
XTR and Tori∗

Martijn Stam

Simula UiB, Bergen, Norway

At the turn of the century, 80-bit security was the standard. When considering discrete-
log based cryptosystems, it could be achieved using either subgroups of 1024-bit finite
fields or using (hyper)elliptic curves. The latter would allow more compact and efficient
arithmetic, until Lenstra and Verheul invented XTR. Here XTR stands for ’ECSTR’, itself
an abbreviation for Efficient and Compact Subgroup Trace Representation. XTR exploits
algebraic properties of the cyclotomic subgroup of sixth degree extension fields, allowing
representation only a third of their regular size, making finite field DLP-based systems
competitive with elliptic curve ones.

Subsequent developments, such as the move to 128-bit security and improvements in
finite field DLP, rendered the original XTR and closely related torus-based cryptosystems
no longer competitive with elliptic curves. Yet, some of the techniques related to XTR are
still relevant for certain pairing-based cryptosystems. This chapter describes the past and
the present of XTR and other methods for efficient and compact subgroup arithmetic.

1 The Birth of XTR
1.1 The Rise of Subgroup Cryptography
When Diffie and Hellman introduced the concept of public key cryptography [DH76], they
gave the world the core key agreement mechanism still in use today. Suppose Anna and
Bob have already agreed on a cyclic group of known order with generator g. For Anna
and Bob to agree on a secret key, they both select a random exponent modulo the group
order, say x for Anna and y for Bob, and send each other X = gx and Y = gy, respectively.
Upon receiving the other party’s X, resp. Y value, Anna and Bob can raise it to their own
private exponent to derive the shared key k = Xy = Y x = gxy.

Diffie and Hellman originally suggested to use the multiplicative group Z∗p of integers
modulo a large prime p as their cyclic group. This group has known order p − 1 and
two problems relevant to Diffie–Hellman key agreement are believed to be hard in it:
the discrete logarithm problem (given gx, find x) and what later became known as the
computational Diffie–Hellman problem (CDH; given gx and gy, find gxy).

At the time, in 1976, not much was known about the discrete logarithm problem
in Z∗p; from a mathematical perspective the group isomorphism from Zp−1 to Z∗p by
exponentiation of a known, fixed generator g was well understood and prior to Diffie and
Hellman’s breakthrough paper there appeared no urgent need to invert the isomorphism
efficiently for what seemed like rather large primes p. Shanks’s baby-step–giant-step method
achieving “birthday” complexity O(p1/2) had been published several years prior [Sha71]
but that was about it. Naturally, the concept of key-agreement put forward by Diffie
and Hellman changed this perception and soon the discrete logarithm problem in Z∗p was
studied in more detail, but for the moment a 200-bit modulus p seemed ok.

∗This material will be published in revised form in Computational Cryptography edited by Joppe W. Bos
and Martijn Stam and published by Cambridge University Press. See www.cambridge.org/9781108795937.

www.cambridge.org/9781108795937

2 XTR and Tori

However, at the time Hellman had already submitted a paper together with Pohlig to
speed the discrete logarithm problem in groups of composite order with known factorisa-
tion [?]. This Pohlig–Hellman algorithm would essentially solve the discrete logarithm
problem in the prime power subgroups first and then use the Chinese remainder theorem
to retrieve the discrete logarithm modulo the group order. The Pohlig–Hellman algorithm
necessitates that p − 1 has at least one large prime factor N , but working in Z∗p still
appeared fine. Indeed, when ElGamal turned the Diffie–Hellman key agreement protocol
into a public key encryption scheme, he stuck to the Z∗p setting.

It wasn’t until 1989, when Schnorr introduced his eponymous signature scheme [Sch90]
that working in a prime order subgroup of Z∗p became popular. At the time, Schnorr
suggested to use primes p and N with N |p− 1, N around 140 bits and p around 512 bits
(ostensibly targeting 70-bit security). The advantage of using these “Schnorr subgroups”
was primarily computational: advances in solving the discrete logarithm problem had
pushed up the size of p. Staying fully in Z∗p would require working with exponents the size of
p. Schnorr’s innovation allowed to trim back the size of the exponent back to the minimum
(i.e., twice the security level to protect against Shanks’s generic baby-step–giant-step
attack, or by that time, Pollard’s rho [Pol78]), which also led to more compact signatures.
Thus for efficiency reasons working in subgroups is beneficial.

For ElGamal encryption [ElG85], using Schnorr subgroups is mildly annoying as the
message needs to be embedded in the subgroup; thus working in Z∗p remained popular.
However, in 1993 Brands introduced the decisional Diffie–Hellman problem [Bra93, Bon98],
which is potentially much easier for an adversary. For this DDH problem, an adversary
is still given gx and gy, but this time instead of having to compute gxy, it is given a
candidate value gz and only needs to decide whether gz = gxy or not. Five years later,
Tsiounis and Yung [TY98] showed that the semantic security of ElGamal encryption is
essentially equivalent to the decisional Diffie–Hellman problem in the group being used.
Moreover, where the Pohlig–Hellman algorithm implied the hardness of the computational
Diffie–Hellman problem was linked to the hardest subgroup, for decisional Diffie–Hellman
problem it actually links to the weakest subgroup. For Z∗p we are guaranteed a subgroup
of order 2 and thus DDH is easy: ElGamal encryption as originally proposed is not
semantically secure. Consequently, for security reasons working in subgroups became
beneficial.

1.2 The Search for Compactness and Efficiency
While the role and need of Schnorr subgroups became ever clearer when building cryptosys-
tems loosely based on the discrete logarithm problem in Z∗p, two other developments took
place. On the one hand, improved subexponential algorithms for finding those logarithms
were developed, culminating in the number field sieve. At the turn of the millenium, to
achieve 80-bit security one would need a 1024-bit prime p but only a 160-bit prime N . On
the other hand, a new competitor arrived by using elliptic curve groups instead.

Elliptic curve cryptography was introduced by Miller [Mil86] and Koblitz [Kob87] in
the mid-eighties and was becoming more and more attractive: several families of “weak”
curves had been identified, efficient point counting had been solved [Sch95], resulting in a
large number of curves for which the best attacks were believed to be generic “birthday
bound” ones such as Van Oorschot and Wiener’s version of Pollard rho [vW94]. For a
prime order subgroup GN of an elliptic curve over a prime field E(Fp), this meant N ≈ p
and believed discrete log complexity Θ(p1/2) = Θ(N1/2). Representing a point on the
elliptic curve would naively takes two elements X and Y (not to be confused with the X
and Y used previously for Diffie–Hellman key agreement), both in Fp, satisfying the curve
equation, e.g. Y 2 = X3 + aX + b for shortened Weierstrass when Fp is a large prime field.
Those two elements take 2 lg p bits, but it is straightforward to compress by representing
only X and a bit indicating which root to take for Y , resulting in only lg p ≈ lgN bit

Martijn Stam 3

representations. Thus, for 80-bit security, only 160 bits are needed rather than the 1024
bits when using Z∗p’s Schnorr subgroups.

The problem with Schnorr subgroups of Z∗p was that there was (and is) no known way to
exploit being in a prime order subgroup, other than using smaller exponents: all operations
and representations still rely directly on the supergroup Z∗p, resulting in wastefully large
representations and, notwithstanding the smaller exponent, inefficient exponentiation. To
counter these problems, Lenstra suggested to work in finite fields with small extension
degrees instead [Len97]. Moreover, to avoid ending up in a smaller subfield, he suggested
to work in a prime order subgroup of the cyclotomic subgroup (Definition 1).

Definition 1 (Cyclotomic Subgroup). Let p be a prime power and let n ∈ Z≥1 be an
extension degree. Then |F∗pn | = pn − 1 =

∏
d|n Φd(p) where Φd is the dth cyclotomic

polynomial; the unique F∗pn -subgroup of order Φn(p) is called the cyclotomic subgroup of
F∗pn .

If a prime N divides Φd(p) for d|n, d 6= n, then the subgroup GN of order N can be
embedded in a proper subfield Fpd of the larger Fpn and the discrete logarithm problem
in GN can be solved in that smaller subfield instead. The true hardness of the discrete
logarithm problem in F∗pn ought to reside in those prime order subgroups that cannot be
embedded into proper subfields. To support this claim, Lenstra also showed a bound on
the greatest common prime divisor of Φd(p) and Φn(p).

Lemma 1 (Lenstra). Let N > n be a prime factor of Φn(p). Then N does not divide any
Φd(p) for divisors d of n with d < n.

Lenstra demonstrated how exponentiation can be sped up moderately in cyclotomic
subgroups. The cyclotomic subgroup of Fpn has size Φn(p) ≈ pϕ(n), which raises the
prospect of utilizing its structure to represent elements of that subgroup more compactly
as well, using ϕ(n) lg p bits instead of the naive n lg p. If we assume that the discrete
logarithm problem (and related Diffie–Hellman problems) are roughly as hard in a finite
field Fpn as they are in a prime field Zp′ with p′ ≈ pn, such a compact representation
would yield a compression by a factor n/ϕ(n).

2 The Magic of XTR
The XTR cryptosystem was the first cryptosystem based on the finite field discrete
logarithm problem that combined good compression, namely by a factor 3, with efficient
exponentiation in the compressed form. XTR is shorthand for ECSTR, which itself stands
for Efficient and Compact Subgroup Trace Representation and was developed by Arjen
Lenstra and Eric Verheul [LV00b]. Sometimes XTR is also considered a homophone in
Dutch of “ekster”, or magpie.

The XTR cryptosystem works in the cyclotomic subgroup of F∗p6 , for prime p, although
the generalization to extensions fields F∗q6 with q = pm is mostly straightforward. XTR
operates in a prime order N subgroup GN ⊂ Gp2−p+1 where N divides Φ6(p) = p2 − p+ 1.
Elements in Gp2−p+1 can be compactly represented by their trace over Fp2 , which is defined
by

Tr : x→ x+ xp
2

+ xp
4
.

Lenstra and Verheul showed that if g ∈ Gp2−p+1 and c = Tr(g), then g is a root of the
polynomial

X3 − cX2 + cpX − 1 , (1)

thus given c it is possible to recover g up to conjugacy, as gp2 and gp4 will also be roots of
the equation above. Moreover, if cx = Tr(gx), they derived the recurrence relation

cx+y = cxcy − cpxcx−y + cx−2y . (2)

4 XTR and Tori

This recurrence relation allows fast “exponentiation” of cx given a compressed base c and
an exponent x without first having to decompress to obtain g (or one of its conjugates).
We will discuss efficiency of XTR in Section 2.1.

Notwithstanding the title of the original paper “The XTR Public Key System”, XTR
is not really a cryptosystem, but rather a method to work efficiently and compactly in
the “DLP-hard” part of Fp6 . The main limitation of the XTR method is the kind of
exponentiations that can be performed easily. Whereas a single exponentiation Tr(gx)
is easy, a double exponentiation Tr(gxhy) is already more challenging, whereas triple
exponentiations and beyond are not really feasible in compressed format. As a consequence,
not all discrete-log cryptosystems can be ported to the XTR setting.

One interpretation is to consider the exponent group ZN acting on the set of trace-
representations (cf. hard homogeneous spaces for isogeny-based cryptography [Cou06]).
Cryptosystems that can be phrased using this abstraction, should be suitable for direct
application of XTR. They notably include Diffie–Hellman key exchange and a variety of
ElGamal-based KEMs. However, the ability to perform double exponentiations widens
the scope to include for instance the Nyberg–Roeppel signature scheme. We give some
concrete examples of XTRified schemes in Section 2.2.

The security of an XTR-based cryptosystem is tightly linked to the relevant underlying
hard problem in GN ⊆ Gp2−p+1 ⊆ F∗p6 , be it the discrete logarithm problem, the compu-
tational Diffie–Hellman problem, or its decisional version. Note that XTR predates the
Diffie–Hellman alphabet soup assumption explosion triggered by the constructive use of
elliptic curve pairings [Boy08]; although some of these newer assumptions do make sense in
pairing-free groups like GN ⊆ F∗p6 , the cryptosystems based on those assumptions typically
involve operations beyond the XTR-friendly single and double exponentiations.

Precursors. Some early cryptosystems predating XTR realized partial benefits from
working in the cyclotomic subgroup of finite fields, without necessarily realizing the structure
being exploited. LUC works in the cyclotomic subgroup of Fp2 , achieving a compression
factor 2, although historically it was not presented thus. Already in 1981, Müller and
Nöbauer [MN81] suggested to replace the exponentiation in RSA by the evaluation of
Dickson polynomials gx(1, h) modulo an RSA modulus, where x takes the place of the
exponent and h that of the base. Twelve year laters, Smith and Lennon [SL93] suggested
to use the Lucas function Vx(h, 1) instead as an alternative to RSA, again still modulo an
RSA modulus. They called this new cryptosystem LUC, yet, as gx(1, h) = Vx(h, 1) this
Lucas cryptosystem was, and is, equivalent to the Dickson scheme.

Then, in 1994, Smith and Skinner [SS95] suggested the used of the Lucas function
modulo a prime to be used for discrete-log based cryptosystems such as Diffie–Hellman
key exchange or ElGamal encryption. They hoped that this ‘prime’ LUC cryptosystem
would not allow any subexponential attack, oblivious of the mathematically much cleaner
interpretation of LUC as being based on the cyclotomic subgroup of Fp2 using traces to
compress and speed up calculations. The observation that LUC was in fact just Fp2 in
disguise was first made by Lenstra, together with Bleichenbacher and Bosma [BBL95].

The first scheme achieving compression by a factor 3, using properties of the cyclotomic
subgroup of Fp6 , was proposed by Brouwer, Pellikaan, and Verheul [BPV99] in 1999. It
formed the inspiration for XTR, but unlike XTR it did not offer computation in the
compressed domain. A slightly different compression method was developed around
the same time by Gong and Harn [GH99, GHW01], though it only offered a factor 1.5
compression.

For a slightly more expanded discussion of the history, see also [Sta03, Sections 4.4.3
and 4.6.4].

Martijn Stam 5

2.1 Efficient Implementation
When implementing XTR, essentially three efficient routines are needed: fast parameter
generation of p, N and a base element c on the one hand, efficient membership tests, and
efficient double exponentaion. It turns out that efficient single exponentiation is best
regarded as a special, sped up version of double exponentiation.

Parameter generation and membership tests. Generating the primes p and N where
N divides p2 − p + 1 is relatively easy provided that N is considerably smaller than p.
Select N first, find a root of r of X2 −X + 1 modulo N and try p = r +N` for integer `
until a suitable prime p is found.

To find c, the naive approach would be to sample g at random from F∗p6 , raise it to
(p6 − 1)/(p2 − p+ 1) = (p3 − 1)(p+ 1) and verify whether the result has the desired order
p2 − p+ 1. Subsequently take the trace and raise to the power (p2 − p+ 1)/N . Finding a
generator of Gp2−p+1 this way is quite expensive and can in fact be done far more efficiently
by exploiting fast irreducibility testing of the polynomial 1 on page 3, as explored by
Lenstra and Verheul [LV00a, LV01].

For a membership test, the goal is to test whether a purported compressed element
c 6= 3 is indeed the trace of an element in GN . One could check this by evaluating cN using
a single exponentiaton routine (that does not first reduce the exponent modulo N) and
checking whether the result equals 3 = Tr(1). The techniques to generate c faster can also
be used to speed up membership tests [LV01].

Single exponentiation. Normally, a single exponentiation refers to the problem of calcu-
lating gx in the group GN for given generator g of GN and exponent x ∈ ZN . For XTR,
the problem translates to calculating cx = Tr(gx) given compressed generator c = Tr(g)
and exponent x, based on the recurrence relation for cx+y given in Eq. 2 on page 3.

In general, evaluating cx+y = cxcy − cpxcx−y + cx−2y given all required elements on
the right hand side, would take four Fp-multiplications. However, if x = y, then the
relation simplifies to c2x = c2x − 2cpx, which effectively only costs half as much, namely two
Fp-multiplications.

Armed with this knowledge, Lenstra and Verheul devised an elegant single exponentia-
tion routine based on a left-to-right binary expansion of the exponent x by keeping track
of the triplet (c2k, c2k+1, c2k+2), where k is the exponent processed so far (corresponding
to the most significant bits of x). A useful property of the triplet is that it always contains
two even “exponents”, namely 2k and 2k + 2. As a result, processing the next bit of x
can always be done using to invocations of the c2x rule and one invocation of the general
recursion rule. Overall, a single exponentiation would cost around 8 lgN Fp-multiplications.
At the time, they believed this to be roughly three times faster than a direct exponentiation
in GN .

Double exponentiation. In the context of XTR, a double exponentiation consists of the
problem of, given basis cκ, cλ, their “quotients” cκ−λ and cκ−2λ and two exponents x and
y, compute cκx+λy. The original double exponentiation by Lenstra and Verheul [LV00b]
was somewhat cumbersome and slow. A far more efficient routine was developed by
Stam and Lenstra [SL01] based on Montgomery’s PRAC algorithm [Mon83]. The original
PRAC algorithm was developed by Montgomery for the efficient calculation of Lucas
sequences, that is, recurrence relations of the form Lx+y = f(Lx, Ly, Lx−y). These occur
for instance when implementing scalar multiplication on elliptic curves using Montgomery
representation.

At the core of the PRAC algorithm, including its XTR variant, is the extended Euclidean
algorithm. Recall that to calculate the greatest common divisor of two positive integers x

6 XTR and Tori

and y, the extended Euclidean algorithm eventually outputs not just the gcd d, but also
the Bézout coefficients a and b such that ax+by = d. To create a Euclidean exponentiation
routine for exponents x and y given bases gκ and gλ, introduce random variables x̃, ỹ as
well as α, β and keep as invariant x̃α+ ỹβ = xκ+ yλ and gcd(x̃, ỹ) = gcd(x, y). It’s easy
to initialize by setting x̃ ← x and ỹ ← y. The Greek lettered variables aren’t typically
known or efficiently computable, but we can keep track of gα and gβ instead. Just as in
the extended Euclidean algorithm, in each step (x̃, ỹ) can be reduced while maintaining the
invariant,e.g. by setting (x̃, ỹ)← (ỹ, x̃− ỹ) and updating the other variables accordingly.
Eventually y = 0, at which point gxκ+yλ = (gα)d, where d = gcd(x, y). Adapting
the algorithm to Lucas sequences, one also needs to keep track of gα−β ; for XTR one
additionally needs gα−2β as well.

There are many different steps possible to reduce (x̃, ỹ). We already mentioned (ỹ, x̃−ỹ),
but if ỹ is even, say, one can also try (x̃, ỹ/2). Which steps to use when to reduce (x̃, ỹ)
are governed by rules that have been determined heuristically. We refer to [Sta03, Tables
3.4 and 4.2] for possible collections of rules (and their precedence). These rules result in an
XTR double exponentiation on average costing roughly 6 lgN Fp-multiplications [Sta03,
Corollary 4.13.ii].

Single exponentiation, revisited. The PRAC-based double exponentiation appears 25%
faster than the binary single exponentiation. Unsurprisingly, it’s possible to leverage this
speedup of the double exponentiation for single exponentiation as well, by casting the latter
as a case of the former by writing gx = grgx−r for some arbitrary r. The choice r = 1 and
a slight trimming of PRAC’s Euclidean reduction rules will lead back to a (costly) binary
method, but Montgomery already suggested the use of the golden ratio φ by setting r to
br/φc to ensure that the PRAC algorithm will initially use its most advantageous reduction
rule (i.e., delivering the largest reduction in the size of the exponent per Fp-multiplication).
With this speed up, calculating cx costs an average 5.2 lgN Fp-multiplications [Sta03,
Corollary 4.13.i].

Further speedups are possible when allowing precomputation, as it allows to split the
exponent evenly: if the triplet (cτ−1, cτ , cτ+1) has been precomputed with τ = b

√
Nc, then

one can write x = x1 + x2τ with both x1 and x2 of length roughly 1
2 lgN . The resulting

double exponentiation brings the costs of a single exponentiation with precomputation
down to an average of 3 lgN Fp-multiplications [Sta03, Corollary 4.13.v].

Stam and Lenstra [SL01] introduced another neat trick to speed up and compress the
precomputation by exploiting the Frobenius endomorphism. The idea is to rewrite the
exponent as x = x1 + x2p mod N with x1 and x2 both as short as possible, so ideally
roughly 1

2 lgN bits (as above). The difference between using Frobenius and τ = bNc
is that for Frobenius, the precomputation is a lot simpler as cp = cp and cp−1 = c can
be computed for free and, re-using an earlier observation by Lenstra and Verheul [LV01,
Proposition 5.7], cp−2 can be computed at the cost of a square root computation (the
only caveat here is that an additional bit is needed to resolve which root to use). Another
difference is that, in case of Frobenius, it is not a priori clear whether x1 and x2 can
computed that small. It turns out that the extended Euclidean algorithm suffices.

Coincidentally, concurrently and independently of the work on XTR, Gallant, Lam-
bert, and Vanstone (GLV) suggested a very similar method to use efficient non-trivial
automorphisms to speed up elliptic curve scalar point multiplication [GLV01]. The GLV
method is more general than the method for XTR just described and, depending on the
automorphism, the exponent might be split in more than two parts. For the special XTR
setting, Stam and Lenstra exploited that N |p2 − p+ 1 to prove the split was guaranteed
to result in short exponents x1 and x2 [Sta03, Lemma 2.29] (essentially by framing the
problem of finding a short vector in a two-dimensional lattice). For the GLV method, Sica,
Ciet and Quisquater [SCQ03] provided a more general analysis.

Martijn Stam 7

One potential disadvantage of the PRAC-based single exponentiation compared to the
Lenstra–Verheul binary single exponentiation is the increased variation in not just the
runtime of the algorithm, but also the sequence of underlying operations. From a side-
channel perspective, such exponent-dependent variation should be considered leakage that
can likely be exploited. Page and Stam [PS04] analysed idealized single power analysis (SPA)
against XTR in more detail and although their attack was still computationally expensive,
the binary routine appears intrinsically safer. In fact, a simpler version of the binary
routine proposed by Montgomery for the efficient calculation of Lucas sequences [Mon83]
has been adapted for ordinary scalar multiplication on elliptic curves with the express
purpose of boosting side-channel resistance [JY03] and Han, Lim, and Sakurai showed
that Lenstra and Verheul’s binary XTR exponentiation routine is SPA secure, although it
is still susceptible to differential power attacks [HLS04].

Twofold exponentiation. Knuth and Papadimitriou [KP81] established a beautiful result
linking the complexity of a double exponentiation gxhy with that of a twofold exponentiation
(gx, gy), and vice versa. The result is that any improvement for double exponentiation can
also be used for a twofold exponentiation, meaning that computing gx and gy jointly is a
lot cheaper than computing both separately. For recurrence relations as used by XTR, the
duality concept is not quite as clean, but jointly calculating cx and cy can still be done
quite efficiently with a modification of the PRAC double exponentiation routine, leading
to an overall cost of 6 lgN Fp-multiplications on average [Sta03, Corollary 4.13.iii].

2.2 Examples of XTRified Primitives
Diffie–Hellman key agreement. At the beginning of this chapter, we mentioned Diffie–
Hellman key agreement. In a cyclic group GN of order N and with generator g, Anna
selects ephemeral exponent x ∈ ZN , calculates X ← gx and sends X to Bob. Bob had
selected exponent y ∈ ZN and sent Y = gy to Anna. They both want to compute the
shared key gxy.

Moving to XTR, we take traces of all the GN group elements, so for instance the new
shared key will be Tr(gxy). Moreover, the communication will be compressed as well: Anna
selects ephemeral exponent x ∈ ZN but this time calculates cx = Tr(gx). Upon receipt,
Bob can then use cx as its base XTR exponent ‘d’ and calculate K ← dy = Tr(gxy) as
desired.

The benefits of using XTR here over direct calculation in GN are immediate: the public
representation of the group parameters is compressed, the communication overhead is
reduced by a factor of three and the trace-exponentiations are faster.

ElGamal-style key encapsulation mechanisms. Bare-bones ElGamal key encapsulation
is almost the same as Diffie–Hellman key agreement, with the only notable difference that
Bob’s ephemeral value cy = Tr(gy) is now declared to be his public key, with the exponent
y promoted to his long-term private key. If Anna wants to send a message to Bob, select
ephemeral exponent x ∈ Zq, create ciphertext cx = Tr(gx) and calculate K ← Tr(gxy) as
the encapsulated key.

It’s immediate that Hashed ElGamal, where K is calculated as H(Tr(gxy)) with H a
hash function, works fine with XTR as well, giving rise to an efficient IND-CCA2 secure
public key cryptosytem in the random oracle model. With a little more effort, Damgård’s
ElGamal with explicit ciphertext rejection can be seen to work as well, yet a closely related
variant with implicit ciphertext rejection is more troublesome (cf. [KPSY09]).

Signature schemes. Lenstra and Verheul [LV00b] described how to create XTR-based
Nyberg–Rueppel signatures [NR93], supporting message recovery. Below we look at Schnorr

8 XTR and Tori

signatures instead; these look similar to Nyberg–Rueppel signatures but without offering
message recovery. They are created by applying the Fiat–Shamir transform to Schnorr’s
sigma protocol for proving knowledge of a discrete logarithm.

We assume that the group description consisting of p,N and c1 = Tr(g) are public
parameters. Then a user’s private key is an exponent x ∈ Zq and the corresponding public
key is the element cx = Tr(X) where X = gx, plus the auxiliary elements cx−1 = Tr(X/g)
and cx+1 = Tr(Xg).

The auxiliary elements enable the calculation of double exponentations of the type
Tr(gyXz). If the public key is represented as the triplet (cx−1, cx, cx+1) ∈ (Fp2)3 no
compression is taking place and one might as well send y ∈ Fp6 instead. However, the
public parameters are still being compressed (namely the generator of the group); moreover,
Lenstra and Verheul also showed that a few additional bits allow unique and efficient
recovery of cx−1 and cx+1 based on cx and those public parameters.

To sign a message m̃, the signer generates a random exponent w ∈ ZN and evaluates
a ← cw = Tr(gw). Then calculate s ← H(cx, a, m̃) and r ← w + x · s mod N , where
H : Fp2 × Fp2 × {0, 1}∗ → ZN is a hash function. The signature consists of the pair
(r, s) ∈ (ZN)2. To verify a signature, re-calculate a ← Tr(gr · X−s) using XTR double
exponentiation and accept the signature iff H(cx, a, m̃) equals s.

As the original Schnorr signature only ever sent across elements of the exponent group
ZN to begin with, there is no compression gain to be had here; however both the public
parameters and the public key can be compressed and both signature generation and
verification are considerably sped up compared to naive operations directly in GN .

3 The Conservative Use of Tori
3.1 Direct Compression using Tori
One downside of using traces as XTR does, is that the compression is not lossless: conjugates
are mapped to the same compressed element. Another downside is that the exponentiation
in compressed form relies on a third order recurrence relation and does not support
arbitrary multiplications. As a consequence, some more complicated discrete-logarithm
based cryptosystems cannot easily be implemented using XTR. Although arguably one
could compute directly in GN and only use the trace-plus-a-trit to compress and decompress
elements (where the trit is used to indicate which conjugate has been compressed), a much
neater lossless compression method is based on algebraic tori, as proposed by Rubin and
Silverberg in 2003 [RS03].

They presented two new systems: T2 as an alternative to LUC (based on quadratic
extension fields) and CEILIDH, as an alternative to XTR. CEILIDH, pronounced Cayley,
was presented as an acronym for “Compact, Efficient, Improves on LUC, Improves on
Diffie–Hellman”, but was really named after Silberg’s deceased cat [RS08]. It’s unclear
whether naming CEILIDH after an undoubtedly adorable cat was at all inspired by XTR
being a homophone for a bird.

In any case, like XTR, CEILIDH allows to represent elements of GN ⊂ Gp2−p+1 ⊂ F∗q6

using only two elements of Fq. Note that, whereas XTR is usually presented as defined
over a prime field, for CEILIDH it is customary to allow any underlying finite field Fq,
including characteristic-p fields q = pm with extension degree m > 1. Lenstra and Verheul
already observed the same generalization works in principle for XTR, the real advantage
of CEILIDH is that the compression is injective, so given a compressed element it’s always
possible to uniquely recover the original element.

We refer to the original papers by Rubin and Silverberg [RS03, RS08] for a precise
mathematical definition of algebraic tori (see also [Gal12]), but given a finite field Fq and
its n-degree extension Fqn , one way of characterizing the algebraic torus Tn(Fq) is as

Martijn Stam 9

the intersection of the kernels of the norm maps from Fqn to Fqd for d|n (Definition ??,
[RS08, Theorem 5.7.(ii)]). Moreover, the algebraic tori neatly coincide with the cyclotomic
subgroups [RS08, Proposition 5.8], so for instance T6(Fp) = Gp2−p+1.

Loosely speaking, an algebraic torus Tn is rational over Fq if there exist a map from
Tn(Fq) to (Fq)ϕ(n) that is defined almost everywhere as quotients of polynomials and the
same holds true for its inverse. The rationality of an algebraic torus can be exploited to
compress its elements with compression factor n/ϕ(n); moreover T2 and T6 are known to
be rational, leading to compression factors 2 and 3, respectively. Moreover, Rubin and
Silverberg provided concrete rational maps (in both directions) for T2 and T6, coining the
latter system CEILIDH.

As mentioned already, CEILIDH stands for “Compact, Efficient, Improves on LUC,
Improves on Diffie–Hellman”. In a way, this acronym can be misleading as Diffie–Hellman
is generally understood to be a key agreement protocol that can be phrased independent of
the underlying group, LUC turned out to be an trace-based factor-2 compression method
for “hard” subgroups of quadratic extension fields that additionally allowed efficient
arithmetic on compressed form (just like XTR). In contrast, CEILIDH is really just a
factor-3 compression/decompression method for “hard” subgroups of sextic extension fields
without any efficient method for exponentiations. However, the perspective offered by
algebraic tori is useful and, as we will discuss in Section 3.2 on the following page, one can
complement CEILIDH to arrive at efficient torus-based cryptography.

Amortized compression. If an efficient compression mechanism exists for Tn(Fq) with
compression factor n/ϕ(n) whenever the torus Tn is rational, a natural question is for
which n the tori are rational and which compression factors can be achieved. From a
practical perspective, it is advantageous to look at the smallest n achieving a certain
compression factor, which boils down to looking at the products of the successive smallest
primes. So first 2, then 6 = 2 · 3, and next up would be 30 = 2 · 3 · 5 providing slightly
better compression than XTR.

Pre-CEILIDH, Brouwer, Pellikaan, and Verheul [BPV99] conjectured that extension
degree 30 would allow for improved compression, yet Verheul later seemingly changed his
mind and, with Bosma and Hutton, argued that such a system is unlikely to exist [BHV02].
The introduction of algebraic tori by Rubin and Silverberg brought to bear a rich field of
mathematics to draw upon to settle whether better compression for degree 30 is possible
or not.

Rationality of algebraic tori has been well-studied and Voskresenskii had conjectured
that Tn is rational for all n (actually, that’s a consequence of the conjecture; the original
statement is more general and does not restrict to finite fields). For n the product of
at most two primes, the conjecture has been proven, thus the torus Tn is known to be
rational (enabling CEILIDH). On the other hand, for n the product of three primes the
conjecture is still open, in particular the case n = 30 is still open.

Yet it’s still possible to obtain almost optimal compression, but with a small caveat.
Van Dijk and Woodruff [vW04] point out that the tori Tn are known to be stably rational
for all n, meaning that there exist rational maps from Tn(Fq)× Fdq → Fϕ(n)+d

q for some
d ≥ 0. In many scenarios, this stable rationality allows compression for T30(Fq) that beats
the factor 3 provided by XTR or CEILIDH.

Consider a hybrid encryption scheme where the ephemeral key is encapsulated using
an element of T30(Fq) and the data is encrypted symmetrically leading to some ciphertext
bitstring. One could peel of an appropriate amount of bits of said ciphertext bitstring,
embed them into Fdq , and then compress that part of the ciphertext together with the
T30(Fq) element. Thus the overhead of the key encapsulation is reduced by a factor
30/ϕ(30).

In the original paper, van Dijk and Woodruff showed a stably rational map for T30(Fq)

10 XTR and Tori

with d = 32, but less than a year later the idea was considerably refined and d was reduced
from 32 to 2 with as side-benefit much faster rational maps [vGP+05].

3.2 Efficient Arithmetic
When Lenstra and Verheul introduced XTR, they compared its efficiency relative to direct
operation in uncompressed form, i.e., in Fp6 . As a rough efficiency measure, one can
count the number of Fp squarings and multiplications, as these tend to be the most costly
(see also Chapter ??). Cohen and Lenstra [CL87] had previously worked out that a Fp6-
multiplication could be done in 18 Fp multiplications, whereas a Fp6 -squaring only required
12 Fp-multiplications. Using a standard square-and-multiply exponentiation routine, a
single resp. double exponentiation directly in Fp6 would then cost 21 lgN resp. 25.5 lgN
Fp-multiplications (This is sligthly lower then the 23.4 lgN resp. 27.9 lgN when using 18
Fp-squarings for a single Fp6 squaring [LV00b, Lemma 2.12]).

Speeding up the cyclotomic subgroup Gp2−p+1. However, it turned out that also in
non-compressed form, working in GN ⊂ Gp2−p+1 can be used to speed up calculations
considerably. Stam and Lenstra [SL03] introduced a number of useful techniques in the
case that p ≡ 2 mod 9 or p ≡ 5 mod 9. The congruence ensures that p generates Z∗9,
facilitating the use of a normal base, which means that the Frobenius endomorphims can
be evaluated essentially for free.

The first observation is that p2 − p+ 1 divides p3 + 1, thus for an element g ∈ Gp2−p+1

it holds that gp3+1 = 1, or equivalently g−1 = gp
3 . In other words, the Frobenius

endomorphism can be used to invert essentially for free in the group Gp2−p+1. As for
elliptic curves, free inversions can be exploited for faster exponentiation based on signed
representations of the exponent(s), such as the non-adjacent form (NAF) for single
exponentation or the joint sparse form (JSF) for double exponentiation. The resulting
speedup leads to an average cost of 18 lgN resp. 21 lgN Fp-multiplications for a single,
resp. double exponentiation.

The second observation is that, as for improved XTR precomputation, the Frobenius
endomorphis can be used to split the exponent, similar to the GLV method for elliptic curves.
Specifically, and exponent x ∈ ZN can be rewritten as x1p+x0 with lg x1 ≈ lg x0 ≈ 1

2 lgN ,
thus replacing a single lgN -bit exponentiation with a much faster double 1

2 lgN -bit
exponentiations. Combining this observation with using the Solinas’s joint sparse form,
the cost of a single exponentiation goes down to 10.5 lgN Fp-multiplications, i.e., already
twice as fast as the benchmark originally used by Lenstra and Verheul.

Yet, the most surprising observation made by Stam and Lenstra is that for elements
in Gp2−p+1, the squaring operation can be simplified and sped up considerably, so it only
takes 6 Fp-multiplications, Combining with the previous two observations, the average cost
of a single resp. double exponentiation in GN can be brought down to 6 lgN resp. 9 lgN
Fp-multiplications [SL03, Theorem 4.31], which slightly faster than the original XTR
exponentiation routines, yet slightly slower than the improved XTR routines.

Speeding up the algebraic torus T6(Fq). As CEILIDH is only a compres-
sion/decompression method for T6(Fq), a natural question is how the techniques to
speed up calculations in Gp2−p+1 can be best combined with techniques to compress
elements in T6(Fq). A straightforward approach would be to restrict CEILIDH to the case
q = p ≡ 2, 5 mod 9, compress and decompress using CEILIDH, and perform all operations
directly in Gp2−p+1, possibly incurring some additional overhead when changing basis
representations.

Granger, Page, and Stam [GPS04] provide a more detailed analysis. For instance,
by treating T6(Fp) as part of T2(Fp3), it is possible to look at partial compression and

Martijn Stam 11

decompression and for some operations to work in T2(Fp3) on partially compressed elements
(based on the work by Rubin and Silverberg on T2). Essentially, for exponentiations,
working in Gp2−p+1 is alwasy optimal, but there is considerable scope in optimizing
intermediate operations by changing representation as required. In that sense, these
optimizations are reminiscent of mixed coordinates as used for fast scalar multiplication
over elliptic curves.

One obvious downside of using the Stam–Lenstra techniques for Gp2−p+1 is the re-
quirement that q = p ≡ 2, 5 mod 9 to achieve fast squarings in T6(Fq). Granger and
Scott [GS10] partly resolved this restriction by showing a more general method that
allowed squaring in T6(Fq) for only 6 Fq-multiplications for any q ≡ 1 mod 6. Finally,
Karabina [Kar13] suggested a slightly different partially compressed format using four Fq
elements for T6(Fq) with, again, q ≡ 1 mod 6. Squarings with that representation cost as
little as 4 Fq-multiplications, but the representation does not allow for direct multiplication,
necessitating decompression at an amortized cost of 3 Fq-multiplications per decompression
using Montgomery’s simultaneous inversion trick. Thus, if for an exponentiation in T6(Fq)
the number of T6(Fq)-multiplications is less than two-thirds of the number of T6(Fq)-
squarings, the Karabina-representation might be fastest of all. However, optimal use of
Montgomery’s simultaneous inversion trick does require that all T6(Fq)-multiplications are
done in parallel. This restriction limits the kind of exponentation routines possible, plus it
requires considerable storage.

4 Pairings with Elliptic Curves

4.1 An (In)Equivalence
XTR was first presented at Crypto 2000, moreover, XTR was presented first at Crypto
2000. This prime slot in the program allowed other cryptographers to respond with
their thoughts on XTR during the very same conference at the rump session. Menezes
and Vanstone [MV00] cheekily rebranded ECSTR as “Elliptic Curve Singular Trace
Representation” suggesting that XTR can be considered as an elliptic curve in disguise. Of
course, recurrence-based “prime” LUC turned out to be Fp2 exponentiation in disguise and
elsewhere polynomial-based NTRU turned out to be a lattice cryptosystem in disguise, so
it was perspective worth entertaining. Let’s investigate a little further the reasons behind
Menezes and Vanstone’s observation.

First, recall that an elliptic curve Ea,b over Fq consists of the points (X,Y) ∈ Fq2

satisfying the curve equation Y 2 = X3 + aX + b for shortened Weierstrass. Together with
the point at infinity, these Fq-rational points form an additive group. If q = p2, then the
order of this group lies in the Hasse interval p2 − 2p + 1, p2 + 2p + 1], indeed one often
writes the order as p2− t+ 1 where t is the Frobenius trace number. If t = p, then we have
that p2 − t+ 1 = Φ6(p), so the order of the elliptic curve matches the order of cyclotomic
subgroup Gp2−p+1.

Menezes [Men93] characterized those curves as “Class Three” supersingular elliptic
curves over Fp2 with positive parameter t (as t = p rather than −p). For those curves,
the Menezes–Okamoto–Vanstone (MOV) embedding [MVO91] provides an efficient group
isomorphism from the curves to the cyclotomic subgroup Gp2−p+1. Thus any problem
like DLP, CDH, or DDH that is easy in Gp2−p+1 will also be easy for the elliptic curve.
During the Crypto 2000 rump session, Menezes and Vanstone suggested that the MOV
embedding would be efficiently invertible, which would immediately imply that the DLP,
CDH, and DDH problems are equally hard in Gp2−p+1 and in those supersingular curves.
That would be bad news for XTR and CEILIDH, as the MOV embedding also implies
that the DDH problem is in fact easy for those curves.

Verheul [Ver01, Ver04] promptly took up the challenge and he showed a rather remark-

12 XTR and Tori

able result, namely that if the MOV embedding is efficiently invertible, then the CDH
problem is easy in both Gp2−p+1 and for those supersingular curves. Slightly more precise,
those supersingular curves are known to be of the form Ea(Fp2) : Y 2 = X3 + a where
a ∈ Fp2 is a square but not a cube in Fp2 . Let’s call such and a suitable and, as before,
let N |p2 − p+ 1. Furthermore, denote with Ga[N] the subgroup of order N of the curve
Ea(Fp2) (including the point at infinity). Then Verheul showed that if for some a there
exists an efficiently computable injective homomorphism from GN ⊂ Gp2−p+1 to Ga[N],
then the CDH problem in both GN and Ga[N] is easy. As the CDH problem in both is
still believed to be hard, the MOV embedding is unlikely to be efficiently invertible and
thus the cyclotomic subgroup Gp2−p+1 is not an elliptic curve in disguise.

The original MOV embedding was based on the Weil pairing, which is an efficiently
computable bilinear map e : G×G→ Gp2−p+1 where G denotes the elliptic curve group
and Verheul’s result could be rephrased in terms of the search of an efficient isomorphism
ψ : Gp2−p+1 → G. In modern parlance, the Weil pairing is symmetric, or of type 1 [GPS06a].
Asymmetric pairings have become more popular in practice: in those cases G1 and G2
are two distinct groups related to the elliptic curve (defined over Fq) and the bilinear
map is defined as e : G1 ×G2 → GΦn(q) ⊂ F∗qn . Here n is known as the embedding degree,
which is the smallest n such that N divides Φn(q). Note that, in the wider literature, the
embedding degree is more commonly referred to as k, we use n instead to highlight the
connection with the degree of the algebraic torus. Verheul’s results were subsequently
generalized and refined to this setting as well [GHV08, KKM13].

4.2 Improved Pairings
Once one realizes that elliptic curve pairings map into cyclotomic subgroups, or algebraic
tori, one immediately obtains that the compression and efficiency techniques developed
for those groups are applicable to the outputs of a pairing, leading to compressed pair-
ings [SB04]. However, often the interaction between techniques for cyclotomic subgroups
and pairings is a little bit more intricate [GPS06c].

A typical pairing evaluation consists of two phases: a Miller loop that returns a finite
field element and a final exponentiation to the power (qn − 1)/N that ensures membership
of the group GN ⊂ Tn(q). For the final exponentiation it is often possible to deploy ideas
similar to those described in this chapter. Especially the improved squaring routines by
Granger and Scott and the compressed squaring by Karabina are beneficial as they work
for p ≡ 1 mod 6, as commonly used for pairing-friendly curves. See also the overview by
Beuchat et al. [BPFCRH17] for details.

Similarly, exponentiations in pairing groups can benefit. When the embedding degree
is some multiple of 6, both XTR and CEILIDH, as well as fast squarings in the cyclotomic
subgroup, apply. Which method is fastest depends very much on the situation at hand.
While XTR allows the fastest squarings, its hard to exploit the Frobenius endomorphism
beyond a split of the exponent in two, moreover the output will be compressed and can be
hard to process further. Trace-less computations can benefit from a higher dimensional
‘GLV’ split of the exponent, but the squarings are more expensive. See also the overview
by Bos et al. [BCN17, Section 6.5] for some concrete comparisons.

Characteristic three. Galbraith [Gal01] advocated the use of supersingular curves in
characteristic 2 or 3 for pairing-based cryptography. Here the binary case only has
embedding degree n = 4, whereas the ternary case gives embedding degree n = 6. The
higher embedding degree offsets working with the slightly awkward characteristic [GPS05].
Moreover, Duursma and Lee [DL03] proposed an efficient algorithm to compute pairings
for supersingular curves over F3m , adding to their popularity. As the embedding degree
is n = 6, the target group of the pairing lies in T6(F3m), which makes both XTR and
CEILIDH relevant for the computations involved. Granger et al. [GPS06b] worked out

Martijn Stam 13

the details, including how to slightly improve the Duursma–Lee algorithm for this case by
incorporating trace- or torus-based speedups as part of the pairing.

Surprisingly, Shirase et al. [SHH+07, SHH+08] showed that in some cases, even better
compression is possible than the ϕ(n)/n that was targeted by LUC, XTR, CEILIDH and
van Dijk et al. The key observation for T6(Fq) is that, if q = 32k−1, then Φ6(q) = q2− q+ 1
factors as (q + 3k + 1)(q − 3k + 1). Elements in the F∗q6 subgroup of order (q − 3k + 1) can
then be represented by their trace over Fq, rather than by their trace over Fq2 as would
be the case for XTR. Thus a factor 6 compression is achieved. Karabina [Kar13] later
extended the factor 6 compression using a torus-based approach, while also showing factor
4 for the binary case.

Unfortunately, we now know that the discrete logarithm problem in finite fields of small
characteristic (e.g. 3) is essentially broken (see Section ?? on page ??), rendering these
improvements moot.

Parameter generation. XTR, as originally proposed, focused on using a prime field Fp,
but Lenstra and Verheul already mentioned the use of an extension field Fq instead. One
challenge in that case is parameter selection: if q = pm, then one requires prime p and N
such that N |Φ6m(p). First selecting N and then ensuring that p is a root of Φ6m modulo
N only works if p is at least a few bits longer than N . However, larger m are especially
interesting if they allow smaller p, potentially quite a bit smaller than N .

An alternative approach then is to simply select prime p first and factor Φ6m(p) in
the hope to find a prime divisor N of the desired. This approach was suggested by
Lenstra [Len97] and adopted by van Dijk and Woodruff [vW04] for T30.

There is however a third approach, as pointed out by Galbraith and Scott [GS08,
Section 9]. Pairing-friendly curves give suitable parameters for XTR (or CEILIDH), so
the polynomial families of parameters used to generate those curves, can also be used
to generate XTR parameters. Such an approach is comparable to the fast generation
suggested by Lenstra and Verheul [LV00b, Algorithm 3.1.1], namely searching for r such
that N = r2 − r+ 1 and p = r2 + 1 are simultaneously prime (and p ≡ 2 mod 3). However,
as Lenstra and Verheul already warn “such ‘nice’ p may be undesirable from a security
point of view because they may make application of the Discrete Logarithm variant of
the Number Field Sieve easier.” As explained in Chapter ?? and also Section ??, the NFS
has improved for parameters for pairing-friendly curves, necessitating larger parameters
for a given security level. Although the precise recommendations are still somewhat in
flux [DMH+17, BD19, Gui20, SKSW20], for XTR and CEILIDH it seems prudent to
restrict to the prime variants Gp2−p+1 and T6(Fp) and ignore “pairing-friendly” parameter
sets.

5 Over the Edge: Cyclotomic Subgroups Recycled
When XTR was proposed in 2000, the standard security level was still 80 bits, elliptic
curves were not all that widely deployed, and people hardly worried about postquantum
security. RSA moduli were 1024 bits long and, similarly, 160-bit Schnorr subgroups were
based on 1024-bit prime fields. In that historical context, for XTR over a finite field Fp6

with prime p, this meant that 6 lg p ≈ 1024 and lg q ≈ 160. Thus the ‘160-bit’ group
elements in GN could be represented using the trace with two elements in Fp2 , for only
about 340 bits in total.

Compared to compressed elliptic curve cryptography of the same strength, that is just
over a doubling in the number of bits for a single group element, moreover at the time, an
XTR exponentiation was faster than an elliptic curve scalar multiplication. For suitably
chosen elliptic curves, the best known algorithms to solve CDH/DDH still entails solving an
elliptic curve discrete logarithm problem (ECDLP); moreover solving the ECDLP appears

14 XTR and Tori

as hard as it is generically, thus its assumed hardness is governed by the birthday bound
and, to achieve k-bit security, it suffices to work with a curve defined over a 2k-bit field.
In other words, barring the emergence of new cryptanalytical techniques or the advent
of quantum computers, ellptic curves scale extremely well in the targeted security level.
These days, the standard security level is 128 bits for the near term and 256 bits for long
term. A natural question is therefore how the comparison between XTR, or working in
cyclotomic subgroups/algebraic tori in general holds up against using elliptic curves.

For the finite field discrete logarithm problem, much better algorithms are known,
as described in detail in Chapter ??. This immediately implies that qualitatively XTR
and related systems scale considerably less well, but how does the comparison evolve
concretely? To answer this question, we will consider both the perspective from the turn
of the century, as well as a modern one based on current understanding of the hardness of
the various discrete logarithm problems.

Already in 2001, Lenstra provided estimates for different security levels based on
understood performance of index calculus methods at the time, as well as extrapolating the
observed rate of algorithmic and computational improvements for future predictions [Len01].
For prime field systems, he essentially used estimates for the NFS for factoring integers
and divided by the extension degree as appropriate. Although he did not include T30 in
his comparison, we used that same methodology below. For small characteristic fields, he
used slightly different formulae to take into account known speedups for that case [Len01,
Table 6].

For instance, in 2001, 128-bit security would require an RSA modulus between 2644
and 3224 bits [Len01, Table 1], which after division by six gives us 441 ≤ lg p ≤ 538 for an
XTR prime field [Len01, Table 5]. Similarly, his then prediction for 2020 security levels
was that we would need 550 ≤ lg p ≤ 660 for an XTR prime field. Thus already by 2001
standards, the comparison skews considerably in favour of elliptic curves. Representing a
single group element is roughly four times as costly (in bits) for XTR than for ECC. Lenstra
also provided run-time estimates for various algorithms [Len01, Table 10] supporting the
conclusion that for higher security levels, ECC would handily beat XTR.

In Table 1 on the facing page, we summarize Lenstra’s findings, but we added an initial
column for 80-bit security, where for p30 we use the recommendation by van Dijk and
Woodruff [vW04] (which was a bit lower, so an Fp element narrowly would fit in a single
32-bit word) and, for simplicity, pretend as if a single group element could be compressed all
on its own. Additionally, we appended two columns with current NIST recommendations
targeting either 128 or 256 bit security [Bar20, page 55] (these recommendations match
the ones suggested by ECRYPT [ES18, Table 4.6] that have been reproduced as Table ??
on page ??). Moreover, for T30 the Granger–Vercauteren attack ([GV05], see Section ?? on
page ??) and later developments need to be taken into account and the limited potential
for higher compression is not worth the risk. In general, for T6(q) having non-prime q
seems to offer no discernible benefit over prime T6 or T2, unless the group arises in the
context of an elliptic curve pairing, in which case q = pm for m ∈ 2, 3, 4 may be observed.
Finally, the small characteristic case has been completely broken, as explained in Section
?? on page ??).

Acknowledgement. I am grateful to Eric Verheul and Robert Granger for their inspiration
and assistance while writing this chapter.

References
[Bar20] Elaine Barker. Nist special publication 800-57 part 1, revision 5, recommen-

dation for key management: Part 1 – general. Technical report, National

Martijn Stam 15

Table 1: Compact representations (in bits) for cyclotomic subgroups based on various
security levels and estimates.

recommended estimated predicted recommended recommended
80-bit 128-bit 128-bit 128-bit 256-bit
in 2001 in 2001 for 2020 in 2020 in 2020

p 1024 2644–3224 3296–3956 3072 15360
p2 512 1322–1612 1648–1978 1536 7680
p6 340 882–1076 1100–1320 1024 5120
p30 256 712–864 880–1056 discouraged discouraged
36m n.a. 1260–1565 1603–1954 broken broken

Institute of Standards and Technology, 2020. https://doi.org/10.6028/
NIST.SP.800-57pt1r5. 14

[BBL95] Daniel Bleichenbacher, Wieb Bosma, and Arjen K. Lenstra. Some remarks
on Lucas-based cryptosystems. In Don Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 386–396, Santa Barbara, CA, USA, August 27–
31, 1995. Springer, Heidelberg, Germany. 4

[BCN17] Joppe W. Bos, Craig Costello, and Michael Naehrig. Scalar multiplication
and exponentiation in pairing groups. In Nadia El Mrabet and Marc Joye,
editors, Guide to Pairing-Based Cryptography, chapter 6, pages 6–1–6–23.
CRC Press, 2017. 12

[BD19] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations
for pairings. Journal of Cryptology, 32(4):1298–1336, October 2019. 13

[BHV02] Wieb Bosma, James Hutton, and Eric R. Verheul. Looking beyond XTR. In
Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 46–
63, Queenstown, New Zealand, December 1–5, 2002. Springer, Heidelberg,
Germany. 9

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423 of LNCS. Springer, Hei-
delberg, Germany, 1998. Invited paper. 2

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D.
Galbraith and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of
LNCS, pages 39–56, Egham, UK, September 1–3, 2008. Springer, Heidelberg,
Germany. 4

[BPFCRH17] Jean-Luc Beuchat, Luis J. Dominguez Perez, Laura Fuentes-Castaneda, and
Francisco Rodriguez-Henriquez. Final exponentiation. In Nadia El Mrabet
and Marc Joye, editors, Guide to Pairing-Based Cryptography, chapter 7,
pages 7–1–7–28. CRC Press, 2017. 12

[BPV99] Andries E. Brouwer, Ruud Pellikaan, and Eric R. Verheul. Doing more
with fewer bits. In Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing,
editors, ASIACRYPT’99, volume 1716 of LNCS, pages 321–332, Singapore,
November 14–18, 1999. Springer, Heidelberg, Germany. 4, 9

[Bra93] S. Brands. An efficient off-line electronic cash system based on the repre-
sentation problem. CWI Technical report, CS-R9323, 1993. 2

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5

16 XTR and Tori

[CL87] H. Cohen and A. K. Lenstra. Supplement to implementation of a new
primality test. Mathematics of Computation, 48(177):S1–S4, 1987. 10

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. http://eprint.iacr.org/2006/291. 4

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976. 1

[DL03] Iwan M. Duursma and Hyang-Sook Lee. Tate pairing implementation
for hyperelliptic curves y2 = xp − x + d. In Chi-Sung Laih, editor, ASI-
ACRYPT 2003, volume 2894 of LNCS, pages 111–123, Taipei, Taiwan,
November 30 – December 4, 2003. Springer, Heidelberg, Germany. 12

[DMH+17] Sylvain Duquesne, Nadia El Mrabet, Safia Haloui, Damine Robert, and
Frank Rondepierre. Choosing parameters. In Nadia El Mrabet and Marc
Joye, editors, Guide to Pairing-Based Cryptography, chapter 10, pages
10–1–10–22. CRC Press, 2017. 13

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–472,
1985. 2

[ES18] ECRYPT and N. P. Smart. Algorithms, key size and pro-
tocols report. https://www.ecrypt.eu.org/csa/documents/D5.4-
FinalAlgKeySizeProt.pdf, 2018. 14

[Gal01] Steven D. Galbraith. Supersingular curves in cryptography. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 495–513, Gold
Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany. 12

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, Cambridge, UK, 2012. 8

[GH99] Guang Gong and Lein Harn. Public-key cryptosystems based on cubic finite
field extensions. IEEE Transactions on Information Theory, 45(7):2601–
2605, 1999. 4

[GHV08] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. Aspects of
pairing inversion. IEEE Transactions of Information Theory, 54(12):5719–
5728, 2008. 12

[GHW01] Guang Gong, Lein Harn, and Huapeng Wu. The GH public-key cryptosystem.
In Serge Vaudenay and Amr M. Youssef, editors, SAC 2001, volume 2259
of LNCS, pages 284–300, Toronto, Ontario, Canada, August 16–17, 2001.
Springer, Heidelberg, Germany. 4

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster
point multiplication on elliptic curves with efficient endomorphisms. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 190–200, Santa
Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany. 6

[GPS04] Robert Granger, Dan Page, and Martijn Stam. A comparison of CEILIDH
and XTR. In Duncan A. Buell, editor, Algorithmic Number Theory – ANTS,
volume 3076 of LNCS, pages 235–249. Springer, Heidelberg, Germany, 2004.
10

http://eprint.iacr.org/2006/291
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

Martijn Stam 17

[GPS05] Robert Granger, Dan Page, and Martijn Stam. Hardware and software
normal basis arithmetic for pairing-based cryptography in characteristic
three. IEEE Transactions on Computers, 54(7):852–860, 2005. 12

[GPS06a] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryp-
tographers. Cryptology ePrint Archive, Report 2006/165, 2006. http:
//eprint.iacr.org/2006/165. 12

[GPS06b] R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in
pairing-based cryptography. LMS Journal of Computation and Mathematics,
9:64–85, 2006. 12

[GPS06c] Robert Granger, Dan Page, and Nigel P. Smart. High security pairing-based
cryptography revisited. In Florian Hess, Sebastian Pauli, and Michael E.
Pohst, editors, Algorithmic Number Theory – ANTS, volume 4076 of LNCS,
pages 480–494. Springer, Heidelberg, Germany, 2006. 12

[GS08] Steven D. Galbraith and Michael Scott. Exponentiation in pairing-friendly
groups using homomorphisms. In Steven D. Galbraith and Kenneth G.
Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 211–224,
Egham, UK, September 1–3, 2008. Springer, Heidelberg, Germany. 13

[GS10] Robert Granger and Michael Scott. Faster squaring in the cyclotomic
subgroup of sixth degree extensions. In Phong Q. Nguyen and David
Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 209–223,
Paris, France, May 26–28, 2010. Springer, Heidelberg, Germany. 11

[Gui20] Aurore Guillevic. Pairing-friendly curves. https://members.loria.fr/
AGuillevic/pairing-friendly-curves, 2020. 13

[GV05] Robert Granger and Frederik Vercauteren. On the discrete logarithm
problem on algebraic tori. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 66–85, Santa Barbara, CA, USA, August 14–18, 2005.
Springer, Heidelberg, Germany. 14

[HLS04] Dong-Guk Han, Jongin Lim, and Kouichi Sakurai. On security of XTR
public key cryptosystems against side channel attacks. In Huaxiong Wang,
Josef Pieprzyk, and Vijay Varadharajan, editors, ACISP 04, volume 3108 of
LNCS, pages 454–465, Sydney, NSW, Australia, July 13–15, 2004. Springer,
Heidelberg, Germany. 7

[JY03] Marc Joye and Sung-Ming Yen. The Montgomery powering ladder. In
Burton S. Kaliski Jr, Çetin K. Koç, and Christof Paar, editors, CHES 2002,
volume 2523 of LNCS, pages 291–302, Redwood Shores, CA, USA, August 13–
15, 2003. Springer, Heidelberg, Germany. 7

[Kar13] Koray Karabina. Squaring in cyclotomic subgroups. Mathematics of Com-
putation, 82(281):555–579, 2013. 11, 13

[KKM13] Koray Karabina, Edward Knapp, and Alfred Menezes. Generalizations of
verheul’s theorem to asymmetric pairings. Advances in Mathematics of
Communications, 7(1):103–111, 2013. 12

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987. 2

http://eprint.iacr.org/2006/165
http://eprint.iacr.org/2006/165
https://members.loria.fr/AGuillevic/pairing-friendly-curves
https://members.loria.fr/AGuillevic/pairing-friendly-curves

18 XTR and Tori

[KP81] D. E. Knuth and C. H. Papadimitriou. Duality in addition chains. Bulletin
of the European Association for Theoretical Computer Science, 13:2–4, 1981.
7

[KPSY09] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new
randomness extraction paradigm for hybrid encryption. In Antoine Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 590–609, Cologne,
Germany, April 26–30, 2009. Springer, Heidelberg, Germany. 7

[Len97] Arjen K. Lenstra. Using cyclotomic polynomials to construct efficient
discrete logarithm cryptosystems over finite fields. In Vijay Varadharajan,
Josef Pieprzyk, and Yi Mu, editors, ACISP 97, volume 1270 of LNCS, pages
127–138, Sydney, NSW, Australia, July 7–9, 1997. Springer, Heidelberg,
Germany. 3, 13

[Len01] Arjen K. Lenstra. Unbelievable security. Matching AES security using
public key systems (invited talk). In Colin Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 67–86, Gold Coast, Australia, December 9–13,
2001. Springer, Heidelberg, Germany. 14

[LV00a] Arjen K. Lenstra and Eric R. Verheul. Key improvements to XTR. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
220–233, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany.
5

[LV00b] Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 1–19, Santa
Barbara, CA, USA, August 20–24, 2000. Springer, Heidelberg, Germany. 3,
5, 7, 10, 13

[LV01] Arjen K. Lenstra and Eric R. Verheul. Fast irreducibility and subgroup
membership testing in XTR. In Kwangjo Kim, editor, PKC 2001, volume
1992 of LNCS, pages 73–86, Cheju Island, South Korea, February 13–15,
2001. Springer, Heidelberg, Germany. 5, 6

[Men93] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer, Boston, MA,
1993. 11

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, CRYPTO’85, volume 218 of LNCS, pages 417–426, Santa Barbara,
CA, USA, August 18–22, 1986. Springer, Heidelberg, Germany. 2

[MN81] W. Müller and R. Nöbauer. Some remarks on public-key cryptosystems.
Studia Scientiarum Mathematicarum Hungarica, 16:71–76, 1981. 4

[Mon83] P. L. Montgomery. Evaluating recurrences of form Xm+n =
f(Xm, Xn, Xm−n) via Lucas chains. Revised (1992) version from ftp.cw.nl:
/pub/pmontgom/Lucas.ps.gs, 1983. 5, 7

[MV00] A. Menezes and S.A. Vanstone. Ecstr (xtr): Elliptic curve singular trace
representation. Presented at the Rump Session of Crypto 2000, 2000. 11

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing
elliptic curve logarithms to logarithms in a finite field. In 23rd ACM STOC,
pages 80–89, New Orleans, LA, USA, May 6–8, 1991. ACM Press. 11

ftp.cw.nl: /pub/pmontgom/Lucas.ps.gs
ftp.cw.nl: /pub/pmontgom/Lucas.ps.gs

Martijn Stam 19

[NR93] Kaisa Nyberg and Rainer A. Rueppel. A new signature scheme based on
the DSA giving message recovery. In Dorothy E. Denning, Raymond Pyle,
Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93,
pages 58–61, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press. 7

[Pol78] John M. Pollard. Monte Carlo Methods for Index Computation (mod p).
Mathematics of Computation, 32:918–924, 1978. 2

[PS04] Dan Page and Martijn Stam. On XTR and side-channel analysis. In Helena
Handschuh and Anwar Hasan, editors, SAC 2004, volume 3357 of LNCS,
pages 54–68, Waterloo, Ontario, Canada, August 9–10, 2004. Springer,
Heidelberg, Germany. 7

[RS03] Karl Rubin and Alice Silverberg. Torus-based cryptography. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 349–365, Santa Barbara,
CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany. 8

[RS08] Karl Rubin and Alice Silverberg. Compression in finite fields and torus-based
cryptography. SIAM Journal on Computing, 37(5):1401–1428, 2008. 8, 9

[SB04] Michael Scott and Paulo S. L. M. Barreto. Compressed pairings. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 140–
156, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg,
Germany. 12

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg,
Germany. 2

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal
de théorie des nombres de Bordeaux, 7(1):219–254, 1995. 2

[SCQ03] Francesco Sica, Mathieu Ciet, and Jean-Jacques Quisquater. Analysis of the
Gallant-Lambert-Vanstone method based on efficient endomorphisms: Ellip-
tic and hyperelliptic curves. In Kaisa Nyberg and Howard M. Heys, editors,
SAC 2002, volume 2595 of LNCS, pages 21–36, St. John’s, Newfoundland,
Canada, August 15–16, 2003. Springer, Heidelberg, Germany. 6

[Sha71] D. Shanks. Class number, a theory of factorization, and genera. In 1969
Number Theory Institute (Proceedings of Symposia in Pure Mathematics,
Vol. XX, State University New York, Stony Brook, NY, 1969), pages 415–440.
American Mathematical Society, New York, USA, 1971. 1

[SHH+07] Masaaki Shirase, Dong-Guk Han, Yasushi Hibino, Ho Won Kim, and
Tsuyoshi Takagi. Compressed XTR. In Jonathan Katz and Moti Yung,
editors, ACNS 07, volume 4521 of LNCS, pages 420–431, Zhuhai, China,
June 5–8, 2007. Springer, Heidelberg, Germany. 13

[SHH+08] Masaaki Shirase, Dong-Guk Han, Yasushi Hibino, Howon Kim, and Tsuyoshi
Takagi. A more compact representation of XTR cryptosystem. IEICE
Fundamentals of Electronics, Communications and Computer Sciences, 91-
A(10):2843–2850, 2008. 13

[SKSW20] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S.
Wahby. Pairing-Friendly Curves. Internet-Draft draft-irtf-cfrg-pairing-
friendly-curves-08, Internet Engineering Task Force, 2020. Work in

20 XTR and Tori

Progress, https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
pairing-friendly-curves-08. 13

[SL93] Peter J. Smith and Michael J. J. Lennon. Luc: A new public key system.
In E. Graham Dougall, editor, Computer Security, Proceedings of the IFIP
TC11, Conference on Information Security, IFIP/Sec, volume A-37 of IFIP
Transactions, pages 103–117. North-Holland, 1993. 4

[SL01] Martijn Stam and Arjen K. Lenstra. Speeding up XTR. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 125–143, Gold
Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany. 5, 6

[SL03] Martijn Stam and Arjen K. Lenstra. Efficient subgroup exponentiation in
quadratic and sixth degree extensions. In Burton S. Kaliski Jr, Çetin K. Koç,
and Christof Paar, editors, CHES 2002, volume 2523 of LNCS, pages 318–
332, Redwood Shores, CA, USA, August 13–15, 2003. Springer, Heidelberg,
Germany. 10

[SS95] Peter Smith and Christopher Skinner. A public-key cryptosystem and a
digital signature system based on the Lucas function analogue to discrete
logarithms. In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, ASI-
ACRYPT’94, volume 917 of LNCS, pages 357–364, Wollongong, Australia,
November 28 – December 1, 1995. Springer, Heidelberg, Germany. 4

[Sta03] Martijn Stam. Speeding Up Subgroup Cryptosystems. PhD thesis, Technische
Universiteit Eindhoven, 2003. 4, 6, 7

[TY98] Yiannis Tsiounis and Moti Yung. On the security of ElGamal based en-
cryption. In Hideki Imai and Yuliang Zheng, editors, PKC’98, volume 1431
of LNCS, pages 117–134, Pacifico Yokohama, Japan, February 5–6, 1998.
Springer, Heidelberg, Germany. 2

[Ver01] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic
curve cryptosystems. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 195–210, Innsbruck, Austria, May 6–10, 2001.
Springer, Heidelberg, Germany. 11

[Ver04] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic
curve cryptosystems. Journal of Cryptology, 17(4):277–296, September 2004.
11

[vGP+05] Marten van Dijk, Robert Granger, Dan Page, Karl Rubin, Alice Silverberg,
Martijn Stam, and David P. Woodruff. Practical cryptography in high
dimensional tori. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 234–250, Aarhus, Denmark, May 22–26, 2005. Springer,
Heidelberg, Germany. 10

[vW94] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search
with application to hash functions and discrete logarithms. In Dorothy E.
Denning, Raymond Pyle, Ravi Ganesan, and Ravi S. Sandhu, editors, ACM
CCS 94, pages 210–218, Fairfax, VA, USA, November 2–4, 1994. ACM Press.
2

[vW04] Marten van Dijk and David P. Woodruff. Asymptotically optimal com-
munication for torus-based cryptography. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 157–178, Santa Barbara, CA,
USA, August 15–19, 2004. Springer, Heidelberg, Germany. 9, 13, 14

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-08

	The Birth of XTR
	The Rise of Subgroup Cryptography
	The Search for Compactness and Efficiency

	The Magic of XTR
	Efficient Implementation
	Examples of XTRified Primitives

	The Conservative Use of Tori
	Direct Compression using Tori
	Efficient Arithmetic

	Pairings with Elliptic Curves
	An (In)Equivalence
	Improved Pairings

	Over the Edge: Cyclotomic Subgroups Recycled

