of [qj ] ∈ Cl(On) for all j ∈ J1 ; tK;
2 m← lcm1≤j≤t dj ;
3 Find a product of the [qj ], [g] of order m in Cl(On);
4 if m = # Cl(On) then
5 Return g;
6 else
7 Find [qj ] 6∈ 〈[g]〉 (try to compute the discrete logarithm until it fails);

8 Compute the discrete logarithm k of [qj ]
` to base [g] ; // [qj ]

` ∈ 〈[g]〉
9 k′ ← k/` ; // ` | k since [qj ]

`’s order divides m/`

10 [h]← [qj ][g]−k′ ;
11 Return ([g], [h]);

12 end

Algorithm 2: Expressing ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj .

Data: q1, · · · , qj , a basis of Cl(On), i ∈ J0 ; n− 1K.
Result: A generator of ker(Cl(Oi+1) −� Cl(Oi)) in terms of the qj .

1 if # Cl(On) is cyclic then
2 [g]← entry generator of Cl(On);
3 hi ← # Cl(Oi);

4 Return [g ∩ Oi+1]hi ;

5 else
6 if i ≥ 3 then
7 ([g], [h])← entry basis of Cl(On);
8 hi−1 ← # Cl(Oi)/`;

9 Return [g ∩ Oi+1]hi−1 ;

10 else
11 Describe the kernel exhaustively;
12 end

13 end

Reducing the exponents of ai · bi. Once bi is expressed in terms of the
qj , i.e. when the exponents dj are known, we still have to make sure that the
exponents ei+1,j = ei,j + dj of ai · bi are small. We define the relation lattice

Li+1 :=

(e1, . . . , et) ∈ Zt
∣∣∣∣∣∣

t∏
j=1

[qj ∩ Oi+1]ej = [1] in Cl(Oi+1)

 ,

then two vectors ei+1 := (ei+1,j)1≤j≤t define the same element of Cl(Oi+1) if
and only if they differ by an element of Li+1. Thus we may compute Li+1 and
then find an element c ∈ Li+1 close to ei+1, so to replace ei+1 by e′i+1 := ei−c.
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We explain how to compute a basis of Li+1 when Cl(Oi+1) is cyclic. To do
so, we start by computing a generator [g] of Cl(Oi+1) using Algorithm 1. Then,
we compute the discrete logarithms xj of the [qj ] to base [g], which is easily done
since Cl(Oi+1) has smooth order. Define the row vector x := (x1, . . . , xt), and
let hi+1 = # Cl(Oi+1), then

Li+1 :=
{
e ∈ Zt

∣∣ ∀k ∈ J1 ; rK , x · e ≡ 0 [hi+1]
}
,

where x · e denotes the dot product. The dual of this lattice is

L∗i+1 := Zt + Z
1

hi+1
xT ,

so we easily find a basis C of L∗i+1 by computing the Hermite Normal Form of
the matrix (hi+1It|xT ), using [15, Algorithm 2.4.4]. Then, B := (CT )−1 is a
basis of Li+1.

When Cl(Oi+1) is not cyclic, we proceed similarly. We find a basis ([g], [h])
using Algorithm 1, we compute the discrete logarithm (xj , yj) of the [qj ] to this
base, using Sutherland’s Algorithm [43, Algorithm 2]. Li+1 is now defined by two
equations x · e ≡ 0 [hi] and y · e ≡ 0 [`], with x := (x1, . . . , xt), y := (y1, . . . , yt)
and hi := # Cl(Oi). The basis C of L∗i+1 is the Hermite Normal Form of the
matrix (hi`It|`xT |hiyT ), and finally B := (CT )−1 is a basis of Li+1.

All these operations are polynomial in i ≤ n and t. To find a vector c ∈ Li+1,
close to ei+1 we can use Babai’s nearest plane algorithm [3] running in time
O(t6). Theoretically, the distance ‖c − ei+1‖ (in norm `2) will be exponential
but in practice, for t ∼ 102, this distance will be reasonably low, making this
attack practical.

For bigger values of t, one has to find a balance between the time complexity
of the CVP algorithm and the distance ‖c − ei+1‖, closely related to the time
complexity of the operation [ai · b] ·Ei+1. This could be done with Espitau and
Kirchner’s algorithm [25], leading to a subexponential attack of time complexity
Lt[1/2, c] = exp((c+ o(1))

√
t log(t)), with c ' 0.229 (see Appendix B). To reach

a security level of 128 bits would require to take t ≥ 3 · 104, which is unrealistic.

3.4 The OSIDH key exchange

To obtain a secure key exchange, one must avoid publishing the full chains
a · (Ei, ιi)0≤i≤n and b · (Ei, ιi)0≤i≤n. Ideally, Alice and Bob would only exchange
the final elements EA,n := [a] · En and EB,n := [b] · En. However, this is not
enough information for one party to evaluate the group action on the other
party’s public curve. Colò and Kohel proposed that the parties exchange the
horizontal chains

[qj ]
−r · EA,n → · · · → EA,n → · · · → [qj ]

r · EA,n

and [qj ]
−r · EB,n → · · · → EB,n → · · · → [qj ]

r · EB,n
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Alice

e1, . . . , et ∈R J−r ; rK
a :=

∏t
j=1 q

ej
j

(EA,i)i := [a] · (Ei)i

EAB,n := [a] · EB,n

Bob

f1, . . . , ft ∈R J−r ; rK

b :=
∏t

j=1 q
fj
j

(EB,i)i := [b] · (Ei)i

EAB,n := [b] · EA,n

([qj ]
−r · EA,n −→ · · · −→ [qj ]

r · EA,n)j

([qj ]
−r · EB,n −→ · · · −→ [qj ]

r · EB,n)j

Fig. 3. The OSIDH protocol as presented in [17, § 5.2].

for all j ∈ J1 ; tK, instead. This is sufficient to compute [a] ·EB,n and [b] ·EA,n,
provided the exponents occurring in a and b are chosen in J−r ; rK. See [17,
§ 5.2] for details.

Colò and Kohel conjecture that this additional information cannot be lever-
aged to find the secrets, then, in [17, § 6], suggest a concrete set of parameters
inspired by CSIDH-512. Concretely, they take K = Q(i), ` = 2, and n = 256,
to obtain a class group of size ≈ 2256, ensuring 2128 security against meet-in-
the-middle attacks. Then, like in CSIDH, they set r = 5 and t = 74, so that
(2r + 1)t ≈ 2256, which ensures that the secret key space covers nearly all of
Cl(On).

4 Our attack on OSIDH

As explained in Section 3.3, the knowledge of the descending `-isogeny chains
(Ei, ιi)0≤i≤n and (Fi, ι

′
i)0≤i≤n := [a] · (Ei, ι′i)0≤i≤n is sufficient to recover the

secret ideal class [a] ∈ Cl(On). In this section, we prove that the knowledge of
the qj-action horizontal chains

[qj ]
−r · Fn → · · · → Fn → · · · → [qj ]

r · Fn

for all j ∈ J1 ; tK may give away enough information to recover (Fi, ι
′
i)0≤i≤n,

depending on the choice of parameters n, t and r.

4.1 Onuki’s idea

In [35, § 6.3], Onuki claims that the knowledge of a K-oriented endomorphism
ι′n(β) with β ∈ On \ On+1 is sufficient to recover the whole chain (Fi, ι

′
i)0≤i≤n.

We explain how such an endomorphism ι′n(β) helps recover Fn−1, adapting
the ideas of Petit’s attack on SIDH [37] (in particular § 4.3). The same method
can then be applied recursively to recover the whole chain. Let θ be a generator
of OK . Then `nθ generates On and we can write β := a+ b`nθ with a, b ∈ Z and
` - b (since β 6∈ On+1). Since ι′n(a) = [a], we can infer ι′n(b`nθ) from ι′n(β).
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Lemma 2. We have ker(ι′n(b`nθ))∩Fn[`] = ker(ϕ̂n−1), where ϕn−1 : Fn−1 −→ Fn
is the last K-oriented isogeny of the chain (Fi, ι

′
i)0≤i≤n.

Proof. Let G := ker(ι′n(b`nθ)) ∩ Fn[`]. We have

ι′n(b`nθ) = [`]ι′n(b`n−1θ) = ϕn−1ι
′
n−1(b`n−1θ)ϕ̂n−1

and b`n−1θ ∈ On−1, so that ι′n−1(b`n−1θ) ∈ End(Fn−1), and consequently,
ker(ϕ̂n−1) ⊆ ker(ι′n(b`nθ)). Since deg(ϕn−1) = `, we have also ker(ϕ̂n−1) ⊆ Fn[`]
so that ker(ϕ̂n−1) ⊆ G. So G is either cyclic of order ` and equal to ker(ϕ̂n−1) or
of order `2 and equal to the entire `-torsion subgroup Fn[`]. If the latter holds,
ι′n(b`nθ) factors through [`] by [42, Corollary III.4.11] and b`n−1θ ∈ On, so `|b.
A contradiction. Hence, G = ker(ϕ̂n−1).

By the lemma, if we evaluate ι′n(b`nθ) on Fn[`], we can recover ker(ϕ̂n−1)
and compute ϕ̂n−1 with Vélu’s formulas [46] to recover Fn−1. Using modular
equations to push the chains using the algorithm of Section 2.4, we can also
compute

[qj ]
−r · Fn−1 → · · · → Fn−1 → · · · → [qj ]

r · Fn−1

for all j ∈ J1 ; tK, with the knowledge of Fn−1 and

[qj ]
−r · Fn → · · · → Fn → · · · → [qj ]

r · Fn.

Hence, we can apply our method recursively to recover the whole chain (Fi)0≤i≤n.
Now, the problem is to find a K-oriented endomorphism ι′n(β) with β ∈ On \

On+1. Onuki suggests to find β such that βOn = I ·J , where I :=
∏t
j=1(qj∩On)ej

with e1, · · · , et ∈ J−r ; rK and J is an On-ideal of norm as small as possible.
Then ι′n(β) will be a composite of the isogenies Fn −→ [I] ·Fn with kernel Fn[I]
and [I] · Fn −→ [IJ ] · Fn = Fn, with kernel [I] · Fn[J ]. The first isogeny can be
computed with the knowledge of the qj-action chains

[qj ]
−r · Fn → · · · → Fn → · · · → [qj ]

r · Fn

for all j ∈ J1 ; tK (applying the method of [17, § 5.2]). Onuki suggests a meet-in-
the middle exhaustive search strategy to compute the second isogeny. However,
there is no guarantee that we find a K-oriented isogeny with this method (which
is essential for the attack to work). Besides, Onuki’s attack is very costly. It not
only requires the computation of the second isogeny (in Ω(

√
N(J)) operations)

but it also requires, before that, an exhaustive search for β ∈ On \ On+1 with
a big factor I =

∏t
j=1(qj ∩ On)ej and a small factor J . The time complexity of

such an attack is Ω(`2n/3/(r+ 1)t/3) (see Appendix C). Hence, it would require
more than 2100 operations with Colò and Kohel’s parameters (n = 256, t = 74,
` = 2 and r = 5). In [35, §6.3], Onuki underestimated the complexity as he
neglected the exhaustive search for β, which led him to recommend n ≥ 103.

In the following, we present another method based on a lattice reduction to
find ι′n(β) that breaks Colò and Kohel’s parameters.
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4.2 Finding endomorphisms via relations

Let us assume that

βOn =

t∏
j=1

(qj ∩ On)ej ,

with e1, . . . , et ∈ J−2r ; 2rK and write ej := e′j + e′′j with e′j , e
′′
j ∈ J−r ; rK for

all j ∈ J1 ; tK. Then, with the knowledge of the qj-action horizontal chains

[qj ]
−r · Fn → · · · → Fn → · · · → [qj ]

r · Fn

for all j ∈ J1 ; tK, we can compute the isogenies

ϕ : Fn −→
t∏

j=1

[qj ]
e′j · Fn and ψ : Fn −→

t∏
j=1

[qj ]
−e′′j · Fn =

t∏
j=1

[qj ]
e′j · Fn,

and finally compute ι′n(β) = ψ̂ ◦ ϕ.
Hence, to find a suitable β and compute ι′n(β), it suffices to find a non-zero

vector of ∞-norm ≤ 2r in the relation lattice of the qj in On

Ln :=

(e1, . . . , et) ∈ Zt
∣∣∣∣∣∣

t∏
j=1

[qj ∩ On]ej = [1] in Cl(On)

 .

As explained in Section 3.3, Ln can be computed in polynomial time in n and t.
But can we find short enough vectors in Ln? Assuming that Ln behaves as a
random lattice, the following results answer this question with an estimate of

the first minimum for the ∞-norm λ
(∞)
1 (Ln).

Lemma 3 (Aono, Espitau and Nguyen [49, Theorem 11]).

(i) The set IN,d for full-rank sublattices of Zd with covolume N is finite.
(ii) Let Λ be a random variable following the uniform distribution on IN,d. Then,

for all ε > 0, there exists d0, N0 ∈ N∗ such that for all d ≥ d0 and N ≥ N0

P

[∣∣∣∣∣λ(∞)
1 (Λ)− N

1
d

2

∣∣∣∣∣ ≤ log log(d)

d

N
1
d

2

]
≥ 1− ε.

Proof. (i) IN,d is in bijection with the matrices of Md(Z) in Hermite Normal
Form with discriminant ±N . (i) follows.

(ii) This result has already been proved in [49, Theorem 11] for the norm
`2. The reasoning would be exactly the same here. We only have to replace
the Gaussian Heuristic function h(d) = 1/Vol(B2(0, 1))1/d by the constant
1/Vol(B∞(0, 1))1/d = 1/2 in the inequality.

Lemma 4. Covol(Ln) = # Cl(On).
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Proof. We have an exact sequence

{0} −→ Ln −→ Zt −→ Cl(On) −→ {0},

where the first map is the natural inclusion Ln ⊆ Zt and the second one is

(e1, . . . , et) ∈ Zt 7−→
t∏

j=1

[qj ]
ej ∈ Cl(On).

It is surjective because the [qj ] generate Cl(On). As a consequence, Cl(On) '
Zt/Ln, so that Covol(Ln) = #(Zt/Ln) = # Cl(On).

Colò and Kohel recommend to define a secret key space
t∏

j=1

[qj ]
ej

∣∣∣∣∣∣ (e1, . . . , et) ∈ J−r ; rKt


large enough to (heuristically) cover all of Cl(On) without many redundancies
to make it computationally hard to find short cycles in the key space that break
OSIDH, as explained earlier. This leads to Covol(Ln) = # Cl(On) ' (2r + 1)t.
Assuming that Ln behaves as a random lattice in I#Cl(On),t, we have

λ
(∞)
1 (Ln) ≤

(
1 +

log log(t)

t

)
(# Cl(On))

1
t

2
'
(

1 +
log log(t)

t

)(
r +

1

2

)
≤ 2r

for t big enough. Hence, we expect Ln to contain short enough vectors, thus
enabling our attack, at least in theory.

Complexity analysis. All operations in our attack are polynomial in n and t
on a classical computer, except the search for a nontrivial vector e ∈ Ln \ {0}
such that ‖e‖∞ ≤ 2r, which takes exponential time in t. The most direct way
to find e is to solve the shortest vector problem (SVP) in ∞-norm, and the
best known algorithm for this is due to Aggarwal and Mukhopadhyay [1], and
runs in heuristic time 20.62t+o(t). We have no theoretical guarantee that shortest
vectors in `2 norm are shortest vectors in∞-norm but there is a margin between

λ
(∞)
1 (Ln) and 2r, so SVP algorithms in `2 norm are relevant here. The best SVP

algorithm in `2 norm is due to Becker, Ducas, Gama and Laarhoven [4] and runs
in time (3/2)t/2+o(t) ' 20.292t+o(t).

Neglecting polynomial terms and factors, we may assume that our attack
runs in 20.292t+o(t). Thus, to reach 128 bits of classical security, we would have
at the very least to take t ≈ 400. As for other parameters, the setup of OSIDH
requires n ' t log(2r+ 1)/ log(`) (since `n ' # Cl(On) ' (2r+ 1)t), however we
are going to argue that this bound is not sufficient for security.
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4.3 Extending the attack by exhaustive search

As we saw, our attack is possible only when λ
(∞)
1 (Ln) ≤ 2r and this inequality

always holds when the key space covers Cl(On). When the key space is signifi-
cantly smaller than Cl(On), i.e. when # Cl(On)� (2r + 1)t, Lemma 3 ensures

that λ
(∞)
1 (Ln) ' (# Cl(On))1/t/2 > 2r. Nevertheless, we can extend the attack

to address this case.
Let us assume that we found a short vector e ∈ Ln with norm ‖e‖∞ > 2r.

Then, we may write e := e′ + e′′ + d with e′, e′′,d ∈ Zt such that ‖e′‖∞ =
‖e′′‖∞ = r and d has ∞-norm as small as possible. As previously, we can
compute the K-oriented isogenies

ϕ : Fn −→ F ′ :=

t∏
j=1

[qj ]
e′j · Fn and ψ : Fn −→ F ′′ :=

t∏
j=1

[qj ]
−e′′j · Fn.

with kernel Fn[
∏t
j=1[qj ]

e′j ] and Fn[
∏t
j=1[qj ]

−e′′j ] respectively. In order to com-

pute the endomorphism of Fn associated to e (whose kernel is Fn[
∏t
j=1 q

ej
j ]),

it remains to compute the isogeny F ′ −→ F ′′ associated to d (whose kernel

is F ′[
∏t
j=1 q

dj
j ]). Following Onuki’s idea, we compute this isogeny by a meet-

in-the-middle style search. Let us write d := d′ + d′′ with d′j := bdj/2c and
d′′j := dj − d′j for all j ∈ J1 ; tK. We compute K-oriented isogenies

φ : F ′ −→
t∏

j=1

[qj ]
d′j · F ′ and φ′ : F ′′ −→

t∏
j=1

[qj ]
−d′′j · F ′′ =

t∏
j=1

[qj ]
d′j · F ′

of kernel F ′[
∏t
j=1[qj ]

d′j ] and F ′′[
∏t
j=1[qj ]

−d′′j ] respectively, by exhaustively test-

ing all isogenies of degree
∏t
j=1 q

|d′j |
j and

∏t
j=1 q

|d′′j |
j respectively, until the codo-

mains of φ and φ′ match. In that case, the desired endomorphism will be the
composite ψ̂ ◦ φ̂′ ◦ φ ◦ ϕ. Note that, as in Onuki’s attack, we have no theoretical
guarantee that such an isogeny will actually be K-oriented (which is necessary
to perform the attack). However, assuming the attack succeeds, we can estimate
its complexity.

Proposition 2. Under the heuristic assumption that Ln behaves like a random
lattice among lattices of covolume # Cl(On) and that the shortest vector of Ln
can be found in negligible time, our attack performs in time

Ω
(

(q1 + 1)
1
4 `

n/t−r
)
,

where q1 := N(q1) is assumed to be the smallest prime among the qj := N(qj)
for j ∈ J1 ; tK.

Proof. The dominant step in our attack is clearly the meet-in-the-middle search,
and its time complexity is (up to polynomial factors)

Ω

 t∏
j=1

(qj + 1)|d
′
j | +

t∏
j=1

(qj + 1)|d
′′
j |

 .
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Indeed, we search among all composites of chains of qj-isogenies of length |d′j |
and |d′′j | for j ∈ J1 ; tK. Besides, by [42, Corollary III.4.11], we know that the
number of isogenies of prime degree q is q + 1. The number of isogenies to test,
and the time complexity of our exhaustive search follows. By assumption, d′ and
d′′ cut d in half and e = e′ + e′′ + d, so that

‖e‖∞ ≤ ‖e′‖∞ + ‖e′′‖∞ + ‖d‖∞ = 2r + ‖d‖∞

and ‖d‖∞ ≥ ‖e‖∞ − 2r ≥ λ(∞)
1 (L)− 2r. But by Lemma 3, we have

λ
(∞)
1 (L) ≥

(
1− log log(t)

t

)
(# Cl(On))

1
t

2
∼

t→+∞

`
n
t

2
.

The result follows.

In conclusion, to ensure an asymptotic security level of λ bits, we would need

(q1 + 1)
1
4 `

n/t−r ≥ 2λ ⇐⇒ n ≥ t

log(`)
log

(
4r +

4λ log(2)

log(q1 + 1)

)
.

Note that initially, Colò and Kohel proposed n ' t log(2r + 1)/ log(`), so this
bound is more restrictive.

4.4 Implementation of our attack

Tests on toy parameters. We implemented the OSIDH protocol and our
attack in Sagemath [45] for toy parameters: ` = 2, r = 3, t = 10, n = 28 and
K = Q(i). The source code can be found on Github5. The attack is divided into
three steps:

Step 1: Our lattice based chain recovery of both Alice’s and Bob’s chains.
Step 2: A recovery of Alice’s ideal class using the algorithm presented in Sec-

tion 3.2.
Step 3: The shared secret chain computation by acting with Alice’s ideal class

on Bob’s chain.

Time performance results were obtained from a sample of 60 executions on a
Mac Book Pro mid-2015 equipped with an Intel Core i7-4870HQ clocked at 2.5
GHz. They are presented in the following table:

Protocol Chain attack Step 2 Step 3 Complete
(half of step 1) attack

Average (in s) 84.83 135.44 98.19 6.97 376.05
Standard deviation 5.61 7.15 13.06 1.61 18.29
(in s)
Margin of error (95 %) 1.46 1.90 3.40 0.42 4.76
on the average (in s)

For the modular polynomials that were used in our implementation, we give
credit to Sutherland’s online database6 computed with the algorithms of [12].

5 See https://github.com/Pierrick-Dartois/OSIDH.
6 See https://math.mit.edu/~drew/ClassicalModPolys.html.

https://github.com/Pierrick-Dartois/OSIDH
https://math.mit.edu/~drew/ClassicalModPolys.html
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Attacking real parameters. For 128 bits of classical security, Colò and Kohel
suggest ` = 2, r = 5, t = 74, n = 256 and K = Q(i). Our implementation of the
full attack cannot handle such parameters, however our attempt at implementing
the OSIDH protocol itself cannot handle them either. In fact, we are not aware of
any implementation of OSIDH using the parameters originally suggested in [17,
§ 6].

Ironically, the practical bottleneck in the attack is not the exponential time
lattice reduction step, but rather the class group action computation, which is
essentially shared with OSIDH itself, and which runs in polynomial time (see
Lemma 5). The culprit are the extremely large modular polynomials that the
implementation needs to handle, requiring several GB of storage.

On the contrary, the lattice reduction step in the attack can easily handle the
real parameters, and much more. Indeed, we were able to compute the relation
lattice Ln for the originally proposed parameters in 64 minutes. Most of this
time was spent computing the (polynomial time) discrete logarithms, while the
lattice reduction step, performed via fpylll’s implementation of BKZ [44,40]
with block size k = 4, found a vector e ∈ Ln of ∞-norm ‖e‖∞ = 9 < 2r in less
than 0.5 s.

In conclusion, we believe that our lattice based attack could be very efficient
in practice for the originally proposed parameters, as well as larger ones, provided
one is able to efficiently implement OSIDH itself.

5 Countermeasures

Because our attack has exponential complexity, it is still possible to safely instan-
tiate OSIDH by increasing parameters. We analyze here the available options.

5.1 Increase t, and everything else

The simplest countermeasure is to increase the number t of prime ideals qj ,
which governs the dimension of the relation lattice, to the point where solving
SVP becomes infeasible. As we saw in Section 4.2 if we use the Becker–Ducas–
Gama–Laarhoven algorithm [4] to solve SVP in norm `2, we need at least t ≈ 400
to achieve 128 bits of classical security. However, the size of Cl(On), and thus
the prime p, shall be increased accordingly to satisfy # Cl(On) ≈ (2r + 1)t.
Otherwise, we could consider only the t′ < t first qj (where t′ is such that

# Cl(On) ≈ (2r+1)t
′
) and still perform our attack with a smaller relation lattice

of dimension t′. We may partly compensate this increase of t by decreasing r; we
may in fact even restrict to just three values (r = 1) for the secret exponents,
e.g. ej ∈ {−1, 0, 1}. With t ≈ 400, ` = 2 and r = 1, this would lead to n ≈ 630.

This increase is significant compared to n = 256, t = 74 as suggested by Colò
and Kohel, or even n = 1428, t = 100 as suggested by Onuki [17, § 6.3], and we
expect them to severely affect performance, as the following analysis indicates.
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Lemma 5. Let (Ei)0≤i≤n be a descending `-isogeny chain such that E0 is OK-

oriented and a :=
∏t
j=1 q

ej
j with e1, . . . , et sampled in J−r ; rK. Then, the com-

putation of a · (Ei)0≤i≤n requires O(nt3 log2(t) + n2) operations over Fp2 on
average, with the constant inside O depending on r and `.

Proof. See Appendix D.

A possibly even worse consequence of this countermeasure is that it tightly
binds the security of OSIDH to a lattice assumption. Qualitatively, security
would look much worse than that of any lattice based scheme, since it appears
to be impossible to prove any kind of security reduction of OSIDH to a standard
lattice problem. Quantitatively, it seems hard to justify the practical interest of
such a slow scheme, when lattice based schemes are several orders of magnitude
faster.

5.2 Increase # Cl(On), keep the same key space

Alternatively, we may ensure that # Cl(On) ' `n is much larger than (2r+ 1)t,
so that the key space

t∏
j=1

[qj ]
ej | (e1, . . . , et) ∈ J−r ; rKt


is far from covering all of Cl(On), and thus λ

(∞)
1 (Ln) > 2r. The analysis in

Section 4.3 suggests taking

n ≥ t

log(`)
log

(
4r +

4λ log(2)

log(q1 + 1)

)
for a security level of λ bits.

We can adapt Colò and Kohel’s choice of parameters (K = Q(i), ` = 2, r =
5, t = 74) by taking n = 575 instead of n = 256 to attain λ = 128 bits of
security. The increase for n, and thus for p, is roughly comparable to the previous
countermeasure; however, by keeping the same value for t, we do not need to
introduce larger modular polynomials, and can thus hope for a significantly faster
result.

Onuki’s choice of parameters in [35, §6.3] (n = 1428, t = 100, ` = 2, r = 3
and K = Q(i)) also follows this countermeasure but such an increase in n is not
necessary and results form a cost underestimation of his attack, as we explained
in Section 4.1.

5.3 OSIDH and cryptographic group actions

Besides affecting efficiency, both countermeasures also have adverse effects on
the possibility of using the OSIDH group action in contexts other than key ex-
change. Brassard and Yung [11], then Couveignes [18], then Alamati, De Feo,
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Montgomery and Patranabis [2] established the axiomatic foundations of cryp-
tographic group actions. The latter call Effective Group Action (EGA) a group
action (G,X, ·) where, among other axioms, the value g · x can be efficiently
computed for any g ∈ G and any x ∈ X. They also observe that CSIDH does
not naturally satisfy this axiom, and thus define a better abstraction named Re-
stricted Effective Group Actions (REGA), where g ·x can be efficiently evaluated
for any x, but only for a few g taken from a fixed list.

OSIDH satisfies neither the axioms of EGAs, nor of REGAs. Indeed, the class
group action of OSIDH can only be computed with the help of the horizontal

chains, however these are “single use”: after computing Gn :=
(∏

j q
ej
j

)
· Fn

there is no way to compute the horizontal chains for Gn without knowing the
secret descending chain (Fi)0≤i≤n, and thus of evaluating a new action on Gn.
Colò and Kohel did not claim anything else than a key exchange, and for that
the limitations of OSIDH are not an issue. However it is natural to ask whether
the same primitives that are known from the CSIDH group action can be built
from the OSIDH action. This is where the countermeasures to our attack become
an obstacle.

An important step for CSIDH was the computation of the class group struc-
ture of CSIDH-512, paved the way for the CSI-FiSh signature scheme [7]. Thanks
to this intensive computational effort, it became possible to compute a reduced
basis for the relation lattice of CSIDH-512, which is used to evaluate the action
of arbitrary exponent vectors, much in the same way as we did in Section 13,
thus effectively making CSIDH-512 into an EGA. The class group structure of
OSIDH is much easier to compute than in CSIDH, and thus one may have hoped
that the analogue of CSI-FiSh would be easy to define. However it is clear that
we cannot ask the OSIDH relation lattice to be, at the same time, easy and hard
to reduce: easy for a CSI-FiSh style CVP computation, and hard to prevent our
attack. Thus, it would seem that neither CSI-FiSh, nor any of the applications
derived from it [21,6,2], can be replicated in the OSIDH context.

Remark 1. There seems to be a small positive upside, though, to OSIDH not
being a cryptographic group action in the usual sense: the best generic attacks
against (R)EGA, both classical and quantum, do not seem to apply to OSIDH!

Indeed, the best classical attack against (R)EGAs is a Pollard Rho-style
random walk algorithm [26,27], which necessitates to compute long random walks
by chaining many group actions. This is not possible for OSIDH, for which we
argued the group action can only be evaluated a limited number of times. The
next best algorithm would be a meet-in-the-middle search, which has the same
time complexity, but worse space complexity.

Possibly more remarkably, the best quantum algorithm against (R)EGAs is
Kuperberg’s subexponential algorithm for the hidden shift problem [32]. This
algorithm repeatedly calls a quantum oracle that evaluates the group action in
superposition for all possible group elements. If we apply the countermeasure of
Section 5.2, then the OSIDH group action can only be evaluated on a negligibly
small subset of the whole class group. It has already been remarked that Kuper-
berg algorithm doesn’t appear to work when the oracle is only used to evaluate
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the action for a small fraction of the group elements [14], and thus wouldn’t
apply to this variant of OSIDH. The next best quantum against OSIDH would
be, again, a meet-in-the-middle strategy, possibly applying some Grover-style
accelerations [29], which has exponential complexity, putting OSIDH in a much
better place than CSIDH regarding quantum security.

6 Conclusion

We presented a new classical attack against OSIDH that practically breaks the
parameters proposed for 128 bits security. The attack has exponential complex-
ity, and can thus be countered by increasing parameters. However the increased
parameters heavily impact the performance of a scheme which is already very
slow, and they also severely limit the number of other cryptographic primitives
one may hope to derive from the OSIDH group action.

It must be stressed that there is, as of today, no reduction of the security of
OSIDH to a well studied isogeny problem, and thus the security of the counter-
measures we propose remains somewhat dubious. More scrutiny of the security
assumptions supporting OSIDH would be beneficial.

Interestingly, we remarked that one of the countermeasures we propose ap-
pears to defeat not only our attack, but also Kuperberg’s quantum attack. It
would be interesting to investigate the quantum security of OSIDH more in
depth.

None of the countermeasures we propose is particularly efficient, and OSIDH
itself is challenging to implement. A detailed study of performance optimizations
applicable to OSIDH, and of potential efficiency-minded variants, would be very
welcome.
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A Proof of Lemma 1
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Besides, we have an injective group homomorphism

x ∈ (Z/`nZ)× 7−→ (x, 1) ∈ (Z/`nZ)× ×O×K/{±(1, 1)}

inducing a surjection

(OK/`nOK)×/(Z/`nZ)× −� Cl(On). (??)

Hence, we study the structure of (OK/`nOK)×/(Z/`nZ)×.
Let e be the ramification index of ` in K.
Case 1: Suppose that ` ≥ e + 2. Then, by [16, Lemma 4.2.1.(2)] and [16,

Corollary 4.2.11], we have

(OK/`nOK)× '

 (Z/(`− 1)Z)2 × (Z/`n−1Z)2 if ` splits in K
(Z/(`− 1)Z)× (Z/`n−1Z)× (Z/`nZ) if ` ramifies in K
(Z/(`2 − 1)Z)× (Z/`n−1Z)2 if ` is inert in K

Since ` ≥ e+ 2 ≥ 3, by [28, Theorem IV.2], (Z/`nZ)× is cyclic, so that

(Z/`nZ)× ' Z/ϕ(`n)Z = Z/(`− 1)`n−1Z ' (Z/(`− 1)Z)× (Z/`n−1Z).

Lemma 6. (i) Let Φ : G1 × G2 7−→ H1 ×H2 be an injective group homomor-
phism between finite groups. Suppose that #H1 and #H2 are coprime and
that #Gi|#Hi for i ∈ {1, 2}. Then there exists injective group homomor-
phisms ϕi : Gi −→ Hi for i ∈ {1, 2} such that

∀(g1, g2) ∈ G1 ×G2, Φ(g1, g2) = (ϕ1(g1), ϕ(g2)).

(ii) Let d ∈ N∗ and ϕ : Z/dZ 7−→ (Z/dZ)2 be an injective group homomorphism.
Then

(Z/dZ)2/ im(ϕ) ' Z/dZ.

(iii) Let ϕ : Z/`n−1Z −→ (Z/`n−1Z)× (Z/`nZ) be an injective group homomor-
phism, then

(Z/`n−1Z)× (Z/`nZ)/ im(ϕ) ' Z/`nZ or (Z/`Z)× (Z/`n−1Z).

Proof. (i) We may write Φ(g) := (φ1(g), φ2(g)) for all g ∈ G1 × G2, where
φi : G1 × G2 −→ Hi are group homomorphisms. Let g1 ∈ G1. Then, |φ2(g1, 1)|
divides |g1| (|x| being the order of x) and by Lagrange’s theorem |φ2(g1, 1)|
divides #H2 and |g1| divides #G1, so it divides #H1. Since #H1 and #H2

are coprime, we have |φ2(g1, 1)| = 1 so φ2(g1, 1) = 1. By similar arguments,
φ1(1, g2) = 1 for all g2 ∈ G2 and the result follows.

(ii) Let ϕ(1) := (a, b), with a, b ∈ J0 ; d− 1K. Since ϕ is injective, ϕ(1) has
order d so a, b and d are coprime. As a consequence, there exists u, v ∈ J0 ; d− 1K
such that au+ bv ≡ 1 [d]. As a consequence,

(x, y) ∈ (Z/dZ)2 7−→ (ax− vy, bx+ uy) ∈ (Z/dZ)2
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is an automorphism of Z-modules because its matrix in the canonical basis of
(Z/dZ)2 has determinant au+ bv = 1. It follows that

(Z/dZ)2 = Z(a, b)⊕ Z(−v, u) = im(ϕ)⊕ Z(−v, u),

so that (Z/dZ)2/ im(ϕ) ' Z(−v, u) ' Z/dZ.
(iii) Let a, b ∈ Z such that ϕ(1) = (a, b). Since ϕ is injective, ϕ(1) has order

`n−1 so `n−1b = 0 i.e. `n|`n−1b i.e. `|b. So we may write a := `ea′ and b := `fb′

with a′ and b′ prime to `, and (e, f) ∈ N× N∗. It follows that

`n−1 = |ϕ(1)| = lcm(|a|, |b|) = lcm(`n−1−e, `n−f ) = `max(n−1−e,n−f),

so that max(n− 1− e, n− f) = n− 1. If e = 0, then a generates Z/`n−1Z, so

(Z/`n−1Z)× (Z/`nZ) = im(ϕ)⊕ {0} × Z/`nZ,

and we immediately conclude that the quotient is isomorphic to Z/`nZ.
Else, we have f = 1. To conclude, it suffices to prove that the quotient

has exponent `n−1. Let x, y ∈ Z. Then, `n−1(x, y) = (0, `n−1y) = ϕ(`n−2k) with
k ∈ Z such that kb′ ≡ y [`] (such a k exists because b′ and ` are coprime). Hence,
the exponent of the quotient divides `n−1. Furthermore, if `n−2(1, 0) = ϕ(k′) for
some k′ ∈ Z then `n|k′`b′ so `n−1|k′ since gcd(`, b′) = 1. Hence, k′ = 0 and
`n−2(1, 0) = 0. Contradiction. So (1, 0) has order `n−1 in the quotient. This
completes the proof.

Applying Lemma 6 and the fact that a quotient of cyclic groups is cyclic, we
conclude that

(OK/`nOK)×/(Z/`nZ)× '

 (Z/(`− 1)Z)× (Z/`n−1Z) if ` splits
Z/`nZ or (Z/`Z)× (Z/`n−1Z) if ` ramifies
(Z/(`+ 1)Z)× (Z/`n−1Z) if ` is inert.

By the surjection (??), we conclude that Cl(On) is either cyclic or has rank 2
with a tiny cyclic factor of order `, the last case happening only when ` ramifies
in K.

Case 2: Now, we assume that ` < e+ 2. Hence, ` = 2 or ` = 3 and ` ramifies
in K. We shall conclude with the following lemma:

Lemma 7. (i) Let a be an OK-ideal prime to ` that we may write a = αOK
with α ∈ OK (Cl(OK) being trivial). Let i ∈ N∗. Then a ∩ Oi is principal if
and only if α ∈ O×K · Oi.

(ii) Let i ∈ N∗ and α ∈ Oi. Then, α` ∈ Oi+1. Assume furthermore that i ≥ 2,
` - N(α) and α ∈ Oi \ Oi+1. Then, α ∈ Oi+1 \ Oi+2.

(iii) Let i ∈ N∗ and α ∈ O×K ·(Oi\Oi+1) such that ` - N(α). Then, α 6∈ O×K ·Oi+1.
(iv) Let i0 ≥ 2 such that Cl(Oi0) has exponent k and Cl(Oi0+1) has exponent

k`. Then, there exists an OK-ideal a such that a ∩ Oi has order k`i−i0 in
Cl(Oi) for all i ≥ i0 and Cl(Oi) has exponent k`i−i0 for all i ≥ i0.



30 Pierrick Dartois and Luca De Feo

Proof. (i) Assume that a ∩ Oi is principal. Then, there exists β ∈ Oi such that
a∩Oi = βOi. By [19, Proposition 7.20], it follows that αOK = a = (a∩Oi)OK =
βOK . Hence, α = βu and β = αv with u, v ∈ OK , so that β = βuv, uv = 1 and
u ∈ O×K , so that α ∈ O×K · Oi. The converse is trivial.

(ii) Let θ be a generator of OK . Let us write α = a+ b`iθ. Then

α` = a` + `i+1a`−1bθ +
∑̀
k=2

(
`

k

)
a`−k`ikbkθk ∈ Z + `i+1OK = Oi+1.

Now, assume that i ≥ 2, ` - N(α) and α 6∈ Oi+1. Since `|
(
`
k

)
for all k ∈ J1 ; `− 1K

and i ≥ 2, we have ∑̀
k=2

(
`

k

)
a`−k`ikbkθk ∈ `i+2OK .

Hence, to conclude that α` 6∈ Oi+2, it suffices to prove that ` - a`−1b. But ` - a
since ` - N(α) and ` - b since α 6∈ Oi+1. The result follows.

(iii) For K 6= Q(
√
−1),Q(

√
−3), we have O×K = {±1} so the result trivially

holds.
Assume that K := Q(

√
−1). Let θ :=

√
−1. Then, OK = Z[θ] and O×K =

{±1,±θ}. Let α ∈ Oi that we may write α := a+ b`iθ with a, b ∈ Z. Then

θα = −b`i + aθ.

Since ` - N(α), ` - a so θα 6∈ Oi+1. The result follows in that case.
Assume that K := Q(

√
−3). Let θ := (−1 +

√
−3)/2. Then, OK = Z[θ] and

O×K = {±1,±θ,±θ2}. Let α ∈ Oi \ Oi+1 that we may write α := a + b`iθ with
a, b ∈ Z. Then

θα = aθ + b`iθ2 = aθ − b`i(θ + 1) = −b`i + (a− b`i)θ

and θ2α = −b`iθ + (a− b`i)θ2 = aθ − (a− b`i)(θ + 1) = b`i − a+ b`iθ.

Since ` - N(α), ` - a so θα 6∈ Oi+1. Since α 6∈ Oi+1, ` - b so that θ2α 6∈ Oi+1.
The result follows.

(iv) Let i ≥ i0. Then, by [19, Proposition 7.20] every invertible ideal of Oi
is of the form a∩Oi for a certain OK-ideal a prime to `. Let us write a := αOK
for α ∈ OK . Then, ak ∩ Oi0 is principal (since Cl(Oi0) has exponent k) so

αk ∈ O×K · Oi0 by (i) and by (ii), αk`
i−i0 ∈ O×K · Oi, so that ak`

i−i0 ∩ Oi is
principal. Hence, the exponent of Cl(Oi) divides k`i−i0 .

Let a be an OK-ideal prime to ` such that a∩Oi0+1 has order k` in Cl(Oi0+1).
Let us write a := αOK with α ∈ OK . Let d be the order of a ∩ Oi0 in Cl(Oi0).
Then, αd ∈ O×K · Oi0 by (i), so that αd` ∈ O×K · Oi0+1 by (ii), so that the order
of a ∩ Oi0+1 in Cl(Oi0+1) divides d`, thus k`|d`, which implies k|d. But we also
have d|k because Cl(Oi0) has exponent k, so d = k.

We have αk ∈ O×K · (Oi0 \ Oi0+1), otherwise, by (i), a ∩ Oi0+1 would have

order ≤ k. By (ii), it follows that αk`
i−i0 ∈ O×K · (Oi \ Oi+1) for all i ≥ i0.
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Now, we prove by induction on i ≥ i0 that a ∩ Oi has order k`i−i0 . As we
already saw, the result holds for i ∈ {i0, i0 + 1}. Let i ≥ i0 + 1. Assume that
a ∩ Oi has order k`i−i0 . It follows that for all d ∈ N∗, αd ∈ O×K · Oi if and

only if k`i−i0 |d. As a consequence, αk`
i+1−i0 ∈ O×K · Oi+1 and if d ∈ N∗ is such

that αd ∈ O×K · Oi+1 ⊆ O×K · Oi, then we must have k`i−i0 |d and d|k`i+1−i0

since the exponent of Cl(Oi+1) divides k`i+1−i0 . But αk`
i−i0 6∈ OK · Oi+1 since

αk`
i−i0 6∈ OK · (Oi \Oi+1) and by (iii). Hence, a∩Oi+1 has order k`i+1−i0 . This

completes the proof.

By point (iv) of the preceding lemma, we determine the structure of Cl(On)
by computing the exponent of Cl(O2) and Cl(O3). Since Cl(OK) is trivial, we
have

disc(K) ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163},

by [19, Theorem 7.30.(i)], so we have a limited number of computations to make.
There are two cases: either both Cl(O2) and Cl(O3) are cyclic, in which case
Cl(On) is cyclic; or Cl(Oi0) ' (Z/`Z) × (Z/kZ) and Cl(Oi0+1) ' (Z/`Z) ×
(Z/k`Z) for certain integers i0 ≥ 2 and k ≥ 2, in which case Cl(On) ' (Z/`Z)×
(Z/k`n−i0Z). We performed the computations with Magma [10] and obtained the
following results:

disc(K)
`

2 3

−3 (Z/2Z)× (Z/2n−2Z) Z/3n−1Z
−4 Z/2n−1Z
−7 (Z/2Z)× (Z/2n−2Z)
−8 Z/2n−1Z
−11 (Z/2Z)× (Z/3 · 2n−2Z)
−19 (Z/2Z)× (Z/3 · 2n−2Z)
−43 (Z/2Z)× (Z/3 · 2n−2Z)
−67 (Z/2Z)× (Z/3 · 2n−2Z)
−163 (Z/2Z)× (Z/3 · 2n−2Z)

B Time complexity of the chain attack of Section 3.3

We refer to Section 3.3 for the notations. As explained in Section 3.3, the domi-
nant step in the attack is to find a close vector to ei+1 in Li+1 and compute the
action of [ai · bi] on Ei+1. This operation has to be repeated at most ' ` times
for all i ∈ J0 ; n− 1K, so at most n` times.

If we find c ∈ Li+1 close to ei+1 and set e′i+1 := ei+1 − c, so that [ai · bi] =∏t
j=1[qj ]

e′i+1,j in Cl(Oi+1), then the time complexity of the operation [ai·bi]·Ei+1

is

Θ

(i+ 1)

t∑
j=1

P (qj , n)|e′i+1,j |

 ,
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where P is a polynomial. Hence, the complexity is Θ(‖e′i+1‖1) up to a polynomial

factor (in n, t and the qj). Since ‖e′i+1‖2 ≤ ‖e′i+1‖1 ≤
√
t‖e′i+1‖2, the complexity

becomes Θ(‖e′i+1‖2) up to a polynomial factor.

Theorem 3. [25, Theorem 3.3] Let Λ ⊆ Zd be a lattice of rank d, B := (b1, . . . ,bd),
a basis of Λ, a target x ∈ Rd and k ∈ N∗ such that d > 2k. Under some heuristic
assumptions, there exists an algorithm finding c ∈ Λ such that

‖x− c‖2 = Θ
(
GH(k)

d
2k Covol(Λ)

1
d

)
,

where GH is the Gaussian heuristic function: GH(k) := Γ (k/2+1)1/k/
√
π. This

algorithm runs in time

(TCV P (k) + TSV P (k))P

(
k, d, log ‖x‖2, log max

1≤i≤d
‖bi‖2

)
,

where TCV P (k) and TSV P (k) are the time complexities of oracles for CVP and
SVP in dimension k for the norm `2 respectively and P is a polynomial.

The best known algorithms for CVP and SVP are due to [23] and [4] respec-

tively. They run in time TCV P (k) = 2c1k+o(k) and TSV P (k) =
(
3
2

)k/2+o(k)
=

2c2k+o(k) respectively, with c1 ≈ 0.264 and c2 ≈ 0.292. The time complexity of
the attack follows

T := 2c2k+o(k) +
1
√
π

1
k

Γ

(
k

2
+ 1

) t
2k2

`
n
t

up to polynomial factors, where we used the fact that Covol(Ln) = # Cl(On) '
`n and neglected TCV P (k) compared to TSV P (k). Using the Stirling equivalent
Γ (k/2 + 1) ∼

√
πk(k/2e)k/2 as k → +∞ and setting k := bκ

√
t log2(t)c, with

κ := 1/
√

8c2 in order to optimize the complexity, we get

T = 2(
√
c2/8+o(1))

√
t log2(t) = exp((c+ o(1))

√
t log(t)),

with c :=
√
c2/8 log(2) ' 0.229, assuming that ` and n are constant and

t→ +∞.

C Complexity analysis of Onuki’s attack presented in
Section 4.1

We use the notations of Section 4.1 explaining Onuki’s attack which consists in
computing a K-oriented endomorphism ι′n(β) ∈ End(Fn) for β ∈ On \ On+1.
We look for β such that βOn = I · J , with a big factor I :=

∏t
j=1(qj ∩ On)ej ,

where e1, · · · , et ∈ J−r ; rK, and a small factor J . Then ι′n(β) will be computed
as the composite of the isogeny associated to I and the isonegy associated to J .
The first one is easy to compute with the knowledge of the action of powers of
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qj on Fn. The second one can be computed by a meet-in-the-middle strategy in

Ω(
√
N(J)) operations (as explained in Section 4.3).

We proceed as follows to select a suitable β. Let θ be a generator of OK , so
that `nθ generates On. We sample β := a+b`nθ with a and b sampled uniformly
at random in J−m ; mK and J−m ; mK \ `Z respectively, for m big enough. We

stop the sampling when N(β) has a big enough divisor Q :=
∏t
j=1 q

e′j
j with

e′1, · · · , e′t ∈ J0 ; rK, let’s say Q ≥ x, where the threshold x is to be chosen. We
make the heuristic assumption that N(β) has the same arithmetic properties
as a uniform variable in JNmin ; NmaxK. Under this assumption, we have the
following result:

Lemma 8. The average time complexity of Onuki’s attack [35, §6.3] is:

C(x) ≥ x

(r + 1)t
+

κ
√
Nmax√

x(r + 1)t
,

where κ := 1
2
√
q1

(
1− 1

q1

)
and x is the threshold for the value of the norm

of the ideal J =
∏t
j=1 q

ej
j dividing β. The optimal value for the threshold is

xm := (κ/2)2/3N
1/2
max(r + 1)t/3 and the optimal average time complexity is:

C(xm) = Ω

( √
Nmax

(r + 1)
t
3

)
= Ω

(
`

2n
3

(r + 1)
t
3

)
,

since Nmax ≥ Nmin ≥ `2n.

Proof. Under the heuristic assumption we made, we can assume that N := N(β)
is a uniform random variable in the range JNmin ; NmaxK. We define the random
variable:

Q := Q(N) =

t∏
j=1

q
min(r,vqj (N))

j .

The cost of the exhaustive search for a suitable β is then:

C1(x) =
1

P(Q(N) ≥ x)
=
Nmax −Nmin

#S(x)
,

with:

S(x) :=

y ∈ JNmin ; NmaxK

∣∣∣∣∣∣
t∏

j=1

q
min(r,vqj (y))

j ≥ x


=

⋃
(e1,··· ,et)∈J0 ; rKt

x≤
∏t

j=1 q
ej
j ≤Nmax

k
t∏

j=1

q
ej
j

∣∣∣∣∣∣ k ∈
t⌈

Nmin∏t
j=1 q

ej
j

⌉
;

⌊
Nmax∏t
j=1 q

ej
j

⌋|
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so that:

#S(x) ≤
∑

(e1,··· ,et)∈J0 ; rKt

x≤
∏t

j=1 q
ej
j ≤Nmax

(⌊
Nmax∏t
j=1 q

ej
j

⌋
−

⌈
Nmin∏t
j=1 q

ej
j

⌉)

≤
∑

(e1,··· ,et)∈J0 ; rKt

x≤
∏t

j=1 q
ej
j ≤Nmax

Nmax −Nmin∏t
j=1 q

ej
j

≤ Nmax −Nmin
x

#

(e1, · · · , et) ∈ J0 ; rKt
∣∣∣∣∣∣x ≤

t∏
j=1

q
ej
j ≤ Nmax


≤ (Nmax −Nmin)

(r + 1)t

x
. (1)

It follows that the search for β costs:

C1(x) ≥ x

(r + 1)t
. (2)

The average cost of the meet-in-the-middle procedure to find the isogeny
associated to J is:

C2(x) ≥ E

[√
N

Q(N)

∣∣∣∣∣Q(N) ≥ x

]
≥
√
AP(N ≥ AQ(N)|Q(N) ≥ x),

where we used Markov’s inequality with A > 0 to be chosen. Hence:

C2(x) ≥
√
A
P({N ≥ AQ(N)} ∩ {Q(N) ≥ x})

P(Q(N) ≥ x)
=

√
A#T (A)

#S(x)
, (3)

with:

T (A) :=

{
k

t∏
j=1

q
ej
j

∣∣∣∣∣ Nmax ≥
t∏

j=1

q
ej
j ≥ x

and k ∈

t

max

(
dAe,

⌈
Nmin∏t
j=1 q

ej
j

⌉)
;

⌊
Nmax∏t
j=1 q

ej
j

⌋|}
.

We take A := Nmax/(q1x), so that for all e1, · · · , et ∈ J0 ; rK such that Nmax ≥∏t
j=1 q

ej
j ≥ x, we have:

Nmin∏t
j=1 q

ej
j

≤ Nmin
x

<
Nmax
q1x

= A,

since Nmax/Nmin ' m2 � q1. Without loss of generality, we can assume that x
is a product of the qj . Hence:

#T (A) ≥
⌊
Nmax
x

⌋
−A ≥ Nmax

x
− Nmax

q1x
− 1 =

Nmax
2x

(
1− 1

q1

)
,
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under the fair assumption that x ≤ Nmax/2(1−1/q1). This inequality combined
with Eq. (1) and Eq. (3) leads to:

C2(x) ≥ (Nmax)
3
2 (1− 1/q1)

2
√
q1x(r + 1)t(Nmax −Nmin)

≥
√
Nmax

2
√
q1x(r + 1)t

(
1− 1

q1

)
. (4)

Combining Eq. (2) and Eq. (4), we find that Onuki’s attack has average com-
plexity:

C(x) ≥ C1(x) + C2(x) ≥ x

(r + 1)t
+

κ
√
Nmax√

x(r + 1)t
,

with κ := 1
2
√
q1

(
1− 1

q1

)
. The optimal value for x is obtained by differenciating

of the function defined over R∗+:

x 7−→ x

(r + 1)t
+

κ
√
Nmax√

x(r + 1)t
.

D Complexity analysis of the ideal class group action
(Lemma 5)

Let (Ei)0≤i≤n be a descending `-isogeny chain such that E0 is OK-oriented

and a :=
∏t
j=1 q

ej
j with e1, . . . , et sampled in J−r ; rK. We evaluate the time

complexity of the operation a · (Ei)0≤i≤n (in terms of operations over Fp2).
First, we evaluate the complexity of the operation q±1j · (Ei)0≤i≤n for j ∈

J1 ; tK. Such an operation has to be repeated r/2 times and for all j ∈ J1 ; tK
on average for a generic ideal a.

Using the method of Sections 2.4 to compute q±1j · (Ei)0≤i≤n, we need to
solve n equations of the form gcd(Φqj (j0, x), Φ`(j1, x)) = 0 with j0, j1 ∈ Fp2 .
For any prime m, the modular polynomial Φm(X,Y ) has degree m + 1 in X
and Y , thus its evaluation in one variable requires O((m+ 1)2) operations over
Fp2 . Hence, the evaluation of Φqj (j0, x) and Φ`(j1, x) has complexity O((qj+1)2)
operations over Fp2 , and computing the gcd of those polynomials has complexity
O((`+1)(qj+1)). Finally, finding the roots of the gcd (whose degree is≤ `+1) can
be done with Berlekamp’s algorithm [5] over Fp2 and requires O(log(p2)) = O(n)
operations over Fp2 . Hence, solving these modular equations costs O(n(q2j + n))
operations over Fp2 (recall that we treat ` as a constant).

As breifly explained in the end of Section 2.4 and in detail in [17, §5, pp.
18-19], in order to remove any ambiguity in the roots of modular equations, we
also have to compute explicitly qj · Ei0 and q−1j · Ei0 where i0 ∈ J0 ; nK is the

first index such that q2j ∩ Oi0 is not principal in Oi0 . In order to do that, we
compute Ei0 [qj ] and Ei0 [qj ] and use Vélu’s formulas [46]. The computation of
these torsion subgroups cannot be done without knowing the K-orientation ιi0
of Ei0 . Knowing the K-orientation ι0 of E0, we compute ιi0 by computing each
`-isogeny of the chain

E0
ϕ0−→ E1 · · ·Ei0−1

ϕi0−1−→ Ei0 ,
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when only j-invariants are known. Knowing Ei (0 ≤ i ≤ i0 − 1), the `-isogeny
ϕi : Ei −→ Ei+1 can be computed by exhaustively testing all `-isogenies and ap-
plying Vélu’s formulas everytime, until the j-invariant of the codomain matches
j(Ei+1). As a consequence, computing ιi0 costs O(i0(` + 1)`) operations over
Fp2 . Once this is done, we write qj ∩ Oi0 := qjZ + αZ with α ∈ Oi0 and evalu-
ate ιi0(α) and ιi0(α) on Ei0 [qj ] to compute Ei0 [qj ] and Ei0 [qj ] and then apply
Vélu’s formulas. This step costs O(q2j ) operations over Fp2 . It follows that the

computation of qj ·Ei0 and q−1j ·Ei0 costs O(q2j + i0(`+1)`) operations over Fp2 .
To complete our cost evaluation, we estimate i0. Let i ∈ J0 ; nK, such that

(qj)
2 is principal in Oi. Then (qj)

2 ∩ Oi = αOi for a certain α ∈ Oi, then
N(α) = q2j by [19, Lemma 7.14.(i)]. Let θ be a generator of OK , t its trace and

d its norm. Then, Oi = Z + `iθZ and α = a+ b`iθ with a, b ∈ Z, so that

q2j = N(α) = (a+ b`iθ)(a+ b`iθ) = a2 + ab`it+ b2`2id.

If b 6= 0, we get that a is a root of the polynomial X2 +b`itX+b2`2id−q2j whose
discriminant is

b2`2i(t2 − 4d2) + 4q2j = b2`2i∆K + 4q2j ≤ 4q2j + `2i∆K .

There is no integral root when this quantity is < 0, i.e. once i ≥ i1 given by:

i1 := blog`(2qj/
√
|∆K |)c+ 1.

Hence, if i ≥ i1, we must have b = 0, so a = qj and (qj)
2 ∩ Oi = qjOi, so that

q2j = qOK and qj ramifies in K, which is impossible. It follows that (qj)
2 is not

principal for i ≥ i1 so i0 ≤ i1 = O(log(qj)).
As a consequence, the total complexity of the operation q±1j · (Ei)0≤i≤n is

O(nq2j + n2 + `2 log(qj)), so the total complexity of a · (Ei)0≤i≤n is

O

r
2

t∑
j=1

(nq2j + n2 + `2 log(qj))


operations over Fp2 .

Under the heuristic assumption that one prime out of two splits in K, we
get that qj ∼ 2j log(j) as j → +∞. With the estimate

∑t
j=1 j

2 log2(j) ∼
t3 log2(t)/3 as t → +∞, obtained via the integral test for convergence we get
that O(nt3 log2(t) + n2) operations over Fp2 are needed on average to compute
a · (Ei)0≤i≤n, ` and r being absorbed by the O constant.
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