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Abstract. In our paper we study the effect of changing the commutative
group operation used in Feistel and Lai-Massey symmetric structures
into a quasigroup operation. We prove that if the quasigroup operation
is isotopic with a group G, the complexity of mounting a differential
attack against our generalization of the Feistel structure is the same as
attacking the unkeyed version of the general Feistel iteration based on
G. Also, when G is non-commutative we show that both versions of the
Feistel structure are equivalent from a differential point of view. For the
Lai-Massey structure we introduce four non-commutative versions, we
argue for the necessity of working over a group and we provide some
necessary conditions for the differential equivalency of the four notions.
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1 Introduction

The most popular cryptographic symmetric structures used for constructing
block ciphers are substitution-permutation networks (SPNs), Feistel and Lai-
Massey. In its most basic form, an SPN uses a series of substitutions and permu-
tations layers, while Feistel and Lai-Massey structures employ a random round
function to construct a permutation [36].

One of the most effective tool against symmetric key cryptographic algo-
rithms is differential cryptanalysis [23]. The basic idea of this attack is to in-
vestigate how certain changes in the plaintext propagate through a cipher [2].
When considering an ideal cipher, the probability of predicting these changes is
1/2n, where n is the number of input bits. Hence, in this case, it is not possible
for an attacker to use these predictions when n is, for example, 128. Unfortu-
nately, designers use theoretical estimates based on certain assumptions that
do not always hold in practice and this makes ciphers far from ideal. Thus, se-
curity against differential cryptanalysis is one of the basic design criterion for
symmetric primitives.
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Quasigroups are group-like structures that, unlike groups, are not required
to be associative and to possess an identity element. The usage of quasigroups
as building blocks for cryptographic primitives is not very common. Regardless
of that, various such cryptosystems can be found in the literature [1,8,9,11,14,
15,19,20].

In [32] the author introduces a straightforward generalization of SPNs and
studies its security. The main ingredient of the generalisation was to replace the
group operation between keys and (intermediary) plaintexts with a quasigroup
operation. When the quasigroup operation is isotopic with a group operation3,
the author proves a negative result: the new SPN structure is equivalent from a
differential point of view with an SPN using the group operation and a substi-
tution box (s-box) different from the initial one. Hence, the generalization either
brings no extra security, if we initialize the SPN with a random secret s-box, or
it might affect the SPN’s security, in the case of static s-boxes.

Another very recent approach [4–6, 10] uses commutative regular subgroups
of the symmetric group to design SPN structures that appear secure against
classical differential cryptanalysis, but are weaker with respect to a differential
attack that uses a different group operation. More precisely, such an SPN has
a security level, with respect to differential attacks, that is dependent on the
considered operation. This methodology is similar to ours, since we also con-
sider different operations to construct differential attacks against the proposed
symmetric structures. Note that the scope of the papers [4–6,10] is to show how
a designer can embed a trapdoor into symmetric structures4, while ours is to
examine whether changing the group operation to a quasigroup one, one could
reinforce the symmetric structures against differential cryptanalysis.

In this paper, using the results presented in [32], we prove that even if we use
a non-commutative group, the two resulting SPN structures are differentially
equivalent. Then, we generalize Feistel and Lai-Massey symmetric structures by
employing the same technique of changing the group operations with a quasi-
group ones. In the case of Feistel structures, we obtain equivalency with the
unkeyed version of the general Feistel iteration that is described in [27,36]. Note
that the variations of the unkeyed general Feistel iteration are stable5 under
isotopies. Also, as in the case of SPNs, the two non-commutative Feistel struc-
tures are equivalent. When we tried to generalize the Lai-Massey structure we
could not find a method that replaces the group operation with a quasigroup
one and at the same time guarantees correct decryption. When the group oper-
ation is non-commutative we obtain four variations of the Lai-Massey structure.
The only equivalence results that we obtained are when one layer is a group
morphism. Hence, we leave some open problems.

Although we present a series of negative results, we think that their usefulness
is twofold. 1 In most scientific reports and papers, authors present their results
as if they achieved them in a straightforward manner and not through a messy

3 Note that this is the most popular method for generating quasigroups.
4 The trapdoor consists of knowing the group operation that weakens the structure.
5 i.e we obtain the same structure, but instantiated with different functions.



process. This gives people a distorted view of scientific research [18,22,30,38] and
leads to a view that implies that failure, serendipity and unexpected results are
not a normal part of science [18,28]. Hence, this report provides readers with an
indication of the real processes involved in the design phase of a cryptographic
primitive. 2 Negative results and false directions are rarely reported [18,34], and
thus people are bound to repeat the same mistakes. By presenting our results, we
hope to prevent others from making the same mistakes by showing them where
these paths lead. This philosophy is based on advise given in [31], where the
author recommends that people write down their mistakes so that they avoid
making them again in the future.

Structure of the paper. We introduce notations and definitions in Section 2. In
Section 3 we generalize the Feistel structure and study its differential properties.
A generic Lai-Massey structure is introduced in Section 4 and its security is
analyzed. We conclude in Section 5.

2 Preliminaries

Notations. Throughout the paper |G| will denote the cardinality of a set G
and ⊕ the bitwise xor operation. Also, by x∥y we understand the concatenation
of the strings x and y and by G2 the set {x∥y | x, y ∈ G}. When defining a
permutation π we further use the shorthand π = {a0, a1, . . . , aℓ} which translates
into π(i) = ai for all i. We also define the identity permutation Id = {0, . . . , ℓ}.

Let X ∈ G2. By Xl and Xr we understand the left and, respectively, right
half of X. Additionally, let • and ◁ be binary operators. We define the binary
operators ∆•(X,Y ) = X • Y and ∆•,◁(X,Y ) = (Xl • Yl, Xr◁Yr).

2.1 Quasigroups

In this section we introduce a few basic notions about quasigroups. We base our
exposition on [29].

Definition 1. A quasigroup (G,⊗) is a set G equipped with a binary operation
of multiplication ⊗ : G×G → G, in which specification of any two of the values
x, y, z in the equation x⊗ y = z determines the third uniquely.

Definition 2. For a quasigroup (G,⊗) we define the left division x ⊘z = y
as the unique solution y to x ⊗ y = z. Similarly, we define the right division
z ⊘ y = x as the unique solution x to x⊗ y = z.

Lemma 1. The following identities hold

y ⊘(y ⊗ x) = x, (x⊗ y)⊘ y = x,

y ⊗ (y ⊘x) = x, (x⊘ y)⊗ y = x.

Lemma 2. If (G,⊗) is a group then x ⊘z = x−1 ⊗ z and z ⊘ y = z ⊗ y−1.



Definition 3. Let (G,⊗), (H, ⋆) be two quasigroups. An ordered triple of bijec-
tions π, ρ, ω of a set G onto the set H is called an isotopy of (G,⊗) to (H, ⋆) if
for any x, y ∈ G π(x) ⋆ ρ(y) = ω(x⊗ y). If such an isotopy exists, then (G,⊗),
(H, ⋆) are called isotopic.

A popular method for constructing quasigroups [14, 15, 19, 37] is the fol-
lowing. Choose a group (G, ⋆) (e.g. (Z2n ,⊕) or (Z2n ,+)) and three arbitrary
permutations π, ρ, ω : G → G. Then, define the quasigroup operation as x⊗ y =
ω−1(π(x) ⋆ ρ(y)). To see why this leads to a quasigroup, we note that x, y and z
are mapped uniquely to π(x), ρ(y) and ω(z), and thus any equation of the form
π(x) ⋆ ρ(y) = ω(z) is in fact uniquely resolved in the base group G given any of
π(x), ρ(y) and ω(z).

2.2 Group Differential Cryptanalysis

Differential cryptanalysis was first introduced in [2] for (Z2n ,⊕). The notion was
further extended to commutative groups in [21] and to non-commutative groups
in [32]. Let (G, ⋆) be a group. We further present the notions of left and right
differential probabilities for a permutation. Note that the notions can also be
defined for functions.

Definition 4. Let ∆⋆(X,X ′) = X ⋆ X ′, where X,X ′ ∈ (G, ⋆). We define the
group differential probabilities

LDP⋆(σ, α, β) =
1

|G|
∑

X,X′∈G
∆⋆(X

−1,X′)=α

[∆⋆(σ(X)−1, σ(X ′)) = β]

RDP⋆(σ, α, β) =
1

|G|
∑

X,X′∈G
∆⋆(X,X′−1)=α

[∆⋆(σ(X), σ(X ′)−1) = β].

where σ : G → G is a permutation and α, β ∈ G. When (G, ⋆) is commutative,
we simply refer to LDP and RDP as DP .

Remark 1. Let σ be randomly chosen. When (G, ⋆) = (Z2n , ⋆), the distribution
of DP values is studied in [25, 26] and when (G, ⋆) is a generic commutative
group in [17]. When σ is static6, the distribution of DP s for (Z2n ,⊕) is studied
for example in [7, 12,24].

We further state, without proof, a lemma that will be useful later on. Intu-
itively, the lemma states that group differentials are key independent.

Lemma 3. The following identities hold

∆⋆((K ⋆X)−1,K ⋆ X ′) = ∆⋆(X
−1, X ′)

∆⋆(X ⋆K, (X ′ ⋆ K)−1) = ∆⋆(X,X ′−1).

6 i.e fixed and public for all symmetric structure’s implementations



The following lemma tells us that the notions of LDP and RDP are equiva-
lent if we work with random secret permutations. Otherwise, the original static
permutation is transformed into a different one, not necessary better. In the
case of SPNs, this translates into the differential equivalence of the left and
right SPNs. Note that this is not mentioned in [32].

Lemma 4. Let σ′(x) = σ(x−1)−1. Then

LDP⋆(σ, α, β) = RDP⋆(σ
′, α, β).

Proof. Let Y = X−1 and Y ′ = X ′−1. Then α = X−1 ⋆ X ′ = Y ⋆ Y ′−1. Also,
note that β = σ(X)−1 ⋆ σ(X ′) = σ(Y −1)−1 ⋆ σ(Y ′−1) = σ′(Y ) ⋆ σ′(Y )−1. Hence,
we obtain the equality. ⊓⊔

3 Feistel Structure

3.1 Description

Let (G,⊗l) and (G,⊗r) be two quasigroups. A quasigroup Feistel symmetric
structure (see Figure 1) is an iterated structure that processes a plaintext P ∈ G2

for t rounds. Let Fi be random functions from G to G. The first step is to break
P into two halves L0 and R0. Then, for i ∈ [1, t] compute

Li = Ri−1 and Ri = Li−1 ⊗l Fi(ki, Ri−1),

where Fi(ki, Ri−1) = Fi(ki ⊗r Ri−1) or Fi(ki, Ri−1) = Fi(Ri−1 ⊗r ki). These
versions of the Feistel structure will further be called left Feistel structures. We
can also define the right versions

Li = Ri−1 and Ri = Fi(ki, Ri−1)⊗l Li−1.

Note that when ⊗l = ⊗r and ⊗l is commutative, we obtain the standard
Feistel structure. In this case, the structure’s differential security can be reduced
to the differential security of the non-linear Fis [2].

3.2 Analysis

In this section we extend the notion of differential cryptanalysis to quasigroup
Feistel structures. Then, we show that our generalization is correct, study the
security of Feistel structures based on quasigroups isotopic to a group and finally
we study the equivalence between Feistel structures based on a non-commutative
group.



F1
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k2

L2 R2

Fig. 1: Quasigroup Feistel structure

Definition 5. Let K be a key, Xl, X
′
l ∈ (G,⊗l) and Xr, X

′
r ∈ (G,⊗r). We

define the Feistel quasigroup differential probabilities

FDP ⊘l, ⊘r (F, α, β,K) =
1

|G|2
∑

X,X′∈G2

∆ ⊘l, ⊘r (X,X′)=α

[∆ ⊘l(Xl ⊗l F (K ⊗r Xr),

X ′
l ⊗l F (K ⊗r X

′
r)) = β],

FDP ⊘l,⊘r
(F, α, β,K) =

1

|G|2
∑

X,X′∈G2

∆ ⊘l,⊘r (X,X′)=α

[∆ ⊘l(Xl ⊗l F (Xr ⊗r K),

X ′
l ⊗l F (X ′

r ⊗r K)) = β],

FDP⊘l, ⊘r (F, α, β,K) =
1

|G|2
∑

X,X′∈G2

∆⊘l, ⊘r (X,X′)=α

[∆⊘l
(F (K ⊗r Xr)⊗l Xl,

F (K ⊗r X
′
r)⊗l X

′
l) = β],

FDP⊘l,⊘r
(F, α, β,K) =

1

|G|2
∑

X,X′∈G2

∆⊘l,⊘r (X,X′)=α

[∆⊘l
(F (Xr ⊗r K)⊗l Xl,

F (X ′
r ⊗r K)⊗l X

′
l) = β],

where F : G → G is a function, α ∈ G2 and β ∈ G.

Remark 2. In Definition 5 we only took into consideration the right half Ri,
since any modification to Ri−1 translates into Li = Ri−1 with probability 1.

Lemma 5. Let (R,R′) ∈ {(K⊗rXr,K⊗rX
′
r), (Xr⊗rK,X ′

r⊗rK)}. If (G,⊗l)
forms a commutative group then the following identities hold

∆ ⊘l(Xl ⊗l F (R), X ′
l ⊗l F (R′)) = ∆⊗l

(X−1
l , X ′

l)⊗l ∆⊗l
(F (R), F (R′)−1).



Proof. Note that

∆ ⊘l(Xl, X
′
l) = αl ⇐⇒ Xl ⊗l αl = X ′

l

⇐⇒ X−1
l ⊗l X

′
l = αl ⇐⇒ ∆⊗l

(X−1
l , X ′

l) = αl.

This relation leads to

∆ ⊘l(Xl ⊗l F (R), X ′
l ⊗l F (R′)) = β

⇐⇒ Xl ⊗l F (R)⊗l β = X ′
l ⊗l F (R′)

⇐⇒ F (R)⊗l β ⊗l Xl = F (R′)⊗l X
′
l

⇐⇒ F (R)−1 ⊗l F (R′) = α−1
l ⊗l β

⇐⇒ ∆⊗l
(X−1

l , X ′
l)⊗l ∆⊗l

(F (R)−1, F (R′)) = β.

⊓⊔

To see if Definition 5 is a generalization of the standard Feistel differential
probability, we must recover DP when ⊗l = ⊗r and ⊗l is commutative. This is
proven in Corollary 1.

Corollary 1. If (G,⊗l) forms a commutative group and ⊗r = ⊗l = ⊗ then the
following identities hold

FDP ⊘, ⊘(F, α, β,K) = FDP⊘, ⊘(F, α, β,K) = LDP ⊘(F, αr, α
−1
l ⊗l β),

FDP ⊘,⊘(F, α, β,K) = FDP⊘,⊘(F, α, β,K) = RDP⊘(F, αr, α
−1
l ⊗l β).

Proof. Using Lemmas 3 and 5 we obtain

FDP ⊘, ⊘(F, α, β,K) =

=
1

|G|2
∑

X,X′∈G2

∆ ⊘, ⊘(X,X′)=α

[∆ ⊘(Xl ⊗ F (K ⊗Xr), X
′
l ⊗ F (K ⊗X ′

r)) = β]

=
1

|G|2
∑

X,X′∈G2

∆ ⊘, ⊘(X,X′)=α

[∆⊗(X
−1
l , X ′

l)⊗∆⊗(F (K ⊗Xr)
−1, F (K ⊗X ′

r)) = β]

=
1

|G|2
∑

Xr,X
′
r∈G

∆ ⊘(Xr,X
′
r)=αr

∑
Xl∈G

[∆⊗(F (K ⊗Xr)
−1, F (K ⊗X ′

r)) = α−1
l ⊗ β]

=
1

|G|2
∑

Xr,X
′
r∈G

∆ ⊘(Xr,X
′
r)=αr

|G|[∆⊗(F (K ⊗Xr)
−1, F (K ⊗X ′

r)) = α−1
l ⊗ β]

=
1

|G|
∑

Xr,X
′
r∈G

∆ ⊘(Xr,X
′
r)=αr

[∆⊗(F (K ⊗Xr)
−1, F (K ⊗X ′

r)) = α−1
l ⊗ β]



=
1

|G|
∑

Yr,Y
′
r∈G

∆ ⊘(Yr,Y
′
r )=αr

[∆⊗(F (Yr)
−1, F (Y ′

r )) = α−1
l ⊗ β]

= LDP ⊘(F, αr, α
−1
l ⊗ β).

The remaining equalities are proven in a similar way. ⊓⊔

Let i ∈ {l, r} and x⊗i y = ω−1
i (πi(x) ⋆i ρi(y)). We further study the impact

of the ωis, πis and ρis permutations on FDP .

Lemma 6. Let i ∈ {l, r}, π′
i = πi ◦ ω−1

i , ρ′i = ρi ◦ ω−1
i , F ′ = ωl ◦ F ◦ ω−1

r . We
define x ∗i y = π′

i(x) ⋆i ρ
′
i(y) = z, x\iz = y and z/iy = x. Then the following

identities hold

FDP ⊘l, ⊘r (F, α, β,K) = FDP\l,\r
(F ′, ωl(αl)∥ωr(αr), ωl(β), ωl(K)),

FDP ⊘l,⊘r
(F, α, β,K) = FDP\l,/r

(F ′, ωl(αl)∥ωr(αr), ωl(β), ωl(K)),

FDP⊘l, ⊘r (F, α, β,K) = FDP/l,\r
(F ′, ωl(αl)∥ωr(αr), ωl(β), ωl(K)),

FDP⊘l,⊘r (F, α, β,K) = FDP/l,/r
(F ′, ωl(αl)∥ωr(αr), ωl(β), ωl(K)).

Proof. Let Z = Xl⊗l F (Xr ⊗r K) and Z ′ = X ′
l ⊗l F (X ′

r ⊗r K). First we rewrite

FDP ⊘l,⊘r
(F, α, β,K) =

1

|G|2
∑

Xl,X
′
l∈G

∆⊗l
(Xl,αl)=X′

l

∑
Xr,X

′
r∈G

∆⊗r (αr,X
′
r)=Xr

[∆⊗l
(Z, β) = Z ′].

Let ωi(Xi) = Yi, ωi(X
′
i) = Y ′

i and ωi(αi) = Ai. Then

Xl ⊗l αl = X ′
l ⇐⇒ πl(Xl) ⋆l ρl(αl) = ωl(X

′
l)

⇐⇒ π′
l(ωl(Xl)) ⋆l ρ

′
l(ωl(αl)) = ωl(X

′
l)

⇐⇒ π′
l(Yl) ⋆l ρ

′
l(Al) = Y ′

l

⇐⇒ Yl ∗l Al = Y ′
l (1)

and

αr ⊗r X
′
r = Xr ⇐⇒ πr(αr) ⋆r ρr(X

′
r) = ωr(Xr)

⇐⇒ π′
r(Ar) ⋆r ρ

′
r(Y

′
r ) = Yr

⇐⇒ Ar ∗r Y ′
r = Yr. (2)

Let ωr(K) = K ′. Then we obtain

F (Xr ⊗r K) = F (ω−1
r (πr(Xr) ⋆r ρr(K)))

= ω−1
l (F ′(π′

r(ωr(Xr)) ⋆r ρ
′
r(ωr(K))))

= ω−1
l (F ′(Yr ∗r K ′))



and using this

Z = ω−1
l (πl(Xl) ⋆l ρl(F (Xr ⊗r K)))

= ω−1
l (π′

l(ω(Xl)) ⋆l ρ
′
l(F

′(Yr ∗r K ′)))

= ω−1
l (Yl ∗l F ′(Yr ∗r K ′)). (3)

Similarly

Z ′ = ω−1
l (Y ′

l ∗l F ′(Y ′
r ∗r K ′)). (4)

Let ωl(β) = B. Using Equations (3) and (4) we obtain

Z ⊗l β = Z ′ ⇐⇒ π′
l(Yl ∗l F ′(Yr ∗r K ′)) ⋆ ρ′l(ωl(β)) = Y ′

l ∗l F ′(Y ′
r ∗r K ′)

⇐⇒ (Yl ∗l F ′(Yr ∗r K ′)) ∗l B = Y ′
l ∗1 F ′(Y ′

r ∗r K ′). (5)

Let T = Yl ∗l F ′(Yr ∗r K ′) and T ′ = Y ′
l ∗l F ′(Y ′

r ∗r K ′). Using Equations (1), (2)
and (5) we obtain

FDP ⊘l,⊘r (F, α, β,K) =
1

|G|2
∑

Yl,Y
′
l ∈G

∆∗l (Yl,Al)=Y ′
l

∑
Yr,Y

′
r∈G

∆∗r (Ar,Y
′
r )=Yr

[∆∗l
(T,B) = T ′]

=
1

|G|2
∑

Y,Y ′∈G2

∆\l,/r (Y,Y
′)=A

[∆\l
(T, T ′) = B]

= FDP\l,/r
(F ′, A,B,K ′).

The remaining equalities are proven using similar techniques. ⊓⊔

Lemma 6 tells us that it is irrelevant from a differential point of view7 if
we define the quasigroup operation with ωi ̸= Id or ωi = Id. Thus, we further
restrict our study8 to the quasigroup operations x⊗i y = πi(x) ⋆i ρi(y).

Lemma 7. Let ρ′r = ρr◦π−1
r , F ′ = ρl◦F ◦π−1

r . We define x∗l1y = πl(x)⋆ly = z,
x\l1z = y and z/l1y = x. Also, let x ∗r2 y = πr(x ⋆r ρ

′
r(y)) = z, x\r2z = y and

z/r2y = x. Then the following identity holds

FDP ⊘l,⊘r
(F, α, β,K) = FDP\l1,/r1

(F ′, πr(αr)∥ρl(αl), ρl(β), πr(K)).

Proof. Let ρl(αl) = Al, πr(αr) = Ar, πr(Xr) = Yr and πr(X
′
r) = Y ′

r . Then

Xl ⊗l αl = X ′
l ⇐⇒ πl(Xl) ⋆l ρl(αl) = X ′

l

⇐⇒ πl(Xl) ⋆l Al = X ′
l

⇐⇒ Xl ∗l1 Al = X ′
l (6)

7 e.g. we obtain the same differential probability FDP
8 without loss of generality



and

αr ⊗r X
′
r = Xr ⇐⇒ πr(αr) ⋆r ρr(X

′
r) = Xr

⇐⇒ πr(Ar ⋆r ρ
′
r(πr(X

′
r))) = πr(Xr)

⇐⇒ πr(Ar ⋆r ρ
′
r(Y

′
r )) = Yr

⇐⇒ Ar ∗r2 Y ′
r = Yr. (7)

Let πr(K) = K ′. Then we obtain

F (Xr ⊗r K) = F (πr(Xr) ⋆r ρr(K))

= F (π−1
r (Yr ⋆r ρ

′
r(πr(K))))

= ρ−1
l (F ′(Yr ∗r2 K ′))

and using this

Z = πl(Xl) ⋆l ρl(F (Xr ⊗r K))

= πl(Xl) ⋆l F
′(Yr ∗r2 K ′)

= Xl ∗l1 F ′(Yr ∗r2 K ′). (8)

Similarly

Z ′ = X ′
l ∗l1 F ′(Y ′

r ∗r2 K ′). (9)

Let ρl(β) = B. Using Equations (8) and (9) we obtain

Z ⊗l β = Z ′ ⇐⇒ πl(Xl ∗l1 F ′(Yr ∗r2 K ′)) ⋆l ρl(β) = X ′
l ∗l1 F ′(Y ′

r ∗r2 K ′)

⇐⇒ (Xl ∗l1 F ′(Yr ∗r2 K ′)) ∗l1 B = X ′
l ∗l1 F ′(Y ′

r ∗r2 K ′). (10)

Let T = Xl ∗l1 F ′(Yr ∗r2K ′) and T ′ = X ′
l ∗l1 F ′(Y ′

r ∗r2K ′). Using Equations (6),
(7) and (10) we obtain

FDP ⊘l,⊘r
(F, α, β,K) =

1

|G|2
∑

Xl,X
′
l∈G

∆∗l1 (Xl,Al)=X′
l

∑
Yr,Y

′
r∈G

∆∗r2 (Ar,Y
′
r )=Yr

[∆∗l1
(T,B) = T ′]

=
1

|G|2
∑

S,S′∈G2

∆\l1,/r2
(S,S′)=A

[∆\l1
(T, T ′) = B]

= FDP\l1,/r2
(F ′, A,B,K ′),

where S = Yr∥Xr and S′ = Y ′
r∥X ′

r. ⊓⊔

Lemmas 8 to 10 are proven similarly to Lemma 7 and thus their proofs are
omitted.

Lemma 8. Let π′
r = πr◦ρ−1

r , F ′ = ρl◦F ◦ρ−1
r . We define x∗l1y = πl(x)⋆ly = z,

x\l1z = y and z/l1y = x. Also, let x ∗r1 y = ρr(π
′
r(x) ⋆r y) = z, x\r1z = y and

z/r1y = x. Then the following identity holds

FDP ⊘l, ⊘r (F, α, β,K) = FDP\l1,\r2
(F ′, ρr(αr)∥ρl(αl), ρl(β), ρr(K)).



Lemma 9. Let ρ′r = ρr◦π−1
r , F ′ = πl◦F ◦π−1

r . We define x∗l2y = x⋆lρl(y) = z,
x\l2z = y and z/l2y = x. Also, let x ∗r2 y = πr(x ⋆r ρ

′
r(y)) = z, x\r2z = y and

z/r2y = x. Then the following identity holds

FDP⊘l,⊘r (F, α, β,K) = FDP/l2,/r1
(F ′, πr(αr)∥πl(αl), πl(β), πr(K)).

Lemma 10. Let ρ′r = πr◦ρ−1
r , F ′ = πl◦F ◦ρ−1

r . We define x∗l2y = x⋆lρl(y) = z,
x\l2z = y and z/l2y = x. Also, let x ∗r1 y = ρr(π

′
r(x) ⋆r y) = z, x\r1z = y and

z/r1y = x. Then the following identity holds

FDP⊘l, ⊘r (F, α, β,K) = FDP/l2,\r2
(F ′, ρr(αr)∥πl(αl), πl(β), ρr(K)).

Remark 3. We also tried to define a series of the differential probabilities in
which ⊘l is changed into ⊘l and vice versa, but we could not find a method for
removing πl or ρl.

We can easily see that Lemmas 7 to 10 reduce the right side of the Feistel
structure to either F ◦ ρr(πr(K) ⋆r XR) or F ◦ πr(XR ⋆r ρ(K)), for some πr, ρr
and F . Hence, we can consider a much simpler approach. Define F ′ as F ◦ ρr
in the first case and F ◦ πr in the second case. Then, study the differential
properties of F ′ instead of F . Using this approach we can restrict our study to
x⊗r y = πr(x) ⋆r y and, respectively, x⊗r y = x ⋆r ρr(y).

Since K and, for example, πr are generated as a pair, for a differential attack
to work we do not really need to know K. The value πr(K) suffices. Thus, the
right side operation of the Feistel structure can be replaced with ⋆r.

Let x⊗1 y = π(x)⋆l y and x⊗2 y = x⋆l ρ(y) and ⊘1, ⊘1 and, respectively, ⊘2,
⊘2 the associated divisions. Also, let ⊗i = ⋆i, where i ∈ {l, r}. Using Lemmas 3
and 7 to 10 we can redefine the FDP differential probabilities as

FDP ⊘1, ⊘r (F, α, β) =
1

|G|2
∑

X,X′∈G2

∆ ⊘1, ⊘r (X,X′)=α

[∆ ⊘1(Xl ⊗1 F (Xr), X
′
l ⊗1 F (X ′

r)) = β],

FDP⊘2,⊘r (F, α, β) =
1

|G|2
∑

X,X′∈G2

∆⊘2,⊘r (X,X′)=α

[∆⊘2(F (Xr)⊗2 Xl, F (X ′
r)⊗2 X

′
l) = β].

The Feistel structure we obtained is depicted in Figure 2a and represents the
unkeyed version of the general Feistel iteration (UGF) described in [36]. The
keyed version (KGF) [27] is depicted in Figure 2b.
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Fig. 2: Variations of the Feistel structure

A different point of view of studying the Feistel variations is to redefine the
probabilities as

FDP ⊘l, ⊘r (F, α, β) =
1

|G|2
∑

X,X′∈G2

∆ ⊘l, ⊘r (X,X′)=α

[∆ ⊘l(π(Xl)⊗l F (Xr),

π(X ′
l)⊗l F (X ′

r)) = β],

FDP⊘l,⊘r
(F, α, β) =

1

|G|2
∑

X,X′∈G2

∆⊘l,⊘r (X,X′)=α

[∆l⊘(F (Xr)⊗l ρ(Xl),

F (X ′
r)⊗l ρ(X

′
l)) = β].

Lemma 11. Let G(x) = F (x)−1 and ρ(x) = π(x−1)−1. Then

FDP ⊘l, ⊘r (F, α, β) = FDP⊘l,⊘r (G,α, β).

Proof. Let Yr = Xr, Yl = X−1
l , Y ′

r = X ′
r and Y ′

l = X ′−1
l . Then

αl = X−1
l ⊗l X

′
l = Yl ⊗l Y

′−1
l = Yl ⊘l Y

′
l



and

β = (π(Xl)⊗l F (Xr))
−1 ⊗l π(X

′
l)⊗l F (X ′

r)

= F (Xr)
−1 ⊗l π(Xl)

−1 ⊗l π(X
′
l)⊗l F (X ′

r)

= G(Yr)⊗l ρ(Yl)⊗l ρ(Y
′
l )

−1 ⊗l G(Y ′
r )

−1

= ∆⊘l
(G(Yr)⊗l ρ(Yl), G(Y ′

r )⊗l ρ(Y
′
l )).

Hence, we obtain the desired equality. ⊓⊔

The next corollary tells us that the left and the right versions of the classical
non-commutative Feistel structure are equivalent from a differential point of
view.

Corollary 2. Let G(x) = F (x)−1. If π = ρ = Id then

FDP ⊘l, ⊘r (F, α, β) = FDP⊘l,⊘r (G,α, β).

To summarise all the lemmas and observations we provide the reader with
Proposition 1.

Proposition 1. A quasigroup Feistel structure derived from a group Feistel
structure using an isotopy has the same differential security as a UGF based
on the same group. Also, the left and right versions of the non-commutative
unkeyed version of the general Feistel iteration are equivalent from a differential
point of view.

4 Lai-Massey Structure

4.1 Description

In this section we describe four generalizations of the Lai-Massey structure.
Before doing that, we start with Lemma 12 that guarantees correct decryption.
When we tried to generalize the Lai-Massey structure, the only condition that
seemed to guarantee correct decryption was that (G,⊗) should be group. Hence,
we further impose this restriction.

Lemma 12. Let t ∈ G. If (G,⊗) is a group, then the following properties hold

1. If y0 = x0 ⊗ t and y1 = x1 ⊗ t, then y0 ⊘ y1 = x0 ⊘ x1;
2. If y0 = t⊗ x0 and y1 = t⊗ x1, then y1 ⊘y0 = x1 ⊘x0;
3. If y0 = x0 ⊗ t and y1 = t ⊘x1, then y0 ⊗ y1 = x0 ⊗ x1;
4. If y0 = t⊗ x0 and y1 = x1 ⊘ t, then y1 ⊗ y0 = x1 ⊗ x0.

Proof. Since G is a group we have x ⊘z = x−1 ⊗ z and z ⊘ y = z ⊗ y−1. Thus,

y0 ⊘ y1 = y0 ⊗ y−1
1 = x0 ⊗ t⊗ t−1 ⊗ x−1

1 = x0 ⊗ x−1
1 = x0 ⊘ x1.

Similarly we can prove the remaining properties. ⊓⊔



Remark 4. If we want, for example, y0 ⊘ y1 = x0 ⊘ x1 to hold, we obtain

α⊗ y1 = y0 ⇐⇒ α⊗ (x1 ⊗ t) = x0 ⊗ t

⇐⇒ (α⊗ (x1 ⊗ t))⊘ t = (x0 ⊗ t)⊘ t

⇐⇒ (α⊗ (x1 ⊗ t))⊘ t = x0.

Hence, without associativity we could not see how the relation could hold. But,
if ⊗ is associative then (G,⊗) forms a group [29]. That is the reason why we
impose the restriction that (G,⊗) should be a group.
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(b) Asymmetric version

Fig. 3: Non-commutative group Lai-Massey structures

Based on the Lemma 12 we introduce two non-commutative versions of the
Lai-Massey structure: a symmetric one Figure 3a and an asymmetric one Fig-
ure 3b. Using Lemma 12 it is easy to see that all the structures are correctly
defined.

Hence, in both cases the first step is to parse the plaintext into two halves
L0 and R0. In the symmetric case, for t rounds we compute

Li = φ(Li−1 ⊗ Fi(ki, Li−1 ⊘Ri−1)) and Ri = Ri−1 ⊗ Fi(ki, Li−1 ⊘Ri−1),



where φ : G → G is a permutation and we define Fi(ki, x) as Fi(ki⊗x) or Fi(x⊗
ki). We further call these versions the left symmetric Lai-Massey structures. We
can also define the right symmetric Lai-Massey structures as follows

Li = φ(Fi(ki, Li−1 ⊘Ri−1)⊗ Li−1) and Ri = Fi(ki, Li−1 ⊘Ri−1)⊗Ri−1.

In the asymmetric case we define the outer versions as

Li = φ(Li−1 ⊗ Fi(ki, Li−1 ⊗Ri−1)) and Ri = Fi(ki, Li−1 ⊗Ri−1) ⊘Ri−1

and the inner versions as

Li = φ(Fi(ki, Li−1 ⊗Ri−1)⊗ Li−1) and Ri = Ri−1 ⊘ Fi(ki, Li−1 ⊗Ri−1).

Let φ = Id. Then the Lai-Massey structure can be easily distinguished from
a random permutation by simply checking if, for example, L2 ⊘ R2 = L0 ⊘ R0.
In the case of commutative groups, Vaudeney [35, 36] introduced the usage of
an orthomorphism φ to prevent this vulnerability. Following his approach, we
extend the Lai-Massey structure to non-commutative groups.

Definition 6. A permutation φ is a right orthomorphism if φ′(x) = φ(x) ⊘ x
is a permutation. If φ′(x) = x ⊘φ(x) is a permutation, then φ is called a left
orthomorphism.

Lemma 13. Let t be the output of F . If (G,⊗) is a group, then the following
properties hold

1. If y0 = φ(x0⊗t) and y1 = x1⊗t, then y0⊘y1 = [φ(x0⊗t)⊘(x0⊗t)]⊗(x0⊘x1);
2. If y0 = φ(t⊗x0) and y1 = t⊗x1, then y1 ⊘y0 = (x1 ⊘x0)⊗[(x0⊗t) ⊘φ(x0⊗t)];
3. If y0 = φ(x0⊗t) and y1 = t ⊘x1, then y0⊗y1 = [φ(x0⊗t)⊘(x0⊗t)]⊗(x0⊗x1);
4. If y0 = φ(t⊗x0) and y1 = x1⊘t, then y1⊗y0 = (x1⊗x0)⊗[(x0⊗t) ⊘φ(x0⊗t)].

Proof. The first equality is proven as follows

y0 ⊘ y1 = y0 ⊗ y−1
1 = φ(x0 ⊗ t)⊗ t−1 ⊗ x−1

0 ⊗ x0 ⊗ x−1
1

= [φ(x0 ⊗ t)⊗ (x0 ⊗ t)−1]⊗ (x0 ⊗ x−1
1 )

= [φ(x0 ⊗ t)⊘ (x0 ⊗ t)]⊗ (x0 ⊘ x1).

Similarly we can prove the remaining properties. ⊓⊔

According to Lemma 13 we have, for example,

L1 ⊘R1 = [φ(L0 ⊗ F (k, L0 ⊘R0))⊘ (L0 ⊗ F (k, L0 ⊘R0))]⊗ (L0 ⊘R0)

= φ′(L0 ⊗ F (k, L0 ⊘R0))⊗ (L0 ⊘R0).

If φ′ is a permutation and F (k, ·) is a random round function, then L1 ⊘ R1 is
uniformly distributed. Hence, we require that φ is a right orthomorphism.

According to the Hall-Paige theorem [16] a finite group admits an orthomor-
phism if its Sylow-2 subgroup is trivial or noncyclic. The converse was proven



in [13, 39]. In particular Z2m has no orthomorphism [35]. To overcome this re-
striction, Vaudney relaxed the orthomorphism requirement for φ into a δ-almost
orthomorphism requirement. To be consistent with the structure introduced by
Vaudney, we further consider that φ is a non-commutative δ-almost orthomor-
phism (see Definition 7).

Definition 7. A permutation φ is a δ-almost right orthomorphism if at most
δ elements from G have no preimage by the function φ′(x) = φ(x) ⊘ x. If we
change φ′(x) to x ⊘φ(x), then φ is called a δ-almost left orthomorphism.

4.2 Symmetric Structure Analysis

In this subsection we extend the differential probabilities to the symmetric Lai-
Massey structures. Then, we study what happens when φ is a morphism or ⊗ is
commutative and finally we show that our generalizations are correct.

Definition 8. Let K be a key and Xi, Y i ∈ G2 for i ∈ {0, 1}. We define the
symmetric Lai-Massey quasigroup differential probabilities

1. Let Zi = Xi
l ⊘ Xi

r, Y i
l = φ(Xi

l ⊗ F (K ⊗ Zi)) and Y i
r = Xi

r ⊗ F (K ⊗ Zi).
Then

LLM ⊘, ⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘, ⊘(X
0,X1)=α

∆ ⊘(Z
0,Z1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β];

2. Let Zi = Xi
l ⊘ Xi

r, Y i
l = φ(Xi

l ⊗ F (Zi ⊗ K)) and Y i
r = Xi

r ⊗ F (Zi ⊗ K).
Then

LLM ⊘,⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘, ⊘(X
0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β];

3. Let Zi = Xi
r ⊘Xi

l , Y i
l = φ(F (K ⊗ Zi) ⊗ Xi

l ) and Y i
r = F (K ⊗ Zi) ⊗ Xi

r.
Then

RLM⊘, ⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆ ⊘(Z
0,Z1)=γ

[∆⊘,⊘(Y
0, Y 1) = β];

4. Let Zi = Xi
r ⊘Xi

l , Y i
l = φ(F (Zi ⊗ K) ⊗ Xi

l ) and Y i
r = F (Zi ⊗ K) ⊗ Xi

r.
Then

RLM⊘,⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘,⊘(Y
0, Y 1) = β];



where F : G → G is a function, φ : G → G is a δ-almost orthomorphism, α, β ∈
G2 and γ ∈ G.

We further study the impact of φ on the symmetric Lai-Massey structures,
when φ is a morphism, not just a δ-almost orthomorphism. Note that some φ
examples provided in [35,36] satisfy this property.

Lemma 14. Let • ∈ { ⊘,⊘}. If φ is a morphism9, then we can rewrite the
symmetric Lai-Massey differential probabilities as follows

1. Let T i = Si
l ⊘ Si

r, Y i
l = φ(Si

l ⊗ F (T i)) and Y i
r = Si

r ⊗ F (T i). Then

LLM ⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆ ⊘, ⊘(S
0,S1)=α

∆•(T
0,T 1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β];

2. Let T i = Si
r ⊘Si

l , Y i
l = φ(F (T i)⊗ Si

l ) and Y i
r = F (T i)⊗ Si

r. Then

RLM⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆⊘,⊘(S0,S1)=α

∆•(T
0,T 1)=γ

[∆⊘,⊘(Y
0, Y 1) = β].

Proof. Let’s consider LLM ⊘, ⊘. We begin by rewriting Xi
l = K−1 ⊗ Si

l and
Xi

r = Si
r. Then

αl = (X0
l )

−1 ⊗X1
l = (S0

l )
−1 ⊗K ⊗K−1 ⊗ S1

l = (S0
l )

−1 ⊗ S1
l (11)

and

Zi = Xi
l ⊗ (Xi

r)
−1 = K−1 ⊗ Si

l ⊗ (Si
r)

−1. (12)

Let T i = Si
l ⊘ Si

r, for some Si
l , Si

r. Using Equations (11) and (12) we obtain

γ = (Z0)−1 ⊗ Z1 = (K−1 ⊗ S0
l ⊗ (S0

r )
−1)−1 ⊗ (K−1 ⊗ S1

l ⊗ (S1
r )

−1)

= S0
r ⊗ (S0

l )
−1 ⊗K ⊗K−1 ⊗ S1

l ⊗ (S1
r )

−1

= S0
r ⊗ (S0

l )
−1 ⊗ S1

l ⊗ (S1
r )

−1

= (T 0)−1 ⊗ T 1 (13)

and

F (K ⊗ Zi) = F (K ⊗K−1 ⊗ Si
l ⊗ (Si

r)
−1) = F (Si

l ⊗ (Si
r)

−1) = F (T i). (14)

From Equation (14) we derive

Y i
r = Xi

r ⊗ F (K ⊗ Zi) = Si
r ⊗ F (T i) (15)

9 Although for LLM ⊘,⊘ and RLM⊘, ⊘this is not necessary, we leave it for uniformity.



and

Y i
l = φ(Xi

l ⊗ F (K ⊗ Zi))

= φ(K−1 ⊗ Si
l ⊗ F (T i))

= φ(K)−1 ⊗ φ(Si
l ⊗ F (T i)). (16)

Hence, we have

Y 0
l ⊘Y 1

l = (φ(S0
l ⊗ F (T 0)))−1 ⊗ φ(S1

l ⊗ F (T 1)) (17)
Y 0
r ⊘Y 1

r = (S0
r ⊗ F (T 0))−1 ⊗ (S1

r ⊗ F (T 1)). (18)

Using Equations (11), (13), (17) and (18) we obtain the desired equality. The
remaining relations are proven similarly. ⊓⊔

Lemma 15. Let β′ = φ−1(βl)∥βr. If φ is a morphism then the following prop-
erties hold

1. Let T i = Si
l ⊘ Si

r, V i
l = Si

l ⊗ F (T i) and V i
r = Si

r ⊗ F (T i). Then

LLM ⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆ ⊘, ⊘(S
0,S1)=α

∆•(T
0,T 1)=γ

[∆ ⊘, ⊘(V
0, V 1) = β′];

2. Let T i = Si
r ⊘Si

l , V i
l = F (T i)⊗ Si

l and V i
r = F (T i)⊗ Si

r. Then

RLM⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆⊘,⊘(S0,S1)=α

∆•(T
0,T 1)=γ

[∆⊘,⊘(V
0, V 1) = β′].

Proof. Since φ is a morphism then

βl = (Y 0
l )

−1 ⊗ Y 1
l = φ(S0

l ⊗ F (T 0))−1 ⊗ φ(S1
l ⊗ F (T 1))

= φ((S0
l ⊗ F (T 0))−1)⊗ φ(S1

l ⊗ F (T 1))

= φ((S0
l ⊗ F (T 0))−1 ⊗ (S1

l ⊗ F (T 1))

= φ(V 0
l ⊘V 1

l ).

This is equivalent with V 0
l ⊘V 1

l = φ−1(βl). The second equality is proven simi-
larly. ⊓⊔

Lemma 15 tell us that when φ is a morphism it does not influence the sym-
metric Lay-Massey differential probabilities. Thus, the differential study of one
round reduces to studying, for example, F (Z0)−1⊗αj⊗F (Z1), where j ∈ {l, r}.

Corollary 3. Let G(x) = F (x)−1. If φ is a morphism then

LLM ⊘,•(F, α, β, γ) = RLM⊘,•(G,α, β, γ).



Proof. Let j ∈ {l, r} and Si
j = (Xi

j)
−1. We observe that

αj = X0
j ⊘X1

j = (X0
j )

−1 ⊗X1
j = S0

j ⊗ (S1
j )

−1 = S0
j ⊘ S1

j

Zi = Xi
l ⊘Xi

r = Xi
l ⊗ (Xi

r)
−1 = (Si

l )
−1 ⊗ Si

r = Si
l ⊘Si

r.

and

Y 0
j ⊘Y 1

j = F (Z0)−1 ⊗ (X0
j )

−1 ⊗X1
j ⊗ F (Z1)

= G(Z0)⊗ S0
j ⊗ (S1

j )
−1 ⊗G(Z1)−1

= ∆⊘(G(Z0)⊗ S0
j , G(Z1)⊗ S1

j ).

Thus, we obtain the desired equality. ⊓⊔

In this last part, we consider (G,⊗) to be a commutative group and see what
properties hold for the symmetric Lai-Massey structures.

Lemma 16. The following properties hold

∆ ⊘(X
0
l ⊘X0

r , X
1
l ⊘X1

r ) = X0
r ⊗∆ ⊘(X

0
l , X

1
l )⊗ (X1

r )
−1,

∆⊘(X
0
l ⊘X0

r , X
1
l ⊘X1

r ) = X0
l ⊗∆ ⊘(X

0
r , X

1
r )⊗ (X1

l )
−1,

∆ ⊘(X
0
r ⊘X0

l , X
1
r ⊘X1

l ) = (X0
l )

−1 ⊗∆⊘(X
0
r , X

1
r )⊗X1

l ,

∆⊘(X
0
r ⊘X0

l , X
1
r ⊘X1

l ) = (X0
r )

−1 ⊗∆⊘(X
0
l , X

1
l )⊗X1

r .

Proof. By rewriting the left hand side of the equality we obtain

∆ ⊘(X
0
l ⊘X0

r , X
1
l ⊘X1

r ) = (X0
l ⊗ (X0

r )
−1)−1 ⊗ (X1

l ⊗ (X1
r )

−1)

= X0
r ⊗ ((X0

l )
−1 ⊗X1

l )⊗ (X1
r )

−1

= X0
r ⊗∆ ⊘(X

0
l , X

1
l )⊗ (X1

r )
−1.

The remaining equalities are proven similarly. ⊓⊔

Corollary 4. If (G,⊗) is a commutative group then

∆ ⊘(X
0
l ⊘X0

r , X
1
l ⊘X1

r ) = ∆ ⊘(X
0
l , X

1
l )⊗ (∆ ⊘(X

0
r , X

1
r ))

−1,

∆⊘(X
0
l ⊘X0

r , X
1
l ⊘X1

r ) = (∆ ⊘(X
0
l , X

1
l ))

−1 ⊗∆ ⊘(X
0
r , X

1
r ),

∆ ⊘(X
0
r ⊘X0

l , X
1
r ⊘X1

l ) = (∆⊘(X
0
l , X

1
l ))

−1 ⊗∆⊘(X
0
r , X

1
r ),

∆⊘(X
0
r ⊘X0

l , X
1
r ⊘X1

l ) = ∆⊘(X
0
l , X

1
l )⊗ (∆⊘(X

0
r , X

1
r ))

−1.

Corollary 5 tells us that when φ is a morphism and (G,⊗) is a commutative
group, the problem of studying the differential security of the symmetric Lay-
Massey structure is reduced to studying the security of F . Hence, our definitions
are well defined.



Corollary 5. If (G,⊗) is a commutative and φ is a morphism then the following
properties hold

LLM ⊘,•(F, α, β, γ) = DP⊗(F,A
l
•, B

l
•),

RLM ⊘,•(F, α, β, γ) = DP⊗(F,A
r
•, B

r
•),

for some As and Bs.
Proof. According to Corollary 4 LLM ⊘, ⊘is 0, unless γ = αl ⊗ α−1

r . Thus, the
differential probability makes sense only when γ = αl ⊗ α−1

r = A.
Using the notations from Lemma 15, we have

β′
l = (V 0

l )
−1 ⊗ V 1

l = F (T 0)−1 ⊗ (S0
l )

−1 ⊗ S1
l ⊗ F (T 1)

= F (T 0)−1 ⊗ αl ⊗ F (T 1)

= αl ⊗∆ ⊘(F (T 0), F (T 1)).

This is equivalent with ∆ ⊘(F (T 0), F (T 1)) = α−1
l ⊗ β′

l. Similarly we obtain
∆ ⊘(F (T 0), F (T 1)) = α−1

r ⊗β′
r. Thus, LLM ⊘, ⊘makes sense only when α−1

l ⊗β′
l =

α−1
r ⊗ β′

r = B. Hence, we obtain

LLM ⊘, ⊘(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆ ⊘, ⊘(S
0,S1)=α

∆ ⊘(T
0,T 1)=αl⊗α−1

r

[∆ ⊘(F (T 0), F (T 1)) = B]

=
1

|G|2
∑

T 0,T 1∈G
∆ ⊘(T

0,T 1)=A

∑
S0
r∈G

[∆ ⊘(F (T 0), F (T 1)) = B]

=
1

|G|2
∑

T 0,T 1∈G
∆ ⊘(T

0,T 1)=A

|G|[∆ ⊘(F (T 0), F (T 1)) = B]

= DP⊗(F,A,B).

The remaining probabilities are reduced to DP using similar techniques. ⊓⊔

To summarise all the lemmas and observations we provide the reader with
Proposition 2.
Proposition 2. If φ is a morphism, then the left and right symmetric versions
are equivalent from a differential point of view. Moreover, if (G,⊗) is commu-
tative we recover that LLM and RLM are equal to DP .

4.3 Asymmetric Structure Analysis
In this section we extend the notion of differential cryptanalysis to asymmetric
Lai-Massey structures. Then, as in the symmetric case, we show that ⊗ is equiv-
alent10 with ⊗ and then we study the impact of the morphism φ-property and
the commutativity ⊗-property on the asymmetric structure.
10 from a differential point of view



Definition 9. Let K be a key and Xi, Y i ∈ G2 for i ∈ {0, 1}. We define the
asymmetric Lai-Massey quasigroup differential probabilities
1. Let Zi = Xi

l ⊗ Xi
r, Y i

l = φ(Xi
l ⊗ F (K ⊗ Zi)) and Y i

r = F (K ⊗ Zi) ⊘Xi
r.

Then

OLM ⊘, ⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘,⊘(X0,X1)=α

∆ ⊘(Z
0,Z1)=γ

[∆ ⊘,⊘(Y
0, Y 1) = β];

2. Let Zi = Xi
l ⊗ Xi

r, Y i
l = φ(Xi

l ⊗ F (Zi ⊗ K)) and Y i
r = F (Zi ⊗ K) ⊘Xi

r.
Then

OLM ⊘,⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘,⊘(Y
0, Y 1) = β];

3. Let Zi = Xi
r ⊗ Xi

l , Y i
l = φ(F (K ⊗ Zi) ⊗ Xi

l ) and Y i
r = Xi

r ⊘ F (K ⊗ Zi).
Then

ILM⊘, ⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘, ⊘(X
0,X1)=α

∆ ⊘(Z
0,Z1)=γ

[∆⊘, ⊘(Y
0, Y 1) = β];

4. Let Zi = Xi
r ⊗ Xi

l , Y i
l = φ(F (Zi ⊗ K) ⊗ Xi

l ) and Y i
r = Xi

r ⊘ F (Zi ⊗ K).
Then

ILM⊘,⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘, ⊘(X
0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘, ⊘(Y
0, Y 1) = β];

where F : G → G is a function, φ : G → G is a δ-almost orthomorphism, α, β ∈
G2 and γ ∈ G.

The next lemma allows us to remove the key from the differential probabil-
ities. Note that the Lemma 17 is proven similarly to Lemma 14 and hence we
omit its proof.

Lemma 17. Let • ∈ { ⊘,⊘}. If φ is a morphism11, then we can rewrite the
asymmetric Lai-Massey differential probabilities as follows
1. Let T i = Si

l ⊗ Si
r, Y i

l = φ(Si
l ⊗ F (T i)) and Y i

r = F (T i) ⊘Si
r. Then

OLM ⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆ ⊘,⊘(S0,S1)=α

∆•(T
0,T 1)=γ

[∆ ⊘,⊘(Y
0, Y 1) = β];

11 Although for OLM ⊘,⊘ and ILM⊘,⊘ this is not necessary, we leave it for uniformity.



2. Let T i = Si
r ⊗ Si

l , Y i
l = φ(F (T i)⊗ Si

l ) and Y i
r = Si

r ⊘ F (T i). Then

ILM⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆⊘, ⊘(S
0,S1)=α

∆•(T
0,T 1)=γ

[∆⊘, ⊘(Y
0, Y 1) = β].

As in the symmetric case, if φ is a morphism the differential study is reduced
to studying, for example, F (Z0)−1 ⊗ αr ⊗ F (Z1) and F (Z0) ⊗ αl ⊗ F (Z1)−1.
This is stated formally in the next lemma.

Lemma 18. Let β′ = φ−1(βl)∥βr. If φ is a morphism then the following prop-
erties hold

1. Let T i = Si
l ⊗ Si

r, V i
l = Si

l ⊗ F (T i) and V i
r = F (T i) ⊘Si

r. Then

OLM ⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆ ⊘,⊘(S0,S1)=α

∆•(T
0,T 1)=γ

[∆ ⊘,⊘(V
0, V 1) = β′];

2. Let T i = Si
r ⊗ Si

l , V i
l = F (T i)⊗ Si

l and V i
r = Si

r ⊘ F (T i). Then

ILM⊘,•(F, α, β, γ) =
1

|G|2
∑

S0,S1∈G2

∆⊘, ⊘(S
0,S1)=α

∆•(T
0,T 1)=γ

[∆⊘, ⊘(V
0, V 1) = β′].

Corollary 6. Let G(x) = F (x)−1. If φ is a morphism then

OLM ⊘,•(F, α, β, γ) = ILM⊘,•(G,α, β, γ).

We further prove that all the Lai-Massey structures are equivalent.

Lemma 19. The following properties hold

OLM ⊘,•(F, α, β, γ) = LLM ⊘,•(F, α, β, γ,K),

ILM⊘,•(F, α, β, γ) = RLM⊘,•(F, α, β, γ,K).

Proof. Let T i
l = Xi

l and T i
r = (Xi

r)
−1. Then Zi = T i

l ⊗ (T i
r)

−1 = T i
l ⊘ T i

r and
X0

r ⊘X1
r = (T 0

r )
−1 ⊗ T 1

r = T 0
r ⊘T 1

r . We obtain

βr = Y 0
r ⊘ Y 1

r = F (Z0)−1 ⊗X0
r ⊗ (X1

r )
−1 ⊗ F (Z1)

= F (Z0)−1 ⊗ (T 0
r )

−1 ⊗ T 1
r ⊗ F (Z1)

= ∆ ⊘(T
0
r ⊗ F (Z0), T 1

r ⊗ F (Z1)).



Let Si
l = Y i

l and Si
r = T i

r ⊗ F (Zi). Hence, we obtain

OLM ⊘,•(F, α, β, γ) =
1

G
∑

T 0,T 1∈G2

∆ ⊘, ⊘(T
0,T 1)=α

∆•(Z
0,Z1)=γ

[∆ ⊘, ⊘(S
0, S1) = β]

= LLM ⊘,•(F, α, β, γ).

The second equality is proven in a similar fashion. ⊓⊔

By using some results obtained in the symmetric case, Corollary 7 shows the
correctness of our definitions.

Corollary 7. If (G,⊗) is a commutative and φ is a morphism then the following
properties hold

OLM ⊘,•(F, α, β, γ) = DP⊗(F,A
l
•, B

l
•),

ILM⊘,•(F, α, β, γ) = DP⊗(F,A
r
•, B

r
•),

for some As and Bs.

Proof. Using Lemma 19 we reduce the notions of OLM and ILM to LLM and
RLM . Then, using Corollary 5 we collapse the notions to DP . Hence, we obtain
the corollary. ⊓⊔

We further summarise the results obtained for the asymmetric Lai-Massey
structures in Proposition 3.

Proposition 3. When φ is a morphism, then the symmetric and asymmetric
structures are equivalent from a differential point of view.

5 Conclusions

In this paper we study the effect of quasigroups isotopic to groups in the design
of cryptographic symmetric structures. We first show that for SPNs based on
non-commutative groups, the left and right versions are equivalent (Lemma 4).
Then, we study Feistel structures and we prove that the problem of studying
a Feistel structure based on an isotopic quasigroup reduces to studying an un-
keyed version of the general Feistel iteration based on the initial group (Lemmas 6
to 10). As in the SPN case, left and right Feistel structures are equivalent (Corol-
lary 2). For the Lai-Massey structure we argue that the operation should be a
group operation (Lemma 12 and Remark 4). When the δ-almost orthomorphism
is a morphism then the left and right Lai-Massey versions are equivalent (Corol-
lary 3). The same statement is true for the inner and outer Lai-Massey versions
(Corollary 6). Moreover, the symmetric and asymmetric Lai-Massey versions are
equivalent when working with morphisms (Lemma 19).



When we consider SPN and Feistel symmetric structures with random secret
s-boxes (e.g. [3, 33]) using an isotopic quasigroup or a non-commutative group
does not pose a problem, since studying its security reduces to studying the
security of a symmetric structure with a different s-box than the original one.
Thus, in this case, the extensions are secure, but, nevertheless, useless. When we
consider static s-boxes we encounter a security problem. Since the resulting new
s-box might not have the cryptographic properties of the initial s-box, using
a quasigroup/non-commutative group operation might lead to cryptographic
weaknesses unforeseen by the designers of the static s-box.

Future work. We showed the stability of the UGF, but not of the KGF. Hence,
we leave this as an open problem. An interesting problem is to (dis)prove that
the Lai-Massey structures are equivalent when φ is not a morphism.
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