
Traceable PRFs: Full Collusion Resistance

and Active Security

Sarasij Maitra
University of Virginia
sm3vg@virginia.edu

David J. Wu*

UT Austin
dwu4@cs.utexas.edu

Abstract

The main goal of traceable cryptography is to protect against unauthorized redistribution of cryp-
tographic functionalities. Such schemes provide a way to embed identities (i.e., a “mark”) within
cryptographic objects (e.g., decryption keys in an encryption scheme, signing keys in a signature scheme).
In turn, the tracing guarantee ensures that any “pirate device” that successfully replicates the underlying
functionality can be successfully traced to the set of identities used to build the device.

In this work, we study traceable pseudorandom functions (PRFs). As PRFs are the workhorses of
symmetric cryptography, traceable PRFs are useful for augmenting symmetric cryptographic primitives
with strong traceable security guarantees. However, existing constructions of traceable PRFs either rely
on strong notions like indistinguishability obfuscation or satisfy weak security guarantees like single-key
security (i.e., tracing only works against adversaries that possess a single marked key).

In this work, we show how to use fingerprinting codes to upgrade a single-key traceable PRF into a
fully collusion resistant traceable PRF, where security holds regardless of how many keys the adversary
possesses. We additionally introduce a stronger notion of security where tracing security holds even
against active adversaries that have oracle access to the tracing algorithm. In conjunction with known
constructions of single-key traceable PRFs, we obtain the first fully collusion resistant traceable PRF
from standard lattice assumptions. Our traceable PRFs directly imply new lattice-based secret-key traitor
tracing schemes that are CCA-secure and where tracing security holds against active adversaries that
have access to the tracing oracle.

1 Introduction

Traitor tracing [CFN94] and software watermarking schemes [BGI+01, BGI+12] are cryptographic primitives
for protecting against the unauthorized distribution of software. In both settings, a content distributor can
embed some special information (e.g., a “mark” or a “tag”) into a program in a way that preserves the
functionality of the program while ensuring that it is difficult for an adversary to remove the tag from the
program without destroying its functionality. Schemes that provide strong security guarantees have typically
focused on cryptographic programs. Specifically, traitor tracing schemes focus on protecting the decryption
functionality in a (public-key) encryption scheme [CFN94, BSW06, BN08, GKW18, Zha20] while software
watermarking has focused on symmetric primitives like pseudorandom functions (PRFs) [CHN+16, KW17,
QWZ18, YAYX20] and on public-key primitives such as public-key encryption or digital signatures [GKM+19,
Nis20].

Traceable PRFs. In this work, we study traceable PRFs, a notion recently introduced by Goyal et al. [GKWW21].
Recall first that a PRF [GGM84] is a keyed function PRF(k, ·) whose input/output behavior is computationally
indistinguishable from a truly random function. As PRFs are the workhorses of symmetric cryptography,
traceable PRFs are sufficient to augment a wide range of symmetric primitives with tracing capabilities: this

*Research supported by NSF CNS-1917414, CNS-2045180, and a Microsoft Research Faculty Fellowship.

1

mailto:sm3vg@virginia.edu
mailto:dwu4@cs.utexas.edu

can include notions such as symmetric encryption (which corresponds to secret-key traitor tracing), message
authentication codes, or symmetric challenge-response authentication systems.

In a traceable PRF, the holder of the PRF key k can issue “marked” keys kid associated with an identity
id. First, the marked key kid can be used to evaluate the PRF almost everywhere: namely, there is an efficient
evaluation algorithm Eval where Eval(kid, x) = PRF(k, x) for all but a negligible fraction of elements in the
domain. Moreover, there is a tracing algorithm Trace that takes any “useful” program D and outputs at
least one of the identity keys kid that was used to construct D. More precisely, if an adversary that has
keys kid1 , . . . , kidq manages to create a “useful” program D, the tracing algorithm on program D should
successfully output at least one of the identities id1, . . . , idq.

1

The question is how to define the “usefulness” of a program D. In the setting of watermarkable
PRFs [CHN+16], a program D is considered useful only if D(x) = PRF(k, x) on at least a (1/2 + ε)-fraction
of elements in the domain; in other words, programs are considered useful if they exactly preserve the output
of the original PRF on most inputs. Goyal et al. [GKWW21] showed that this security notion is inadequate
in settings where an adversarial program can break the security of a particular application without necessarily
replicating the exact input/output behavior of the PRF. To address the weaknesses of the prevailing security
notions for watermarking, Goyal et al. strengthened the “usefulness” definition on a program D to capture all
programs that can successfully break (weak) pseudorandomness of the PRF. Specifically, any efficient program
D that is able to distinguish a sequence (x1,PRF(k, x1)), . . . , (xn,PRF(k, xn)) from (x1, f(x1)), . . . , (xn, f(xn))
with probability 1/2 + ε, where x1, . . . , xn are random domain elements, f is a truly random function, and ε is
non-negligible, is considered to be useful. In other words, the tracing algorithm should successfully extract an
identity from any efficient distinguisher D that can distinguish PRF evaluations on random domain elements.

Collusion resistance. An important property in the study of traceable cryptography is collusion resistance,
which requires that tracing security holds even if the adversary obtains multiple marked keys. We say a
scheme is “fully collusion resistant” if security holds against adversaries that can obtain any unbounded
polynomial number of keys.

Goyal et al. [GKWW21] gave two constructions of traceable PRFs: (1) a single-key construction from
standard lattice assumptions where security holds against an adversary that holds a single marked key; and
(2) a collusion resistant construction from indistinguishability obfuscation [BGI+01]. A natural question
is whether we can obtain a collusion resistant traceable PRF from standard lattice assumptions. Such a
construction would have the advantage of being plausibly post-quantum secure and also provides a more
direct instantiation than going through the full power of indistinguishability obfuscation.

Fully collusion resistant constructions of related notions such as traitor tracing (i.e., traceable encryp-
tion) [GKW18, CVW+18] and watermarkable PRFs [YAYX20] are known from standard lattice assumptions.

Active security. Traceable PRFs and traitor tracing schemes come in several varieties. Some schemes
support public tracing where anyone is able to run the tracing algorithm, while others only support secret
tracing where knowledge of a secret key is needed to run the tracing algorithm. Existing lattice-based
constructions of traceable PRFs and traitor tracing only support secret tracing.

In the secret tracing setting, existing security models only consider adversaries that do not have access to
the tracing key. However, in practical scenarios where traitor tracing schemes may be deployed, it makes
sense to consider active adversaries that may make multiple attempts to try and evade the tracing algorithm
(or even worse, cause the tracing algorithm to falsely implicate an honest user). Certainly, any scheme that
supports public tracing ensures robustness against such active adversaries, but the same does not hold in
the secret-tracing setting. In this work, we model the capabilities of an active adversary by introducing
a stronger security model in the secret tracing setting where we additionally allow the adversary to make
queries to the tracing oracle. We view our notion to be an intermediate notion between secret tracing and
public tracing. A similar intermediary notion was previously considered in the setting of watermarkable
PRFs [QWZ18, KW19, YAL+19].

1While it might seem more natural to require that Trace outputs all of the identities id1, . . . , idq , this requirement is impossible
since an adversary can build its program D from just one of the keys it requested (and ignore all of the other ones).

2

This work. In this work, we show how to generically augment traceable PRFs with collusion resistance
and active security through the use of fingerprinting codes [BS95].2 We summarize our main results below
and provide a more detailed technical overview in Section 1.1.

� Collusion resistance: We describe a generic transformation that transforms any single-key traceable
PRF with domain X , range {0, 1}ρ, and polynomial-size identity space I into a fully collusion resistant
traceable PRF over the same domain, range, and identity space. A limitation of our construction is
that the marked keys kid are long: |kid| scales polynomially with the size |I| of the identity space.

We note that collusion resistance is meaningful and non-trivial to achieve even when the identity
space is polynomial. For example, existing lattice-based traceable PRFs [GKWW21] are completely
insecure if the adversary obtains just two marked keys (in fact, the adversary can recover the PRF
secret key from any two marked keys). Moreover, in the closely-related setting of traitor tracing, many
existing schemes only achieve full collusion resistance assuming a polynomial number of identities
(e.g., [BSW06, GKSW10, Zha20, GQWW19]); in each of these examples, at least one of the scheme
parameters grows polynomially with the number of identities, thus limiting the size of the identity space
supported by the scheme.

� Active security: We describe a generic transformation that takes any single-key traceable PRF and
compiles it into a traceable PRF with active security (i.e., where the adversary is allowed to have
access to the tracing oracle). Combined with collusion resistant fingerprinting codes that support
tracing queries [YAYX20], we obtain collusion resistant traceable PRFs with active security. We note
that existing constructions of collusion resistant fingerprinting codes only support an a priori bounded
polynomial number of tracing queries. The same limitation extends to our collusion resistant traceable
PRFs with active security.

We capture these results in the following (informal) theorem:

Theorem 1.1 (Informal). Let λ be a security parameter and take any polynomial n = n(λ). Let TPRF0

be a single-key secretly-traceable PRF with domain X , range {0, 1}ρ, and any identity space containing at
least two identities. Then there exists a fully collusion resistant secretly-traceable PRF TPRF with domain X ,
range {0, 1}ρ, and identity space {1, . . . , n}. Moreover, for any polynomial Q = Q(λ), TPRF is fully collusion
resistant against an active adversary that makes up to Q queries to the tracing oracle. The size of the marked
keys in TPRF is poly(λ, n,Q) · |k0|, where |k0| denotes the size of a marked key in TPRF0.

Applying the above transformation to the single-key traceable PRF of Goyal et al. [GKWW21], we obtain
the first fully collusion resistant traceable PRF from standard lattice assumptions. This puts traceable PRFs
on par with the best-known results for watermarkable PRFs [YAYX20], while retaining the benefits of the
significantly stronger tracing security provided by traceable PRFs. We summarize this instantiation in the
following corollary to Theorem 1.1:

Corollary 1.2 (Collusion Resistant Traceable PRF). Under the sub-exponential hardness of LWE (with
a sub-exponential modulus-to-noise ratio), there exists a fully collusion resistant traceable PRF with secret
tracing and a polynomial identity space. The traceable PRF is secure against active adversaries making up to
Q tracing queries, for any a priori bounded polynomial Q = Q(λ).

Applications to traitor tracing. As noted in Goyal et al. [GKWW21], traceable PRFs immediately give
rise to symmetric traitor tracing schemes. Here, we note that if the underlying traceable PRFs provide active
security, we obtain fully collusion resistant traitor tracing schemes with security against active adversaries.
We also note that since PRFs can be directly used to construct a CCA-secure symmetric encryption scheme
(and more generally, an authenticated encryption scheme [BN00]), our traceable PRF immediately implies a
traitor tracing scheme for an authenticated encryption scheme. Previous constructions of traitor tracing (e.g.,

2The fingerprinting codes we rely on in this work [BS95, Tar03, YAL+19] are information-theoretic objects and do not require
making additional computational assumptions.

3

[GKW18, CVW+18]) typically only consider chosen plaintext security (CPA-security) for the underlying
encryption scheme. At the same time, the existing lattice-based traitor tracing schemes have the advantage
that they support public encryption and have short marked keys. We provide more details in Section 4.

1.1 Construction Overview

In this section, we provide a high-level overview of our generic transformations (Theorem 1.1). We provide
the technical details in Section 3.

Fingerprinting codes. Our construction combines a single-key (i.e., non-collusion-resistant) traceable
PRF with a collusion resistant fingerprinting code [BS95]. A fingerprinting code is an information-theoretic
primitive defined over an alphabet Σ and an identity space I. Here, we consider binary codes so Σ = {0, 1}
and a polynomial-sized identity space I = [n] = {1, . . . , n}. A fingerprinting code is described by two main
algorithms (Gen,Trace):

� The code generator algorithm Gen is a randomized algorithm that outputs a codebook Γ = {w̄(i)}i∈[n]

together with a tracing key tk. We say that w̄(i) ∈ {0, 1}` is the “codeword” associated with the ith

identity and we refer to its length ` as the length of the code.

� The trace algorithm Trace takes as input the tracing key tk and a word w̄∗ ∈ {0, 1}` and outputs a
subset S ⊆ [n].

Given a collection of codewords W = {w̄(id1), . . . , w̄(idt)} ⊆ Γ, we say that a word w̄ ∈ {0, 1}` is feasible

for W if for all i ∈ [`], there exists j ∈ [t] such that w̄i = w̄
(idj)
i . In words, every bit in w̄ agrees with the

corresponding bit in one of the codewords in W . We define the feasible set F (W) ⊆ {0, 1}` for W to be the
set of words that are feasible for W .

Security for a fingerprinting code is defined by the following game between an adversary and a challenger.
The challenger starts by sampling a codebook Γ and a tracing key tk. The adversary is allowed to adaptively
request for codewords w̄(id) ∈ Γ on identities id ∈ I of its choosing. Let T ⊆ I be the set of identities queried
by the adversary and let W = {w̄(id)}id∈T ⊆ Γ be the set of associated codewords the adversary receives. At
the end of the game, the adversary outputs a word w̄∗ ∈ F (W) and wins if Trace(tk, w̄∗) outputs a set S
where either S = ∅ or S 6⊆ T . We say that a fingerprinting code is secure if no adversary A can win this
game with non-negligible probability (taken over the code-generation and tracing randomness).

We note that fingerprinting codes can be used to directly construct collusion resistant traitor tracing [BN08,
BP08]. In these settings, the resulting scheme satisfies a weaker threshold notion of traitor tracing where
tracing succeeds only if the adversary outputs a decoder that succeeds with probability at least 1/2 + ε for a
predetermined and fixed ε. In contrast, the standard tracing definitions used for traceable PRFs and traitor
tracing allows tracing a decoder that succeeds for arbitrary inverse polynomial ε. In this work, we show
how to use fingerprinting codes to upgrade a non-collusion-resistant traceable PRF to a collusion resistant
one without weakening the traceability guarantee. Recently, Zhandry [Zha20] introduced new techniques to
compile a threshold traitor tracing scheme into one without the threshold limitation. It is not clear whether
those techniques extend to the traceable PRF setting (in fact, it does not seem straightforward to even
construct a traceable PRF with a threshold security notion directly from fingerprinting codes).

Collusion resistant traceable PRFs. Our main construction relies on the simple observation that the
xor function is a “combiner” for PRFs. Namely, if PRF1, . . . ,PRF` : K × X → {0, 1}ρ are PRF candidates,
then PRF((k1, . . . , k`), x) :=

⊕
i∈[`] PRFi(ki, x) is a secure PRF as long as at least one of the PRFi is secure.

Let TPRFnc be a single-key (i.e., non-collusion-resistant) traceable PRF, and let Γ = {w̄(i)}i∈[n] be a

fingerprinting code for the set [n], where each codeword w̄(i) ∈ {0, 1}`. Our construction will use ` independent
copies of TPRFnc, where each copy is used to embed a single bit of the codeword. In more detail, the PRF

4

key is a tuple of ` independent PRF keys (msk1, . . . ,msk`) for TPRFnc. The PRF evaluation is defined to be

Eval((msk1, . . . ,msk`), x) =
⊕
i∈[`]

TPRFnc.Eval(mski, x).

A marked key for an identity id consists of a tuple of marked keys (sk1, . . . , sk`) where each ski is mski marked

with the bit w̄
(id)
i . Pseudorandomness of this construction also follows from pseudorandomness of TPRFnc.

To trace a distinguisher D, we use the above combiner property: any algorithm that can break (weak) pseu-
dorandomness of

⊕
i∈[`] TPRFnc.Eval(mski, ·) can also break (weak) pseudorandomness of TPRFnc.Eval(mskj , ·)

for every j ∈ [`]. In particular, it is straightforward to take a distinguisher D and convert it into a distinguisher
Dj for TPRFnc.Eval(mskj , ·); recall here that in the secret-tracing setting, the tracing algorithm has the master
secret key of the traceable PRF. The tracing algorithm runs the underlying single-key tracing algorithm
on each distinguisher Dj to obtain sets T1, . . . , T`. It uses the sets Tj to construct a codeword w̄∗ ∈ {0, 1}`
as follows: if 0 ∈ Tj , then set w̄∗j = 0. Otherwise, set w̄∗j = 1. The final output of the tracing algorithm is

obtained by running the decoding algorithm for the fingerprinting code on the extracted word w̄∗.3

We argue that tracing security reduces to security of the underlying single-key traceable PRF and of the
fingerprinting code. Suppose the adversary asks for keys on identities id1, . . . , idq and manages to produce a
useful distinguisher D. The argument then proceeds as follows:

� Let W = {w̄(id1), . . . , w̄(idq)} be the set of codewords for the fingerprinting code that are associated
with the identities queried by the adversary. As long as the word w̄∗ extracted by the tracing algorithm
is contained in the feasible set of W , then security of the fingerprinting code guarantees that tracing
security holds.

� By construction, w̄∗ ∈ {0, 1}`. This means that w̄∗ ∈ F (W) as long as for every index i ∈ [`] where

w̄
(idj)
i = w̄

(id1)
i for all j ∈ [q], w̄∗i = w̄

(id1)
i . In other words, if all of the codewords corresponding to

identities requested by the adversary have the same bit in a particular position, then the corresponding
bit in w̄∗ must also match. But this property directly follows by single-key tracing security. Namely, if
the codewords corresponding to identities requested by the adversary all match in a particular index
i ∈ [`], then the adversary only obtains one marked version of mski.

4 As described above, if D is a
useful distinguisher, then it can be used to obtain a useful distinguisher for any of the underlying
traceable PRFs. We use D to obtain a useful distinguisher Di for the ith traceable PRF. Since the

adversary only possesses a single marked key for the ith PRF (marked with the bit w̄
(id1)
i), single-key

tracing security ensures that tracing distinguisher Di correctly recovers w̄
(id1)
i .

Essentially, single-key security of the traceable PRF binds the adversary to strategies that conform to the
restrictions of the fingerprinting code model. This in turn yields a fully collusion resistant traceable PRF.

Active security. The second security property we consider in this work is active security, where tracing
security holds even if an adversary has oracle access to the tracing algorithm. We start by considering active
security in the single-key setting. Intuitively, security in this setting should almost follow from single-key
tracing security. This is because if a distinguisher is “useful,” then security requires that the tracing algorithm
outputs the single identity id that the adversary requested. Conversely, if the distinguisher is “useless” (e.g.,
outputs a random guess), the tracing algorithm should output ∅ to avoid false implication of an honest user.

In some sense then, the adversary in the single-key security game should be able to “predict” the output
of the tracing function in advance. If this is true, then the tracing oracle is no longer useful to the adversary
and security reduces to the setting without tracing queries. However, the catch is handling distinguishers
which are somewhere in between “useful” and “useless.” For instance, the adversary might start with a useful

3To avoid falsely implicating an honest user, we also run a statistical test to check that the distinguisher is “sufficiently good.”
We refer to Section 3 for more details.

4For this step to work, we need to first derandomize the key-generation algorithm. This can be done via the standard approach
of deriving the key-generation randomness from a PRF. We refer to Section 3 for the full construction and analysis.

5

distinguisher and construct distinguishers with progressively decreasing distinguishing advantage until it
observes a change in the behavior of the tracing algorithm; where this occurs can leak information about the
secret tracing key.

More precisely, the tracing algorithm in a traceable PRF takes a distinguisher D and a threshold ε as
input. The requirement is that if D has distinguishing advantage at least 1/2 + ε, then running the tracing
algorithm with threshold ε will correctly identify at least one corrupted user. However, if D’s distinguishing
advantage is less than 1/2 + ε, then the only guarantee provided by the tracing algorithm is that it does not
falsely implicate an honest user; in this case, it can either output a compromised identity or the empty set.

Our approach to achieving active security is through introducing an efficient statistical test CheckDis for
deciding whether a distinguisher is “useful” (in which case the tracing algorithm always outputs the single
corrupted identity) or “not useful” (in which case the tracing algorithm always outputs ∅). Importantly,
this test can be run by the adversary itself, so the tracing oracle does not provide the adversary additional
information. The CheckDis algorithm is very simple: it takes a distinguisher D and a threshold ε and
estimates the distinguishing advantage of D. The algorithm satisfies two properties:

� If the distinguishing advantage of D is at least 1/2 + ε, then CheckDis outputs 1 with overwhelming
probability.

� If CheckDis outputs 1, then the distinguishing advantage of D is at least 1/2 + ε/4 with overwhelming
probability.

We now modify the tracing algorithm to first run CheckDis on the distinguisher. If CheckDis fails, then the
tracing algorithm always outputs ∅; the first property guarantees that this will never happen to a “good”
distinguisher. If CheckDis succeeds, then run the tracing algorithm with distinguishing threshold ε/4; the
second property ensures that the tracing algorithm correctly outputs the compromised identity in this case.
Finally, since CheckDis can be computed by the adversary, it is possible for the adversary to simulate for
itself the output of the tracing queries without access to the tracing oracle. Thus, in the single-key setting, it
is straightforward to achieve active security essentially for free.

To obtain a collusion resistant traceable PRF with active security, we can apply our generic transformation
based on fingerprinting codes. While the general transformation still applies, security will require that
the underlying fingerprinting code remains secure in the presence of tracing queries. Currently, there exist
collusion resistant fingerprinting codes that are secure against adversaries that make an a priori bounded
polynomial number of tracing queries [YAYX20]. In conjunction with our compilers, this yields a collusion
resistant traceable PRF that is secure against adversaries that can make a bounded number of tracing
queries. Constructing fingerprinting codes that are secure against an unbounded polynomial number of
tracing queries is an interesting open problem, and a construction would immediately yield traceable PRFs
(and correspondingly, traitor tracing schemes) with active security.

1.2 Additional Related Work

In this section, we discuss some additional results on traitor tracing and watermarking.

Traitor tracing. Traitor tracing has been studied extensively and numerous constructions of traitor tracing
have been proposed based on combinatorial techniques [CFN94, NP98, SSW01, CFNP00, SSW01, BN08] as well
as algebraic techniques [BSW06, GKSW10, LPSS14, KT15, NWZ16, GKW18, CVW+18, GKW19, GQWW19].
Some of these schemes are secure against bounded collusions [CFN94, SSW01, LPSS14, KT15, NWZ16] while
others are fully collusion resistant [BSW06, GKSW10, GKW18, CVW+18, GQWW19, Zha20]. We refer to
these works and the references therein for further information.

Traitor tracing from fingerprinting codes. Fingerprinting codes can be directly combined with public-
key encryption to obtain traitor tracing schemes (though not traceable PRFs) [BN08]. As noted earlier,
the resulting traitor tracing scheme satisfies a weaker threshold tracing guarantee. Our work shows that by

6

combining fingerprinting codes with an existing (non-collusion-resistant) tracing scheme, it is possible to
obtain full collusion resistance without the threshold restriction.

In the setting of watermarkable PRFs, Yang et al. [YAL+19] showed how to use fingerprinting codes to
upgrade a non-collusion-resistant watermarkable PRF to a collusion resistant one. Their approach relies on
concatenating the outputs of many watermarkable PRFs and only supports tracing adversaries that preserve
the entirety of the PRF output (i.e., this precludes applications from truncating the PRF output). Overall,
both the size of the marked keys and the length of the PRF output of their scheme scale polynomially with
the number of identities. Our collusion resistant traceable PRF has long keys, but the length of the PRF
output is independent of the number of identities. For instance, this property enables symmetric traitor
tracing with short ciphertexts.

Watermarking. Barak et al. [BGI+01, BGI+12] and Hopper et al. [HMW07] provided the first rigorous
definitions of software watermarking. Multiple works have subsequently studied constructions of watermarking
for symmetric primitives [CHN+16, BLW17, KW17, YAL+18, QWZ18, KW19, YAL+19, YAYX20] and public-
key primitives [GKM+19, Nis20]. Goyal et al. [GKWW21] recently highlighted some definitional issues with
watermarking for PRFs and introduced the notion of traceable PRFs.

2 Preliminaries

Notation. We write λ (oftentimes implicitly) to denote the security parameter. For a positive integer

n ∈ N, we write [n] to denote the set {1, . . . , n}. For a finite set S, we write x
r← S to denote that x is

sampled uniformly from S. For a distribution D, we write x← D to denote that x is sampled from D. For
an event E, we write ¬E to denote its complement. For finite sets X and Y, we write Funs[X ,Y] to denote
the set of all functions from X to Y.

We say that a function f is negligible in the parameter λ if f(λ) = o(1/λc) for all c ∈ N. We denote
this by writing f(λ) = negl(λ). We write poly(λ) to denote a function bounded by a fixed polynomial in
λ. We say an event E (parameterized by a security parameter λ) happens with negligible probability if
Pr[E] = negl(λ) and that it happens with overwhelming probability if Pr[¬E] = negl(λ). We say an algorithm
A is efficient if it runs in probabilistic polynomial time in the length of its input. We say that two families
of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient
adversary can distinguish samples from D1 and D2 except with negligible probability. We will also use
standard Chernoff/Hoeffding bounds in our analysis:

Fact 2.1 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . , Xn be independent random variables where 0 ≤ Xi ≤ 1
for all i ∈ [n]. Let S =

∑
i∈[n]Xi and let E[S] denote the expected value of S. Then, for any t ≥ 0,

Pr[|S − E[S]| ≥ nt] ≤ 2−Ω(nt2).

Finally, we recall the definition of a pseudorandom function [GGM84]:

Definition 2.2 (Pseudorandom Function [GGM84]). A pseudorandom function (PRF) with key-space K,
domain X and range Y is an efficiently-computable function PRF : K ×X → Y with the property that for all
efficient adversaries A, there exists a negligible function negl(·) such that

Pr[AOb(·)(1λ) = b : k
r← K, f r← Funs[X ,Y], b

r← {0, 1}] ≤ 1

2
+ negl(λ),

where Ob(x) outputs PRF(k, x) if b = 0 and f(x) if b = 1.

2.1 Fingerprinting Codes

In this section, we recall the formal definition of a fingerprinting code from Boneh and Shaw [BS95]. To
construct traceable PRFs with active security, we require the fingerprinting code to satisfy collusion resistance
against adversaries that are allowed to make tracing queries [YAYX20].

7

Definition 2.3 (Feasible Set [BS95]). Let W = {w̄(1), . . . , w̄(t)} ⊆ {0, 1}`. We say that a word w̄ ∈ {0, 1}`

is feasible for W if for all i ∈ [`], there exists j ∈ [t] such that w̄i = w̄
(j)
i . We define the feasible set

F (W) ⊆ {0, 1}` of W to be the set of all words in {0, 1}` that are feasible for W .

Definition 2.4 (Fingerprinting Code [BS95, adapted]). A fingerprinting code FC with n codewords is a pair
of efficient algorithms (Gen,Trace) with the following properties:

� Gen(1λ)→ (tk,Γ) : On input the security parameter λ ∈ N, the code-generation algorithm outputs a
tracing key tk and a dictionary Γ = {w̄(i)}i∈[n]. Here, w̄(i) ∈ {0, 1}` for some parameter ` > 0. We refer
to ` as the code length.

� Trace(tk, w̄∗) → S: On input the tracing key tk and a word w̄∗ ∈ {0, 1}`, the decoding algorithm
outputs a set S ⊆ [n].

Definition 2.5 (Collusion Resistance with Tracing Queries [YAYX20, adapted]). Let FC = (Gen,Trace) be
a fingerprinting code with n codewords. For an adversary A, we define the fingerprinting code experiment
ExptFCFC

A (λ) as follows:

Experiment ExptFCFC
A (λ):

� The challenger starts by sampling (tk,Γ = {w̄(i)}i∈[n])← Gen(1λ). It also initializes an empty set
W ← ∅.

� The adversary is given access to the following oracles:

– Encode query: On input an index i ∈ [n], the challenger replies with w̄(i) ∈ {0, 1}`. The
challenger adds w̄(i) to W .

– Tracing query: On input a word w̄∗ ∈ {0, 1}`, if w̄∗ /∈ F (W), the challenger replies with
⊥. Otherwise, if w̄∗ ∈ F (W), then the challenger computes S ← Trace(tk, w̄∗). If S 6= ∅ and
w̄(id) ∈W for all id ∈ S, the challenger replies with S. Otherwise, the experiment halts with
output 1.

� After the adversary A finishes making its queries, the experiment halts with output 0 (if it has not
already halted).

We say that FC is fully collusion resistant in the presence of Q tracing queries if for all security parameters
λ ∈ N and all adversaries A making up to Q tracing queries, there exists a negligible function negl(·) such
that

Pr[ExptFCFC
A (λ) = 1] ≤ negl(λ).

When we allow Q to be an arbitrary polynomial, we say that FC is fully collusion resistant in the presence of
tracing queries.

Fact 2.6 (Fingerprinting Codes). We recall the following results on the existence of collusion resistant
fingerprinting codes (with and without tracing queries):

� For all λ ∈ N and n ∈ N, there exists a fingerprinting code that is fully collusion resistant without
tracing queries (i.e., Q = 0) with code length ` = poly(n, λ) [BS95, Tar03]. Specifically, the Tardos
instantiation [Tar03] yields a construction with code-length ` = O(λn2 log n).

� For all λ ∈ N, n ∈ N, and Q = poly(λ) there exists a fingerprinting code that is fully collusion resistant
in the presence of Q tracing queries with code length ` = poly(n, λ,Q) [YAYX20].

8

2.2 Traceable PRFs

In this section, we recall the formal definition of a traceable PRF from [GKWW21]. We note that our
transformations will rely on a stronger notion of tracing security we call “strong tracing” (see Definition 2.12).
Existing constructions of traceable PRFs [GKWW21] satisfy this security notion (Remark 2.13). Finally,
we introduce our notion of tracing security against active adversaries that have oracle access to the tracing
algorithm (Definition 2.14).

Definition 2.7 (Traceable PRFs [GKWW21]). Let λ be a security parameter. A traceable PRF scheme (in
the secret-tracing setting) with domain X , range Y, and identity space [n] where n = n(λ) is a tuple of four
algorithms TPRF = (Setup,KeyGen,Eval,Trace) with the following properties:

� Setup(1λ)→ msk: The setup algorithm takes as input the security parameter λ and outputs a master
secret key msk.

� KeyGen(msk, id)→ skid: The key generation algorithm takes as input the master secret key msk and an
identity id ∈ [n], and outputs a secret key skid.

� Eval(sk, x)→ y: The evaluation algorithm takes as input a secret key sk (which could be the master
key msk), an input x ∈ X , and outputs a value y ∈ Y.

� TraceD(msk, 1z)→ T : The tracing algorithm has oracle access to an oracle-aided distinguisher DO and
takes as input the master secret key msk and a parameter z. It outputs a set of identities T ⊆ [n]. Note
that the tracing algorithm must includes a description of how to implement the oracle O used by the
oracle-aided distinguisher.

Correctness. The basic correctness requirement for a traceable PRF is that the behavior of the marked
key agrees with the original key on all but a negligible fraction of the domain. We recall this below:

Definition 2.8 (Key Similarity). A traceable PRF TPRF = (Setup,KeyGen,Eval,Trace) with domain X ,
range Y, and identity space [n] satisfies key similarity if for every security parameter λ ∈ N, every identity
id ∈ [n], there exists a negligible function negl(·) where

Pr

[
Eval(msk, x) 6= Eval(skid, x) :

msk← Setup(1λ)

skid ← KeyGen(msk, id), x
r← X

]
≤ negl(λ).

Remark 2.9 (Stronger Notions of Correctness). Definition 2.8 requires that marked keys agree with unmarked
keys on all but a negligible fraction of the domain. Goyal et al. [GKWW21] also consider a stronger notion
of key indistinguishability that requires that it is computationally difficult to find domain elements where
the marked key and the unmarked key differ. We note that our generic transformations in Section 3 can be
shown to preserve this stronger notion of correctness. For ease of exposition in this work, we focus on the
simpler notion of key similarity.

Definition 2.10 (Weak Pseudorandomness). A traceable PRF TPRF = (Setup,KeyGen,Eval,Trace) with
domain X , range Y, and identity space [n] satisfies weak pseudorandomness if for all efficient adversaries A,
there exists a negligible function negl(·) such that

Pr
[
AOb(1λ) = b : msk← Setup(1λ), f

r← Funs[X ,Y], b
r← {0, 1}

]
≤ negl(λ),

where the weak PRF challenge oracle Ob samples x
r← X and outputs (x,Eval(msk, x)) if b = 0 and (x, f(x))

if b = 1.

Remark 2.11 (On Weak Pseudorandomness). Similar to Goyal et al. [GKWW21], we use weak pseudoran-
domness as our primary security notion for traceable PRFs. As discussed in [GKWW21, §3.1], tracing is
only feasible against adversarial strategies that contain “global” information about the behavior of the PRF
(i.e., adversaries that can break weak pseudorandomness). We do note that it is still possible for traceable
PRFs to independently satisfy the usual notion of strong pseudorandomness (and indeed, the constructions
of Goyal et al. do). All of the transformations developed in this work preserve strong pseudorandomness.

9

Definition 2.12 (Secure Tracing). Let TPRF = (Setup,KeyGen,Eval,Trace) be a traceable PRF with domain
X and range Y and identity space [n]. For a function ε = ε(λ) and adversary A, we define the tracing
experiment ExptTPRFTPRF

A,ε (λ) as follows:

Experiment ExptTPRFTPRF
A,ε (λ):

� msk← Setup(1λ)

� D ← AEval(msk,·),KeyGen(msk,·)(1λ)

� T ← TraceD(msk, 11/ε(λ))

Let Sid be the set of identities A submits to the key-generation oracle KeyGen(msk, ·). Based on the output
of ExptTPRFTPRF

A,ε , we define the following set of (probabilistic) events and their corresponding probabilities
(which are a functions of λ and parameterized by A, ε):

� GoodDisA,ε: This is the event where Pr[DOb(1λ) = b : b
r← {0, 1}, f r← Funs[X ,Y]] ≥ 1/2 + ε(λ),

where the probability is taken over the coins of D, and the oracle Ob is the weak PRF challenge oracle:

namely, Ob samples x
r← X and outputs (x,Eval(msk, x)) if b = 0 and (x, f(x)) if b = 1. Intuitively, this

says that a distinguisher D is an ε-good distinguisher if D can break weak pseudorandomness of the
underlying PRF with advantage ε = ε(λ).

� CorrectTrA,ε: This is the event where T 6= ∅∧T ⊆ Sid. This event corresponds to the tracing algorithm
successfully outputting one or more of the keys the adversary possesses.

� BadTrA,ε: This is the event where T 6⊆ Sid. This event corresponds to the tracing algorithm outputting
a key that the adversary did not request (i.e., falsely implicating an honest user).

We say that an adversary A is admissible for the secure tracing experiment if the distinguisher D it outputs
is efficiently-computable. A traceable PRF scheme TPRF satisfies secure tracing if for every λ ∈ N, and every
efficient and admissible adversary A, and every inverse polynomial function ε(λ) = 1/poly(λ), there exists a
negligible function negl(·) such that

Pr[BadTrA,ε] ≤ negl(λ) and Pr[CorrectTrA,ε] ≥ Pr[GoodDisA,ε]− negl(λ). (2.1)

The first property states that the tracing algorithm cannot falsely implicate an honest user with non-negligible
probability and the second property requires that the probability of the tracing algorithm correctly identifying
at least one corrupt user be at least as high as the probability that the adversary outputs an ε-good
distinguisher. We say that TPRF satisfies strongly-secure tracing if for every λ ∈ N, every efficient and
admissible adversary A, and every inverse polynomial function ε(λ) = 1/poly(λ), there exists a negligible
function negl(·) where

Pr[BadTrA,ε] ≤ negl(λ) and Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ).

Remark 2.13 (Strong Tracing). Strong tracing requires that the probability that the adversary outputs an
ε-good distinguisher and yet, tracing fails, be negligible. This means that if the adversary outputs an ε-good
distinguisher with non-negligible probability, then tracing succeeds with overwhelming probability. This is not
required by the standard tracing definition. A simple calculation shows that strong tracing security implies
standard secure tracing. First,

Pr[GoodDisA,ε] = Pr[GoodDisA,ε ∧ CorrectTrA,ε] + Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε].

Strong secure tracing implies that Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ). Thus,

Pr[CorrectTrA,ε] ≥ Pr[CorrectTrA,ε ∧ GoodDisA,ε] ≥ Pr[GoodDisA,ε]− negl(λ).

Existing construction of traceable PRFs [GKWW21] all satisfy this stronger notion. In fact, the analysis of
existing constructions show that Pr[CorrectTrA,ε | GoodDisA,ε] ≥ 1− negl(λ); namely, whenever the adversary
outputs a useful distinguisher, the tracing algorithm successfully recovers one of the identities.

10

Definition 2.14 (Secure Tracing against Active Adversaries). We say a traceable PRF TPRF = (Setup,
KeyGen,Eval,Trace) satisfies secure tracing against active adversaries (i.e., is actively secure) if Definition 2.12
holds even if the adversary A in experiment ExptTPRFTPRF

A,ε has oracle access to a tracing oracle O(msk, ·, ·)
that takes as input the description of an efficiently-computable distinguisher D and the tracing parameter 1z

(encoded in unary) and outputs TraceD(msk, 1z). We say TPRF satisfies secure tracing against Q-bounded
active adversaries if Definition 2.12 holds against all efficient adversaries A that makes at most Q queries to
the tracing oracle O(msk, ·, ·) in ExptTPRFTPRF

A,ε .

Remark 2.15 (Comparison with [GKWW21]). Definition 2.12 is slightly simpler than the corresponding
definition from [GKWW21]. Namely, the definition in [GKWW21] required that for all efficient adversaries
A, every polynomial q, and non-negligible function ε, there exists a negligible function negl(·) such that for
all λ ∈ N where ε(λ) > 1/q(λ), Eq. (2.1) holds. Our formulation is equivalent; we refer to [Zha20, Remark 4]
for a similar type of modification in the context of traitor tracing.

Remark 2.16 (Special Evaluation Queries). The secure tracing definition from Goyal et al. [GKWW21]
also allows the adversary to make special evaluation queries where the adversary can request evaluations
on inputs x ∈ X under different identity keys. We do not focus on this setting since existing constructions
of (non-collusion-resistant) traceable PRFs based on standard lattice assumptions do not support special
evaluation queries. Special evaluation queries are not essential to realizing applications like traitor tracing
from traceable PRFs.

3 Traceable PRF Constructions

In this section, we introduce our generic transformations (Constructions 3.3 and 3.9) for constructing traceable
PRFs with active security and full collusion resistance (based on any single-key traceable PRF). In both
of our constructions, we need an algorithm to estimate the success probability of a distinguisher. We use a
standard approach based on Chernoff/Hoeffding bounds (Fact 2.1):

Definition 3.1 (CheckDis). Let λ be a security parameter, and let TPRF = (Setup,KeyGen,Eval,Trace) be
a traceable PRF with domain X , range Y, and identity space [n]. Given a distinguisher D, we define the
algorithm CheckDis:

� CheckDisD(msk, 1z): On input the master secret key msk, a parameter z ∈ N, and given oracle access
to a distinguisher D, the CheckDis algorithm proceeds as follows:

– Let N = λz2. For each i ∈ [N], sample bi
r← {0, 1}, initialize an empty table T, and compute

b′i ← DObi
(msk)(1λ), where the oracle Obi is implemented as follows:

* If bi = 0, sample x
r← X , compute y ← Eval(msk, x), and output (x, y).

* If bi = 1, sample x
r← X and check if there is already a mapping of the form x 7→ y in T. If so,

output (x, y). Otherwise, sample y
r← Y, add (x, y) to T, and output (x, y).

– Let t be the number of indices i ∈ [N] where bi = b′i. If t > N(1/2 + 1/(2z)) occurs, then output
1. Otherwise, output 0.

Lemma 3.2 (Distinguisher Success Probability). Take any z = z(λ). Let TPRF = (Setup,KeyGen,Eval,
Trace) be a traceable PRF, and sample msk← Setup(1λ). Take any candidate distinguisher D, and let Ob be
the weak PRF challenge oracle from Definition 2.12. Then the following properties hold:

� Suppose Pr[DOb(msk)(1λ) = b : b
r← {0, 1}] ≥ 1/2+1/z. Then, Pr[CheckDisD(msk, 1z) = 1] ≥ 1−negl(λ).

� Suppose CheckDisD(msk, 11/ε) = 1. Then, with overwhelming probability over the randomness of

CheckDis, we have that Pr[DOb(msk)(1λ) = b : b
r← {0, 1}] ≥ 1/2 + 1/(4z).

Proof. Both properties follow via Chernoff/Hoeffding bounds (Fact 2.1).

11

3.1 Tracing Security with Active Adversaries

We first show how to generically transform any single-key traceable PRF satisfying strong tracing security
into a single-key traceable PRF with strong tracing security against active adversaries (Definition 2.14).

Construction 3.3 (Actively Secure Single-Key Traceable PRF). Let λ ∈ N be a security parameter. Let
TPRF0 = (Setup0,KeyGen0,Eval0,Trace0) be a secret-key traceable PRF with domain X , range Y and identity
space [n]. We construct a traceable PRF TPRF = (Setup,KeyGen,Eval,Trace) with the same domain, range,
and identity space as follows:

� Setup(1λ)→ msk: On input the security parameter λ, the setup algorithm samples msk← Setup0(1λ).

� Eval(sk, x)→ y: Output y ← Eval0(sk, x).

� KeyGen(msk, id)→ skid: Output skid ← KeyGen0(msk, id).

� TraceD(msk, 1z)→ T : On input the master secret key msk and the parameter z, the tracing algorithm
outputs ∅ if CheckDisD(msk, 1z) outputs 0. Otherwise, output TraceD0 (msk, 14z).

Theorem 3.4 (Correctness and Weak Pseudorandomness). If TPRF0 satisfies weak pseudorandomness (resp.,
key similarity), then TPRF in Construction 3.3 also satisfies weak pseudorandomness (resp., key similarity).

Proof. This is immediate since Setup, KeyGen, and Eval simply invokes the corresponding algorithm in
TPRF0.

Theorem 3.5 (Tracing Security). If TPRF0 is a single-key strongly-secure traceable PRF, then TPRF in
Construction 3.3 is a single-key strongly-secure traceable PRF with active security.

Proof. Take any inverse polynomial function ε(λ) = 1/poly(λ) and any efficient adversary A for ExptTPRFTPRF
A,ε .

Let Q = poly(λ) be an upper bound on the number of queries that A makes. We proceed via a hybrid
argument. Let Hyb0 be the experiment ExptTPRFTPRF

A,ε (λ). For i ∈ [Q], define Hybi and Hyb′i as follows:

� Hybi: Same as ExptTPRFTPRF
A,ε (λ) except the first i queries (D, 1z) that A makes to the tracing oracle

are answered using the following modified procedure:

– If A has not made any key-generation queries, then output ∅.

– Otherwise, suppose A has made a key-generation query on an identity id ∈ [n]. Let skid be the
challenger’s response to the key-generation query.

– Compute b← CheckDisD(msk, 1z), except use Eval(skid, x) in place of Eval(msk, x) when simulating
the oracle O0.

– If b = 0, output ⊥. If b = 1, output {id}.

� Hyb′i: Same as Hybi except when using the modified procedure to respond to the ith tracing query,
the challenger computes Eval(msk, x) in place of Eval(skid, x) when answering queries to O0 (i.e., the
challenger computes b← CheckDisD(msk, 1z) when responding to the ith tracing query). The first i− 1
tracing queries and the queries after the ith query are handled as in Hybi.

Importantly, the modified procedure used in the first i queries of Hybi can be implemented entirely by the
adversary itself (without needing to query the challenger). This means that an execution of HybQ is equivalent

to an execution of ExptTPRFTPRF
A,ε where A does not make any queries to the tracing oracle (the adversary

can answer those queries itself). For an event E, we write Hybi[E] to denote the indicator random variable
that is 1 if event E occurs in an execution of Hybi and 0 otherwise. We define Hyb′i[E] analogously. In the
following, we will consider events E that are functions of the master secret key msk and the adversary’s
view of the experiment (i.e., the event E can be expressed as a function of msk, the adversary’s queries, the
challenger’s responses, and the adversary’s output in the experiment).

12

Lemma 3.6. If TPRF0 satisfies key indistinguishability, then for all adversaries A,∣∣Pr[Hyb′i[E] = 1]− Pr[Hybi[E] = 1]
∣∣ ≤ negl(λ).

Proof. The only difference between Hyb′i and Hybi is in the challenger’s response to the ith tracing query.
Specifically, in Hyb′i, the challenger computes y ← Eval0(msk, x) when simulating the behavior of O0 while in
Hybi, the challenger computes y ← Eval0(skid, x) when simulating the behavior of O0 in the computation of
CheckDis. In both experiments, the challenger samples msk← Setup0(1λ) and skid ← KeyGen0(msk, id). Let
M = poly(λ) be a bound on the number of queries to O0 that the challenger simulates when responding to the

ith tracing query. Let x1, . . . , xM
r← X be the domain elements the challenger samples when responding to

O0 queries. By key-indistinguishability of TPRF0, we have that Pr[Eval0(skid, xj) 6= Eval0(msk, xj)] ≤ negl(λ)
for all j ∈ [M]. By a union bound, the probability that there exists j ∈ [M] such that Eval0(skid, xj) 6=
Eval0(msk, xj) is negligible. Thus, with overwhelming probability, the adversary’s view in Hyb′i and Hybi is
identically distributed.

Lemma 3.7. If TPRF0 satisfies single-key strongly secure tracing, then for all efficient adversaries A,∣∣Pr[Hybi−1[E] = 1]− Pr[Hyb′i[E] = 1]
∣∣ ≤ negl(λ).

Proof. Suppose that
∣∣Pr[Hybi−1[E] = 1]− Pr[Hyb′i[E] = 1]

∣∣ = ε′ for some non-negligible ε′. The only differ-
ence between Hybi−1 and Hyb′i is the challenger’s behavior in response to the ith tracing query. Let (Di, 1

zi)
be the ith tracing query A makes in an execution of Hybi−1 and Hyb′i. In Hybi−1, the challenger responds

with TraceDi(msk, 1zi). In Hyb′i, the challenger uses the modified procedure described above. This is the only
difference between Hybi−1 and Hyb′i. Thus, if the outputs of Hybi−1[E] and Hyb′i[E] differ by ε′, one of the
following two events must occur with probability at least ε′:

� E1: Algorithm A has not made any key-generation queries and TraceDi(msk, 1zi) 6= ∅. In this case, the
challenger in Hybi−1 responds with TraceDi(msk, 1zi) while the challenger in Hyb′i responds with ∅.

� E2: Algorithm A has made a key-generation query on an identity id ∈ [n], CheckDisDi(msk, 1zi) outputs
1, and TraceDi

0 (msk, 14zi) 6= {id}. In this case, the challenger in Hybi−1 responds with TraceDi
0 (msk, 14zi)

while the challenger in Hyb′i responds with {id}.

In all other cases, the challenger’s response in the two experiments is identical. We use A to construct an
adversary B for experiment ExptTPRFTPRF0

B,1/(4zi):

1. Whenever algorithm A makes an evaluation query Eval(msk, ·) or a key-generation query KeyGen(msk, ·),
algorithm B forwards the query to the secure tracing challenger and forwards the response to A.

2. For the first i− 1 queries to the tracing oracle, algorithm B responds using the modified procedure in
Hybi−1 and Hyb′i. This procedure only depends on quantities that are known to the challenger.

3. When algorithm A makes its ith query Di to the tracing oracle, algorithm B aborts the simulation and
outputs Di as its distinguisher.

By construction, algorithm B perfectly simulates the view of A in an execution of Hybi−1 and Hyb′i (up to
the point where A submits its ith tracing query). Thus, either event E1 or E2 must happen with probability
at least ε′/2. We now consider each possibility:

� Suppose Pr[E1] ≥ ε′/2. If E1 occurs, this means that algorithm B has not made any key-generation
queries and TraceDi(msk, 1zi) outputs a non-empty set. This is only possible if TraceDi

0 (msk, 14zi) outputs
a non-empty set, in which case, the event BadTrB,1/(4zi) occurs. This means that Pr[BadTrB,1/(4zi)] ≥
Pr[E1] ≥ ε′/2, which is non-negligible. Correspondingly, B breaks the secure tracing property of TPRF0.

13

� Suppose Pr[E2] ≥ ε′/2. If E2 occurs, then CheckDisDi(msk, 1zi) outputs 1. By Lemma 3.2, this means

that with probability 1−negl(λ), Pr
[
DOb
i (1λ) = b : b

r← {0, 1}
]
≥ 1/2+1/(4zi), so event GoodDisB,1/(4zi)

occurs. Moreover, if E2 occurs, then TraceDi
0 (msk, 14zi) 6= {id}. Since the only identity queried by B is

id, this means that CorrectTrB,1/(4zi) did not occur. Thus,

Pr[GoodDisB,1/(4zi) ∧ ¬CorrectTrB,1/(4zi)] ≥ Pr[E2]− negl(λ) ≥ ε′/2− negl(λ),

which is non-negligible. Thus, B breaks the strong tracing property of TPRF0.

In both cases, B breaks strong tracing property of TPRF0.

Lemma 3.8. If TPRF0 satisfies strong secure tracing, then for all efficient adversaries A in HybQ, and all
inverse polynomials ε = 1/poly(λ),

Pr[BadTrA,ε] ≤ negl(λ) and Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ), (3.1)

where the events BadTrA,ε, CorrectTrA,ε, and GoodDisA,ε are as defined in Definition 2.12.

Proof. Suppose there is an adversary A in HybQ where either

Pr[BadTrA,ε] = ε′ or Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] = ε′, (3.2)

for some non-negligible ε′. We use A to construct an adversary B for ExptTPRFTPRF0

B,ε/4 . Algorithm B simulates

an execution of HybQ for A as follows:

1. Whenever A makes a key-generation or evaluation query, it forwards the query to its challenger and
forwards the challenger’s response to A. Whenever A makes a tracing query, algorithm B answers the
query using the modified tracing procedure in HybQ.

2. After algorithm A outputs a distinguisher D, algorithm B outputs the same distinguisher D.

By construction, algorithm B perfectly simulates an execution of HybQ for A, so Eq. (3.2) holds. We consider
the two possibilities:

� Suppose Pr[BadTrA,ε] = ε′. By definition of Trace, this means that TraceD0 (msk, 14/ε) outputs a set T
where T 6⊆ Sid, where Sid is the set of identities algorithm A submitted to the key-generation oracle.
This means that event BadTrB,ε/4 occurs in ExptTPRFTPRF0

B,ε/4 with non-negligible probability ε′.

� Suppose Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] = ε′. Let Sid be the set of identities A (and by construction,

B) submits to the key-generation oracle. Let T ← TraceD(msk, 11/ε). Suppose events GoodDisA,ε
and ¬CorrectTrA,ε occur. By Lemma 3.2, this means that CheckDisD(msk, 11/ε) outputs 1 with over-

whelming probability. In this case, the output T from TraceD(msk, 11/ε) is computed by evaluating
T ← TraceD0 (msk, 14/ε). Since ¬CorrectTrA,ε occurs, either T = ∅ or T 6⊆ Sid. This means that
¬CorrectTrB,ε/4 also occurs.

Moreover, if GoodDisA,ε occurs, then Pr[DOb(msk)(1λ) = b : b
r← {0, 1}] ≥ 1/2 + ε. By construction,

since Eval(sk, ·) is implemented by Eval0(sk, ·), this means that event GoodDisB,ε/4 also occurs. Taken
together, we conclude that

Pr[GoodDisB,ε/4 ∧ ¬CorrectTrB,ε/4] ≥ Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε]− negl(λ)

= ε′ − negl(λ),

which is non-negligible and breaks strong secure tracing of TPRF0.

Combining Lemmas 3.6 to 3.8, and applying them to the events BadTrA,ε and (GoodDisA,ε ∧ ¬CorrectTrA,ε),
we have that Eq. (3.1) also holds in Hyb0 ≡ ExptTPRFTPRF

A,ε . Thus, TPRF from Construction 3.3 satisfies
strong secure tracing with active adversaries.

14

3.2 Collusion Resistant Traceable PRFs

We now introduce our main construction of a fully collusion resistant traceable PRF from any single-key
traceable PRF (in conjunction with a fingerprinting code). We refer to Section 1.1 for an overview of the
construction.

Construction 3.9 (Collusion Resistant Traceable PRF). Let λ ∈ N be a security parameter and n = n(λ)
be the number of identities. Our construction relies on the following ingredients:

� Let TPRFnc = (TPRFnc.Setup,TPRFnc.KeyGen,TPRFnc.Eval,TPRFnc.Trace) be a (single-key) secret-key
traceable PRF with domain X , range {0, 1}ρ and identity space {0, 1}.

� Let FC = (FC.Gen,FC.Trace) be a fingerprinting code with n codewords and code length `.

� Let R be the randomness space for TPRFnc.KeyGen and let PRF : K × ([`]× {0, 1})→ R be a pseudo-
random function (with key-space K and domain [`]× {0, 1}).

We construct a fully collusion resistant secret-key traceable PRF TPRF = (Setup,KeyGen,Eval,Trace) with
domain X , range {0, 1}ρ, and identity space [n] as follows:

� Setup(1λ)→ msk: On input the security parameter λ, the setup algorithm starts by sampling mski ←
TPRFnc.Setup(1λ) for each i ∈ [`]. In addition, it samples k

r← K and (tkFC,Γ) ← FC.Gen(1λ). It
outputs msk = (msk1, . . . ,msk`,Γ, tkFC, k).

� Eval(sk, x)→ y: On input a secret key sk = (sk1, . . . , sk`,Γ, tkFC, k) and an input x ∈ X , the evaluation
algorithm computes yi ← TPRFnc.Eval(ski, x) for each i ∈ [`], and outputs y ←

⊕
i∈[`] yi.

� KeyGen(msk, id)→ skid: On input the master secret key msk = (msk1, . . . ,msk`,Γ = {w̄(i)}i∈[n], tkFC, k)

and an identity id ∈ [n], the key-generation algorithm computes randomness ri ← PRF(k, (i, w̄
(id)
i)) and

samples ski ← TPRFnc.KeyGen(mski, w̄
(id)
i ; ri) for each i ∈ [`]. It outputs sk = (sk1, . . . , sk`,⊥,⊥,⊥).5

� TraceD(msk, 1z) → T : On input the master secret key msk = (msk1, . . . ,msk`,Γ, tkFC, k) and the
parameter z, the tracing algorithm proceeds as follows:

– If CheckDisD(msk, 1z) outputs 0, output ∅.

– Otherwise, define the oracle-aided distinguisher DO
i as follows:

* On input the security parameter λ, start running algorithm DO′(1λ).

* Whenever D makes a query to its oracle O′, the distinguisher Di makes a query to its own oracle

O to obtain a sample (x, y). Algorithm Di computes y′ ← y ⊕
(⊕

j 6=i TPRFnc.Eval(mskj , x)
)

and replies to D with the sample (x, y′).

– For each i ∈ [`], run Ti ← TPRFnc.Trace
Di(mski, 1

4z). If 0 ∈ Ti, set w̄∗i = 0; otherwise, set w̄∗i = 1.

– Output FC.Trace(tkFC, w̄
∗).

Theorem 3.10 (Weak Pseudorandomness). If TPRFnc satisfies weak pseudorandomness, then TPRF in
Construction 3.9 also satisfies weak pseudorandomness.

Proof. This follows from the fact that xor-ing the outputs of a (weak) PRF preserves (weak) pseudorandom-
ness. More formally, suppose there exists an efficient adversary A that breaks weak pseudorandomness of
Construction 3.9. We use A to construct an adversary B that breaks the weak pseudorandomness of TPRFnc

as follows:

1. For i ∈ [`− 1], algorithm B samples a key mski ← TPRFnc.Setup(1λ).

5The ⊥’s are added so that msk and sk have the same format (and can both be used as an input to the evaluation algorithm).

15

2. Whenever A makes an oracle query, algorithm B queries its own oracle to obtain an output (x, y). It
compute y′ ← y ⊕

(⊕
i∈[`−1] Eval(mski, x)

)
and replies to A with (x, y).

The weak PRF challenger is used to simulate the evaluations of the `th copy of TPRFnc. If the challenger
replies with PRF evaluations, then B perfectly simulates the pseudorandom distribution for A while if the
challenger replies with uniform random value, then B perfectly simulates the truly random distribution.

Theorem 3.11 (Key Similarity). If TPRFnc satisfies key similarity, then TPRF in Construction 3.9 also
satisfies key similarity.

Proof. Take any identity id ∈ [n], and sample msk← Setup(1λ), skid ← KeyGen(msk, id), x
r← X . In this case,

msk = (msk1, . . . ,msk`,Γ, tkFC, k) where mski ← TPRFnc.Setup(1λ) and skid = (sk1, . . . , sk`,⊥,⊥,⊥) where
ski ← TPRFnc.KeyGen(mski, id). Key similarity of TPRFnc implies that

Pr[TPRFnc.Eval(mski, x) 6= TPRFnc.Eval(ski, x)] ≤ negl(λ).

By a union bound, with probability 1 − negl(λ), Eval(mski, x) = Eval(ski, x) for all i ∈ [`], and the claim
follows.

Theorem 3.12 (Tracing Security). Let Q = Q(λ) be an arbitrary polynomial. If TPRFnc is a strongly-secure
single-key traceable PRF with security against Q-bounded active adversaries, FC is a fully collusion resistant
fingerprinting code in the presence of Q tracing queries, and PRF is a secure PRF, then Construction 3.9 is
a fully collusion resistant strongly-secure traceable PRF with security against Q-bounded active adversaries.
If TPRFnc and FC are both secure against adversaries that can make an unbounded number of tracing queries,
then the same holds for Construction 3.9.

Proof. Fix a security parameter λ ∈ N and take any inverse polynomial function ε(λ) = 1/poly(λ). Consider
an execution of experiment ExptTPRFTPRF

A,ε . We now define the following sequence of hybrid experiments:

� Hyb0: This is the real security experiment ExptTPRFTPRF
A,ε (λ).

� Hyb1: Same as Hyb0 except the challenger samples f
r← Funs[[`]× {0, 1},R] and computes f(·) instead

of PRF(k, ·).

� Hyb2: Same as Hyb1, except on every tracing query and at the end of the game when A outputs its
distinguisher, the experiment additionally checks the following two conditions. Let (D, 1z) be the
distinguisher and tracing parameter the adversary submits in its tracing query (or outputs at the end
of the experiment6).

– CheckDisD(msk, 1z) outputs 1.

– The word w̄∗ ∈ {0, 1}` computed by TraceD(msk, 1z) satisfies w̄∗ /∈ F (W), where F (W) is the
feasible set of W = {w̄(idj)}j∈[Q], id1, . . . , idQ ∈ [n] are the identities A submitted to the key-

generation oracle prior to outputting D, and Γ = {w̄(i)}i∈[n] is the set of codewords sampled by
Setup.

If both conditions hold, then the experiment sets the Bad flag and aborts with output ⊥.

For an event E, we write Hybi[E] to denote the indicator random variable that is 1 if event E occurs in
an execution of Hybi and 0 otherwise. In the following, we will consider events E that are functions of the
“experiment’s messages:” these include the adversary’s queries, the challenger’s responses, and the adversary’s
output in the experiment.

Lemma 3.13. Let E be an efficiently-checkable event that is a function of (msk1, . . . ,msk`,Γ, tkFC) and the
experiment’s messages in ExptTPRFTPRF

A,ε . If PRF is secure, then for all efficient adversaries A, we have that
|Pr[Hyb0[E] = 1]− Pr[Hyb1[E] = 1]| ≤ negl(λ).
6The tracing parameter for the final output is set to be z = 1/ε

16

Proof. Suppose there exists efficient A where |Pr[Hyb0[E] = 1]− Pr[Hyb1[E] = 1]| ≥ ε′ for some non-negligible
ε′. We use A to construct an adversary B that breaks security of PRF as follows:

1. Algorithm B starts by sampling a key mski ← TPRFnc.Setup(1λ) for each i ∈ [`]. It also samples
(tkFC,Γ = {w̄(i)}i∈[`])← FC.Gen(1λ).

2. Algorithm B starts running A. Whenever A makes an evaluation or a trace query, algorithm B responds
according to the specification of the real scheme (Construction 3.9). Observe that neither of these
queries depend on the PRF key k.

3. When A makes a key-generation query on an identity id ∈ [n], algorithm B queries the PRF chal-

lenger on input (i, w̄
(id)
i) and obtains output ri ∈ R for each i ∈ [`]. It then computes ski ←

TPRFnc.KeyGen
(
mski, w̄

(id)
i ; ri

)
and replies to A with (sk1, . . . , sk`,⊥,⊥,⊥).

4. At the end of the game, algorithm B outputs 1 if event E occurs and 0 otherwise.

Algorithm B is efficient since deciding E can be efficiently computed as a function of (msk1, . . . ,msk`,Γ, tkFC)
and the experiment’s messages. All of these quantities are known to B. By construction, if ri ←
PRF(k, (i, w̄

(id)
i)) where k

r← K, then B perfectly simulates the distribution in Hyb0. If ri ← f(i, w̄
(id)
i)

where f
r← Funs[[`] × {0, 1},R], then B perfectly simulates the distribution in Hyb1. Thus, algorithm B’s

distinguishing advantage is exactly ε′.

Lemma 3.14. Let E be any event that depends only on the experiment’s messages and msk. If TPRFnc is
a strongly secure single-key traceable PRF with security against Q-bounded active adversaries, then for all
efficient Q-bounded active adversaries A, |Pr[Hyb1[E] = 1]− Pr[Hyb2[E] = 1]| ≤ negl(λ).

Proof. Suppose there exists efficient A where |Pr[Hyb1[E] = 1]− Pr[Hyb2[E] = 1]| = ε′ for some non-negligible
ε′. Since the only difference between Hyb1 and Hyb2 is the additional checks in Hyb2, it must be the case
that in an execution of Hyb1 or Hyb2, algorithm A outputs a distinguisher D and a tracing parameter 1z

(either as part of a tracing query or at the end of the experiment) that causes Hyb2 to set the Bad flag. We
use A to construct an algorithm B for experiment ExptTPRFTPRFnc

B,1/(4z):

1. Algorithm B begins by sampling an index i∗
r← [`] and a bit b∗

r← {0, 1}. It makes a key-generation
query to its challenger on the bit b∗ to obtain a key sk∗.

2. For all i 6= i∗, algorithm B samples a key mski ← TPRFnc.Setup(1λ). It also samples (tkFC,Γ =
{w̄(i)}i∈[`])← FC.Gen(1λ).

3. Algorithm B initializes an empty table T and starts running A. Whenever A makes an oracle query,
algorithm B responds as follows:

� Evaluation queries: On input x ∈ X , algorithm B computes yi ← TPRFnc.Eval(mski, x) for all
i 6= i∗. It makes an evaluation query to its challenger on input x to obtain a value yi∗ ∈ {0, 1}ρ. It
replies to A with yi∗ ⊕

(⊕
i 6=i∗ yi

)
.

� Key-generation queries: If w̄
(id)
i∗ 6= b∗, then algorithm B aborts the experiments and outputs ⊥.

Otherwise, algorithm B sets ski∗ ← sk∗. Next, for each i 6= i∗, B checks if there exists a mapping

(i, w̄
(id)
i) 7→ r

i,w̄
(id)
i

in T. If not, it samples a random r
i,w̄

(id)
i

r← R and adds (i, w̄
(id)
i) 7→ r

i,w̄
(id)
i

to T.

Algorithm B then computes ski ← TPRFnc.KeyGen(mski, w̄
(id)
i ; r

i,w̄
(id)
i

) for each i 6= i∗. Algorithm

B gives A the tuple (sk1, . . . , sk`,⊥,⊥,⊥).

� Tracing queries: On input a distinguisher D and a tracing parameter 1z, algorithm B starts by
computing CheckDisD(msk, 1z), where it uses the procedure for simulating evaluation queries to
compute Eval(msk, x) in CheckDis. If CheckDis outputs 0, then B replies to A with ∅.

17

Otherwise, if CheckDis outputs 1, for i 6= i∗, algorithm B computes Ti by emulating an execution of
TPRFnc.Trace

Di(mski, 1
4z). Whenever TPRFnc.Trace

Di makes a query to the oracle-aided algorithm
DO
i , algorithm B implements the logic as follows:

– When TPRFnc.Trace makes an oracle query to Di on input 1λ, algorithm B starts running
DO′(1λ).

– When D makes an oracle query to its oracle O′, algorithm B treats it as if Di made a query
to O, and computes the oracle’s response (x, y) according to the specification in TPRFnc.Trace.
Algorithm B then makes an evaluation query to its challenger on input x to receive yi∗ and
computes y′ ← y ⊕

(⊕
j 6=i,i∗ TPRFnc.Eval(mskj , x)

)
⊕ yi∗ , and gives the pair (x, y′) to D as

the response from O′.

Let Ti be the output of this emulated execution of TPRFnc.Trace
Di(mski, 1

4z). Next, to compute
Ti∗ , algorithm B defines the oracle-aided algorithm DO

i∗ according to the specification of the real
tracing algorithm:

– On input the security parameter λ, run DO′(1λ).

– Whenever D makes a query to its oracle O′, the distinguisher Di∗ makes a query to its own ora-
cle to obtain a sample (x, y). Algorithm Di∗ computes y′ ← y⊕

(⊕
j 6=i∗ TPRFnc.Eval(mskj , x)

)
and replies to D with the same (x, y′).

Algorithm B submits a tracing query on DO
i∗ to its challenger to obtain a set Ti∗ . If Ti∗ 6= {b∗},

algorithm B halts and outputs Dnc = Di∗ . Otherwise, for each i ∈ [`], if 0 ∈ Ti, it sets w̄∗i = 0,
and otherwise, it sets w̄∗i = 1. It replies to A with FC.Trace(tkFC, w̄

∗).

4. AfterA has finished making queries (and assuming B has not yet aborted), thenA outputs a distinguisher
D. Algorithm B constructs the oracle-aided algorithm DO

nc using the same procedure as in DO
i∗ in the

above description for simulating tracing queries. Finally, it outputs Dnc as its distinguisher.

By construction, algorithm B perfectly simulates an execution of experiment Hyb1 for A unless A makes
a key-generation query that causes B to abort. By assumption, in an execution of Hyb1, algorithm A will
output a distinguisher D and a tracing parameter 1z (either as part of a tracing query or at the end of the
experiment) that satisfies the following properties:

� CheckDisD(msk, 1z) outputs 1.

� Let id1, . . . , idq ∈ [n] be the identities A submitted to the key-generation oracle prior to outputting
(D, 1z) and let Γ = {w̄(i)}i∈[n] be the set of codewords w̄(i) ∈ {0, 1}` sampled by Setup. Then, there
exists an index j ∈ [`] with the following two properties:

– w̄
(idi)
j = w̄

(id1)
j for all i ∈ [q]; and

– Tj 6= {w̄(id1)
j }, where Tj ← TPRFnc.Trace

Dj (mskj , 1
4z), and Dj is the oracle-aided distinguisher as

defined in Construction 3.9.

Algorithm B samples the index i∗ and the bit b∗ uniformly at random (and independently of the view

of the adversary). Observe that if i∗ = j and b∗ = w̄
(id1)
j , algorithm B does not abort the simulation,

and instead, outputs the distinguisher Di∗ . Thus, with probability at least ε′/(2`), algorithm B does not
abort and successfully outputs a distinguisher Dnc. We now argue that this implies events GoodDisB,1/(4z)
and ¬CorrectTrB,1/(4z). In the following, we write mski∗ to denote the master secret key sampled by

the challenger in ExptTPRFTPRFnc

B,1/(4z). By construction, algorithm B simulates an execution of Hyb1 with

msk = (msk1, . . . ,msk`,Γ, tkFC,⊥).

� Let OA,b(msk) and OB,b(mski∗) be the weak PRF challenge oracles from Definition 2.12 in ExptTPRFTPRF
A,ε

and ExptTPRFTPRFnc

B,1/(4z), respectively. Since CheckDisD(msk, 1z) = 1, we appeal to Lemma 3.2 and

conclude that with probability 1− negl(λ),

Pr[DOA,b(1λ) = b : b
r← {0, 1}] ≥ 1/2 + 1/(4z).

18

Consider the probability that Pr[D
OB,b(mski∗)
nc (1λ) = b : b

r← {0, 1}]. By construction, for any oracle O,
DO

nc(1
λ) outputs DO′(1λ), where Dnc simulates oracles queries to O′ by issuing a query to O to obtain

(x, y), computing y′ ← y ⊕
(⊕

j 6=i∗ TPRFnc.Eval(mskj , x)
)
, and replying with (x, y′). We claim that if

O ≡ OB,b(mski∗), then the oracle O′ that Dnc simulates for D is precisely O′ ≡ OA,b(msk).

– Suppose O ≡ OB,0(mski∗). The output of O is a pair (x, y) where x
r← X and y ← Eval(mski∗ , x).

By construction of Dnc, the output of O′ is then a pair (x, y′) where x
r← X and

y′ = TPRFnc.Eval(mski∗ , x)⊕

⊕
i 6=i∗

TPRFnc.Eval(mski, x)

 = Eval(msk, x).

This is precisely the output distribution of OA,0(msk).

– Suppose O ≡ OB,1(mski∗). The output of O is a pair (x, y) where x
r← X and y

r← {0, 1}ρ. In this
case, the distribution of y′ = y ⊕

(⊕
i6=i∗ TPRFnc.Eval(mski, x)

)
is uniform over {0, 1}ρ since y is

sampled independently of mski and x for all i. As such, the output distribution of O′ precisely
coincides with the output distribution of OA,1(msk).

By the above analysis,

Pr[D
OB,b(mski∗)
nc (1λ) = b : b

r← {0, 1}] = Pr[DOA,b(msk)(1λ) = b : b
r← {0, 1}] ≥ 1/2 + 1/(4z).

Thus, the event GoodDisB,1/(4z) holds.

� Next, let T ← TPRFnc.Trace
Di∗ (mski∗ , 1

4z) where Di∗ is constructed from D as specified in Construc-
tion 3.9. In the reduction, algorithm B constructs Dnc from D in exactly the same way. By assumption,
we have that T 6= {b∗}. This means that the output of TPRFnc.Trace

Dnc(mski∗ , 1
4z) is also not {b∗}.

However, since B makes a single key-generation query to its challenger on identity b∗, this means that
event ¬CorrectTrB,1/(4z) occurs.

We conclude that Pr[GoodDisB,1/(4z) ∧ ¬CorrectTrB,1/(4z)] ≥ ε′/(2`)− negl(λ), which is non-negligible.

Lemma 3.15. Let D be the distinguisher the adversary outputs at the end of the experiment. We define
ProbGoodDis to be the event where CheckDisD(msk, 11/ε) = 1. If FC is fully collusion resistant in the presence
of Q+ 1 tracing queries, then for all adversaries A in Hyb2, Pr[ProbGoodDis ∧ ¬CorrectTrA,ε] ≤ negl(λ).

Proof. Suppose there is an adversary A in Hyb2 where Pr[Hyb2[ProbGoodDis ∧ ¬CorrectTrA,ε] = 1] = ε′ for
some non-negligible ε′. We use A to construct an adversary B for the fingerprinting code security game:

1. Algorithm B samples mski ← TPRFnc.Setup(1λ) for each i ∈ [`]. It also initializes an initially empty
table T.

2. Algorithm B starts running A. Whenever A makes an oracle query, algorithm B does the following:

� Evaluation queries: On input x ∈ X , B computes yi ← TPRFnc.Eval(mski, x) and replies to A
with y ←

⊕
i∈[`] yi.

� Key-generation queries: On input id ∈ [n], B makes an encode query to its oracle to obtain
a codeword w̄(id) ∈ {0, 1}`. Then, for each i ∈ [`], algorithm B checks if there exists a mapping

(i, w̄
(id)
i) 7→ r

i,w̄
(id)
i

in T. If not, it samples a random r
i,w̄

(id)
i

r← R and adds (i, w̄
(id)
i) 7→ r

i,w̄
(id)
i

to T.

Algorithm B then computes ski ← TPRFnc.KeyGen(mski, w̄
(id)
i ; r

i,w̄
(id)
i

) for each i and replies to A
with the tuple (sk1, . . . , sk`,⊥,⊥,⊥)

19

� Tracing queries: On input a distinguisher D and a tracing parameter 1z, algorithm B first
runs CheckDisD(msk, 1z) where msk = (msk1, . . . ,msk`,⊥,⊥,⊥). If CheckDis outputs 0, output ∅.
Otherwise, algorithm B computes the bits w̄∗i using the same procedure as in TraceD for each
i ∈ [`]. It then submits a tracing query w̄∗ ∈ {0, 1}` to its challenger. If the challenger replies with
⊥, then B halts and outputs ⊥. Otherwise, if the challenger replies with a set S ⊆ [n], algorithm
B replies to A with S.

3. After A finishes making its queries, algorithm A outputs a distinguisher D. Algorithm B again computes
w̄∗i using the same procedure as in TraceD for each i ∈ [`]. It submits a tracing query w̄∗ ∈ {0, 1}` to
its challenger.

We claim that B either perfectly simulates an execution of Hyb2 for A or the experiment ExptFCFC
B outputs 1.

First, algorithm B perfectly simulates the evaluation and key-generation queries. We consider the tracing
queries. Let D be the distinguisher and 1z be the tracing parameter that A submits to the tracing oracle.

� If CheckDisD(msk, 11/ε) outputs 0, then the output in Hyb2 is ∅, which matches the behavior of B.

� Alternatively, if CheckDisD(msk, 1z) outputs 1, then the word w̄∗ ∈ {0, 1}` is computed using the same
procedure as in Hyb2. If w̄∗ ∈ F (W), where W = {w̄(idj)}j∈[Q], id1, . . . , idQ ∈ [n] are the identities A
submitted to the key-generation oracle prior to outputting D, and Γ = {w̄(i)}i∈[n] is the codebook
sampled by the challenger for the fingerprinting code, then either the simulation is correct or experiment
ExptFCFC

B outputs 1. If w̄∗ /∈ F (W), then the output in Hyb2 is ⊥, which matches the behavior of B.

Thus, either B perfectly simulates an execution of Hyb2 for A or the experiment ExptFCFC
B outputs 1.

It suffices to show that in the case where B perfectly simulates the execution of Hyb2, the experiment
ExptFCFC

B also outputs 1 with probability at least ε′. By assumption, in Hyb2, with probability ε′, algorithm
A will output a distinguisher D that satisfies ProbGoodDis and ¬CorrectTrA,ε (and the experiment does

not abort). Since ProbGoodDis occurs (and the experiment does not abort), TraceD(msk, 11/ε) computes
a word w̄∗ ∈ {0, 1}` where w̄∗ ∈ F (W), where W = {w̄(idj)}j∈[Q] and id1, . . . , idQ ∈ [n] are the identities
algorithm B makes to the encode oracle (when responding to A’s key-generation queries). Since the
output of TraceD(msk, 11/ε) in this case is FC.Trace(tkFC, w̄

∗), and ¬CorrectTrA,ε occurs, this means that
FC.Trace(tkFC, w̄

∗) outputs a non-empty set S that contains an identity id′ where id′ /∈ {id1, . . . , idQ}. In this

case, experiment ExptFCFC
B outputs 1 and the claim holds.

Lemma 3.16. If FC is a fully collusion resistant in the presence of Q + 1 tracing queries, then for all
adversaries A in Hyb2, Pr[BadTrA,ε] ≤ negl(λ).

Proof. Take an adversary A in Hyb2, and let D be the distinguisher that A outputs at the end of Hyb2. Let
Sid ⊆ [n] be the set of identities that A submits to the key-generation oracle in Hyb2. Consider the output of
TraceD(msk, 11/ε). We consider two possibilities:

� Suppose CheckDisD(msk, 11/ε) outputs 0. Then the Trace algorithm outputs ∅ and BadTrA,ε does not
occur.

� Suppose CheckDisD(msk, 11/ε) outputs 1. For BadTrA,ε to occur in this case, the Trace algorithm must
output a set T where ∅ 6= T 6⊆ Sid. But this means ¬CorrectTrA,ε occurs in addition to the event
ProbGoodDis (from Lemma 3.15). By Lemma 3.15, this event occurs with negligible probability.

Combining Lemmas 3.13 to 3.16, we have that in Hyb0 ≡ ExptTPRFTPRF
A,ε , for all efficient adversaries A,

Pr[CheckDisD(msk, 11/ε) = 1 ∧ ¬CorrectTrA,ε] ≤ negl(λ) and Pr[BadTrA,ε] ≤ negl(λ),

where D is the distinguisher A outputs at the end of the experiment. To complete the proof, we com-
pute the probability of the event GoodDisA,ε ∧ ¬CorrectTrA,ε. By Lemma 3.2, if GoodDisA,ε holds, then

CheckDisD(msk, 11/ε) = 1 with probability 1− negl(λ). Correspondingly,

Pr[GoodDisA,ε ∧ ¬CorrectTrA,ε] ≤ negl(λ),

and the claim follows.

20

4 An Application: Traitor Tracing with Active Security

In this section, we introduce stronger security notions for traitor tracing in the secret-key setting, and then
show that our new traceable PRFs directly yields constructions of these notions. We strengthen existing
definitions along two main axis:

� CCA-security: We require that the underlying encryption scheme itself is secure against chosen-
ciphertext attacks (i.e., “CCA-secure”) [NY90, RS91, DDN00]. CCA-security (and in the symmetric
setting, authenticated encryption), is essential for guaranteeing security against active adversaries.
Previous definitions of traitor tracing only required that the underlying encryption scheme be secure
against chosen plaintext attacks (i.e., “CPA-secure”), which is inadequate in the presence of active
adversaries.

� Secure tracing against active adversaries: Like many recent works [GKW18, CVW+18, Zha20],
our construction only supports secret tracing. Analogous to the setting of traceable PRFs, we can
consider a stronger tracing requirement where secure tracing holds even if the adversary has access to a
tracing oracle. This models active adversaries that can make multiple attempts to try and evade the
traitor tracing algorithm (and can observe the behavior of the tracing authority in response to each of
those attempts).

We first recall the definition of traitor tracing, specialized to the secret-key setting. Our definitions are
adapted from those of Goyal et al. [GKW18] and Zhandry [Zha20].

Definition 4.1 (Traitor Tracing [GKW18, Zha20, adapted]). Let λ be a security parameter. A secret-key
traitor tracing scheme with message space M and identity space [n] where n = n(λ) is a tuple of five
algorithms TT = (Setup,KeyGen,Enc,Dec,Trace) with the following properties:7

� Setup(1λ)→ msk: The setup algorithm takes as input the security parameter λ, and outputs a master
secret key msk.

� KeyGen(msk, id)→ skid: The key-generation algorithm takes the master secret key msk and an identity
id ∈ [n] and outputs a secret key skid.

� Enc(msk,m)→ ct. The encryption algorithm takes the master secret key msk and a message m ∈M
and outputs a ciphertext ct.

� Dec(sk, ct)→ m. The decryption algorithm takes as input a secret key sk (which could be the master
key msk) and a ciphertext ct and outputs a message m ∈M∪ {⊥}.

� TraceD(msk, 1z,m0,m1)→ T . The tracing algorithm has oracle access to a program D, and takes as
input the master secret key msk, a parameter z, and two messages m0,m1 ∈ M. It outputs a set
T ⊆ [n].

Moreover, the traitor tracing scheme should satisfy the following correctness property:

� Correctness: For all polynomials n = n(λ), there exists a negligible function negl(·) such that for all
λ ∈ N, all identities id ∈ [n] and all messages m ∈M,

Pr[Dec(msk,Enc(msk,m)) 6= m : msk← Setup(1λ)] ≤ negl(λ)

and
Pr[Dec(KeyGen(msk, id),Enc(msk,m)) 6= m : msk← Setup(1λ)] ≤ negl(λ).

7More generally, the message space M = {Mλ}λ∈N can also be parameterized by the security parameter λ. For simplicity of
notation, we omit this parameterization here.

21

Security. There are two main security requirements on a traitor tracing scheme. The first is that the
underlying encryption scheme is semantically secure and the second is tracing security. As noted above, most
existing definitions of traitor tracing only consider these notions in a “passive setting” (i.e., CPA security and
tracing security where the adversary does not have access to the tracing oracle). In this work, we consider
active notions of both security notions. Namely, we require that the underlying encryption scheme satisfy
CCA-security and that tracing security holds even if the adversary has access to the tracing oracle. We define
these notions formally below:

Definition 4.2 (CCA Security). A secret-key traitor tracing scheme TT = (Setup,KeyGen,Enc,Dec,Trace)
is CCA-secure if for every efficient and admissible algorithm A, there exists a negligible function negl(·) such
that for all λ ∈ N ,

Pr
[
AOb(msk,·,·),Dec(msk,·)(1λ) = b : msk← Setup(1λ), b

r← {0, 1}
]
≤ 1

2
+ negl(λ),

where Ob(msk,m0,m1) outputs Enc(msk,mb). We say that A is admissible if for all queries ct that algorithm
A submits to the decryption oracle Dec(msk, ·), it is the case that ct was not previously output by the
encryption oracle Ob.

Definition 4.3 (Tracing Security against Active Adversaries). Let TT = (Setup,KeyGen,Enc,Dec,Trace) be
a secret-key traitor tracing scheme with message space M and identity space [n] where n = n(λ). For a
function ε = ε(λ) and adversary A, we define the tracing experiment ExptTTTT

A,ε(λ) as follows:

Experiment ExptTTTT
A,ε(λ)

� msk← Setup(1λ).

� (D,m0,m1)← AKeyGen(msk,·),Enc(msk,·),Dec(msk,·)

� T ← TraceD(msk, 11/ε(λ),m0,m1).

Let Sid be the set of identities algorithm A submits to the key-generation oracle. Based on the output of
ExptTTTT

A,ε above experiment, we define the following set of (probabilistic) events and the corresponding
probabilities (which are functions of λ and parameterized by A, ε):

� GoodDisA,ε: This is the event where Pr[DOb(1λ) = b : b
r← 0, 1] ≥ 1/2 + ε(λ), where oracle Ob is the

semantic security challenge oracle (with msk hard-wired) that outputs Enc(msk,mb). This property
says that the distinguisher D output by A can successfully distinguish between encryptions of m0 and
m1.8

� CorrectTrA,ε: This is the event where T 6= ∅ ∧ T ⊆ S. This event corresponds to the tracing algorithm
successfully outputting one or more of the keys the adversary possesses.

� BadTrA,ε: T 6⊆ S. This event corresponds to the tracing algorithm outputting a key that the adversary
did not request.

A traitor tracing scheme T satisfies secure tracing if for every λ ∈ N, every efficient adversary A, and every
inverse polynomial function ε(λ) = 1/poly(λ), there exists a negligible function negl(·) such that

Pr[BadTrA,ε] ≤ negl(λ) and Pr[CorrectTrA,ε] ≥ Pr[GoodDisA,ε]− negl(λ). (4.1)

8In the public-key setting considering in previous works, it is unnecessary to give D oracle access to the encryption algorithm,
since the distinguisher can simulate encryption queries itself using the public key. In the secret-key setting, we provide the
adversary oracle access to the encryption algorithm.

22

Similar to the case with traceable PRFs (Definition 2.14), we say that TT satisfies secure tracing against
active adversaries if Eq. (4.1) holds even if the adversary A in ExptTTTT

A,ε has oracle access to a tracing
oracle O(msk, ·, ·, ·, ·) that takes as input the description of a distinguisher D, the tracing parameter 1z, and
two messages m0 and m1, and outputs TraceD(msk, 1z,m0,m1). We say TT satisfies secure tracing against
Q-bounded active adversaries if secure tracing holds against all efficient adversaries that makes at most Q
queries to the tracing oracle O(msk, ·, ·, ·, ·).

4.1 Traceable PRFs to Traitor Tracing

It is well known that PRFs can be used to construct authenticated encryption schemes (e.g., via the “encrypt-
then-MAC” paradigm [BN00]). Not surprising, instantiating the encryption scheme with a traceable PRF
and composing with an arbitrary MAC (without any tracing guarantees) directly yields a traitor tracing
scheme where the underlying encryption scheme is an authenticated encryption (and hence, trivially satisfies
CCA-security). Moreover, if the underlying traceable PRF is secure against (Q-bounded) active adversaries,
then the resulting traitor tracing scheme is also secure against (Q-bounded) active adversaries. We state the
construction below:

Construction 4.4 (Secret-Key Traitor Tracing with Active Security). Let λ ∈ N be a security parameter.
Let TPRF = (TPRF.Setup,TPRF.KeyGen,TPRF.Eval,TPRF.Trace) be a traceable PRF with domain X , range
{0, 1}ρ, and identity space [n]. Let PRF : K × (X × {0, 1}ρ) → {0, 1}λ be a secure PRF. We construct a
secret-key traitor tracing scheme with message space {0, 1}ρ as follows:

� Setup(1λ): Run TPRF.msk← TPRF.Setup(1λ) and k
r← K. Output msk = (TPRF.msk, k).

� KeyGen(msk, id): On input msk = (TPRF.msk, k), output skid = (TPRF.skid, k) where TPRF.skid ←
TPRF.KeyGen(TPRF.msk, id).

� Enc(msk,m): On input msk = (TPRF.msk, k), sample x
r← X , and compute y ← TPRF.Eval(TPRF.msk, x)⊕

m, τ ← PRF(k, (x, y)). Output the ciphertext ct← (x, y, τ).

� Dec(sk, ct): On input sk = (TPRF.sk, k) and ct = (x, y, τ), check if PRF(k, (x, y)) = τ . If the check fails,
output ⊥. Otherwise, output TPRF.Eval(TPRF.sk, x)⊕ y.

� TraceD(msk, 1z,m0,m1): On input msk = (TPRF.msk, k), the parameter z, messages m0,m1 ∈ {0, 1}ρ,
and a distinguisher D, define the oracle-aided traceable PRF distinguisher D̂Ô that operates as follows:

– Sample a bit β
r← {0, 1}.

– Run the distinguisher D. Whenever D makes a query to its encryption oracle, algorithm D̂ makes
a query to its oracle Ô to obtain a value (x, y).

– Compute z ← y⊕mβ and τ ← PRF(k, (x, z)). Algorithm D̂ replies to D’s query with the ciphertext
ct = (x, z, τ).

– Eventually, algorithm D outputs a bit β′ ∈ {0, 1}. Algorithm D̂ outputs 0 if β = β′ and 1
otherwise.

Output TPRF.TraceD̂(TPRF.msk, 12z).

Correctness and security analysis. Correctness and security of Construction 4.4 follows directly from
correctness and security of the underlying traceable PRF. We state the formal theorems here.

Theorem 4.5 (Correctness). If TPRF satisfies key similarity, then TT from Construction 4.4 is correct.

23

Proof. Take any message m ∈ M. Sample msk ← Setup(1λ), and let ct = (x, y, τ) ← Enc(msk,m). If we
write msk = (TPRF.msk, k), then y = TPRF.Eval(msk, x) ⊕m. Clearly, decryption with the master secret
key correctly recovers m. For any identity id ∈ [n], decryption with skid ← KeyGen(msk, id) succeeds as long
as TPRF.Eval(TPRF.skid, x) = TPRF.Eval(TPRF.msk, x) where TPRF.skid ← TPRF.KeyGen(TPRF.msk, id).
Since x is uniform over X , this follows by key similarity of TPRF.

Theorem 4.6 (Authenticated Encryption). If TPRF satisfies weak pseudorandomness and PRF is secure,
then TT from Construction 4.4 is an authenticated encryption scheme, and correspondingly, CCA-secure.

Proof (Sketch). Since TPRF satisfies weak pseudorandomness, we have that (x,m⊕TPRF.Eval(TPRF.msk, x))

is computationally indistinguishable from (x, y) where x
r← X and y

r← {0, 1}ρ. Finally, by PRF security,
PRF(k, (x, y)) is a secure MAC on (x, y). Thus, this encryption scheme is an instantiation of “encrypt-then-
MAC,” which we know provides authenticated encryption [BN00].

Theorem 4.7 (Tracing Security). If TPRF satisfies secure tracing, then TT from Construction 4.4 also
satisfies secure tracing. If TPRF is secure against (Q-bounded) active adversaries, then so is TT.

Proof (Sketch). We show that if

Pr[DOb(1λ) = b : b
r← {0, 1}] ≥ 1/2 + ε,

where Ob is the semantic security challenge oracle, then

Pr[D̂Ôb(1λ) = b : b
r← {0, 1}] ≥ 1/2 + ε/2,

where D̂ is the distinguisher constructed by TraceD and Ôb is the weak PRF challenge oracle. To see this, we
consider two cases:

� Suppose D̂ is given oracle access to Ô0. In this case, whenever D̂ makes a query to O0, it receives
(x, y) where y ← TPRF.Eval(TPRF.msk, x)) for a uniformly random x. In this case, D̂ responds to D’s
queries with Enc(msk,mβ). By assumption, algorithm D will output β with probability 1/2 + ε in this
case. Correspondingly, this means that D outputs 0 with probability 1/2 + ε.

� Suppose D̂ is given oracle access to Ô1. In this case, whenever D̂ makes a query to Ô1, it receives

(x, y) where y
r← {0, 1}ρ. This means that D̂ responds to D’s queries with (essentially) one-time pad

encryptions of mβ (the MAC is computed on a message blinded by a one-time pad). As such, the bit β′

output by D is independent of β, and so β = β′ with probability exactly 1/2. In this case, D̂ outputs 1
with probability 1/2.

Finally, since b
r← {0, 1}, we have that D̂Ôb correctly predicts b with probability 1/2 + ε/2. The claim now

follows from tracing security of TPRF. In particular, the key-generation, encryption, and decryption queries
can all be simulated using the key-generation and PRF evaluation queries of TPRF. Similarly, if TPRF is
secure against (Q-bounded) active adversaries, the same holds for TT. Here, tracing queries to TT can be
simulated by making the analogous query to TPRF.

Remark 4.8 (Longer Message Space). While Construction 4.4 only suffices to encrypt messages whose length
ρ coincides with the output length of the PRF, as long as ρ = Ω(λ), it is easy to extend to arbitrary-length
messages using standard key encapsulation techniques. Namely, we would use Construction 4.4 to encrypt a
symmetric key k for an authenticated encryption scheme (that supports long messages), and then encrypt the
message with the authenticated encryption scheme. As long as the key encapsulation mechanism supports
tracing, the same extends to the composed scheme.

Acknowledgments

We thank the anonymous reviewers for helpful feedback on the presentation.

24

References

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, 2012.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In
PKC, pages 494–524, 2017.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In ASIACRYPT, pages 531–545, 2000.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In ACM CCS, pages
501–510, 2008.

[BP08] Olivier Billet and Duong Hieu Phan. Efficient traitor tracing from collusion secure codes. In
ICITS, pages 171–182, 2008.

[BS95] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data (extended abstract).
In CRYPTO, pages 452–465, 1995.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In EUROCRYPT, pages 573–592, 2006.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, pages 257–270, 1994.

[CFNP00] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE Trans.
Information Theory, 46(3):893–910, 2000.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. In STOC, pages 1115–1127, 2016.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs. Traitor-
tracing from LWE made simple and attribute-based. In TCC, pages 341–369, 2018.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, pages 464–479, 1984.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J. Wu. Watermarking
public-key cryptographic primitives. In CRYPTO, pages 367–398, 2019.

[GKSW10] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Waters. Building efficient
fully collusion-resilient traitor tracing and revocation schemes. In ACM CCS, pages 121–130,
2010.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing from
learning with errors. In STOC, pages 660–670, 2018.

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor tracing with
embedded identities. In TCC, 2019.

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. Beyond software watermarking:
Traitor-tracing for pseudorandom functions. In ASIACRYPT, 2021.

25

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast and trace with nˆε
ciphertext size from standard assumptions. In CRYPTO, pages 826–855, 2019.

[HMW07] Nicholas Hopper, David Molnar, and David A. Wagner. From weak to strong watermarking. In
TCC, pages 362–382, 2007.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301), 1963.

[KT15] Aggelos Kiayias and Qiang Tang. Traitor deterring schemes: Using bitcoin as collateral for
digital content. In ACM CCS, pages 231–242, 2015.

[KW17] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard lattice
assumptions. In CRYPTO, pages 503–536, 2017.

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger security via extractable
PRFs. In CRYPTO, pages 335–366, 2019.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-lwe and
applications in traitor tracing. In CRYPTO, pages 315–334, 2014.

[Nis20] Ryo Nishimaki. Equipping public-key cryptographic primitives with watermarking (or: A hole
is to watermark). In TCC, pages 179–209, 2020.

[NP98] Moni Naor and Benny Pinkas. Threshold traitor tracing. In CRYPTO, pages 502–517, 1998.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How to embed
arbitrary information in a key. In EUROCRYPT, pages 388–419, 2016.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs under standard as-
sumptions: Public marking and security with extraction queries. In TCC, pages 669–698,
2018.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In CRYPTO, pages 433–444, 1991.

[SSW01] Jessica Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial properties of frameproof
and traceability codes. IEEE Trans. Information Theory, 47(3):1042–1049, 2001.

[Tar03] Gábor Tardos. Optimal probabilistic fingerprint codes. In STOC, pages 116–125, 2003.

[YAL+18] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Unforgeable watermarking
schemes with public extraction. In Security and Cryptography for Networks - 11th International
Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, pages 63–80, 2018.

[YAL+19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Collusion resistant
watermarking schemes for cryptographic functionalities. In ASIACRYPT, pages 371–398, 2019.

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resistant watermarkable
PRFs from standard assumptions. In CRYPTO, pages 590–620, 2020.

[Zha20] Mark Zhandry. New techniques for traitor tracing: Size n1/3 and more from pairings. In
CRYPTO, pages 652–682, 2020.

26

	Introduction
	Construction Overview
	Additional Related Work

	Preliminaries
	Fingerprinting Codes
	Traceable PRFs

	Traceable PRF Constructions
	Tracing Security with Active Adversaries
	Collusion Resistant Traceable PRFs

	An Application: Traitor Tracing with Active Security
	Traceable PRFs to Traitor Tracing

