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Abstract

We introduce distance-comparison-preserving symmetric encryption (DCPE), a new type of property-preserving
encryption (PPE) that preserves relative distance between plaintext vectors. DCPE is naturally suited for
nearest-neighbor search on encrypted data. To achieve meaningful security, we divert from prior work on PPE
and ask for approximate correctness, which is natural given the prevalence of approximate nearest neighbor
(ANN) search. We conduct a thorough study of what security approximate DCPE can provide and how to
construct it.

Based on a relation we prove between approximate DCP and approximate distance-preserving functions, we
design our core approximate DCPE scheme we call Scale-And-Perturb (SAP). The encryption algorithm of SAP
processes data on-the-fly. To boost security, we also introduce two preprocessing techniques: (1) normalizing the
plaintext distribution, and (2) shuffling, wherein the component-wise encrypted dataset is randomly permuted.
We prove (under suitable restrictions) that SAP achieves an indistinguishability-based security notion we call
Real-or-Replaced (RoR). In particular, our RoR result implies that our scheme prevents membership inference
attacks by Yeom et al. (CSF 2018). Moreover, we show for i.i.d. multivariate normal plaintexts, we get security
against approximate frequency-finding attacks, the main line of attacks against property-preserving encryption.
This follows from a one-wayness (OW) analysis. Finally, carefully combining our OW and RoR results, we are
able characterize bit-security of SAP.

Our overall findings are that our scheme not only has superior bit-security to OPE but resists specific attacks
that even ideal order-revealing encryption (Boneh et al., EUROCRYPT 2015) does not. This suggests it could
be sufficient for certain ANN applications, a subject on which we encourage further study.

1 Introduction

We review the problem we address in this paper and then overview our results.

1.1 Background and Motivation

The paradigm of secure outsourced databases refers to a setting where a client transmits its database to an
untrusted server that hosts it. The goal of such a protocol is to protect information about the database from the
server to the extent possible, while maintaining the ability for the client to issue queries. This paradigm was first
introduced in the database community by [HILM02] and has received intensive study since then (see [Kam15])
from the database and cryptographic community.

An attractive approach to constructions, which has already seen real-world deployment, is the emerging
notion of function-revealing encryption (FRE) (e.g., [BBO07, BCLO09, PR12, BLR+15, JP18]). A (private-
key) function-revealing encryption scheme for a function f allows anyone from the encryptions c1, . . . , cn of
m1, . . . ,mn respectively to compute f(m1, . . . ,mn). The terminology is important here: function may be re-
placed by property, which refers to the case that f is a predicate;1 revealing can be replaced by preserving,
where the way of computing the above output of f is itself f(c1, . . . , cn). FRE is attractive because it allows
the construction of outsourced database protocols that let the server index and process queries almost exactly
the same way as for unencrypted data (in fact, exactly in the function-preserving case).

So far, FRE-based protocols have mainly been built for running queries on encrypted SQL databases. The
types of FRE used here are order-revealing (ORE) and order-preserving encryption (OPE) [AKSX04, BCLO09,
BCO11, BLR+15], in which plaintexts are numbers and f is the comparison predicate pcomp(x, y) = 1 iff x < y;
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1 Property-preserving encryption (PPE) is a special case that our construction actually falls into, but we stick with FRE
terminology for generality.
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and deterministic encryption2 (DE) [ABO07, BBO07], which is the function-preserving case where f is the
equality predicate peq(x, y) = 1 iff x = y. Combined with some other schemes and tricks, DE and ORE/OPE
give rise to outsourced database protocols for most SQL queries, such as the CryptDB system [PLZ13].

Unfortunately, even when these underlying FRE schemes are ideal, this approach is subject to attacks in
the outsourced database setting ([NKW15, DDC16, PW16, GSB+17, BGC+18] in the “snapshot” setting, and
[KKNO16, LMP18, GLMP18, GLMP19, KPT20] in the “persistent” setting — see below). This has created a
viewpoint in the community that community the FRE approach in such a higher-level applications is inherently
insecure. Indeed, existing positive results for FRE-based protocols have major restrictions: they either assume
uniform, high-entropy plaintexts [BCO11] or an unknown prior on the data [CLO+18], neither of which seems
likely to hold in practice. Other work introduces high overhead for practical datasets [LP18, PGW19].

In this work, we make further progress on studying FRE. We put forth a new type of FRE and a construction,
achieving novel security guarantees moving past previous limitations. We aim for guarantees in a “snapshot”
attack model where the adversary sees one snapshot of the encrypted database. This is opposed to a “persistent”
attack model where the adversary observes the query processing over time.3

1.2 Our Results

(Approximate) Distance-Comparison Preserving Encryption. The first step is to identify the “core operation”
that nearest neighbor (NN) search algorithms use. For standard NN algorithms [WL83, CD07], this is distance
comparison. This gives rise to distance-comparison preserving and distance-comparison revealing encryption
(DCPE/DCRE) for the ternary predicate pdist-comp(x, y, z) = 1 if dist(x, y) < dist(x, z).4 Even on plaintext
data, in some applications it is common to return approximate nearest neighbors (ANN) instead of the ex-
act values [AMN+98, ML14]. Indeed, ANN is very useful for high-dimensional data due to “curse of dimen-
sionality” [BGRS99, IM98]. (In higher dimensions, the notion of exact distances between points becomes less
significant, thereby making it difficult for exact algorithms to converge.) We leverage this feature as a way to
move past security limitations of prior work on PPE. We thus consider “approximate” DCPE/DCRE, where
the predicate evaluates to 1 if dist(x, y) and dist(x, z) are sufficiently far. Approximate DCPE, which we show
preserves the approximation factor of the overlying NN search algorithm, is the central notion of our work.

Relation to Approximate Distance-Preserving Encryption. In order to get a handle on a DCPE construction, we
would like to understand the “structure” of DCP functions — what do they look like? We prove that approximate
DCP is approximate distance-preserving (DP) with a related approximation factor. To make this precise, let us
call an encryption function β-DCP if

dist(x, y) < dist(x, z)− β =⇒ pdist-comp(cx, cy, cz) = 1 ,

where cx denotes a ciphertext of x. Let us call a function (α, β)-DP if

α dist(x, y)− β ≤ dist(cx, cy) ≤ α dist(x, y) + β.

Our main result here is that all functions which are β-DCP satisfy the notion of (α, β′)-DP for some β′ which
depends on α and β. The exact parameters are given in Theorem 15.

The Scale-and-Perturb (SAP) Construction Inspired by the above results, our “core” approximate DCPE scheme
is called the “Scale-and-Perturb” (SAP) scheme, which works as follows. The encryption algorithm scales the
plaintext by a factor held in the secret key followed by adding a random perturbation factor. Note that this
does not allow decryption, hence we apply a pseudorandom function to derandomize the perturbation step.
The parameters are drawn from a uniform distribution, which is inspired by previous works [GC18, KDWS05,
JPW06]. Namely, we sample the perturbation from a uniform distribution within a sphere. The radius of the
sphere determines the maximum permissible approximation for distance comparison. The choice of uniform
distribution for noise is crucial to prevent averaging out the noise by an adversary, thereby disallowing trivial
known plaintext attacks.

2 In our terminology, it could also be called equality-preserving encryption
3 We note that our analyses do extend to encompass queries as long as they have the same distribution as the data. In

future work, this might be ensured via preprocessing as in [MCO+15].
4 The reason why we specifically consider DCPE/DCRE is, like OPE’s claim to fame they allow the backend of the server

to remain essentially unchanged. For example, suppose we used encryption that allowed comparisons only between
query vectors and server vectors This would not allow the client to upload encrypted vectors to the server on-the-fly
such that the server can index them. Thus search would require a linear scan.
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Preprocessing Techniques. While our core encryption scheme can encrypt any individual message given only
the secret key, we propose preprocessing steps which enhance the security guarantees and utility of our scheme.
The preprocessing steps assume additional knowledge when encrypting. The first idea is shuffling. Here, the
entire dataset is encrypted component-wise at once, after the plaintexts are shuffled according to a random
permutation. This can be achieved efficiently as shown [BEM+17, KLDF16] in differential privacy. To our
knowledge, this technique is new in property-preserving encryption (PPE). The second idea is normalization,
which converts the plaintexts to a normal distribution. This can be done by applying standard statistical tools
like the BoxCox transform [Sak92]. In our results we sometimes assume that such preprocessing techniques
have been applied; in particular, our results based on one-wayness apply to plaintexts (i.e., vectors) following a
multivariate normal distribution. Many natural statistics already follow a normal distribution as well. Indeed,
this is a much better assumption than uniform data as in [BCO11].

Indistinguishability-Based Security and “ideal DCPE” A natural type of security notions to consider here is
“indistinguishability-based.” Indeed, as DCPE is a special case of property-preserving encryption (PPE), the
Left-or-Right (LoR) security notion of [PR12, CD15] applies. Roughly, LoR considers an adversary making queries
(x10, x

1
1), . . . , (xq0, x

q
1) to an oracle returning encryptions of either the left messages or the right messages. For

the given predicate p, it is further required that (x1b , . . . , x
q
b) have the same “p-equality pattern” for b ∈ {0, 1}.

This restriction ensures that the functionality of the scheme does not allow the adversary to trivially win the
game and that only p leaks. We show that it follows from structural results discussed above that this notion is
not achievable for approximate pdist-comp with practical approximation factors.

Faced with this impossibility result, we move towards using the above mentioned pre-processing techniques
along with other security notions to analyze guarantees for our scheme. We conduct a very involved analysis
showing our scheme meets several important notions.

First Target: Security against Membership Inference. Our first target is security against membership inference
attacks [YGFJ18] which determine whether an individual is in the database or not.

Our “real-or-replaced” (RoR) exactly captures these attacks as it deals with indistinguishability of datasets
that differ at exactly one point aka. neighboring datasets. As mentioned, a crucial technique here is that of a
shuffle that outputs a random permutation of the ciphertexts. Rather than encrypting a point at a time, RoR
captures the scenario where the entire dataset is encrypted at once post preprocessing. Shuffling has become a
state-of-the-art technique for security amplification in this setting for differential privacy and we observe similar
results in our case as well. We note that one could imagine a more practical scenario where instead of uploading
the database all at once, uploads are “batched” and a shuffle is applied only to the current batch. We leave an
analysis for future work.

In RoR, more specifically the adversary chooses a dataset and sends it to an oracle which does either of the
two things with equal probability- (1) Creates a random permutation of the dataset, encrypts it, (2) Chooses
one point in the dataset at random, replaces it with another point chosen uniformly within a bounded distance
(parameter of the security notion) from the to-be-replaced point, generates a random permutation of the modified
dataset and encrypts it. The encrypted points are then returned to the adversary whose goal is to identify which
dataset was encrypted.

Second Target: Frequency-Finding Security. Here, we target security against frequency-finding (FF) attacks,
where the adversary tries to estimate how many times some element appears in the database. In our formulation,
the adversary need not even know which element it is and tries to guess an approximate frequency. Leakage of
frequency information about the plaintext has proved to be the Achilles’ heel of previous works in property-
preserving encryption schemes (for instance, OPE/ORE and even ideal ORE) [NKW15, GSB+17]. Such attacks
have successfully reconstructed (partially or completely) the messages encrypted under the aforementioned
schemes by exploiting this leakage. Thus, it is imperative we ensure that similar attacks to do not apply,
meaning significantly different techniques would be needed for attacks.

In Theorem 12 we prove that indeed such a leakage does not occur for SAP. This is proven by a reduction
from a new security notion in the spirit of one-wayness. In particularly, we generalize the window one-wayness
(WOW) notion of [BCO11] to higher dimensions, calling it attribute window one-wayness AWOW and prove it
holds for SAP relative to a message oracle, which takes as input a distribution chosen by the adversary and
outputs the encryption of a randomly sampled message from the said distribution. The reduction to FF exploits
the fact that a frequency table (histogram) can be used to construct the Empirical Cumulative Distribution
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Function (ECDF), which in turn provides vital information about the high-density points in the support of
the underlying distribution. As a conclusion, the FF results say that it is impossible to guess approximate
frequencies for any attribute occuring with significantly high probability from a message space sampled from a
multivariate gaussian distribution.

In order to help reader have a clearer understanding of the concrete security values that we achieve and
show the dependence of various parameters on the security bounds, we have put down some values in Tables 1
and 2 for reference.

Third Target: Bit Security. Finally, we aim to characterize bit-security of the plaintexts. This effort, inspired
by [BCO11, TYM14], is motivated by the fact that while DCPE inherently cannot hide all partial information, it
may still protect some “physical bits” of the plaintexts that represent important partial information in practice.
To explain bit-security more precisely, let x be a plaintext in a dataset sampled from some distribution (in our
results it is multivariate normal). Fix some stretch of bit-positions of x. We call the stretch OW if given the
encryption of the dataset it is hard to compute that stretch of bits of x. We call the stretch pseudorandom if
given the encrypted of the dataset one cannot distinguish that stretch of bits from random. Intuitively, this
means all partial information about these bits is hidden.

To characterize bit security, we go through several steps. First, we introduce an experiment called Hardcore
Bits (HCB) which enables us to talk about one-wayness and pseudorandomness of lower order bits for the
same message. HCB creates a hybrid to compose the RoR result atop OW. We prove the lower log δ bits are
pseudorandom, where δ is the distance parameter for RoR. Further, at least half the lower half of the bits are
one way. Concretely the number of one way bits of a n bit string is n

2 + k, where k is directly proportional to
the approximation factor β. The latter beats the result for OPE [BCO11]; the OPE scheme also does not have
hardcore bits.

1.3 Discussion

Setting the Parameters. Overall, the choice of β is pivotal in balancing security and utility. Hence, a natural
question to ask is what value of β should be chosen for some application? Unfortunately, there is no single answer,
as the parameters needed would vary based on the size of the domain and tolerable error in the application.
For instance, if we have a dataset where the message-space for each component is (−N,N), and the ANN can
tolerate an error up to Emax ≤ N , then β ≤ Emax will ensure that the error is within the specified limit. (Refer
to Section 3.2 for details.) From a security perspective, Tables 1 and 2 suggest taking β ≥

√
N . Hence, we are

looking at the range
√
N ≤ β ≤ Emax. Note, that this is a contradiction if Emax ≤

√
N . This suggests our

scheme should not be used in such a case, i.e. maximum tolerable error must be at least square-root the domain
size.

An Example Application. Based on our results, one example applications where our scheme may be suitable
is where the dataset consists of information of people from various demographics. It might be acceptable to
differentiate people based on zip code but the identity of a person must be indistinguishable from others living
in the same zip code. Our RoR results guarantee strong security while ensuring utility in such setting. More
generally, as in the OPE work we do not make any strong claims about when our scheme would be useful. It
must be further studied and extended to better understand its security. However, we stress that, promisingly,
our results already show that it meets several notions OPE does not.

Fruitful Future Directions: A step forward in this direction would be generalising SAP schemes to make them
compatible with other metric spaces. Distance Comparison Revealing Encryption (DCRE) is also a compelling
subject of study. Recall, a secret key encryption scheme is Distance Comparison Revealing if the scheme takes
as input a set of three plaintexts and outputs the pairwise distance comparisons between them. This problem
is compelling because it can have security improvements over DCPE, similar to the effect of Order Revealing
Encryption(ORE) [CLWW16, BLR+14] over Order Preserving Encrypton(OPE) [BCLO09, BCO11].

Another forward direction is to combine sketching algorithms [TYUC17, KKMM12] with our scheme. A
sketch of some data set with respect to a function f is a compression (eg. dimension reduction) which allows
users to (approximately) compute f by having access to the sketch alone. Such compression approaches are
intuitively expected to be effective techniques to significantly improve bit-security.
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1.4 Further Related Work

The only previous FRE scheme that works on higher-dimensional vectors is the scheme of [HJL+17] for partial
ordering. “Left-or-right” ORE [LW16] is designed to immunize ORE-based protocols against snapshot attacks
but suffers the drawback that the support of efficient higher-level protocols afforded by plain ORE is no longer
present. Non-FRE based protocols such as Arx [PBP19] or essentially any structured encryption scheme [CK10]
are semantically secure in the snapshot attack model, but also do not carry the practical benefits of using
FRE, namely avoiding implementing an entirely different backend. Moreover, for these protocols that are se-
cure against snapshot attacks there is evidence that they are not secure given some information about the
queries [GRS17]. Non-FRE based protocols for secure nearest-neighbor search have been widely addressed by
the database community, although they are rather ad hoc or insecure (see [YLX13] and references therein).

2 Preliminaries

2.1 Notation

The following are a list of frequently used notations in the paper which shall remain consistent unless otherwise
stated.

– We refer to members of {0, 1}∗ as strings. If x, y are strings then x‖y denotes their concatenation.
– N (N+) and R (R+) represent the (non-negative) natural and real numbers respectively.
– For n ∈ N, [n] is the list {1, 2, . . . , n} and [a, b], {a, b} ∈ N represents a closed interval consisting of all

elements between a and b (inclusive).
– All sets are denoted by sans-serif capital letters (S, C, etc), with the exception of D which is reserved for

datasets. Sometimes subscripts like D1 might be used to uniquely identify multiple datasets. All sets are
usually unordered unless specified. Intervals are written as I[a,b].

– For a finite set S, we denote by s
$←− S the process of sampling s uniformly from S.

– Distributions are represented in calligraphic font, like D. Specifically, U ,N ,MVN typically denote the
Uniform, Normal and Multivariate Normal distributions respectively.

– ‖ · ‖ denotes the length of a vector or size of a set, interval, dataset, etc.
– Vectors are denoted in boldface (v, M). A d-dimensional vector is denoted as v = (v[1] . . . , v[d]) and v[i]

refers to the ith component of v.
– Generic domains and range are written as X and Y, respectively.
– d is the dimension of vector. The dot product between two vectors u and v is given by u · v.
– Calligraphic M (also called message space) and C (possibly followed by subscript) represent the plaintext

and ciphertext space respectively.
– Mostly plaintext space (M) and ciphertext space (C) are of the form [−M,M ]d and [−C,C]d respectively

where M,C ∈ N, i.e. a d dimensional space with each dimension being [−M,M ]. We shall not explicitly
mention the final fact in the entire paper.

2.2 Mathematical Background

We recall some mathematical preliminaries that we will use.

Open Ball: The open ball of radius r > 0 centered at a point p ∈ R, denoted by B(p; r), is defined as

B(p; r) = {x ∈ R | dist(x, p) < r},

where dist(x, y) := ‖x− y‖.

Orthogonal Matrix: A square matrix Q is said to be an orthogonal matrix if QQT = I (Identity matrix),
where QT is the transpose of Q and I denotes the identity matrix of the same dimension as Q.

Gaussian Distribution: The Gaussian Distribution is characterized by two parameters, the mean µ and the
variance σ2. The probability density function of a univariate random variable X, following N (µ, σ2) is,

φ(x) = 1√
2πσ

e−
1
2

(x−µ)2

σ2 .
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Multivariate Normal Distribution: This is a distribution defined over a vector, say x = (x1, . . . , xd) and
is characterized by the parameters µµµ,ΣΣΣ and denoted byMVN (µµµ,ΣΣΣ). Here, µµµ = E(x) is a d-dimensional vector
µµµ = (µ1, . . . , µd) and ΣΣΣ is a d× d matrix whose (i, j)th entry is defined as ΣΣΣi,j = E[(xi − µi)(xj − µj)] The pdf
is

φ(x) = 1√
2π|ΣΣΣ|

e−
1
2 (x−µµµ)

TΣΣΣ−1(x−µµµ).

The discrete versions of the above two distribution are a simple extension.

2.3 Standard Cryptographic Primitives

Symmetric Encryption: A symmetric encryption scheme SE = (KeyGen, Enc,Dec) with associated plaintext
space M and ciphertext space C consists of three algorithms. The randomized key generation algorithm KeyGen
returns a secret key K. The (possibly randomized) encryption algorithm Enc takes the secret key K and a
plaintext m ∈ M to return a ciphertext c ∈ C. The deterministic decryption algorithm Dec takes the secret
key K and a ciphertext c to return a corresponding plaintext m. We require the usual correctness condition,
namely that Dec(K, Enc(K,m)) = m for all K output by KeyGen and all m ∈M. Finally, we say that SE is
deterministic if Enc is deterministic.

Pseudorandom Functions: A function family F : {0, 1}s × {0, 1}n → {0, 1}m is called a pseudorandom
function (PRF) if the following holds:

– There is an efficient algorithm that given a key K ∈ {0, 1}s and an input x ∈ {0, 1}n computes FK(x) =
F (K,x).

– For any algorithm A, its advantage

Advprf
F (A) = Pr

K
$←−{0,1}s

[
AFK(·) = 1

]
− Pr

[
A$ = 1

]
is negligible, where $ above denotes the oracle that implements a random function from {0, 1}n → {0, 1}m.

2.4 Specializations

We specialize some notions relevant to our setting. A dataset is composed of a list of vectors, which we refer to as
messages m = (m[1], . . . ,m[d]), Messages m lie in a bounded d-dimensional discrete spaceM. We denote by |D|
the number of messages in D. Component m[i] is also referred to as the ith attribute of m. On some occasions,
we might drop the subscript and write only [−M,M ] for attribute-wise message space when appropriate and
obvious from context.

In all our results, messages will be sampled independently from a multivariate distributionMD with support
M (note the attributes in a given message may still depend on one another). If there is a dataset D, where
each message m ∈ D ∼ MD, at times, we take the liberty to refer to it as a distribution MD of a dataset
D. Furthermore, each attribute m[i] is assumed sampled from a distribution Di defined on [−M,M ]. Thus,
MD = (D1, . . . ,Dd). Again, we might drop the subscript and write only D when appropriate.

3 Approximate Distance-Comparison-Preserving Functions and Their Properties

Before turning to corresponding encryption schemes, we give definitions of distance-comparison-preserving func-
tions and related notions. Our central notion is that of approximate distance preservation and others will serve
as auxiliary notions we relate to it. Note that the definitions have been presented in a generalized form. The
domain, range and parameter space can be easily chosen as per need.

3.1 Notions Considered

Below we allow functions to be randomized. If f : X → Y is a randomized function then when f(x) occurs in an
equation it means the equation should hold for any possible outcome of the coins. Note that in this subsection,
we use generic symbols, as these notions can be applied on a variety of domains. For instance, x, y can be vectors
or numbers.
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Distance-Preserving (DP) Function: A function f : X → Y is said to be DP if

∀x, y ∈ X : dist(x, y) = dist(f(x), f(y)) .

Approximate-Distance-Preserving ((α, β′)-DP) Function: Let α ∈ R, β′ ∈ R+. A function f : X → Y is
said to be (α, β′)-DP if

∀x, y ∈ X : α dist(x, y)− β′ < dist(f(x), f(y)) < α dist(x, y) + β′ .

Distance-Comparison-Preserving (DCP) Function: A function f : X → Y is said to be DCP if

∀x, y, z ∈ X : dist(x, y) < dist(x, z) =⇒ dist(f(x), f(y)) < dist(f(x), f(z)) .

Approximate-Distance-Comparison-Preserving (β-DCP) Function: For β ∈ R+, a function f : X → Y
is said to be β-DCP if

∀x, y, z ∈ X : dist(x, y) < dist(x, z)− β =⇒ dist(f(x), f(y)) < dist(f(x), f(z)) .

Note that a function f is 0-DCP ⇐⇒ f is DCP.

Using encryption systems that are distance-preserving has been proven to be highly insecure [TPS+08,
LGK06]. Hence we introduce further notions which help to achieve the necessary security requirements. The
reason we concentrate on approximate-distance-comparison-preserving functions over DCP functions is that the
former comprises of functions whose formulations are independent of the dataset. This is because we set the
approximation fator as a constant independent of the underlying dataset. Exact distance comparison-preserving
encryptions need to have parameters that depend on particular datapoints in the message space. The notion of
β-DCP does not have any such restrictions as the bounds on the perturbations are independent of the dataset
on which it is being applied.

3.2 Accuracy of Nearest Neighbors for β-DCP Functions

When using an existing nearest-neighbour search algorithm with a β-DCP function, our goal is to guarantee
some reasonable bounds on the accuracy of the algorithm. The following claim proves that any nearest-neighbour
search algorithm run on a set of points after post processing by a β-DCP function returns a point whose plaintext
distance from the user query is no more than β larger than the distance to the actual nearest neighbour.

Let NN be a Nearest-Neighbor algorithm that is given query q and a set of points P and NN(q,P) returns
s ∈ P if ∀x ∈ P : dist(q, s) ≤ dist(q, x), i.e., s is the nearest neighbor for q.

Let f be a β-DCP function. Consider a run of NN with query f(q) and set f(P). Let s∗ be such that
NN(f(q), f(P)) = f(s∗) (which exists since NN returns a value in f(P).)

Claim. ∀x ∈ P : dist(q, s∗) ≤ dist(q, x) + β.

Proof. Assume that for some x ∈ P we had dist(q, s∗) > dist(q, x) + β, that is, dist(q, x) < dist(q, s∗) − β.
Since f is β-DCP, this implies dist(f(q), f(x)) < dist(f(q), f(s∗)). But since NN(f(q), f(P)) = f(s∗), and thus
dist(f(q), f(s∗)) ≤ dist(f(q), f(x)), this is a contradiction.

We stress that β is the worst-case error in predicting the nearest neighbours.

4 Relations Between the Notions

4.1 Structure of DP Functions

In order to explain the choice of our encryption scheme, we characterize approximate distance-preserving DP
functions. The theorems and corollaries below state that approximate distance-comparison-preserving (DCP)
functions are indeed approximate distance-preserving. Further, by definition, approximate DP functions can be
formed by adding a certain amount of perturbation to a DP function. Hence, the intuition is to start from a DP
function and add a bounded perturbation to it to obtain an approximate DCP function. It is therefore sufficient
to characterize DP functions.

We take inspiration from examples of isometries, i.e., distance-preserving transformations [BQ53] to provide
an intuition for the choice of encryption functions.
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Theorem 1. (Informal) [Wei00] Isometries of a plane are linear transformations that preserve distance. They
are characterized by rotation, translation, reflection and the identity map.

For the formal version of the above theorem refer to [BQ53]. Although scaling as a transformation does not
necessarily preserve distance (except the trivial identity map and reflection at the origin), all mutual distances
are scaled by the same factor, thereby keeping relative distance comparisons unchanged. This therefore yields a
distance-comparison-preserving transformation.

4.2 DCP Functions vs Approximately DP Functions

To get a handle on designing DCPE, we would like to understand how DCP functions “behave.” In this subsection
we analyse the relation between 0-DCP and approximately distance-preserving functions.

Following is our main result for one dimension (which is a bit simpler to understand) and its generalization
to arbitrary dimensions.

Theorem 2. Let N ∈ R,M ∈ N and f : [0,M ] → R be such that f(0) = 0 and f(M) = N . If f is DCP then
for all 0 < x < M we have N

M (x− 1) ≤ f(x) ≤ N
M (x+ 1).

Note that the assumption f(0) = 0 is wlog by translation.

Proof. Assume that for some x:
f(x) ≤ N

M (x− 1) . (1)

Let x be such that N
M (x−1)−f(x) is maximal; then for all y, we have that N

M (y−1)−f(y) ≤ N
M (x−1)−f(x)

and thus
f(y) ≥ N

M (y − x) + f(x) . (2)

Suppose x ≤ M
2 . Then by (1): f(x)−f(0) ≤ N

M (x−1) and and by (2), with y = 2x−1: f(2x−1)−f(x) ≥ N
M (x−1).

(Note that x ≤ M
2 ensures that y ≤M .)

This means that there are three points, 0, x and 2x−1, such that dist(0, x) > dist(x, 2x−1), but dist(f(0), f(x)) ≤
dist(f(x), f(2x− 1)) and thus f is not DCP.

The proof for x > M
2 is similar with the contradicting points being 2x−M + 1, x and M . This proves the

lower bound.
The proof for the upper bound is similar, taking x to be such that f(x)− N

M (x+1) is maximal and proceeding
with steps analogous to the above.

Now, we generalise this results to the following theorems that cater to multiple dimensions. We restrict
ourselves to stating just the theorems in the main body and send the proofs to Appendix A to not divert from
the main attention of this work. Moreover, the proofs for multi-dimensional setting follows a very similar line
of argument as the one-dimensional setup.

Theorem 3. Let U be a subset of R and [0,M ]d denote the d-dimensional Cartesian product of the closed
interval [0,M ] and M = (M,M, . . . ,M). Let f : [0,M ]d → U with f(0) = (0) and N := f(M). If f is DCP,

then for all x ∈ [0,M ]d \ {0,M}, we have ‖N‖‖M‖ (‖x‖ −
√
d) ≤ ‖f(x)‖ ≤ ‖N‖

‖M‖ (‖x‖+
√
d).

This theorem tells us that given two fixed points, a distance-comparison-preserving function always maps a
point x ∈ [0,M ]d to a point x′ ∈ U such that x′ lies in a ball of radius

√
d around x scaled by a constant. This

shows that any DCP function is approximately distance-preserving. In particular, our claim proves a bound on
the amount any point in a DCP function can be perturbed. For concreteness, we have chosen euclidean spaces
for our results, but they can be easily generalized to any generic metric space.

Corollary 1. Let U be any subset R and [0,M ]d denote the d-dimensional Cartesian products of the closed
interval [0,M ] and M = (M,M, · · · ,M). Let f : [0,M ]d → U be β-DCP, and f(0) = (0), f(M) = N ∈ U. Then

∀x ∈ [0,M ]d − {0,M}, ‖N‖‖M‖ (‖x‖ − β) ≤ ‖f(x)‖ ≤ ‖N‖
‖M‖ (‖x‖+ β).

The above corollary follows directly from Theorem 14. The only difference is that the radius of the ball in
which the projected point lies is β. This validates our claim that any β-DCP function is also approximately
distance preserving with higher perturbations.
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4.3 Approximately DCP Functions vs Approximately DP Functions

We study the relation between approximately DCP and approximately DP functions. Our main result is that
approximately DCP functions are approximately DP with a large value of β′.

Theorem 4 (1-Dimension). Let N ∈ R,M ∈ N ∪ {0}, if f : N → R is a β-DCP, and f(0) = 0, f(M) = N ,
then ∀x, y such that 0 < x, y < M ,

N

M
(dist(x, y)− 2β) ≤ dist(f(x), f(y)) ≤ N

M
(dist(x, y) + 2β) .

In other words, if f is β-DCP, then f is (α, β′)-DP, where α = N
M and β′ = 2NM β.

The main goal of this section is to show that an “ideal” notion of security (cf [BCLO09]) for DCPE is not
achievable. The proof of Theorem 4 follows from the proof of Corollary 2.

The following is the converse of the above theorem.

Theorem 5. For any function f : N→ R such that f is (α, β)-DP, f is β′-DCP for all β′ ≥ 2β
α .

Proof. Let f be an arbitrary α, β-DP function. Let x, y, and z be points such that dist(x, y) < dist(x, z)−β′. By

the definition of (α, β)-DP, we have that dist(f(x), f(y)) < α dist(x, y) + β implies dist(f(x),f(y))−β
α < dist(x, y).

Moreover, α dist(x, z) − β < dist(f(x), f(z)) implies dist(x, z) < dist(f(x),f(z))+β
α . By our choice of x, y, and z,

dist(x, y) < dist(x, z)− β′, so

dist(f(x), f(y))− β
α

< dist(x, y) < dist(x, z)− β′

<
dist(f(x), f(z)) + β

α
− β′

=⇒ dist(f(x), f(y)) < dist(f(x), f(z)) + 2β − αβ′.

Therefore, as long as 2β − αβ′ ≤ 0, dist(f(x), f(y)) < dist(f(x), f(z)), so for β′ ≥ 2β
α , f is β′-DCP.

Like the previous subsection, we again generalize to multiple dimensions. Proofs for the same can be found
in Appendix A.

Theorem 6 (n-Dimensions). If f : [0,M ]d → U is β-DCP, and f(0) = 0, f(M, · · · ,M) = N, then ∀x,y ∈
[0,M ]d − {0,M},

‖N‖
‖M‖

(dist(x,y)− γ − 2β) < dist(f(x), f(y)) <
‖N‖
‖M‖

(dist(x,y) + γ + 2β)

where γ =
√

2‖x‖‖y‖+ 2|xy|.
In other words, if f is β-DCP, then f is (α, β′)-DP, where

α =
‖N‖
‖M‖

and β′ =
‖N‖
‖M‖

(
√

2‖x‖‖y‖+ 2|xy|+ 2β) .

(Approximate-)Distance-Comparison-Preserving Encryption ((β-)DCPE): We say that a symmetric
key encryption scheme SE = (KeyGen, Enc,Dec) with plaintext and ciphertext spaces X and Y is (approximate-
)distance-comparison-preserving if Enc(K, ·) is a (β-)DCP function from X to Y for all K output by KeyGen.

4.4 Impossibility of Ideal Security

As in the study of its predecessor OPE [BCLO09], a first question about β-DCPE is whether it can achieve
“ideal” security, meaning it leaks only the approximate distance comparisons between the plaintexts. As in the
case of OPE, the answer is “no”. (However, there is a caveat, hence we refer readers to Remark 1.) Toward this
end, we first introduce the relevant definition.
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Indistinguishability-based Security of approximate DCPE

Definition 1. Let SE = (KeyGen, Enc,Dec) be a β-DCPE scheme with message space M = [−M,M ]d and
ciphertext space C = [−C,C]d. For an adversary A, define its LoR-advantage

AdvLoR
SE (A) = 2 ·Pr

[
ExpLoR

SE (A) = 1
]
− 1

where the experiment above is defined as follows:

Experiment ExpLoR
SE (A) :

K
$←− KeyGen

b
$←− {0, 1}

b′
$←− ALR(·,·)

If b == b′

return 1
Else return 0

Oracle LR(m0,m1):

c
$←− EncK(mb)

Return c

Let (m0
1,m

1
1), . . . , (m0

q,m
1
q) be a sequence of queries made by A to its oracle. We call A an LoR-adversary

if for every such sequence the following holds for all i, j, k ∈ [q]:

dist(m0
i ,m

0
j ) ≤ dist(m0

j ,m
0
k)− β ⇒ dist(m1

i ,m
1
j ) ≤ dist(m1

j ,m
1
k)− β.

This can be seen as a special case of the notion introduced by [PR12]. We say that SE is ideal-secure if
AdvLoR

SE (A) is small for every efficient LoR-adversary A.

Impossibility Result

We show that no β-DCPE scheme is ideal-secure unless β is likely too large to be useful in applications. The
proof relies on a “Big-jump” style attack as in [BCLO09] that uses only two pairs of oracle queries.

Theorem 7. Let SE = (KeyGen, Enc,Dec) be a β-DCPE scheme with plaintext space M = [0,M ]d. Let m ∈
M be such that ∀x ∈M, ‖x‖ ≤ ‖m‖. If β < ‖m‖

4 then there is an LoR-adversary A such that AdvLoRSE (A) = 1.

Proof. Consider the following adversary:

Algorithm 1 Big-Jump Adversary

procedure ABigJump

n← LR(m,m); α← ‖n‖
‖m‖ ; β

′ ← 2αβ

cb ← LR(0,m)
If dist(n, cb) < β′, then return b′ ← 1
Return b′ ← 0

It is vacuously true that ABigJump is LoR. We now argue that AdvLoR
SE (ABigJump) = 1. Theorem 4 of Section

4.3 tells that that any β-DCP function is (α, β′)-DP, where α = ‖n‖
‖m‖ and β′ = 2 ‖n‖‖m‖β, i.e. for any m1,m2 and

any possible corresponding ciphertexts (for any possible key and randomness of the encryption) c1, c2 we have

‖n‖
‖m‖

· dist(m1,m2)− 2
‖n‖
‖m‖

β ≤ dist(c1, c2) ≤ ‖n‖
‖m‖

· dist(m1,m2) + 2
‖n‖
‖m‖

β.

If cb corresponds to the encryption of m, the above expression gives us dist(cb,n) ≤ 2 ‖n‖‖m‖β. Whereas dist(cb,n) ≥
‖n‖ − 2 ‖n‖‖m‖β when 0 is encrypted by LR.

If β < ‖m‖
4 , then 2 ‖n‖‖m‖β < ‖n‖ − 2 ‖n‖‖m‖β, and thus AdvLoR

SE (ABigJump) = 1.
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Remark 1. This proof does not necessarily hold if the data is subjected to preprocessing on the entire database
before encryption. One such example of preprocessing is shuffling which has been explored in Section 5.3. It
must be noted that shuffling does not contradict this proof. However there is no guarantee that there does
not exist any preprocessing method which can bypass this result. In the case of OPE, with preprocessing ideal
security can be achieved. We are unsure if this can be achieved for DCPE using some preprocessing and leave
this for future work.

5 The Scale-and-Perturb (SAP) Scheme

We first give our core encryption scheme and then discuss additional preprocessing techniques.

5.1 Our Core β-DCPE Scheme

We now propose our core β-DCPE scheme based on our prior characterization of approximation distance-
comparison preserving functions. We will suggest data preprocessing techniques in Section 5.3 in addition. Let
M = [−M,M ]d be a discrete message space of dimension d. Let PRF : {0, 1}k × {0, 1}` → {0, 1}∗ be a function
family for some k, ` ∈ N. We leave the number of output bits implicit in our algorithms for simplicity. The
scheme is also parameterized by β which can take any non negative value less than 2M

√
(d).

The keyspace is denoted by S. Define the “Scale-And-Perturb” (SAP) encryption scheme on M as

SAP = SAP[PRF, β, S] = (KeyGenSAP, EncSAP,DecSAP)

as shown in Algorithm 2.

Algorithm 2 The SAP scheme.

procedure KeyGenSAP()

s
$←− S

K
$←− {0, 1}k

return (s,K)

procedure EncSAP((s,K),m)

n
$←− {0, 1}`

coins1‖coins2 ← PRF(K,n)
u← N (0, Id; coins1)
x′ ← U(0, 1; coins2)

x← sβ
4 (x′)

1
d ; λm ← ux

‖u‖
c← sm + λm
return (c, n)

procedure DecSAP((s,K), (c, n))
coins1‖coins2 ← PRF(K,n)
u← N (0, Id; coins1)
x′ ← U(0, 1; coins2)

x← sβ
4 (x′)

1
d

λm ← ux
‖u‖

m← c−λm

s
return m

Scheme Overview: The coins generated using the PRF are used for decryption. They provide a unique identity
to each plaintext-ciphertext pair which makes decryption possible. The TapeGen PRF from [BCLO09] can be
a candidate PRF. Of course, security of our scheme also depends on the chosen PRF. For simplicity, we do not
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talk about the PRF in the remainder, analyzing the core (no-decrypt) scheme. Our results all then transfer to
the scheme described above mutatis mutandis.

The scaling factor is selected uniformly at random from the keyspace S (Line 1 of KeyGenSAP). The choice
of the size of S does not affect utility but has an influence on the one-wayness bounds. Specific values of the
size would vary based on applications and we have tabulated some results in Table 2. Take note that λ (which
we sometimes denote as λm since it is chosen independently for each message m ∈ M) is a d-dimensional
vector whose norm has an upper bound of sβ

4 . We sample it in such a way that λm is chosen uniformly from

the d-dimensional ball of radius sβ
4 (Line 6 of EncSAP). To do so, we first generate a vector from a multivariate

normal distribution with mean 0 and variance Id, which is a d-dimensional identity matrix. The uniform point
inside the ball is generated by multiplying the standardized version (point divided by its norm) of this point
with the dth root of a uniformly generated point from [0, 1] followed by re-scaling with the radius of the ball.
This mechanism ensure that the each point inside the ball can be sampled with uniform probability [HL10].

Claim 2: For any scaling factor s ∈ S, EncSAP(s, ·) is β-DCP.

Proof. Denote EncSAP(s, ·) by f(·) for notational simplicity. Let x,y, z ∈M. Suppose ‖x− y‖ < ‖y − z‖ − β .

f(x) = sx + λx .

f(y) = sy + λy .

f(z) = sz + λz .

Hence,

‖f(x)− f(y)‖ ≤ ‖f(x)− sx‖+ ‖sx− sy‖+ ‖f(y)− sy‖ (1)

= ‖λx‖+ s‖x− y‖+ ‖λy‖

< ‖λx‖+ ‖λy‖+ s(‖y − z‖ − β) (2)

= ‖sy − sz‖ − sβ + ‖λx‖+ ‖λy‖

< ‖sy − sz‖ − sβ + sβ/4 + sβ/4 (3)

= ‖sy − sz‖ − sβ/2

< ‖sy − sz‖ − (‖λz‖+ ‖λy‖)

≤ ‖sy − sz‖ − (‖λz − λy‖) (4)

≤ ‖(sy − sz)− (λz − λy)‖

= ‖f(y)− f(z)‖ .

where (1) Triangle Inequality, (2) by assumption, (3) ‖λx‖, ‖λy‖ < sβ/4 and (4) Triangle Inequality.

Thus,‖x− y‖ < ‖y − z‖ − β =⇒ ‖f(x)− f(y)‖ < ‖f(y)− f(z)‖, ∴ f is β-DCP.

5.2 Scale and Perturb − Isometry

SAP-I (“Scale And Perturb-Isometry”): (Generalized Version of SAP) The β-DCP function used in the
SAP scheme mentioned above is a particular instance among the family of all possible β-DCP functions.

Our intuition to generate Approximate Distance Comparison Preserving transforms is to use the structureal
relation between Distance Preserving and Distance Comparison Preserving transformations, and add some noise
to the function. Now, as a linear transformation, an orthogonal matrix [Kea89] preserves the dot product of
vectors, and therefore acts as an isometry of Euclidean space which is the requirement for a Distance Preserving
transformation. An orthogonal matrix however, involves rotation and reflection only and fails to represent
translation which is also a distance distance preserving transformation. In addition, we also note that scaling a
distance preserving function transforms it to a distance comparison preserving (DCP) transformation. Therefore,
combining all these operation provides a recipe to construct generic DCP functions.

Theorem 8. Given an orthogonal matrix, Q, ∀s ∈ R,x, γt, λ ∈ U, where ‖λ‖ ≤ sβ
4 . If f(x) = sQx + γt + λ

then f is a β-DCP function.
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Proof. Let x,y, z ∈ U. Suppose ‖x− y‖ < ‖y − z‖ − β =⇒ ‖Qx− Qy‖ < ‖Qy − Qz‖ − β.
Since Q is an orthogonal matrix, it leads to a distance preserving transformation.
f(x) = sQx + γt + λx .
f(y) = sQy + γt + λy .
f(z) = sQz + γt + λz .
Hence,

‖f(x)− f(y)‖ ≤ ‖f(x)− sQx− γt‖+ ‖sQx− sQy‖

+ ‖f(y)− sQy − γt‖

= ‖λx‖+ s‖Qx− Qy‖+ ‖λy‖

< ‖λx‖+ ‖λy‖+ s(‖Qy − Qz‖ − β)

= ‖sQy − sQz‖ − sβ + ‖λx‖+ ‖λy‖

< ‖sQy − sQz‖ − sβ + sβ/4 + sβ/4

= ‖sQy − sQz‖ − sβ/2

< ‖sQy − sQz‖ − (‖λz‖+ ‖λy)

≤ ‖sQy − sQz‖ − (‖λz − λy‖)

≤ ‖(sQy − sQz)− (λz − λy)‖

= ‖f(y)− f(z)‖ .

Challenges with SAP − I: SAP− I would have s,Q, γt as the secret keys. Analysing the security gives rise of
complex product distributions which often makes it difficult to achieve security bounds in closed form. Hence,
as an introductory work in this topic, we concentrate on the simpler SAP scheme, which nevertheless achieves
strong security. SAP− I however be a very interesting theoretical problem as a follow up to this work.

5.3 Two Preprocessing Algorithms

To boost security and compatibility for real life application of SAP, we now propose two additional preprocessing
algorithms. The first operates on the entire dataset D. The second only needs to know the distribution of D and
can otherwise operate on the data on-the-fly. Thus, both of the transforms make stronger assumptions about
the model.

Shuffle(dataset) : On input dataset D which has n entries (m1,m2, . . . ,mn), sample a random permutation
Π : [n]→ [n]. Output the transformed dataset D′ that is mπ(1),mπ(2), . . . ,mπ(n).

Such a shuffle can be implemented using a mix network (mixnet). Very efficient implementations of mixnets
handling large data exist [BEM+17, KLDF16].

Shuffling enhances the security because it hides the identity of the ciphertext from an adversary. By looking
at a set of ciphertexts, the adversary cannot map it to the plaintext even if it knows them in advance. It enables
security improvements without adding much computational overheads. Shuffling has been recently employed in
differential privacy works [CSU+19, EFM+19, BBGN19] to achieve security enhancements while maintaining
utility, which is our goal as well.

Normalize(m,MD): On input m a data point coming from a multivariate distributionMD, apply algorithm
BoxCox [Sak92] (state-of-the-art normalization algorithm) to input m and output the result.

Intuitively, BoxCox is a transformation which takes as input the distribution of the dataset, and makes a
transformation using maximum likelihood estimation. This step can be considered as a heuristic as we do not
rigorously deal with the error on our analyses.

This preprocessing step will be used because our security analyses assume the data follows a multivariate
normal distribution. Such an assumption has practical significance as a large number of data available in prac-
tice [Mor16] either follow this distribution or can be easily simulated as per the above if not. Note that if the
data is naturally normally distributed this preprocessing step is not needed.
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To combine these preprocessing steps with encryption, the idea is that the SAP is then applied to each
data point output by the transformation; in the shuffling case this means the dataset is encrypted and sent all
together. Naturally, the transforms can also be composed.

6 Real-or-Replaced Indistinguishability for Neighboring Datasets

To allow for the shuffling preprocessing step described in Subsection 5.3, we introduce the notion of security to
accommodate the adversary querying an dataset rather than many points individually. In essence, we define a
“real-or-repliaced” (RoR-type) definition where the oracle either shuffles and encrypts: (1) the dataset D provided
by the adversary or (2) the dataset D with a random plaintext resampled uniformly below a certain distance
threshold relative to the original. We thus have security wrt. “neighboring databases” (as in [Dwo08, YGFJ18]),
speaking to the adversary’s ability to infer whether information of a particular individual is present in the
dataset. Shuffling plays a key role in our analysis here.

Real-or-Replaced Indistinguishability. Let SE = (KeyGen, Enc,Dec) be a symmetric key encryption
scheme. Let MD be the distribution from which the plaintext is sampled. In our results, the adversary makes
a single Swap oracle query only.

We say that SE is (r, ε)-RoR-secure for MD if for every δ-RoR adversary A against SE , its advantage

Advδ−RoRSE,MD(A) = 2 ·Pr
[
Expδ−RoRSE,MD(A) = 1

]
− 1 ≤ ε,

where the experiment Expδ−RoRSE,MD(A) is defined as follows (where some of its algorithms are defined below it):

Experiment Expδ−RoRSE,MD(A):

K
$←− KeyGen

Ctxt← ∅
b

$←− {0, 1}
b′ ← ASwap(·)

If b == b′ return 1
Else return 0

Oracle Swap(D0):

i
$←− |D| ; b $←− {0.1}

D1
$←− Resamp(D0, i, δ)

D′b
$←− shuffle(Db)

For all m ∈ D′b
Ctxt← Ctxt.append(Enc(K,m))

return Ctxt

We stress that Ctxt is a list because the order in which the ciphertexts are presented to the adversary is
important. Above, we define Resample(D, i, δ) to be the algorithm that on input a dataset D, an index i that
denoted which message in D must be replaced and parameter δ follows the following steps:(1) Picks up the ith

message in D, call it mi. (2) Construct a d dimensional sphere of radius δ B(mi; δ) around mi. (3) Samples a
point at random inside B(mi; δ) and return it. The final step can be done efficiently in the same way in which
the perturbation factor is chosen for our encryption scheme.

Additionally, note that the shuffle step in the Swap oracle models this preprocessing step being applied.

6.1 δ-RoR Security Bounds

The following is the main result which upper bounds the δ − RoR adversary’s advantage.

Theorem 9. Let δ ≤ β
2 . For any δ-RoR adversary A generating its query D of size N according to distribution

MD,

Advδ-RoRSE (A) ≤ 2(2− p)
N(1− p)

(
1− pT

2

)N−1
where p =

(
h

rad+ δ
2

)d
, rad = β

4 , a =
√

rad2 − δ2

4 , cos(θ) = 2rad2−4a2
2rad2

, h = a tan( θ4 ) and T = Pr [‖X − Y ‖ ≤ δ] ,
(X,Y ) ∼MD.

The proof of this theorem requires a careful and complex analysis. Hence, we split the proof into several sub
parts.

On a given run of the experiment, let ck ∈ C be the correct ciphertext corresponding to the plaintext where
D0 and D1 differ on. For ease of notation, let us say that D0 = D∪m0 and D1 = D∪m1, for some |D| = N − 1.
Recall b′ is the guess of the bit b made by A.
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Canonical Adversaries. We say that ACan is canonical if it can be written as two algorithms ACan = (A1,A2)
each of which has the following form. A1 queries D according toMD, it receives Ctxt and chooses some ciphertext
c ∈ Ctxt. Then it chooses some messsage from the message space, m ∈M depending only on c. Following this,
A2 receives (m, c) as input and makes a guess b′ depending only on m and c. Let DS be the set of all datasets
that conform to the distribution MD (i.e., all elements of DS are sampled from MD). Formally, any canonical
adversary ACan = (A1,A2) can be written as follows:

Algorithm 3 Canonical Adversary

procedure ACan = (A1,A2)

(m, c)← A
Swap(·)
1 (MD,DS)

b′ ← A2(m, c)

Defining random variables for the proof: M0, · · · ,MN represent messages in the dataset. C0, · · · ,CN represent
messages in the corresponding ciphertext set. Hence a particular instance of the dataset that looks like D ∈
DS = (m0, · · · ,mN ) means M0 = m0, · · · ,MN = mN and similarly for the ciphertexts. Mc and Cc denote the
correct message and ciphertext respectively, i.e. Mc = mb and Cc = ck.

Claim. For every δ-RoR′ adversary A, there exists a canonical adversary B such that

Advδ−RoRSE (A) ≤ 2

1− p
Advδ−RoRSE (B) .

where p =
(

h
rad+ δ

2

)d
, rad = β

4 , a =
√

rad2 − δ2

4 , cos(θ) = 2rad2−4a2
2rad2

, h = a tan( θ4 ) .

Proof. It suffices to prove that for every δ-RoR′ adversary A there exists a cannonical δ-RoR adversary B such
that the δ-RoR′-advantage of B is at least that of A,

Adversary B runs A on random coins coins. When A makes a query D0, B forwards the query to its own
oracle, to receive result Ctxt, Adversary B replies to A with Ctxt. A outputs a guess bit to B (denote it by random
variable b′). Say B runs A K times and receives K many possible values of b′. The density function of b′ can
be written as f(b′|b,mb, ck) (i.e. it solely depends on the correct message and ciphertext pair). After looking at
all outcomes, B can estimate the values of mb, ck from the density function f using the Maximum Likelihood
Estimation (MLE) [Ros18] procedure. Call the estimates mml, cml. There are several efficient algorithms to
compute the MLE using exact or iterative techniques [Fle13, Osb92].

Now, using the Consistency5 [C+17] property of MLE, there exists a constant t, such that for all K > t,
mml = mb, cml = ck.

It is important to point out why would the guess b′ by A depend solely on the correct message and ciphertext
pair. The following set of equations demonstrate why that is the case. Intuitively, all messages and thereby their
ciphertext except mb and ck are independent of bit b.

Pr [b′ = b|M0 = m0, · · · ,MN = mN , C0 = c0, · · · , CN = cN ]

=
Pr [DS = D|b′ = b,Mc = mb, Cc = ck] ·Pr [b′ = b|Mc = mb, Cc = ck]

Pr [DS = D|Mc = mb, Cc = ck]
(1)

=Pr [b′ = b|Mc = mb, Cc = ck] (2)

as desired.
(1): Bayes Theorem for 3 events.
(2): Pr [DS = D] is independent of b,Mc and Cc. Thus, the unconditional and conditional probabilities are

the same.
5 Consistency of MLE: If θml is the MLE of θ, then there exists n, such that for all N ≥ n, Pr [|θml − θ| ≥ ε] = 0, for

any ε ≥ 0.
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Adversary B now guesses the value of b (call it bml) dependent solely on mml, cml. Thus, we have,

Adv(B) ≥ Pr [bml = b|mml = mb, cml = ck] Advδ−RoRSE (A)

We need a bound on Pr [bml = b|mml = mb, cml = ck].

Define win = 1 if B can distinguish between m0,m1, 0 otherwise. Thus the events win = 1 and bml = b are
identical.

We now find Pr [win = 1|C = ck,M = mb].

First, we provide some definitions.

Definition 2. For any message m, the “Ciphertext Region” is the convex hull of all the points which could be
a possible ciphertext some choice of secret key and randomness of the encryption algorithm. For example, say
in 2 dimensions, if −→m = (2, 2); s = 1, 2;β = 8, the possible choices of −→c would be all points that lie in the circle
of radius 2 around (1, 1) and (4, 4). All points enclosed within these two circles form the “Ciphertext Region”.

Definition 3. Let C1 and C2 represent the “Ciphertext Regions” for messages m1 and m2 respectively. We
define “Overlapping Region”(O) corresponding to these sets of messages as C1 ∩ C2.

Write
Pr [win = 1|C = ck,M = mb]

= Pr [win = 1|C = ck,M = mb, ck ∈ O] Pr [ck ∈ O]

+Pr [win = 1|C = ck,M = mb, ck /∈ O] Pr [ck /∈ O]

.
The above expression is upper bounded by,

(1− p) + p ·Pr [win = 1|C = ck,M = mb, ck ∈ O]

where p = Pr [ck ∈ O]

Claim. Pr [win = 1|C = ck,M = mb, ck ∈ O] = 0.5

Proof. First, we define the following random variables:

– S : A uniform random variable with support S (keyspace) that represents the secret key (scaling factor).
– Ctxt Represents the ciphertext returned after encryption.
– λm : Represents the perturbation factor used to compute the ciphertext.

Pr[Ctxt = c|m,m′, c ∈ O]

=
∑
s

Pr[Ctxt = c|m,m′, c ∈ O,S = s] Pr[S = s]

=
1

|S|
∑
s

Pr[λm = c− smb|m,m′, c ∈ O,S = s]

=
1

|S|
∑
s

Pr[λm = c− smb]

=
1

S

∑
s

1

f( sβ4 , δ)
.

Here, f( sβ4 , δ) is a function that denotes the total number of points lying inside O which is independent of

all queries. f(·) depends on δ and sβ
4 .
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N dim δ β Advδ−RoR−DSE (A)
100 3 26 215 2−47

300 5 25 210 2−96

1000 5 26 210 2−116

1000 10 29 214 2−217

5000 5 28 211 2−154

5000 8 28 212 2−160

Table 1: Some concrete parameters and upper bounds on Advδ−RoR−DSE (A).

The penultimate line in the equation above holds because λ is chosen uniformly from all possible points in
O.

Thus the distribution of Ctxt is independent of the queries and oracle responses. This proves perfect secrecy
of SAP constrained in the region Oi.

Thus,
(1− p) + pPr [win = 1|C = ck,M = mb, ck ∈ O] = 1− 0.5p

Pr [bml = b|mml = mb, cml = ck] ≤ 1− 0.5p.

Pr [bml = b] = Pr [bml = b|b = b′] Pr [b = b′]

+ Pr [bml = b|b 6= b′] Pr [b 6= b′]

≥ (1− 0.5p)Pr [b = b′] + 0.5Pr [b 6= b′]

= (0.5− 0.5p)Pr [b = b′] + 0.5

=⇒ Adv(B) = 2Pr [bml = b]− 1

= (1− p)Pr [b = b′]

= (1− p)Adv(A) + 1

2

≥ (1− p)Adv(A)

2

Thus,

Advδ−RoRSE (A) ≤ 2

1− p
Adv(B).

It is now left to find the value of p and prove the claimed upper-bound for canonical adversaries. The
analysis involves a geometric approach along with standard set theoretic and probabilistic arguments. Due to
its cumbersome nature, we have shifted the remaining proof to Appendix B.

Note: Consistency of MLE holds under certain regularity conditions [NM94] are satisfied. In order to not
distract from the proof, we assume that these conditions are satisfied. A careful analysis can be done to verify
that this is indeed true.

Table 1 shows a few values for Advδ−RoR−DSE (A).

7 Security against Approximate Frequency-Finding Attacks

Here we define security against an adversary that tries to approximately guess any one element of the histogram
corresponding to an attribute of the plaintext. We call it the Freq-Find (FF) notion.

We proceed to state some definitions which will be useful in the formal security analysis.
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Attribute Histogram: For a list of attributes Lattr = (a1, · · · , an), let (a′1, · · · , a′n′), n′ ≤ n be the set of
all unique elements in Lattr. We define the histogram of Lattr as a list denoted by Hist(Lattr), with each element
Hist(Lattr)[j], j ∈ [n′] as,

Hist(Lattr)[j] =

n∑
i=1

1{ai = a′j}.

Most Likely Attribute Histogram: For a set of ciphertexts Lctxt = (c1, · · · , cn), the most likely attribute

histogram for the jth attribute, j ∈ [d] is a list denoted by Hist(Lj,ml
ctxt), where Lj,ml

ctxt = (mj,ml
1 , · · · ,mj,ml

n ). mj,ml
i is

the jth attribute of the most likely guess for message mi corresponding to ci, ∀ i ∈ [n].

γ-Approximate Histograms: A most likely histogram Hist is called a γ-Approximate Histogram for the
actual histogram Hist(L) if ∀i,

Hist[i] ∈ [Hist(L)[i]− γ,Hist(L)[i] + γ].

In our case, the goal of the adversary is to guess an entry of γ-approximate histogram of the plaintext histogram.
Up next, we take a detour to introduce an intermediate security notion which is pivotal in proving the

security against FF attacks.

7.1 Window One-Wayness Security Notion

In this section, MD is MVN (µ,Σµ,Σµ,Σ), such that, µµµ = (µ[1], . . . , µ[d]) and ΣΣΣ is the d × d covariance matrix.
Naturally, Di becomes N (µ[i], σ2

1), where σ2
i is the ith diagonal entry of ΣΣΣ. For some theorems (specifically

AWOW) which deal with attribute space, the subscript has been dropped for ease of reading.
We introduce an intermediate Window One-Wayness based security notion which was introduced by [BCO11].

It measures the probability that an adversary, given a set of ciphertexts corresponding to messages chosen at
random from the underlying plaintext distribution decrypts one of them. The definition considers a general
scenario that asks the adversary given some inputs to guess an interval (window) within which the underlying
challenge plaintext lies. They do not need to point out which plaintext they intend to guess the window around.
The size of the window and the number of challenge ciphertexts are parameters of the definition.

We analyze the security of individual attributes for each plaintext. This is much stronger that than looking
at the security of a plaintext as a whole as window one-way security of each attribute implies one-wayness
security for the whole point. The converse need not be true.

Attribute Window One-Wayness: Let SE = (KeyGen, Enc,Dec) be a symmetric key encryption scheme.
Let MD be a stateful “plaintext sampler” that on input (state, d∗) (due to ease of notation, we drop state in
some function definitions) outputs a plaintext m whose ath attribute is denoted by m[a] along with the updated
state. Let r ∈ N. In our case, MD will denote a multivariate distribution sample whose ith attribute follows a
univariate gaussian (denoted by Di).

We say that SE is (r, ε)−AWOW-secure forMD if for every r-AWOW adversary A against SE , i.e., obeying
the restrictions given below, its advantage

Advr−AWOW
SE,MD (A) = Pr

[
Expr−AWOW

SE,MD (A) = 1
]
≤ ε,

where the experiment Expr−AWOW
SE,MD (A) is defined as follows:

Experiment Expr−AWOW
SE,MD (A):

K
$←− KeyGen

S′M ← ∅
(mL,mR)

$←− AMsg()

If ∃m ∈ S′M such that
for some a ∈ [d], ma ∈ [mL,mR]

return 1
Else return 0

Oracle Msg(d∗):

(state,m)
$←−MD(d∗)

S′M ← S′M ∪ {m}
c

$←− EncK(m)
return c
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Restrictions on the adversary: An (r, ε)− AWOW adversary A must obey the following rules:

– For any output (mL,mR), |mL −mR| ≤ r.

We now define an alternate r − AWOW security experiment. Here, define that on input (state, d∗, N), the
stateful sampler MD outputs a dataset D of size N from this distribution.

The experiment Expr−AWOW−1
SE,MD (A) where the adversary has the same restrictions as above is defined as

follows:

Experiment Expr−AWOW−1
SE,MD (A):

K
$←− KeyGen

S′M ,CD ← ∅
(mL,mR)

$←− AMsg(·)

If ∃m ∈ S′M such that
for some a ∈ [d], ma ∈ [mL,mR]

return 1
Else return 0

Oracle Msg(d∗, N):
for i ∈ [N ]

(state,mi)
$←−MD(d∗)

S′M ← S′M ∪ {mi}
c

$←− EncK(m)
CD ← CD ∪ c

return shuffle(CD)

Lemma 1. If in Expr−AWOW
SE,MD (A) the adversary makes N queries to Msg and a single oracle query in Expr−AWOW−1

SE,MD (A),
then we have

Pr
[
Expr−AWOW

SE,MD (A) = 1
]

= Pr
[
Expr−AWOW−1

SE,MD (A) = 1
]
.

Note that the Experiment Expr−AWOW−1
SE,MD (A) captures the case where shuffle has been applied to the dataset

whereas Experiment Expr−AWOW
SE,MD (A) is the scenario where messages are encrypted on-the-fly without shuffle.

Proof. Since each message belonging to the dataset are independently generated, the messages sampled by Msg
oracles for both the experiments follow the same distribution. Moreover, all random permutations are identically
distributed so the oracle’s output for both experiments will also be identically distributed. Hence the lemma
follows.

Thus, we see that the shuffle does not have any influence on the r-AWOW security bounds. From now on,
we use Expr−AWOW−1

SE,MD (A) and Expr−AWOW
SE,MD (A) interchangeably as per convenience.

We say that such MD is multivariate Gaussian if ∀ state, d∗, every ith attribute follows a univariate distri-
bution Di, where Di is N (µi, σ

2
i ).

7.2 One-Wayness Bounds

Note that we shift the proofs in this subsection to the appendix to keep focus on the main point of the section,
i.e. Frequency Finding Attacks.

We pay attention to the case when the adversary looks to decrypt the ciphertext to come with a correct
guess for the “most likely” plaintext.

Most Likely Plaintext. Fix a symmetric encryption scheme SE = (KeyGen, Enc,Dec). For given c ∈ C, if
mc ∈M is a message such that

Pr
K

$←−KeyGen
[Enc(K,m) = c] .

achieves a maximum at m = mc, then we call mc a (if unique, “the”) most likely plaintext for c.

An Upper Bound on the r-AWOW Advantage. The following theorem states an upper bound on any
AWOW adversary against SAP.

Theorem 10. For any r-AWOW adversary A making at most z Msg oracle queries

Advr−AWOW
SAP,MVN (µ.Σµ.Σµ.Σ)(A) ≤ z(1− p)|M| |S|+ 1

2|S|
∑
m

((
2rm− βm
m2 − r2

− β

m

)(
|M|
m

))
. (3)
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where M = [−M,M ] is the attribute-space of SAP and S is the keyspace. Here, p is the parameter of the Binomial
Distribution (denoted by Bin(|M|, p)) which is used to approximate N (µ, σ2), which is the univariate distribution
of the chosen attribute. Hence, |M|p = µ, |M|p(1 − p) = σ2. For simplicity, we use m to denote an attribute
instead of m[a] which is an abuse of notation.

The proof for this theorem is obtained using straightforward algebraic manipulation and probabilistic ar-
guments. Hence, it has been postponed to in Appendix C.1. To help understand the bounds, we present some
values in Table 2. In the table, message space M = [−280, 280]d and |S| = 230.

d r β r, 1-AWOW Upper Bound r, 1-AWOW Lower Bound

1 β
24

215 2−32 2−35

2 β
25

220 2−40 2−43

4 β
25

220 2−51 2−55

6 β
28

225 2−62 2−66

10 β
210

230 2−76 2−78

Table 2: Upper and Lower Bounds on r, 1-AWOW Advantage

A Lower Bound on Large Attribute Window One-Wayness. Here we show that there exists an efficient
adversary attacking the window one-wayness of SAP for a sufficiently large window size.

Theorem 11. For any r-AWOW adversary A, with r ≥ β
2 ,

Advr−AWOW
SAP,MVN (µ.Σµ.Σµ.Σ)(A) ≥ r

2
√
|M|

ln
1− p
1− 2p

. (4)

where M = [−M,M ] is the attribute-space of SAP and S is the keyspace. Here, p is the parameter of the Binomial
Distribution (denoted by Bin(|M|, p)) which is used to approximate N (µ, σ2), the univariate normal distribution
corresponding to the chosen attribute. Hence, |M|p = µ, |M|p(1− p) = σ2.

The bound has been proved in Appendix C.2 due to reasons mentioned in case of the previous theorem.

7.3 Security against Freq-Find adversaries

The adversary wins the game if it can guess an entry HistEntry of a γ-approximate histogram, which occurs at
most ψ times. We say that SE is (γ, ψ, ε) − FF secure for D if the (γ, ψ, ε) − FF advantage of an adversary A
against SE is,

Adv
(γ,ψ)−FF
SE,MD (A) = Pr

[
Exp

(γ,ψ)−FF
SE,,MD (A) = 1

]
≤ ε,

where the experiment Exp
(γ,ψ)−FF
SE,,MD (A) is defined as:

Experiment Exp
(γ,ψ)−FF
SE (A):

K
$←− KeyGen

h← AMsg(·) // a guess for any element of the approx. histogram
count← 0
for i in 1 to n

for j in 1 to d

If h ∈ [Hist(S′jM )[i]− γ,Hist(S′jM )[i] + γ] // (1)
count← count+ 1 // (2)

If 0 < count ≤ ψ // (3)
Return 1

Else return 0

Above, the Msg oracle is exactly the same as in the r-AWOW experiment.



21

1. Check if the guess within γ approx. of an histogram entry. Hist(S′jM ) : histogram for the list of jth attribute
of elements in the list S′M .

2. Track the number of times the guessed frequency occurs.

3. Make sure that this guessed frequency occurs at most λ times.

Parameter ψ is an essential parameter which depends on the underlying plaintext distribution. It prevents
the adversary from trivially winning the game by guessing a frequency value which has a very high number of
occurrence in the histogram. For example, a dataset from a well spread distribution will have plenty of points
sampled only once. In that case, the adversary can win the game easily by guessing 1.

Upper Bound on the Freq-Find Advantage:

Theorem 12. (Main result.) Let SE = (KeyGen, Enc,Dec) be a normed vector-space encryption scheme. Let
A be a (γ, ψ)-FF adversary. Then there exists a γ

ψ -AWOW adversary B making at most qm queries to the Msg

oracle such that and D ∼ N (µ, σ2) is the univariate distribution for the chosen attribute.

Adv
(γ,ψ)−FF
SE,MD (A) ≤ 1

0.5( 0.39γ
ψσ − 2e

−0.5
qm )

Adv
γ
ψ−AWOW

SE (B).

Optimal attribute interval. Let Hist(S′jM ) be the histogram for the list of jth attributes of elements in the
list S′M . Let X be the random variable used to denote an attribute following distribution D (D is a Normal
Distribution in our case) over the attribute space. Let HistEntry be any arbitrary guess by the Freq− Find
adversary.

The optimal attribute interval for such guess for a γ-approximate histogram entry, is denoted by

OptInt(HistEntry,S′M ) = [mLopt ,mRopt ] such that mRopt −mLopt = r and

∣∣∣∣∣ Pr
X

$←−D
[li ≤ X ≤ mi]− HistEntry

|S′M |

∣∣∣∣∣
= minj:mj−lj=r

∣∣∣∣∣ Pr
X

$←−D
[lj ≤ X ≤ mj ]− HistEntry

|S′M |

∣∣∣∣∣. where r is the attribute window length defined in the AWOW

experiment.

Intuitively, the above equation selects the interval of length r among all possible intervals whose sampling
probability is closest to the guess of the FF adversary.

Lemma 2. Assume that X1, X2, . . . are independent and identically distributed random variables in R with
cumulative distribution function F (x). The empirical distribution function for X1, . . . , Xn is defined by

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}.

Glivenko Cantelli Theorem (GCT) [Tuc59] states that:

sup
x∈R
|Fn(x)− F (x)| n→∞−−−−→ 0.

GCT can be strengthened using the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality which quantifies the
rate of convergence.

Lemma 3 (Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [DKW56]).

Pr[sup
x∈R
|Fn(x)− F (x)| > z] ≤ e−2nz

2

.
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Algorithm 4 γ
ψ -AWOW Adversary

procedure BMsg(·)
Run A

On Message oracle query
(state,x)

$←−MD(d∗)
Sim← Sim ∪ {x}
Return Msg

Until A outputs HistEntry∗

count← 0
If ∃i, j HistEntry∗ ∈ [Hist(Simj)[i]− γ,Hist(Simj)[i] + γ]

count← count+ 1
If 0 < count ≤ ψ

Return OptInt(HistEntry∗,Sim) // As calculated in 7.3
Else Return ⊥

Special Case of DKW. We present a particular instance of DKW which is significant for our analysis. Let
z = 1

n (This is the case where both the ecdfs converge to the same place.) and ecdfs Fn and Gn. DKW gives,

Pr[sup
x∈R
|Fn(x)−Gn(x)| > 1

n
] ≤ Pr[sup

x∈R
|Fn(x)− F (x)| > 0.5

n
] + Pr[sup

x∈R
|Gn(x)− F (x)| > 0.5

n
] ≤ 2e

−0.5
n .

We now define an AWOW adversary B that simulates adversary A.
Notation used in the proof below. Let m[a] denote any attribute of any arbitrary message m sampled

from MD. S′M and Sim define the two ecdfs Fn and Gn in DKW. The histograms defined by the two sets are
same if z < 1 in DKW. Standard Normal CDF and PDF are denoted by Φ and φ respectively.

The following reduction directly gives the upper bound for the (γ, ψ)-FF advantage of any (γ, ψ)-FF adversary
A.

Adv
γ
ψ−AWOW

SE,D (B)

≥0.5Pr
[
Exp

(γ,ψ)−FF
SE,D (A) = 1

]
·
(
Pr [∃m, a, m[a] ∈ OptInt(HistEntry∗,S′M )]

)
(1)

≥0.5Pr
[
Exp

(γ,ψ)−FF
SE,D (A) = 1

]
·
(
Pr [∃m, a, m[a] ∈ OptInt(HistEntry∗,Sim)]− 2e

−0.5
qm

)
(2)

=0.5

(
1− [1− Pr

X
$←−D

[X ∈ OptInt(HistEntry∗,Sim)]]qmd − 2e
−0.5
qm

)
·Pr

[
Exp

(γ,ψ)−FF
SE,D (A) = 1

]

≥0.5

(
Pr

X
$←−D

[X ∈ OptInt(HistEntry∗,Sim)]]− 2e
−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A)

=0.5

(
Pr

X
$←−D

[
X ∈ (mLopt ,mRopt)

]
]− 2e

−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A)

=0.5

(
Pr

X
$←−N (0,1)

[
X ∈

(
mLopt − µ

σ
,
mRopt − µ

σ

)]
− 2e

−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A)

=0.5

(
Φ

(
mRopt − µ

σ

)
− Φ

(
mLopt − µ

σ

)
− 2e

−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A)

=0.5

(
mRopt − µ

σ
· φ
(
mRopt − µ

σ

)
−
mLopt − µ

σ
· φ
(
mLopt − µ

σ

)
− 2e

−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A) (3)

≥0.5

(
γ

ψσ
· φ
(
mRopt − µ

σ

)
− 2e

−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A) .
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Now, this holds for any arbitrary mRopt , thus we have:

Adv
γ
ψ−AWOW

SE,D (B) ≥ 0.5

(
0.39γ

ψσ
− 2e

−0.5
qm

)
Adv

(γ,ψ)−FF
SE,D (A)

because the standard normal pdf is upper bounded by 0.39.

1. Due to symmetry, we get the correct interval up to reflection, thus with probability at least 0.5, the correct
interval is chosen.

2. Using DKW.
3. Taylor Expansion [M+04].

To better understand the bound, we demonstrate a graph in Figure 1 to show how the leading multiplicative
constant decays, thus giving a tight bound.

Some Practical Parameters: We present a graph (cf. Figure 1) to demonstrate the trend of 1

( 0.39γ
ψσ −2e

−0.5
qm )

,

the multiplicative constant theorem 12 with respect to the parameter. (It is log scaled for better visuals.) This is
necessary as the expression is difficult to analyse and very high values of this constant would make our reduction
meaningless.
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Fig. 1: 1

( 0.39γ
ψσ −2e

−0.5
qm )

vs log2( γψ ), when σ = 1, qm = 25

8 Bit Security

In this section, we are concerned with characterizing bit security of the plaintexts. We define a Hardcore Bits
experiment which enables us to comment on the one-wayness and pseudorandomness of different bits from the
same message. The hardcore bits notion actually considers a specific hardcore function and differs from the
classical such notion in that the adversary may request multiple challenges on related messages. We give a
reduction from this notion to δ-RoR.

Theorem 13. Let SE be a symmetric key encryption scheme as defined previously. For any adversary B, there

exists an δ-RoR adversary A such that AdvHCBSE,MD(A) = Pr
[
ExpHCB

SE,MD(A) = 1
]
≤ ε, and

AdvHCBSE,MD(B) ≤ Advδ−RoRSE,MD(A). (5)
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Experiment HCB:

K
$←− KeyGen

S′M ← ∅
b

$←− {0, 1}
b′

$←− AMsg()()
If b′ == b return 1
Else return 0

Oracle Msg(d∗, N):
for i ∈ [N ]

(state,mi)
$←−MD(d∗)

S′M ← S′M ∪ {mi}
mi

$←− EncK(mi)
If b = 0

bits← right most log2 δ bits of mi

Else

bits
$←− {0, 1}log2 δ

C ← C ∪ ci‖bits
return C

Let A be an adversary taking part in δ-RoR-Experiment. We reduce adversary B to A. Algorithm 5 gives a
perfect simulation by A using its oracle for the queries made by B. Thus,

AdvHCB
SE (B) ≤ AdvRoR

SE (A).

Hence, theorem 13 follows.

Algorithm 5 RoR Adversary A

procedure AMsg

Run B
On Msg oracle query (d∗, N)

SD ← SD ∪ {d∗}
for i ∈ [N ]

(state,mi)
$←−MD(·, d∗)

S′M ← S′M ∪ {mi}
bitsi ←mi[log2 δ · · · ] // Right most log2 δ bits
Bits← Bits ∪ bitsi

C
$←− Swapb(S

′
M )

Return C & Bits to B
Repeat until B outputs guess bit b′

Return guess bit b′

Note that the reduction holds because ‖m − m′‖ ≤ δ. It is clear that A succeeds in breaking the δ-RoR
experiment if B breaks the HCB experiment. The ciphertexts generated for both the messages are identically
distributed because the lower order bits are masked using a uniformly distributed noise.

Note: It must be pointed out that the HCB experiment has been carefully crafted to ensure that one can
comment on the one-wayness and pseudorandomness of bits on the same message. To achieve this, the standard
Msg oracle has been modified to append the rightmost log δ bits of a message (or random log δ bits) along with
the ciphertext for the particular message. The one-wayness of the bits follows directly from the AWOW results.
Experiment HCB allows us to create a hybrid that can process indistinguishability on top of one-wayness.

Claim. For any message m following MVN ((((µ,Σ)) whose components are n bit long encrypted by SAP,

1. The lowest log2 δ bits are pseudorandom (i.e., hardcore).

2. The number of left most bits leaked (i.e., efficiently computed) is strictly less than log2 |M|
2 ( half the higher

order bits).

3. If we remove the left-most k bits from the lowest log2 |M|
2 bits, the advantage of guessing the remaining lower

order bits decreases by a multiplicative factor of 2k.

Proof. (1) Using the analysis done in [TYM14], we observe that the RoR security notion makes the lower log2 δ
bits indistinguishable from random. Let L = log2 δ,B = B(; log2 δ) (any arbitrary ball of radius δ) and take any



25

log2 𝑀

2
- constant

log2 𝑀

2
+ constant - k bitsk bits

REVEALED HIDDEN (Advantage: 
𝟏

𝟐𝒌
)

PSEUDORANDOM
log2𝛿 bits

Fig. 2: Demonstrating the bit security.

interval I in such a way that for any two elements of B, all of their bits except the least significant L bits are
the same for each attribute. I can thus be written as I = {2Lu+ x|x ∈ [2L − 1]} for some u. By definition the
length of the interval I is not more than δ.

Our notion ensures that any element m0 of B is indistinguishable from that of a uniformly random element
m1 of B because ‖m0 − m1‖ ≤ δ. Since the least significant [2L − 1] bits of each attribute are distributed
uniformly at random (This is due to the uniform noise added in our protocol), the right most log2 δ bits being
indistinguishable from random follows.

(2) We analyze the number of upper order plaintext bits that an adversary can efficiently compute when

r ≥ β
2 . Equation 4 is Advr−AWOW

SAP (A) = c

(
r√
|M |

)
= 1, when r ≥

√
M
c , where c = ln 1−p

1−2p . Note that the result

goes through if p ≤ 1
2 . Thus, the number of bits leaked is log2 |M| − log2 r = log2 |M|

2 − log2

(
1
c

)
.

(3) Start from the window size r above for which the adversarial advantage as 1 and reduce it by k bits,
i.e. the new window length is r′ = r − 2k, then Advr−AWOW

SAP (A) in equation 4 which is linear in r reduces by a
multiplicative factor of 2k. Therefore, the probability of guessing the lowest log2{M2 } − k bits is 2−k.

This shows that SAP scheme leaks strictly less than half of the total bits and the number of total bits leaked
is a decreasing function of the approximation factor β. More precisely, increasing the approximation factor by
k times decreases the number of bits leaked by log2 k. This is an improvement over at least half bits leaked by
its predecessor OPE [BCO11].
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EFM+19. Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In Timo-
thy M. Chan, editor, 30th SODA, pages 2468–2479. ACM-SIAM, January 2019.

Fle13. Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

GC18. Riddhi Ghosal and Sanjit Chatterjee. Privacy preserving multi-server k-means computation over horizontally
partitioned data. In International Conference on Information Systems Security, pages 189–208. Springer,
2018.
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HILM02. Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing sql over encrypted data in the
database-service-provider model. In SIGMOD, 2002.

HJL+17. Helene Haagh, Yue Ji, Chenxing Li, Claudio Orlandi, and Yifan Song. Revealing encryption for partial
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A Relation between (Approximate) DCP Functions and (Approximate) DP
Functions

Theorem 14. Let U be a subset of R and [0,M ]d denote the d-dimensional Cartesian product of the closed
interval [0,M ] and M = (M,M, . . . ,M). Let f : [0,M ]d → U with f(0) = (0) and N := f(M). If f is DCP,

then for all x ∈ [0,M ]d \ {0,M}, we have ‖N‖‖M‖ (‖x‖ −
√
d) ≤ ‖f(x)‖ ≤ ‖N‖

‖M‖ (‖x‖+
√
d).

This theorem tells us that given two fixed points, a distance-comparison-preserving function always maps a
point x ∈ [0,M ]d to a point x′ ∈ U such that x′ lies in a ball of radius

√
d around x scaled by a constant. This

shows that any DCP function is approximately distance-preserving. In particular, our claim proves a bound on
the amount any point in a DCP function can be perturbed. For concreteness, we have chosen Euclidean spaces
for our results, but they can be easily generalized to any metric space.

Proof (of Theorem 14). Assume that for some x,

‖f(x)‖ ≤ ‖N‖
‖M‖

(‖x‖ − ‖1‖) (6)
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Let x be such that ‖N‖‖M‖ (‖x‖ − ‖1‖)− ‖f(x)‖ is maximal, then ∀y :

‖N‖
‖M‖

(‖y‖ − ‖1‖)− ‖f(y)‖ ≤ ‖N‖
‖M‖

(‖x‖ − ‖1‖)− ‖f(x)‖

=⇒ ‖f(y)‖ − ‖f(x)‖ ≥ ‖N‖
‖M‖

(‖y‖ − ‖x‖) . (7)

Suppose ‖x‖ ≤ ‖M‖2 .

Then by equation 6, ‖f(x)‖ − ‖f(0)‖ ≤ ‖N‖
‖M‖ (‖x‖ − ‖1‖).

Let u be a vector whose each component ui is defined as, ui = min(xi, 1), where xi is the ith component
of x. Note that ‖u‖ ≤

√
d.

Using equation 7, with y = 2x−u, ‖f(2x−u)‖−‖f(x)‖ ≥ ‖N‖
‖M‖ (‖2x−u‖−‖x‖) ≥ ‖N‖

‖M‖ (‖2x‖−‖u‖−‖x‖) ≥
‖N‖
‖M‖ (‖x‖ − ‖1‖) .

So, we have a set of three points, (0,x, 2x−u), such that dist((2x−u),x) < dist(x,0), but dist(f(2x−u), f(x)) ≥
dist(f(x), f(0)) that implies f is not DCP, which is a contradiction.

The proof for ‖x‖ > ‖M‖
2 is similar with the contradicting points being (2x−M + u,x,M). This proves the

lower bound. The proof for the upper bound is similar, taking x to be such that ‖f(x)‖ − ‖N‖‖M‖ (‖x‖ − ‖1‖) is

maximal.

The remaining part is similar to what has been done for the Theorem 2. Following those steps, we conclude
the proof.

Corollary 2. Let U be any subset R and [0,M ]d denote the d-dimensional Cartesian products of the closed
interval [0,M ] and M = (M,M, · · · ,M). Let f : [0,M ]d → U be β-DCP, and f(0) = (0), f(M) = N ∈ U. Then

∀x ∈ [0,M ]d − {0,M}, ‖N‖‖M‖ (‖x‖ − β) ≤ ‖f(x)‖ ≤ ‖N‖
‖M‖ (‖x‖+ β).

The above corollary follows directly from Theorem 14. The only difference is that the radius of the ball in
which the projected point lies is β. This validates our claim that any β-DCP function is also approximately
distance preserving with higher perturbations.

Proof. (Of Corollary 2) Define a vector k such that ki = min
(

0, β√
d

)
. (Note that ‖k‖ ≤ β.) We get a set of

three points, (0, 2k), such that dist((2k), < dist(0) − β, but dist(f(2k), f() ≥ dist(f(, f(0)) which would imply
that f is not β-DCP, making it a contradiction.

Following up with the d-dimensional generalization of Theorem 2 (cf. Theorem 14) completes the proof.

Theorem 15 (n-Dimensions). If f : [0,M ]d → U is β-DCP, and f(0) = 0, f(M, · · · ,M) = N, then ∀x,y ∈
[0,M ]d − {0,M},

‖N‖
‖M‖

(dist(x,y)− γ − 2β) < dist(f(x), f(y)) <
‖N‖
‖M‖

(dist(x,y) + γ + 2β)

where γ =
√

2‖x‖‖y‖+ 2|xy|.
In other words, if f is β-DCP, then f is (α, β′)-DP, where

α =
‖N‖
‖M‖

and β′ =
‖N‖
‖M‖

(
√

2‖x‖‖y‖+ 2|xy|+ 2β) .
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Proof. (of Theorem 15) Without loss of generalization, let us assume, ‖x‖ ≤ ‖y‖. We know that ‖N‖‖M‖ (‖x‖−β) ≤
‖f(x)‖ ≤ ‖N‖

‖M‖ (‖x‖+ β). Thus,

‖N‖
‖M‖ (‖x‖ − ‖y‖ − 2β) ≤ ‖f(x)‖ − ‖f(y)‖ ≤ ‖N‖‖M‖ (‖x‖ − ‖y‖+ 2β) . (8)

and

‖N‖
‖M‖ (‖x‖+ ‖y‖ − 2β) ≤ ‖f(x)‖+ ‖f(y)‖ ≤ ‖N‖‖M‖ (‖x‖+ ‖y‖+ 2β) . (9)

Using triangle inequality, we get,

‖f(x)‖ − ‖f(y)‖ ≤ dist(f(x), f(y)) ≤ ‖f(x)‖+ ‖f(y)‖ .

∴ from equations 8 and 9,

‖N‖
‖M‖ (‖x‖ − ‖y‖ − 2β) ≤ dist(f(x), f(y)) ≤ ‖N‖‖M‖ (‖x‖+ ‖y‖+ 2β) . (10)

Now,

dist(x,y)2 = ‖x‖2 + ‖y‖2 − 2xy

= (‖x‖+ ‖y‖)2 − 2‖x‖‖y‖ − 2xy .

=⇒ ‖x‖+ ‖y‖ =
√

dist(x,y)2 + 2‖x‖‖y‖+ 2xy

≤ dist(x,y) +
√

2‖x‖‖y‖+ 2xy

≤ dist(x,y) +
√

2‖x‖‖y‖+ 2|xy| . (11)

Similarly,

‖x‖ − ‖y‖ =
√

dist(x,y)2 − 2‖x‖‖y‖+ 2xy

≥ dist(x,y)−
√

2‖x‖‖y‖ − 2xy

≥ dist(x,y)−
√

2‖x‖‖y‖+ 2|xy| . (12)

∴ applying, equations 11 and 12 to equation 10, the relation changes to,

‖N‖
‖M‖

(dist(x,y)−
√

2‖x‖‖y‖+ 2|xy| − 2β) ≤ dist(f(x), f(y))

≤ ‖N‖
‖M‖

(dist(x,y) +
√

2‖x‖‖y‖+ 2|xy|+ 2β) .

Hence, the result is proved.

B Analysis of canonical RoR adversary’s advantage in the proof of Theorem 9

Event A: Expδ−RoRSE,MD(B) = 1.
Event B is a sequence of 3 events.

– B chooses ck.
– Given B has chosen ck, it selects mb (entry which may have been modified) correctly.
– Given the above two events happen, B distinguishes between m0 and m1, i.e. outputs the challenge bit b.

Claim. The probability of Event A occurring is strictly greater then 0.5 iff Event B occurs.
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Proof. If event B occurs, then the probability of event A happening is 1. Hence, we get one side of the implication.
For the other side of the implication, we look a the contrapositive which says that if Event B does not happen
then event A occurs with probability exactly 0.5.

If B chooses a c ∈ C 6= ck and can still guess b correctly, it means that B can guess b significantly better than
random if it was given C/ck because every entry of C are independent of each other. This leads to a contradiction
since C/ck are identical for b ∈ {0, 1}.

Take the case where B choose ck correctly but fails to pick mb, yet guess b with high probability. b only
determines the value of mb, hence b is independent of any other point. This means B does not use the information
that ck gives regarding b, hence its probability of distinguishing remains 0.5.

The final case where B chooses the correct points but cannot distinguish them is effectively equivalent to B
not being able to guess b significantly better than random.

Using Bayes theorem, a consequence of step 3 is,

Pr
[
Expδ−RoRSE,MD(B) = 1

]
≤ Pr [C = ck,M = mb,win = 1] + 0.5 .

Now,

Pr [C = ck,M = mb,win = 1]

=Pr [win = 1|C = ck,M = mb] Pr [M = mb|C = ck] Pr [C = ck]

=
1

N
Pr [win = 1|C = ck,M = mb] Pr [M = mb|C = ck] . (1)

Event C: M = mb|C = ck.
Let wini = 1 if given ck, B can find whether ck = Enc(mi) or Enc(mb), 0 otherwise.
Event D: wini == 1, ∀ i ∈ [N ]/j.

Claim. Event C is a subset of Event D.

Proof. We need to show that Event C implies Event D. Proceed by contrapositive. If there exists i such that
wini = 0, B cannot definitively choose mb over mi. Thus, Event C ⊂ Event D.

Therefore,

1

N
Pr [win = 1|C = ck,M = mb] Pr [M = mb|C = ck]

=
1

N
Pr [win = 1|C = ck,M = mb]

N−1∏ (
Pr [wini = 1|C = ck]

)
. (13)

We now find Pr [win = 1|C = ck,M = mb].

First, we provide some definitions.

Definition 4. For any message m, the “Ciphertext Region” is the convex hull of all the points which could be
a possible ciphertext some choice of secret key and randomness of the encryption algorithm. For example, say
in 2 dimensions, if −→m = (2, 2); s = 1, 2;β = 8, the possible choices of −→c would be all points that lie in the circle
of radius 2 around (1, 1) and (4, 4). All points enclosed within these two circles form the “Ciphertext Region”.

Definition 5. Let C1 and C2 represent the “Ciphertext Regions” for messages m1 and m2 respectively. We
define “Overlapping Region”(O) corresponding to these sets of messages as C1 ∩ C2.

Write
Pr [win = 1|C = ck,M = mb]

= Pr [win = 1|C = ck,M = mb, ck ∈ O] Pr [ck ∈ O]

+Pr [win = 1|C = ck,M = mb, ck /∈ O] Pr [ck /∈ O]
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.
The above expression is upper bounded by,

(1− p) + pPr [win = 1|C = ck,M = mb, ck ∈ O]

where p = Pr [ck ∈ O]

Claim. Pr [win = 1|C = ck,M = mb, ck ∈ O] = 0.5

Proof. First, we define the following random variables:

– S : A uniform random variable with support S (keyspace) that represents the secret key (scaling factor).
– Ctxt Represents the ciphertext returned after encryption.
– λm : Represents the perturbation factor used to compute the ciphertext.

Pr[Ctxt = c|m,m′, c ∈ O]

=
∑
s

Pr[Ctxt = c|m,m′, c ∈ O,S = s] Pr[S = s]

=
1

|S|
∑
s

Pr[λm = c− smb|m,m′, c ∈ O,S = s]

=
1

|S|
∑
s

Pr[λm = c− smb]

=
1

S

∑
s

1

f( sβ4 , δ)
.

Here, f( sβ4 , δ) is a function that denotes the total number of points lying inside O which is independent of

all queries. f(·) depends on δ and sβ
4 .

The penultimate line in the equation above holds because λ is chosen uniformly from all possible points in
O.

Thus the distribution of Ctxt is independent of the queries and oracle responses. This proves perfect secrecy
of SAP constrained in the region Oi.

Thus,
(1− p) + pPr [win = 1|C = ck,M = mb, ck ∈ O] = 1− 0.5p

Computing the value of p is equivalent to finding the ratio of the volume(area in 2-d) of overlapping region
to the total area of occupied by both the “Ciphertext Regions”. The following depiction will make it easier to
understand the method to estimate this ratio.

The result can be first proved for 2-dimensional cases and can be easily extended to arbitrary dimensions.
In 2-dimensions, for a particular s, the area of overlap is formed by two circular caps [Wei] stuck to each

other at points C and E (cf. Figure 3). When calculated over all the choice of keys, p - the probability of

intersection becomes Area(DFG)
Area(DCABE) which is the area spanned by the circular caps as the secret key changes (cf.

Figure 4).
In figure 4, Area(DCABE) can be approximated by the area of the triangle formed by extending AB to

join DC and DE (This procedure overestimates the area by a slight margin, thereby providing an upper bound
on p). Due to properties of similar triangles, without loss of generalization, we can assume s = 1, i.e rad = β

4 ,

where rad is the radius of each circle. The height of each cap is h = DF
2 (cf. Figure 3 DF : length of line segment

DF ). We define a = CE
2 (radius of the base of the cap). θ is the angle formed at the centre of the circles by the

end points of the cap i.e. C and E (The lines are not drawn explicitly in figure 3).
It is easy to check that the following relations hold and thus we get the value of h.

a =

√
rad2 − δ2

4
, cos(θ) =

2rad2 − 4a2

2rad2 , h = a tan(
θ

4
) .
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Fig. 3: Depiction for calculating h

Fig. 4: Cross-section of area of overlap as s changes

By properties of triangles, p = h
rad+ δ

2

.

On extension to d-dimensions, the ratio of volume of these d-dimensional cones would be p =
(

h
rad+ δ

2

)d
.

Pr [win = 1|C = ck,M = mb] = 1−
(

h

2rad + δ

)d
Now we find Pr [wini = 1|C = ck].

Pr [wini = 1|C = ck]

= Pr [wini = 1|C = ck, ‖mi −mb‖ ≤ δ] Pr [‖mi −mb‖ ≤ δ]

+Pr [wini = 1|C = ck, ‖mi −mb‖ ≥ δ] Pr [‖mi −mb‖ ≥ δ]

This is upper bounded by p∗T + (1− T ), where T = Pr [‖mi −mb‖ ≤ δ] and p∗ = 1− 0.5p

Combining all the results together we get Equation 13.

1

N
Pr [win = 1|C = ck,M = mb]

N−1∏ (
Pr [wini = 1|C = ck]

)
=
p∗

N
(p∗T + (1− T ))N−1 =

1− 0.5p

N

(
1− pT

2

)N−1
Thus,
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Pr
[
Expδ−RoRSE,MD(B) = 1

]
≤ 1− 0.5p

N

(
1− pT

2

)N−1
+ 0.5

which implies,

Adv(B) ≤ 2− p
N

(
1− pT

2

)N−1
(14)

C Bounds on Attribute Window One Wayness (AWOW) advantage

C.1 Upper Bound on AWOW advantage assuming Gaussian distribution on Plaintexts:

Lemma 4. For any r-AWOW adversary A making at most z Msg queries,

Advr−SAWOW
TSAP,N (µ,σ2)(A) ≤ (1− p)|M | |S|+ 1

2|S|
∑
m

((
2rm− βm
m2 − r2

− β

m

)(
|M |
m

))
.

Proof. The proof makes the use of two intermediate lemmas. The intuition is to find a relation between Attribute
Window One-Wayness and Specified Attribute Window One-Wayness (SAWOW) which is defined below. This
is followed by upper bounding the SAWOW advantage.

Lemma 5. For any DCPE scheme with domain and range as X ,Y respectively, window size r, z ∈ N, and any
r- AWOW adversary A, ∃ an equally efficient specified adversary A’ such that

Advr−AWOW
DCPEX ,Y (A) ≤ zAdvr−SAWOW

DCPEX ,Y
(A′) .

Proof. Refer of Lemma B.1 of [BCO11] for the proof.

Specified Attribute Window One-Wayness(SAWOW): The specified r, z-attribute window one-wayness is
an intermediate security definition where the advantage of an adversary A with respect to SE = (KeyGen, Enc,Dec),
a symmetric encryption scheme, is

Advr−SAWOW
TSAP,D (A) = Pr

[
Expr−SAWOW

SE (A) = 1
]

where the experiment Expr,z−SAWOW
SE (A) above is defined as follows.

Experiment Expr−SAWOW
SE,D (A):

K
$←− KeyGen ; S′M , SD ← ∅

(i,mL,mR)
$←− AEnc(·),Msg(·)()

If mR −mL ≤ r and for any a ∈ [d], mia ∈ [mL,mR] return 1
Else return 0

The only difference between this experiment and the standard r − AWOW is that here, the experiment
demands that the adversary return an r-window containing the pre-image of the specified ciphertext.

Lemma 6. For any r-AWOW adversary A making at most z Msg queries,

Advr−SAWOW
TSAP,U(0,|M |)(A

′) ≤ (1− p)|M | |S|+ 1

2|S|
∑
m

((
2rm− βm
m2 − r2

− β

m

)(
|M |
m

))
where M is the attribute space and S is the keyspace.
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Proof. We compute the upper bound of the attribute window one wayness adversary. Note that we want m ∈
[mL,mL + r]. Given a ciphertextc, Pr

k∈K
[Enc(m) = c] is same for all m due to uniform distribution of secret key.

The decryption to obtain a guess for m, denoted by mml from c has the transformation, mml = sm+λ−λ′
s′ , where

λ′, s′ are the possible guesses of the scaling and perturbation factors respectively. λ−λ′ ≥ −sβ2 =⇒ mL ≥
sm−s β2
s′

and λ− λ′ ≤ sβ
2 =⇒ mU ≤

sm+s β2
s′ . We have:

Pr[m ∈ [mL,mU ]]

≤Pr[m− r ≤ mL ≤ m] + Pr[m ≤ mU ≤ m+ r]

= Pr[m− r ≤
sm− sβ2

s′
≤ m] + Pr[m ≤

sm+ sβ2
s′

≤ m+ r]

= Pr[
sm− sβ2

m
≤ s′ ≤

sm− sβ2
m− r

] + Pr[
sm+ sβ2
m+ r

≤ s′ ≤
sm+ sβ2

m
]

=
1

|S|

[
sm− sβ2
m− r

−
sm− sβ2

m

]
+

1

|S|

[
sm+ sβ2

m
−
sm+ sβ2
m+ r

]

=
s

|S|

(
2rm− βm
m2 − r2

+
β

m

)
.

Hence, the adversarial advantage for choice of a secret key is upper bounded by:

s

|S|

(
2rm− βm
m2 − r2

+
β

m

)
.

The average advantage for over the choice of all secret keys is upper bounded,

|S|+ 1

2|S|

(
2rm− βm
m2 − r2

+
β

m

)
.

Since, normal distribution is continuous in nature and in practical scenario, we would to deal with discrete or
floating point cases, we perform the approximation of the normal distribution using the Binomial distribution.

The expected advantage assuming a normal distribution approximated by Bin(M,p) is as follows:

|S|+ 1

2|S|
∑
m

(
2rm− βm
m2 − r2

+
β

m

(
|M |
m

)
pm(1− p)|M |−m

)
.

This expression can be simplified as:

(1− p)|M | |S|+ 1

2|S|
∑
m

((
2rm− βm
m2 − r2

− β

m

)(
|M |
m

)
pm(1− p)−m

)

≤(1− p)|M | |S|+ 1

2|S|
∑
m

((
2rm− βm
m2 − r2

− β

m

)(
|M |
m

))
.

(maximum at p = 0.5)

C.2 Lower Bound on AWOW advantage assuming Gaussian Plaintexts:

We prove the following result:

Advr−AWOW
TSAP,U(0,|M |)(A) ≥ Advr−SAWOW

TSAP,U(0,|M |)(A
′) ≥ r

|M |
∑
m

((
m− β

2

(m− r)m

))
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The first half of the result,

Advr−AWOW
TSAP,U(0,|M |)(A) ≥ Advr−SAWOW

TSAP,U(0,|M |)(A
′)

is obvious, as the advantage of the adversary when he has to make one correct guess out of z guesses is obviously
more than the advantage when the adversary has to make a particular guess correctly. So, it is sufficient to
proof the lower bound on Advr−SAWOW

DCPEX ,Y
(A′). Consider the following adversary.

Proof. The optimal attack scheme for such an adversary is provided here.

Algorithm 6 Adversary

1: procedure A(c0)

2: s∗
$←− [|S|]

3: On Msg(·) query d∗

4: SMD ← SMD ∪ {(state, d∗)}
5: (state,m)

$←−MD(state, d∗)
6: S′M ← S′M ∪ {m}
7: c← EncK(m)
8: return c
9: Repeat until A chooses z ciphertexts

10: Fix some i ∈ z, mL ←
ci− sβ2
s∗

11: return [i,mL,mL + r]

We now compute the advantage for such an adversary explicitly which would be the necessary lower bound.
Note that we want m ∈ [mL,mL + r]. The decryption to obtain a guess for m, denoted by mml from c has the

transformation, mml = sm+λ−λ′
s′ , where λ′, s′ are the possible guesses of the scaling and perturbation factors

respectively. λ− λ′ ≥ −sβ2 =⇒ mL ≥
sm−s β2
s′ . For the adversary to succeed, we must have:

0 ≤ m−mL ≤ r

=⇒ 0 ≤ m−
sm− sβ2

s′
≤ r

=⇒
sm− sβ2

m
≤ s′ ≤

sm− sβ2
m− r

Hence, the adversarial advantage for choice of a secret key is:

r

|S|

(
sm− sβ2
(m− r)m

)

The average advantage for over the choice of all secret keys is lower bounded by,

r
|S|+ 1

2|S|

(
m− β

2

(m− r)m

)

Thus, the expected value of the average advantage is:

Pr
[
Expr,z−SAWOW

SE (A′) = 1
]

= r
|S|+ 1

2|S|
∑
m

(
m− β

2

(m− r)m

(
|M |
m

)(
p

1− p

)m)



37

r
|S|+ 1

2|S|
∑
m

(
m− β

2

(m− r)m

(
|M |
m

)(
p

1− p

)m)

=r
|S|+ 1

2|S|
√
|M |

∑
m

(
m− β

2

(m− r)

(
1

m

)(
M

m

)m(
p

1− p

)m)
(By Sterling Approximation)

≥ r |S|+ 1

2|S|
√
|M |

∑
m

((
1

m

)(
M

m

)m(
p

1− p

)m)

Since, r ≥ β

2

=r
|S|+ 1

2|S|
√
|M |

ln
1− p
1− 2p

≥ r

2
√
|M |

ln
1− p
1− 2p

.


