
Identi�able Cheating Entity Flexible
Round-Optimized Schnorr Threshold (ICE

FROST) Signature Protocol

Alonso González, Hamy Ratoanina, Robin Salen,
Setareh Shari�an, Vladimir Soukharev

research@toposware.com

Toposware, Inc.

January 1, 2023

Abstract. This paper presents an Identi�able Cheating Entity (ICE)
FROST signature protocol that is an improvement over the FROST sig-
nature scheme (Komlo and Goldberg, SAC 2020) since it can identify
cheating participants in its Key Generation protocol.
The proposed threshold signature protocol achieves robustness in the
Key Generation phase of the threshold signature protocol by introducing
a cheating identi�cation mechanism and then excluding cheating partic-
ipants from the protocol. By enabling the cheating identi�cation mech-
anism, we remove the need to abort the Key Generation protocol every
time cheating activity is suspected. Our cheating identi�cation mecha-
nism allows every participant to individually check the validity of com-
plaints issued against possibly cheating participants. Then, after all of
the cheating participants are eliminated, the Key Generation protocol is
guaranteed to �nish successfully. On the other hand, the signing process
only achieves a weak form of robustness, as in the original FROST.
We then introduce static public key variant of ICE FROST. Our work
is the �rst to consider static private/public keys for a round-optimized
Schnorr-based signature scheme. With static public keys, the group's
established public and private keys remain constant for the lifetime of
signers, while the signing shares of each participant are updated over
time, as well as the set of group members, which ensures the long-term
security of the static keys and facilitates the veri�cation process of the
generated threshold signature because a group of signers communicates
their public key to the veri�er only once during the group's lifetime.
Our implementation benchmarks demonstrate that the runtime of the
protocol is feasible for real-world applications.

1 Introduction

Digital signatures are a primary authentication tool for many cryptographic
protocols. Digital signature schemes assign a key pair consisting of a public and
a private key to each user. A user can sign messages using their private key,

2 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

whereas the signature is veri�able by any entity with access to the user's public
key. If the private key is known only to the signer, a secure digital signature
scheme guarantees that a veri�able signature on a message is generated, and no
other entity can forge their signature.

In some applications, the signer is not an individual but a group such as a
network or an organization. In this case, a valid signature can only be generated
if the group members approve the content of the message. This requirement has
become increasingly indispensable with the advent of blockchain technologies
and cryptocurrencies in the past decade.

Distributed signing is usually enforced by using multisignature or threshold
signature schemes. Multisignature schemes [Oka88,MOR01] enable a subgroup
of potential signers, each with a public/private key pair, to jointly generate a
signature σ on message m so that σ convinces a veri�er that all members of the
corresponding subgroup have signed m. On the other hand, threshold signature
schemes [GJKR96a,GJKR96b] distribute a private key, with or without a trusted
dealer, among n potential signers according to some t-out-of-n access structure.
Only signatures generated by the cooperation of at least t signers will be accepted
by veri�ers with access to a unique �xed public key of the scheme. Note that
multisignature schemes strive to prove that each member of the stated subgroup
signed the message while the size of this subgroup can be arbitrary. As for
threshold signature schemes, they aim to prove that a subgroup of su�cient size
(the minimum subgroup size is known in advance) signed the message.

In some applications, threshold signature schemes are preferred over mul-
tisignature schemes due to privacy and availability reasons. From the privacy
perspective, contrary to multisignatures, threshold signatures do not reveal the
identities of individual signers and guarantee their anonymity. Finally, gener-
ating a threshold signature does not require all signers of a speci�c subgroup
to be present online: the signature will be generated if at least t of the signers
are online. In the case of generating a multisignature, all members of the sign-
ing subgroup must be present online (maybe not simultaneously as described in
[BDN18].

Threshold signature schemes are constructed from primary digital signatures
including RSA signatures [Sho00,DK01], DSA signatures [Lan95,GJKR96b] and
their variants � ECDSA [GGN16,BGG17,GG18] signatures, BLS signatures
[Bol03], and Schnorr signatures [SS01,GJKR03].

The above protocols require that signers interact in order to generate the
�nal signature. Yet, in many real-life situations, it is desirable to have a non-
interactive signature generation scheme that allows each signer, who saw the
message, to generate their own �signature share� without having to interact with
any other signer. Non-interactive threshold RSA and BLS signature schemes are
proposed in [JO08] and [BLS01], respectively. Preprocessing technique is used
in ECDSA threshold schemes [CGG+20] and Schnorr-based schemes [KG20] to
construct non-interactive protocols.

Robustness is another desirable property of multisignature and threshold
signature schemes; it ensures proper execution of the protocol even if there are

ICE FROST Protocol 3

cheating signers who deviate from the protocol. One way to achieve robustness is
by identifying cheaters and excluding them from the protocol execution. In such
environments as blockchains that allow �nancial punishment of cheating par-
ticipants, when cheating identi�ability combines with su�cient punishment, the
resulting method can stop (rational) parties from cheating and thus decrease the
failure probability of the protocol: i.e., enhance its robustness. Note that cheat-
ing identi�ability does not necessarily result in robustness as some protocols will
abort execution after identifying cheaters (identi�able aborts): e.g., threshold
ECDSA protocols in [CGG+20,GG20]. The obtained guarantee in these cases is
referred to as weak robustness [MOR01].

Cheating identi�ability can be viewed as an extended notion of soundness
where the validity of local, possibly secret, communication between two partici-
pants can be publicly veri�ed by the rest. In this way, all honest participants can
agree on the set of misbehaving participants and exclude them. This can be eas-
ily achieved through the use of zero-knowledge proofs and encryption by making
participants encrypt their secret messages and show in zero-knowledge its cor-
rectness. Non-interactive versions of this mechanism typically require the use of
pairings, or at least homomorphic encryption, so that it is possible to e�ciently
construct statements related to the encrypted communication. ElGamal-based
encryption with non-interactive checks of correctness such as the one used in
[Gro21] su�ers from ine�cient decryption requiring the computation of the dis-
crete logarithm problem for bounded challenges.

The signature generated by a threshold scheme eventually becomes part of
a certi�cate in protocols that require authentication. Before the signing and
veri�cation sub-protocols start, the group's public key (necessary to verify the
generated signature) should be communicated reliably to the certi�cate author-
ity. However, each public key is valid only for a certain time period and after
that the update is necessary to minimize the assessed risk under the potential
attacks. This highlights the challenge of frequent update and communication of
temporary public keys that may a�ect the e�ciency of the protocol, particularly
while generating multiple threshold signatures for multiple messages. A solution
to this is using long-lived (i.e., static) public keys that will remain unchanged
for, possibly, the lifetime of the signing group. Protecting long-lived keys re-
quires constructing proactive countermeasures by using variations of Shamir's
secret sharing scheme. The application of long-lived keys for threshold signa-
tures was �rst considered in [HJJ+97], where the proactive secret sharing (PSS)
scheme of [HJKY95] is used to propose a framework for transferring a wide class
of discrete log-based threshold signature schemes into the proactive ones with
long-lived secure private/public keys.

1.1 Our Contributions

We propose a threshold signature protocol based on FROST, a Flexible Round-
Optimized Schnorr Threshold signature scheme by Komlo and Goldberg [KG20].
The proposed signature protocol has the advantage of preprocessing computa-

4 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

tions, �rst considered in [GG18] for threshold signature schemes. The protocol
has two main phases:

1. A Key Generation phase in which all participating parties take part in gen-
erating and distributing a joint secret key that will be used for signing mes-
sages, and

2. A Signing phase in which a subgroup of parties, satisfying the threshold, use
their shares from the joint secret key to sign a message.

Our main contributions in this work are as follows:
i) Achieving robustness in Key Generation phase of the threshold signature

protocol. We propose a cheating identi�cation mechanism and then exclude
cheating participants from the protocol, without aborting, to bring robustness
to the Key Generation protocol. We consider a party to be cheating when it
distributes inconsistent shares among other participants or accuses an honest
participant of distributing inconsistent shares. To emphasize this contribution,
we named our proposed signature protocol as �Identi�able Cheating Entity (ICE)
FROST�. The description of the protocol is given in Section 4. Due to the robust-
ness of the Key Generation phase in ICE FROST and identi�cation of cheaters
during the Signing phase (that is inherent from FROST), ICE FROST is weakly
robust in the sense of Micali et al. [MOR01]. Further, in Section 7, we show that
with an appropriate choice of a subset of signers, the weak robustness property
of ICE FROST scales well for systems with large numbers of participants. Im-
proving the robustness of ICE FROST, by making Signing phase robust, remains
an interesting future research question.

For achieving cheating identi�ability, instead of using homomorphic encryp-
tion as in [Gro21], we use symmetric encryption at the cost of more interaction.
In our construction, shares are encrypted using the the DH key between the
sender and the receiver. When a receiver decrypts an invalid share, it can con-
vince the rest of the parties that the sender cheated by revealing the DH key
with a proof of its validity with respect to the sender and receiver key.

ii)Designing the �rst proactively secure Schnorr-based signature scheme with
static private/public keys.Wemodify the Key Generation protocol of ICE FROST
to maintain long-lived secure signing keys with the help of the PSS protocol
[HJKY95] that allows for regular key redistribution between participants while
keeping the resulting distributively generated key unchanged. Note that the set
of participants can be updated as well, while the key would still remain the same.

According to [HJJ+97], �proactivization� of a threshold signature scheme
is possible under satisfaction of certain conditions. Namely, if the signature
scheme is a discrete log-based robust threshold signature scheme, whose thresh-
old key generation protocol implements Shamir's secret sharing of the secret
key x corresponding to the public key y = gx and outputs veri�cation informa-
tion (gx1 , . . . , gxn), where (x1, . . . , xn) are secret shares of the players and if the
threshold signature protocol is can be simulated [GJKR96b, De�nition 2]. While
Schnorr-based threshold signature schemes are introduced as one of the potential
candidates for proactivization using the framework of [HJJ+97], to the best of

ICE FROST Protocol 5

our knowledge, an actual proactive Schnorr-based scheme has never been pro-
posed in the literature. Proactivization of existing robust Schnorr-based thresh-
old signatures of [SS01] and [GJKR03] using this the framework of [HJJ+97] is
not possible because they do not satisfy all the mentioned conditions. In par-
ticular, they use additive shares rather than Shamir's (polynomial) shares for
generating the threshold signature. Our scheme on the other hand, is the �rst ro-
bust Schnorr-based threshold signature scheme that satis�es all the conditions,
noting that the proof of simulatability is implicit in our unforgeability proof
(Theorem 1), where we use simulation technique to proceed with the proof. The
details of our design is given in Section 5.

iii) Mitigating the Key Bias Attack from [GJKR99] without increasing the
number of rounds of the protocol. We achieve this by using public veri�able ran-
domness to choose and sacri�ce one of the participants at random to ensure
that an adversary cannot bias the generated key. In the environments where a
distributed randomness is available to participants (e.g., in a blockchain), im-
plementing the suggested mitigation is easily feasible.

So far, no explicit forgery attack associated to the key bias has been reported.
However, according to [GJKR03], mitigating this attack reduces the required
security parameters to achieve a desired level of security.

Organization In Section 2 we review the related backgrounds. In Section 3 we
review the FROST signature scheme, which is the basis of the proposed work,
and then discuss some suggestions for achieving (weak) robustness in FROST. In
Section 4 we present our main contribution, a Schnorr-based threshold signature
scheme that can identify cheating participants in its key generation protocol. In
Section 5 we present a modi�cation of ICE FROST that allows the use of static
group public and private keys for signing, while the shares of signing participants
are regularly updated. In Section 7 we present some practical considerations that
can improve the e�ciency of ICE FROST in practice, especially when dealing
with large numbers of participants. Section 7 contains benchmarks of our im-
plementations. In Section 8 we review the possible attacks against which ICE
FROST is secure and propose mitigation for attacks against which ICE FROST
is vulnerable. In Section 9 we compare the ICE FROST with FROST in terms
of computational and communication costs, and �nally, we conclude this work
in Section 10.

1.2 Related Works

Threshold cryptography [Des87,DF89] aims to distribute secret information (i.e.,
private keys) and computation (i.e., signature generation or decryption) among n
parties to avoid having a central point of trust, which may become a single point
of failure. Threshold signature schemes lay under the umbrella of threshold cryp-
tography. They are based on RSA signatures [Rab98,Sho00,FGMY97a], BLS sig-
natures [BDN18,BLS01], and Schnorr signatures [AAM19,GG20,GJKR03,SS01].

Robust schemes ensure successful execution of the protocol if t participants
follow the protocol, even if a subgroup of participants (at most n−t) contributes

6 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

malformed shares. On the other hand, non-robust schemes abort after detecting
any misbehavior of a participant. The schemes of [FGMY97a,Rab98] are RSA-
based robust threshold signature schemes and [SS01,GJKR03] are Schnorr-based
robust threshold signature schemes. The latter two schemes require all n sign-
ers, of which no more than t are malicious, to participate in order to generate
a signature. Both of these schemes consist of two main phases: Key Genera-
tion phase and Signing phase. Key Generation phase uses Pedersen's distributed
key generation (DKG) algorithm [Ped91a], which allows for the joint genera-
tion of signing keys. This algorithm uses a variation of Shamir's secret shar-
ing scheme (SSS) [Sha79], the Veri�able Secret Sharing (VSS) scheme, which
allows veri�cation (in terms of consistency) of the shared secrets during the
secret distribution and veri�cation of presented shares during the secret recon-
struction steps [Fel87]. VSS schemes are examined in the presence of a trusted
dealer [CGMA85,CDD+99,RBO89] as well as in the absence of a trusted dealer
[CDF01]. Cheating in these schemes is detected, and robustness is achieved by
avoiding incorrect input in some cases. However, it does not provide a strong
deterrent against cheating because cheating entities can cause additional com-
putations in the protocol without being identi�ed. In identi�able secret sharing,
a failure of the reconstruction algorithm results in identifying the participants
who modi�ed their shares. Computationally identi�able secret sharing schemes
have been proposed in [KOO95,MS81,Cho11,IOS12].

Long-lived keys achieved with the aids of proactive secret sharing schemes are
�rst considered in [HJJ+97] for discrete log-based threshold signature schemes.
Proactive RSA based threshold schemes are considered in [FGMY97b] and [Rab98].
Static keys were used in [Gro21] for BLS signatures, but our work is the �rst to
consider static keys for a Schnorr-based signature scheme.

2 Preliminaries

In this section, we �rst introduce the notations that will be used throughout the
paper. Then we review the mathematical background needed to understand the
contributions of this paper.

Notations. We use calligraphic letters to denote integer sets, or sets of par-
ticipants in a protocol Π. By P = {P1, P2, . . . , Pn} we denote the set of n
participants and can identify a participant by their index. If S ⊂ P is a subset
of participants, then |S| denotes its size.

All the logarithms are in base 2. We use x
$← X to denote a uniformly random

selection of an element x from a set X. The set X is usually instantiated by a
�nite �eld of prime order q, i.e., Zq.

A symmetric encryption scheme is denoted by Esym = (Encsym, Decsym)
associated with key space K, message space M, and ciphertext space C, for
k ∈ K, encrypts the message m ∈ M to c = Encsym(k,m), where c ∈ C so that
Decsym(k,Encsym(k,m)) = m.

ICE FROST Protocol 7

2.1 Distributed Secret Generation

Shamir's Secret Sharing (SSS) [Sha79]. Secret sharing is a cryptographic
primitive that allows a trusted dealer to distribute a secret s among a set of
parties by allocating a share of the secret to them. More precisely, to distribute
a secret s ∈ S among a set of signers P = {P1, . . . , Pn} the trusted dealer
computes the shares f1, . . . , fn ∈ F , where S is the space of secret keys and F
is the space of all possible shares. The secret can be reconstructed only when an
authorized subset of the parties A ⊂ P of these signers pools their shares.

In threshold secret sharing schemes, authorized subsets of valid shares are
those whose cardinality is greater than the threshold value denoted by t. Shamir's
threshold secret sharing scheme [Sha79] is based on polynomial interpolation.
This scheme is information-theoretically secure and does not reveal any informa-
tion to an unauthorized subset of users. Shamir's (t, n)-threshold secret sharing
scheme consists of the Share and Reconstruct algorithms de�ned as follows:

� Share takes a secret s ∈ Fq as input and constructs a polynomial of degree
t − 1 by randomly selecting t − 1 coe�cients a1, . . . , at−1 ∈ Fq, and letting

the polynomial be f(x) = s +
∑t−1

i=1 aix
i. It computes the share fi ∈ Fq for

the signer si ∈ S with a unique ID idi ∈ Fq as a point on polynomial f(x),
i.e., fi := (idi, f(idi)).

� Reconstruct takes as input a set of shares held by a subset A ⊂ S of signers.
If |A| ≤ t, then it outputs ⊥. Otherwise, it reconstructs the polynomial f(x)
using Lagrange interpolation formula as follows:

f(x) =
∑
Pi∈A

f(idi)
∏

Pj∈A,idi ̸=idj

x− idj
idi − idj

,

and outputs the secret s ∈ Fq as f(0) = s.

Cheating (tampering) in secret sharing corresponds to a scenario in which a
signer provides the reconstruction algorithm with a share di�erent than the one
assigned to them by the distribution algorithm. An identi�able secret sharing
scheme, which was �rst considered by McEliece and Sarwate [MS81], is a secret
sharing scheme in which the reconstruction algorithm can identify all cheaters
with high probability.

Proactive Secret Sharing (PSS) [HJKY95]. Proactive secret sharing was
introduced by Herzberg et al. in [HJKY95]. It addresses the problem of the
long-term con�dentiality of the shared secret by periodically renewing shares to
prevent a mobile adversary from collecting enough shares over time to recon-
struct the secret. For share renewal, each participant can generate (t, n) shares
of the value of �0� each and send the shares to respective participants. Next, the
participants add all the received shares to get their renewed secret share of the
initial secret [HJKY95].

Re�ned constructions of PSS allow not only for renewal of existing shares,
but also for distribution of new shares to di�erent signers. Therefore, this proce-
dure is often referred to as redistribution rather than renewal of shares [DJ97].

8 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Suppose an underlying (t, n)-Shamir's secret sharing of a secret s, which should
be converted into a (t′, n′)-Shamir's secret sharing of the same secret s. Let P
be the set of current signers and P ′ the set of new signers to which share redis-
tribution should happen, where |P| = n and |P ′| = n′. Each participant Pi ∈ P
applies the (t′, n′) secret sharing procedure to their currently stored share si and
sends (through a secure channel) the sub-shares to the respective participants.
Next, the receiving participants agree on a subset Pc ⊂ P of t participants and
compute their new share s′ by combining the t sub-shares received from the
members of Pc. Once the new shares are computed and stored, the respective
participants should delete the old shares. Note that, by creating sub-shares of
the existing shares and recombining them, the original secret remains unchanged,
and shares from di�erent time periods cannot be combined to reconstruct the
secret.

Veri�able Secret Sharing (VSS) [CGMA85]. Veri�able secret sharing was
introduced by Chor et al. in [CGMA85] and allows signers to verify the validity of
the received shares from the dealer. Veri�able secret sharing is usually provided
by the application of a public commitment, which is assumed to be correctly
visible to all participants [Fel87,Ped91a].

To share a secret s using a (t, n) VSS, the dealer (as in Shamir's secret
sharing) generates t − 1 random coe�cients a1, . . . , at−1 and uses them to de-
�ne a polynomial f(·) of degree t − 1 so that f(0) = s and fi = f(idi) is the
corresponding share for the party Pi with an ID idi. However, to facilitate the
veri�cation of the distributed shares, the dealer also broadcasts a public com-
mitment vector C = ⟨ϕ0, ϕ1, . . . , ϕt−1⟩, where ϕ0 is a commitment to the secret
s and, for 1 ≤ i ≤ t − 1, ϕi is a commitment to the coe�cient ai used to de-
�ne the polynomial f(·). Each party veri�es the validity of their share using the
commitment vector C. If the veri�cation fails, the signer can issue a complaint
against the dealer and take actions such as broadcasting the complaint to all
other participants.

Commitment schemes. Commitment schemes allow a committer to publish a
value that binds them to a message (binding) without revealing it (hiding).

We review Feldman's commitment scheme [Fel87] here; the scheme is a triple
of algorithms (Setup,Commit,Open):

� Setup takes a security parameter λ as input and outputs G, a group of prime
order q, and a generator g ∈ G.

� Commit takes a message m ∈ Fq as input and outputs the commitment
ϕ = gm.

� Open takes a commitment ϕ ∈ G and a messagem ∈ Fq as input and outputs
1 if ϕ = gm and 0 otherwise.

The commitment scheme used in Feldman's VSS scheme [Fel87] is uncondition-
ally binding and computationally hiding; there are other schemes, such as Ped-
ersen's scheme [Ped91a], that are computationally binding and unconditionally
hiding.

ICE FROST Protocol 9

Distributed Key Generation (DKG) [Ped91b]. Distributed key generation
allows a set of parties P = {P1, . . . , Pn} to jointly generate a public and private
key pair without involving a trusted dealer. The public key is publicly known,
while the private key is kept secret and shared via a (t, n) threshold scheme,
where the shares belong to the parties in P. More precisely, no attacker can
learn anything about the key unless they obtain the corresponding shares from at
least t parties in P. For discrete log�based schemes, a distributed key generation
scheme secretly shares a uniformly distributed value x and makes the value
y = gx public as the public key, where g ∈ G is the generator of G, a group of
prime order q.

In the DKG scheme presented by Pedersen in [Ped91b], each participant acts
as a dealer of Feldman's VSS protocol. Each participant selects a secret si and
generates corresponding shares for all other parties. The protocol then requires
two rounds of communication between all participants: a public communication
round, where each party broadcasts a commitment to si and the coe�cients of
the corresponding polynomial, and a secure communication round, where each
party Pi securely sends a secret share of si to all other participants. After receiv-
ing a share from Pi, each participant checks if the received share is consistent
with the previously published commitment. If so, the received share is marked
as quali�ed. Each participant derives their total share by adding up all the quali-
�ed shares they received. The secret shared value s itself is not computed by any
party: however, it is equal to the sum of the shared sis which passed commitment
checks by all recipients of the shares.

2.2 Zero-knowledge Proofs

Zero-knowledge proofs were introduced in the seminal work of Goldwasser, Mi-
cali, and Racko� [GMR89]. Informally, in a zero-knowledge proof system, the
prover wants to convince the veri�er that some statement is true, yet, the ver-
i�er should not learn anything from their interaction with the prover beyond
the truth of the statement. In other words, a (potentially malicious) veri�er V
gains no new information from interacting with a prover P on a common input
x, if everything that this veri�er V can compute after interacting with P can
be computed directly from the common input x by an e�cient algorithm. Zero-
knowledge proofs not only demonstrate to the veri�er the existence of a witness
w for the statement, but additionally prove that the prover knows that witness.
We say that an e�cient algorithm A knows a value w if we can construct another
e�cient algorithm that takes A as input (for example, by getting the code of A
and its random coins) and outputs w. Such an algorithm is called an extractor
for A.

A typical use case of zero-knowledge proof of knowledge is during authenti-
cation in a secure communication between the server and the client: the server
publishes their public key pk and stores the corresponding secret key sk. The
client can verify that it is talking to the correct server by asking the server to
perform a zero-knowledge proof that it knows the secret key sk corresponding
to pk.

10 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Σ-Protocols. Σ-protocols, a special class of zero-knowledge proof systems, are
the basis of many e�cient zero-knowledge protocols.

De�nition 1 (Σ-Protocol). A Σ-protocol for a language L is a public-coin
three-move honest-veri�er zero-knowledge proof of knowledge, which has the fol-
lowing structure:

1. P sends to V some commitment value r,

2. V sends to P a uniformly random challenge e,

3. P sends to V an answer f(w, r, e), where f is some public function, and w
is the witness held by P .

Fiat-Shamir Heuristic. The Fiat-Shamir heuristic [FS86] is a heuristic method
to convert Σ-protocols into non-interactive zero-knowledge arguments. It pro-
ceeds as follows: let w be the witness. To prove that a word x belongs to a
language L, the prover P �rst computes the �rst �ow (the commitment) of a Σ-
protocol for this statement. Let c denote this �rst �ow. Then, P sets e = H(x, c),
where H is some hash function, and computes the last �ow of the Σ-protocol
using e as the challenge. This approach has been proven to be secure in a random
oracle model.

2.3 Schnorr Signature Scheme

A Schnorr signature [Sch89] is generated for a message m, under secret key
s ∈ Zq and public key Y = gs ∈ G as follows:

1. Sample a random nonce k
$← Zq; compute the commitment R = gk ∈ G.

2. Compute the challenge c = H(R, Y,m), where H : {0, 1}∗ → Zq is a crypto-
graphic hash function.

3. Using the secret keys, compute the response z = k + s · c ∈ Zq.

4. De�ne the signature over M to be σ = (R, z).

Validating the integrity of m by an identi�ed signer with the public key Y
and the signature σ is performed as follows:

1. Parse σ as (R, z); derive c = H(R, Y,m).

2. Compute R′ = gz · Y −c.

3. Output 1 if R = R′ to indicate success; otherwise, output 0.

In the random oracle model, the unforgeability of this scheme under chosen-
message attack is reduced to the discrete logarithm problem according to [PS96].

Schnorr signatures can be considered just standard Σ-protocol proofs of
knowledge of the discrete logarithm of Y , made non-interactive (and bound to
the message m) with the Fiat-Shamir transform [FS86].

ICE FROST Protocol 11

2.4 Threshold Signatures

The initial de�nition of a (t, n) threshold signature scheme introduced by Desmedt
in [Des87] has two main properties; i) n participants with a common pub-
lic key can issue a signature even if there are t < n/2 dishonest (cheating)
participants and ii) any t − 1 corrupted participants cannot forge a signature.
These types of signature have been referred to as robust threshold signatures in
[GJKR96a,GJKR96b] and t-resilient signatures in [PK96]. Frankel and Desmedt
de�ned the concept of threshold multisignature schemes in [FD92] and proposed
a threshold multisignature RSA scheme that is non-interactive. Threshold mul-
tisignatures allow any subset of participants of a size larger than the threshold
to produce signatures over a message so that anyone can validate the signature
using the unique public key assigned to the group of n parties. Threshold mul-
tisignatures are referred to as threshold signatures in [GJKR99,SS01,KG20]. We
follow the latter and use a �(t, n)-threshold signature� to describe these schemes.

Shoup [Sho00] used the �dual-parameter� notion to describe a threshold sig-
nature scheme that allows any subset of su�cient participants to generate a
signature, but that disallows the creation of a valid signature by insu�cient
(possibly corrupted) participants or the prevention of signature generation by
uncorrupted participants. In this notion, there is one threshold t for the min-
imum quorum size and another threshold k < t for the maximum number of
cheating participants. A particular message is signed only if at least t−k honest
participants have authorized the signature. Shoup proposes an RSA threshold
signature scheme for k ≤ t− 1.

The security notion for (t, n) threshold signature schemes requires unforge-
ability of the scheme. That is, after a distributed generation of the public key, no
polynomial-time adversary who can access a polynomial number of threshold sig-
natures on the messages of their choice and also t−1 corrupted participants, can
produce, with a non-negligible probability, a valid signature under the generated
public key on some new message. Unforgeability in this sense is referred to as
existential unforgeability in the literature [GMR88]. A weaker notion is universal
unforgeability, where an adversary is supposed to generate a valid signature for
any message. We consider only existential unforgeability in this paper.

De�nition 2. Let TS = (KeyGen,Sign,Verify) be a threshold signature scheme
with key generation, signing and veri�cation algorithms KeyGen, Sign and Verify,
respectively. TS is called a secure threshold signature scheme if the following
conditions hold:

1. Correctness. Any subset S of participants with cardinality at least t can
produce a valid signature on message M . A valid signature is a signature
that will be veri�ed by the Verify algorithm.

2. Unforgeability. Any polynomial-time adversary who sees the protocol's out-
put (signature) on poly(λ) input messages of their choice and can corrupt up
to t−1 players, cannot produce the valid signature σ for a message M , which
has not been submitted to Sign before, with probability more than negl(λ),
where negl(·) is a negligible function.

12 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Robustness is a desirable property of a (t, n) threshold signature schemes.
It ensures that a valid signature is generated in the presence of some malicious
participants who seek to break the protocol. For the sake of clarity, further, we
refer to participants who try to forge a signature as corrupted participants. Also,
we refer to participants who try to prevent the generation of a valid signature
as cheating participants. We use t to denote the number of trusted participants
required to successfully run the signature scheme and k to denote the number
of cheating participants. For an integer k, the robustness property is de�ned as
follows.

(k,n)-Robustness [GJKR96b]. Even k out of n cheating participants who
deviate from the protocol cannot prevent honest participants from generating a
valid signature. i.e., both Key Generation and Signing protocols will run success-
fully in the presence of k cheating participants.

We also de�ne (k, n) robustness for a standalone Key Generation and Signing
protocols. The Key Generation protocol of a (t, n) threshold signature scheme
is (k, n) robust if even in the presence of k cheating participants, the protocol
outputs a group public key and associated signing and veri�cation keys to each
honest participant such that at least t honest participants can output a valid
signature on a message m using their signing shares during the Signing protocol.
The Signing protocol is (k, n) robust if even in the presence of k cheating adver-
saries, the protocol allows the maximal set of t honest participants who verify
message m to outputs a valid signature on m using the generated signing keys
during the Key Generation protocol.

3 FROST and Its Robustness

The FROST protocol focuses on e�ciency rather than on robustness. In the ab-
sence of cheating participants, this approach works e�ciently. However, cheating
participants can delay or even stop the execution of FROST by distributing in-
consistent shares among participants. In this section, we start with a review of
the FROST protocol of [KG20] and then introduce mechanisms for dealing with
cheating participants in FROST.

3.1 Flexible Round-optimized Schnorr Threshold Signature

FROST is an e�cient Schnorr threshold signature scheme with security guar-
antees. Although the original design of FROST requires a two-round signing
protocol in which each signer sends and receives two messages, it can be opti-
mized to a (non-broadcast) single-round signing protocol with a preprocessing
step. FROST has high e�ciency in the absence of misbehaving parties. However,
misbehaving participants can delay the FROST signing algorithm by forcing the
honest parties to re-run the protocol after their misbehaviour is detected.

The FROST protocol consists of two sub-protocols: (i) Key Generation, in
which a group of signers jointly generates a random key that will be used as

ICE FROST Protocol 13

the group's signing key1, and (ii) Signing, in which any subgroup of users of
cardinality greater than or equal to the threshold can sign a message. The �nal
signature is generated either by a semi-honest signature aggregator or by any
of the active participants. We brie�y review the (t, n) FROST signature scheme
here for completeness. See [KG20, Section 5] for more information.

-FROST Key Generation Protocol. The key generation protocol of
FROST runs as follows: each participant Pi, 1 ≤ i ≤ n chooses a secret ai0 and
generates a polynomial f(·) of degree t−1 by randomly choosing t−1 other coef-
�cients ai1, . . . , ai(t−1). Next, they publish a zero-knowledge proof of knowledge
of ai0 and a vector of commitments to every other coe�cient of the polynomial
(ai1 to ai(t−1)). Publishing the zero-knowledge proof of knowledge of ai0 is re-
quired to prevent rogue-key attacks [BBS03] in the setting where t ≥ n/2. The
zero-knowledge proof published by Pi is checked by every other participant using
the �rst component of the commitment vector - the commitment to the shared
secret ai0. If the proof veri�cation fails, the protocol is aborted. Otherwise, Pi

calculates the shares of the secret ai0 for all the other participants and securely
sends each share to the corresponding participant. Each participant veri�es the
share received from Pi using the commitment vector and aborts the protocol
if the veri�cation fails. Otherwise, each participant calculates their long-lived
private signing share si and the corresponding public veri�cation share Yi using
the received shares from every other participant (including their own share). The
group's public key is calculated using all the commitments to ai0 for 1 ≤ i ≤ n.

-FROST signing protocol. The FROST signing protocol consists of two
phases: a preprocessing phase and a single-round signing phase. In the preprocess-
ing phase, each participant Pi generates a list of single-use private nonce pairs
and corresponding public commitment shares ⟨

(
(dij , Dij = gdij

)
,
(
eij , Eij =

geij))⟩πj=1, where j is a counter that identi�es the next nonce/commitment share
pair available to use for signing and π determines the number of nonces that are
generated and their corresponding commitments (Dij , Eij) in a single prepro-
cessing step. Pi then publishes their ID idi and the list of commitments.

To sign a message m in the signing phase, a set S of at least t signers is
selected. After this, the signature aggregator (possibly included in S) selects
the next available commitment (Dij = gdij , Eij = geij) for each signer and
outputs Bi = ⟨(i,Di, Ei)⟩i∈S . The signature aggregator then sends (m,Bi) to
every signer in S. Each participant checks M . If a participant agrees to sign M ,
they (i) calculate a binding value ρi = H1(i,m,Bi) using a hash function H1(·)
for every i ∈ S, (ii) calculate the group commitment R =

∏
i∈S Di · (Ei)

ρi and
the challenge c = H2(R, Y,m) using another hash function H2(·), and �nally,
(iii) calculate the response zi = di + (ei · ρi) + λi · si · c to the challenge using
their long-lived key si, where λi is the Lagrange coe�cient for ID i in set S.
The signature aggregator then checks the consistency of zi, reported by each
participant, using (Di, Ei) and their public veri�cation share Yi. If the check

1 Note that the signing key is never reconstructed. Instead, at the end of the key
generation protocol, each participant receives a long-lived private signing share and
computes a public veri�cation share.

14 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

passes, the group's response is z =
∑

i∈S zi and the group signature on m is
σ = (R, z). This signature is veri�able to anyone performing a standard Schnorr
veri�cation operation with Y as the public key (Section 2.3).

-Robustness in the FROST protocol. To ensure successful execution of
the FROST protocol without signi�cant loss of e�ciency, we de�ne a relaxed
version of robustness property called weak robustness, following the de�nition
for multisignatures given in Micali et. al. [MOR01]. Let 0 < α ≤ 1; we de�ne
α-weak robustness as follows.

De�nition 3 (α-Weak Robustness.). Let TS = (KeyGen,Sign,Verify) be a
(t, n) threshold signature scheme with key generation, signing and veri�cation
algorithms KeyGen, Sign and Verify, respectively. TS is weakly robust if, after
each failure in generating a valid signature on message m (either during Key-
Gen or Sign), the identity of at least one cheating participant is exposed with
probability greater than α.

Proposition 1. An α-weak robust (t, n) threshold signature scheme run by n
players, of which no more than k are malicious and k < n−t, will run successfully
after at most k runs with probability at least αk.

Proof. In each run of TS, at least one cheating participant will be identi�ed
with probability at least α. Let the protocol re-run after excluding the cheat-
ing participant. After no more than k runs, every participant will be excluded,
and the protocol will complete successfully. The probability of identifying all k
cheating participants is bounded from above by the product of the probalility of
detecting each participant in one run; according to the Bayes' theorem, that is
αk. □

In FROST, cheaters are identi�ed during the signing phase. However, the
scheme, as a whole, is neither robust nor weakly robust, because the key gener-
ation process may abort without exposing any cheating participants. To achieve
weak robustness, we propose to make the key generation phase robust. In this
case, the only event where the protocol fails is during the signing phase and,
since cheating is identi�able in the signing phase, the whole scheme can become
robust. We consider two approaches for making the key generation of FROST
robust, namely, i) using Pedersen's distributed key generation protocol [Ped91b]
for generating the key, and ii) identifying and excluding cheaters from the key
generation process. We note that, unlike the signing phase, the key generation
phase can continue after cheaters are identi�ed and excluded; therefore, the guar-
antee that we get by enabling cheating identi�cation in the key generation phase
is robustness rather than weak robustness for the Key Generation protocol. How-
ever, the whole scheme is only weakly robust Further, we look into these two
approaches.

3.2 First Approach: Robustness Using Pedersen's DKG

Weak robustness for FROST can be maintained by modifying the key generation
phase using Pedersen's DKG in [Ped91b]. This approach for key generation of

ICE FROST Protocol 15

a threshold signature is used in [SS01,GJKR99]. The modi�ed KeyGen protocol
of FROST proceeds as follows: after Pi veri�es the zero-knowledge proof broad-
casted by Pl for the secret al0 and receives the corresponding share securely,
instead of aborting the protocol (step 2 of Round 2 in the original FROST pro-
tocol [KG20, Figure 1]) because of the failed veri�cation of the received share
(using the vector of commitments to Pl's generated polynomial coe�cients), Pi

issues a complaint against Pl and sends the complaint message directly (but
publicly) to Pl. After receiving the complaint, Pl, in defence, reveals fl(i): this
is Pi's share of the secret al0 generated by Pl. Pl will be excluded from the rest
of the protocol if

� Pl fails to object, i.e., f ′
l (i) revealed by Pl is inconsistent with fl(i), the

vector of commitments to the coe�cients of the generated polynomial by Pl

that is published at the beginning of the protocol).
� Pl receives more than t complaints, where t is the threshold of the scheme.

In the above procedure, please note that as long as fewer than t complaints
are issued against Pl, revealing fl(i) does not a�ect the security of the proto-
col. Besides, Pi may receive an inconsistent share from Pl only because of the
noisy communication channel. Allowing Pl to defend themselves adds a level
of reliability to the system against noisy channels. Anyway, when the number
of complaints against Pl reaches the critical threshold t, Pl will be excluded.
And in order to intentionally exclude Pl from the protocol, at least t cheating
participants have to collaborate.

To argue that the FROST protocol with the above modi�cation will be
weakly robust, we point at the following technicalities:

1. In the original FROST protocol, every party can check the zero-knowledge
proof published by Pl during Step 2 of Round 1 in [KG20, Figure 1]). If the
proof is not veri�ed, every party will ignore both Pl and the information
transmitted by Pl without needing to abort the protocol.

2. At the end of the KeyGen protocol, any participant can check the public
veri�cation share of any other participant by calculating Yi. If the check
does not pass, the public veri�cation share calculated by the majority of the
participants will be used.

3. During the signature generation, if the response by each participant is not
veri�ed, (step 7.b in [KG20, Figure 3]) the protocol will re-run after identi-
fying and excluding the cheating participant.

Proposition 2. The described modi�ed (t, n) FROST protocol is a 1-weakly ro-
bust (t, n) threshold signature scheme if k, the number of cheating participants
is less than min(n/2, t).

Proof. The robustness of the KeyGen protocol follows from the robustness
of the Pedersen's DKG protocol as long as k < n/2 and the majority of the
participants are honest. Moreover, this protocol is robust for k < t because
t cheating participants can intentionally make targeted participants excluded

16 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

from the protocol (by issuing t complaints) such that the number of remaining
participants doesn't meet the required threshold (t) for generating the group's
public/private key pair. The Sign protocol satis�es only weak robustness because
each run of the Sign protocol detects a cheating participant; since there are no
more than k cheating participants, after k runs of the Sign protocol, a valid
signature is generated with probability 1.□

3.3 Second Approach: Robustness by Identifying Cheaters

The protocol described in the previous approach does not detect cheating partici-
pants. The participant who issues a complaint can never prove that they received
an inconsistent share. Likewise, the accused participant cannot prove that they
sent the correct share to the complaining participant. In this approach we design
a protocol that allows us to identify and punish cheating participants in the key
generation protocol. This property is especially important in a blockchain envi-
ronment where participants may have economic incentives for acting maliciously,
and a �nancial punishment may stop rational adversaries from cheating2 Note
that the key generation protocol will run much faster in the absence of corrupted
participants.

Next, we de�ne a threshold signature scheme with cheating identi�ability
property. The de�nition is inspired by the unanimously identi�able secret sharing
notion proposed by Ishai et. al. [IOS12].

De�nition 4. Let TS = (KeyGen,Sign,Verify) be a (t, n) threshold signature scheme
with key generation, signing, and veri�cation algorithms KeyGen, Sign, and Verify,
respectively, and 0 < β ≤ 1. TS provides

� β-Cheating identi�ability for key generation if any participant who
deviates from (cheats during) the KeyGen protocol is detected by honest par-
ticipants with probability greater than β.

Remark 1. Cheating identi�ability allows achieving (weak) robustness even when
the majority of participants are cheating (i.e., as long as there are t honest par-
ticipants in the group, it is possible to complete the protocol successfully). This
breaks the k < n/2 bound presented in the previous approach (Proposition 2)
and only requires k < n− t to complete the protocol.

Proposition 3. If a key generation algorithm with a β-cheating identi�ability
property substitutes the KeyGen protocol of FROST for a setting with no more
than k cheating participants, the resulting protocol will be at least β-weakly robust
against k cheating participants.

Proof. By using a β-cheating identi�able key generation protocol, cheating
will be detected with probability at least β in KeyGen and with probability 1 in
Sign protocols. So every cheating participant will be detected with probability
at least β and the protocol achieves β-weak robustness. □

2 This can be formalized as a decision-making problem.

ICE FROST Protocol 17

4 Identi�able Cheating Entity (ICE) FROST

In this section, we propose a variation of the FROST protocol that can identify
cheating participants in KeyGen protocol. The protocol follows the steps of the
original FROST protocol described in Section 3.1 except for the case when an
invalid share3 is received by an honest participants. In FROST, such a share will
be detected, and the protocol will simply terminate. By enabling the cheating
identi�ability mechanism, each participant issues a complaint against a mali-
cious action instead of aborting the protocol. However, the complaint must be
veri�able by honest participants.

To enable cheating identi�ability, we note that all shares in the scheme are
communicated through a secure channel: otherwise, the unforgeability of the
scheme is completely lost. In practice, the sender establishes a secure channel by
encrypting shares and broadcasting the encrypted values (ciphertext). One way
to prove that the sender of a share has cheated is for the receiver to reveal the
received encrypted value to every participant through revealing the decryption
key. In this case, the decryption key should have special properties. In Theorem 1,
we use these properties to prove the unforgeability of the proposed signature
scheme. These special properties are as follows.

P1) The decryption key corresponding to the secure communication between
each pair of participants should be unique. This property ensures that re-
vealing the decryption key by the receiver Pi, who issues a complaint against
the sender Pl, only reveals the share transmitted from Pl to Pi, and every
other communication stays as secure as before revealing the decryption key
between Pi and Pl.

P2) The decryption key should be veri�able by other participants. A veri�ed de-
cryption key ensures that the decryption returns the exact encrypted share;
the receiver cannot deceive other participants by revealing a well-formed
but fake decryption key that decrypts the ciphertext into some malformed
share (i.e., any share di�erent from what was encrypted and transmitted in
the beginning).

The �rst property indicates that the simple application of a public-key en-
cryption scheme is insu�cient for our purposes. In a simple public-key encryption
scheme, the decryption key is the receiver's private key. The reveal of the Pi's pri-
vate key will reveal all the encrypted shares that are transmitted to Pi while we
expect a scheme that allows the reveal of only one encrypted share transmitted
from Pl to Pi.

To satisfy the above requirements, we use a variant of the ElGamal public-key
encryption scheme [ElG85] that incorporates a symmetric encryption scheme and
allows the encryption of arbitrary bit strings (in contrast to the original ElGa-
mal scheme that requires the message to be a group element). Each participant
is assigned a pair of public and private keys. We set the key used between each

3 A share that is inconsistent with the commitment vector to the polynomial's coe�-
cients, which was previously published by the sender of the share.

18 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

two participants acting as sender and receiver to be the �implicit� Di�e-Hellman
(DH) key constructed from the receiver's public key and the sender's ephemeral
public key. The sender encrypts the share using a symmetric encryption scheme
under the shared DH key and broadcasts it. To issue a complaint about a mal-
formed received share, the receiver must reveal the shared DH key that is unique
to the two sides of the communication. Furthermore, we make the DH key veri-
�able by including proof of the "correct decisional Di�e-Helman (DDH) triple".
Such statement can be proved straightforwardly with a slight modi�cation of
Schnorr identi�cation protocol.

4.1 (t, n) ICE FROST Protocol

Initialization. For the initial setup of the protocol, we have the following con-
ditions:

� P is the set of participants, where |P| = n. The threshold value t and the n
participants are determined prior to the start of the protocol.

� G is a group of prime order q in which the DDH problem is hard, and g is a
generator of that group.

� Each participant Pi, 1 ≤ i ≤ n, is assigned a private key ski
$← Zq and a

public key pki ← gski .
� Honest participants want to sign a message m agreed upon externally to the
scheme.

� The encryption scheme Esym = (Encsym, Decsym) is associated with the key
space G, the message space Zq, and the ciphertext space C.

The protocol consists of two main subprotocols, namely KeyGen and Sign,
given in Figures 1 and 3, respectively. Figure 2 is the complaint procedure that
runs only if a malicious behaviour happens during the key generation protocol.

The proposed ICE protocol is a secure robust threshold signature scheme
with cheating identi�ability property. Further, we discuss the properties in Def-
inition 2, which are provided by ICE FROST .

Assumptions. We analyze the security of ICE FROST by presenting the fol-
lowing assumptions. In Section 7, we discuss how our implementation supports
these assumptions.

� Message Validation. We assume that every participant checks the validity of
the message m to be signed before issuing their share of the signature.

� Reliable Message Delivery. We assume that participants use reliable broad-
cast channels to send messages between one another.

� Participant Identi�cation. In order to report misbehaving participants, we re-
quire that values submitted by the participants should be identi�able within
the signing group. In practice, this assumption will be realized by including
a personal signature of each participant besides their transmitted messages,

� Availability of a unique public keys. Each party can register a unique public
key that is communicated to any other party.

ICE FROST Protocol 19

Key Generation protocol (KeyGen)

Let H1 and H2 be two collision-resistant hash functions whose output is in Z∗
q , and

HKDF be the HMAC-based key derivation function proposed in [Kra10] with an
output tailored to be used in the Esym = (Encsym, Decsym) encryption scheme.

Round 1

1. For 1 ≤ i ≤ n, every Pi samples t random values (ai0, ..., ai(t−1))
$← Zq and uses

them as coe�cients to de�ne a degree t− 1 polynomial fi(x) =
∑t−1

j=0 aijx
j .

2. Every Pi computes a proof of knowledge to the corresponding secret ai0 by cal-

culating σi = (Ri, µi), such that r
$← Zq, Ri = gr, ci = H1(i, Φ, g

ai0 , Ri) and
µi = r + ai0.ci, with Φ being a context string to prevent replay attacks.

3. Every Pi samples ski randomly and computes pki = gski .
4. Every Pi computes a proof of knowledge of the secret key ski by calculating

τi = (Si, νi), such that k
$← Zq, Si = gk, di = H2(i, Φ, pki, Si), νi = k + ski.di,

with Φ being a context string to prevent replay attacks.
5. Every participant Pi computes a public commitment Ci = ⟨ϕi0, ..., ϕi(t−1)⟩, where

ϕij = gaij for 0 ≤ j ≤ t− 1.
6. Every Pi broadcasts Ci, σi, pki, and τi.
7. Participant Pj generates a set QL of quali�ed dealers. (In the analysis, we show

that the set of quali�ed participants is the same for every honest party, and
therefore the set QL is not speci�c to a particular participant). Initially QL = ∅.
Upon receiving Ci, σi, pki, and τi from participant Pi , where i ̸= j, participant

Pj veri�es i)σi = (Ri, µi) by checking Ri
?
= gµi .ϕ−ci

i0 , where ci = H1(i, Φ, ϕi0, Ri),

and ii)τi = (Si, νi) by checking Si
?
= gνi .pk−di

i , where di = H2(i, Φ, pki, Si). If the
check passed, Pj adds Pi to the list of quali�ed dealers. That is, QL = QL∪{Pi}.
On failure, Pj broadcasts (“malicious”, Pi, Pj).

Round 2

1. Let QL∗ = QL. Each Pl does the following for each Pi ∈ QL∗, i ̸= l:
� Computes DH key kDH

li = pk
skl
i and symmetric key ksym

li = HKDF (kDH
li).

� Encrypts eli = Encsym(ksym
li , fl(i)).

� Broadcasts ((l, i), eli).
2. Upon receipt of ((l, i), eli) from Pl, 1 ≤ l ≤ n, if Pl ∈ QL∗, then Pi does the

following:
� Computes kDH

li = pkski
l and ksym

li = HKDF (kDH
li).

� Decrypts δ = Decsym(kDH
li , eli).

� Veri�es the share by checking gδ
?
=

t−1∏
k=0

ϕik mod q
lk . If the share is incorrect,

initiates the procedure Complain.
3. Participants resolve all complaints with the procedure Exclude and output a new

set of quali�ed participants QL∗ (similar to the set QL in Round 1, QL∗ is not
speci�c to a particular participant). If |QL∗| < t, then KeyGen is aborted.

4. Each Pi calculates their private signing share by computing si =
∑

Pl∈QL∗ fl(i),
stores si securely, and deletes each fl(i).

5. Each Pi calculates their public veri�cation share Yi = gsi and the group's public
key Y =

∏
Pj∈QL∗ ϕj0. Any participant can compute the veri�cation share of any

other participant by �nding Yi =
∏

j∈QL∗

t−1∏
k=0

ϕik mod q
jk . Each Pi then broadcasts Y .

Fig. 1: Key generation protocol in ICE FROST

20 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Complaint Management Protocol (Complain/Exclude)

Complain(i, l)

1. Pi computes a proof that kDH
il and respectively ksym

il is well-formed, which is a
proof of knowledge of ski such that (pki, pkl, k

DH
il , A1, A2) is of the form kDH

il =
pkski

l , and pki = gski . To do so, Pi proceeds as follows:

� Computes A1 = gα, A2 = pkα
l , where α

$← Zq

� Computes h = H(pki, pkl, k
DH
il , A1, A2).

� Computes z = α+ h · ski.
� The proof is π = (A1, A2, z).

2. Pi issues a complaint against Pl by broadcasting the message
(“complaint”, Pi, Pl, k

DH
il, π)

Exclude(“complaint”, Pi, Pl, k
DH
il, π)

Every non-excluded party Pj , 1 ≤ j ≤ n, j ̸= i and j ̸= ℓ,

1. Veri�es the proof π by checking A1 · pkh
i

?
= gz, A2 · (kDH

il)h
?
= pkz

l , where π =
(A1, A2, z) and h = H(pki, pkl, k

DH
il , A1, A2). If the proof is valid, proceeds to step

2. Else, broadcasts (“malicious”, Pi, Pj), excludes Pi from the list of participants,
that is, QL∗ = QL∗\{Pi}, and terminates the procedure.

2. If there is an entry ((l, i), pkl, eli) published by Pi, the party proceeds to step 3.
Else, broadcasts (“malicious”, Pi, Pj), excludes Pi from the list of participants,
and terminates the procedure.

3. Computes ksym
il = HKDF (kDH

il) and then δ = Decsym(ksym
il , eli). Veri�es the

decrypted share by checking gδ
?
=

t−1∏
k=0

ϕik mod q
lk . If the share is correct, broadcasts

(“malicious”, Pi, Pj), and excludes Pi from the list of participants, that is, QL∗ =
QL∗\{Pi}. Else, broadcasts (“malicious”, Pl, Pj) and excludes Pl, that is, QL∗ =
QL∗\{Pl}.

Fig. 2: Complaint management procedure in ICE FROST

ICE FROST Protocol 21

Signing protocol (Sign)

We assume that a key generation protocol has been successfully completed. Each of
the n remaining participants now holds a secret share, and the group's public key is
Y . Let H1, H2 be collision-resistant hash functions whose outputs are in Z∗

q .

Round 1

1. The participants randomly select S ⊂ QL∗ such that |S| ≥ t. The signing partic-
ipants are Pi ∈ S.

2. Each Pi samples single-use nonces (di, ei)
$← Z∗

q × Z∗
q .

3. Each Pi broadcasts (Di, Ei), where Di = gdi and Ei = gei . They can broadcast a

list of (D
(r)
i , E

(r)
i)r∈[1,n] for ν rounds of the protocol, where the rth element of the

list will be used in the rth run of the protocol (given that no participant cheats
during the signing).

Round 2

1. Each Pi constructs B = ⟨(l,Dl, El)⟩l∈S , computes the binding values ρl =
H1(l,m,B), l ∈ S, and then derives the group commitment R =

∏
l∈S Dl.(El)

ρl

and the challenge c = H2(R, Y,m).
2. Each Pi computes their response using their long-lived secret share si by comput-

ing zi = di + (ei · ρi) + λi · si.c using S to determine the ith Lagrange coe�cient
λi.

3. Each Pi deletes (di, Di, ei, Ei) from their local storage and then broadcasts zi.
4. Each Pi does the following:

� Upon receiving zl from participant Pl, l ∈ S, l ̸= i, veri�es the valid-

ity of the response by checking gzl
?
= Rl.Y

c.λl
l . On failure, broadcasts

(“malicious”, Pl, Pi), excludes Pl from the list of participants that is, S =
S\{Pl}, and proceeds to step 5.

� If all responses are correct, computes the group's response z =
∑

zi.
� Broadcasts the signature σ = (R, z) along with m and terminates the proce-

dure.
5. If no signature has been generated and some participants have been excluded, go

back to Round 1, step 2 and use the updated S. If the resulting set has fewer than
t members, abort the signature generation.

Fig. 3: Signing protocol in ICE FROST

22 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Preprocessing. Each participant Pi begins by generating a list of single-use
private nonce pairs and corresponding public commitment shares ⟨((dij , Dij =
gdij), (eij , Eij = geij))⟩πj=1, where j is a counter that identi�es the next nonce or
commitment share pair available to use for signing. Each Pi then publishes (i, Li),
where Li is their list of commitment shares Li = ⟨(Dij , Eij)⟩πj=1 . The location
where participants publish these values can depend on the implementation. The
set of (i, Li) tuples is then stored by any entity that might perform the signature
aggregator role during the signing process.

4.2 Existential Unforgeability of ICE FROST

In this section, we show the security for the standard notion of existential un-
forgeability against chosen message attacks (EUF-CMA) in the sense of [GMR88]
for ICE FROST. The security argument works by demonstrating that for a forger
F, the di�culty of forging a FROST signature by performing an adaptive chosen
message attack in the random oracle model reduces to the di�culty of comput-
ing the discrete logarithm of an arbitrary challenge value ω in the underlying
group for an adversary A who controls a number of participants less than the
threshold t.

Let qh1 and qh2 be the number of queries made to the random oracle in
the key generation and signing algorithms, respectively, π be the batch size in
preprocessing protocol, qp be the number of allowed preprocess queries, and qs
be the number of signing queries. The following is the unfogeability theorem of
ICE FROST.

Theorem 1. If the discrete logarithm problem in G is (τ ′, ϵ′)-hard,then ICE
FROST signature scheme over G with n signing participants, a threshold of t,
and a preprocess batch size of π is (τ, qh1 + qh2, qp, qs, ϵ)-secure whenever

ϵ′ ≤

(
ϵ+ AdvDH(B1) + (n− t)AdvCPA

Encsym(B2)
)2

qh1
(
2(qh1 + qh2) + (π + 1)qp + 1

) ,

where AdvDHB1 is B1's advantage of distinguishing a DH key from a uniformly
random key under the DDH assumption AdvCPA

Encsym(B2) is B2's CPA ad-
vantage in distinguishing the encryption of two distinct messages encrypted by
Encsym(·) scheme.

Proof Sketch. The main di�erence in the unforgeability proof of ICE FROST
is that, in contrast to FROST, ideal secure communication channels are not as-
sumed in our case. Instead, we directly implement the secure channels by proper
application of an encryption scheme. Secure communication channels are re-
quired to ensure the security of the shared secret by each individual participant.
Note that when t = n and n− 1 participants are corrupted, using encryption in
our scheme is not necessary and the (information-theoretic) security is guaran-
teed because the number of shares is not enough for reconstructing the secret. In

ICE FROST Protocol 23

this case, the simulation is straightforward and the security proof of ICE FROST
is the same as the security proof of FROST.

The interesting case is when t < n and the n encrypted shares published
by Pi, i = 1, . . . , n enable reconstruction of the honest participant's secret.
Therefore, we need to revolve to the semantic security of a public key encryption
scheme. For this, we use public key encryption to send the encrypted shares over
an authenticated broadcast channel. Each participant Pi should broadcast an
encryption of its j-th share fi(j) under the receiver's public key, party Pj .

Ideal secure channels in ICE FROST are realized by encrypting and then
broadcasting shares of the secret generated by each (honest) participant. The
participant Pi broadcasts the encryption of the generated share for participant
Pj , denoted by fi(j), under Pj 's public key. Note that in the reduction to the
discrete logarithm problem, the simulator cannot know all shares of the honest
participants' secret, as it amounts to knowing the discrete logarithm challenge
whenever the number of honest participants is greater than t. Speci�cally, when
simulating honest participants to the adversary, the simulator cannot send the
encryption of the right shares to honest participants but only inconsistent values.
However, plaintext indistinguishability of the encryption scheme implies that this
change is unnoticed from the adversary's viewpoint.

The Role of Cheating Identi�ability. The instantiation of cheating identi�a-
bility according to the complaint management protocol in ICE FROST (Figure 2
has negative impact on the indistinguishability of incorrectly encrypted shares.
Indeed, after an honest party identi�es a cheater, it reveals non-trivial informa-
tion of the share: (at least) a bit saying if the decrypted share is valid or not.
This has two implications on the simulation. First, the simulator should be able
to decrypt received encrypted messages, using the honest participant's secret
key, to be able to issue a complaint whenever the received share is inconsistent
with the corresponding initially published commitment vector. And second, at
the same time keep secret the inconsistent shares4. We can solve this tension by
revolving to CCA security of the encryption scheme, rather that CPA security.
In this way the reduction can use the decryption oracle to check whether the
encrypted shares of the adversary contain invalid shares or not.

We note that in our speci�c construction, a public key encryption scheme is
not explicitly used, but instead, each pair of participants derive their DH key
and use that key to encrypt/decrypt the share using the DH key as a symmet-
ric encryption key. We require the sender to prove knowledge of its secret key
skS such that pkS = gskS , which in turn implies that it also knows the secret
key K = pkskS

R . Note that this implicitly proves that the symmetric encryption
scheme where the key is the DH key is CCA secure. To avoid to formally de�ne
this �tweaked� encryption scheme, where both the sender an receiver have pub-

4 There are other ways in which this inconsistent simulation might become problem-
atic. If, for example, the adversary demands to corrupt an honest party after a
simulated inconsistent share addressed to the same party was sent, we are forced
to stop the simulation as it amounts to reveal the inconsistency. Nevertheless, if we
limit the attacks only to static adversaries, this is no longer a problem.

24 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

lic/secret key pairs, in the proof we leave this implicit. Our reduction constructs
the decryption oracle itself using the PoK of the secret key to recompute the DH
key and decrypt.

After having dealt with inconsistent shares and cheating identi�ability, we
may proceed simulation as in the original proof. According to Lemma 1, the
generalized forking algorithm GFA generates a random tape β and qr random

values h1, . . . , hqr
$← H, where qr = 2qh2 +(π+1)qp +1, and runs the simulator

A(Y, {h1, . . . , hqr}, β) who invokes the forger F by simulating the responses to its
random oracle queries using {h1, . . . , hqr}, and also simulates the honest party
Pt in KeyGen, Preprocess, and Sign. To carry on simulation, we need the secret
key of the adversary in order to derive the DH key shared between a malicious
and honest party. Only in this way we can simulate encrypted messages for
the adversary. We use the general Forking Lemma here again to extract the
adversary's secret key and encrypt secret shares by the simulator.

The forger F uses hJ to generate a forged signature σ and outputs (σ, J) or a
special symbol ⊥ indicating a failure to output a forgery. The forking algorithm

GFA then generates fresh random values h′
1, . . . , h

′
nr

$← H and forks from hJ , i.e.,
runs the simulator A(Y, {h1, . . . , hj−1, h

′
J , . . . , h

′
nr
}, β), which invokes the forger

F as before and outputs (σ′, J ′) or a special symbol σ′. The outputs (σ, σ′) and
(hJ , h

′
J′) are used to solve the DLP for ω ∈ G. We explain the details of the

proof in Appendix A.

4.3 Cheating Identi�ablity

A participant can deviate from the KeyGen protocol by: i) not committing to an
initial secret by each participant, ii) sending non-decryptable secret shares to at
least one participant, iii) dealing inconsistency to at least one participant, or iv)
accusing an honest participant of malicious behaviour. The complain/exclude
procedure is proposed to identify the cheating participant in all cases. This
procedure should satisfy two conditions:

C1) Imply that the participant accused of malicious behaviour did not follow
the protocol.

C2) The procedure should be publicly veri�able.
The �rst condition guarantees that we cannot accuse honest participants,

while the second condition guarantees that honest participants can remain in a
consistent consensus about which participant was dishonest. The combination
of these two conditions allows all honest parties to maintain the same set of
quali�ed participants QL∗.

Satisfaction of C1. A participant will be marked as �malicious� in the KeyGen
protocol in three cases:

� Round 1 - step 5: The failure of a participant at this stage means they are not
committed to an initial secret. We can easily identify the misbehaving party
thanks to the authenticated communication and the fact that the veri�cation
failure implies proofs were not computed correctly.

ICE FROST Protocol 25

� Procedure Exclude - step 1. This step is to check if the shared secret sent
from Pi to Pl is encrypted under a proper key that can be used by Pl to
decrypt. This is exactly as the previous check where the misbehaving party
computes an invalid proof.

� Procedure Exclude - step 3. Due to the authenticated communication, we
can always identify Pl, the author of ((i, l), vei,l). For a correctly accused Pl,

it must hold that gDecsym(ki,l,ei,l) ̸=
∏t−1

k=0 ϕ
ik

l,k, where ki,l = gu·ski . If Pi issues

an incorrect complaint against Pl, we have gDecsym(ki,l,ei,l) =
∏t−1

k=0 ϕ
ik

l,k and
Pi will be detected as a malicious participant.

As noted, each �malicious� message generated by the KeyGen protocol corre-
sponds to one of the possible misbehaviours of a participant. As a result, condi-
tion C1 is satis�ed.

Satisfaction of C2. All checks in the steps described above that cause a par-
ticipant to be marked as �malicious� can be publicly veri�ed by every other
participant. This satis�es the condition C2 and moreover, lets all honest partic-
ipants generate the same set of quali�ed users.

4.4 Robustness of ICE FROST

ICE FROST provides robustness in KeyGen, as the protocol will continue after
identifying cheaters. On the other hand, the Sign protocol is weakly robust; there-
fore, the complete protocol provides weak robustness. Cheating identi�ability in
both protocols is with probability 1.
Robustness of KeyGen. Let n be the total number of participants with at least
t honest participants. The robustness of the key generation protocol in ICE
FROST is concluded from the robustness of Pedersen's DKG protocol. Note
that the di�erence between the KeyGen in ICE FROST and Pedersen's DKG
protocol is in the way they handle complaints. In KeyGen, once a party receives
a complaint, instead of defending itself by revealing the correct secret share in
plain text (similar to Pedersen's DKG), it reveals the secret key established cor-
responding to the encrypted share that has been broadcasted previously. This,
in e�ect, reveals the secret share that is allegedly sent to the complainer and
identi�es the participant who has cheated either by distributing an inconsistent
share or by maliciously issuing a complaint against an honest party. Moreover,
in Pedersen's DKG, once a party receives more than t complaints, it is marked
malicious and then removed from the list of quali�ed participants. Such a cheat-
ing participant will be identi�ed by ICE FROST immediately after the �rst
complaint. As a result, the outcomes of the KeyGen protocol in ICE FROST and
Pedersen's DKG protocol will be exactly the same, and the robustness will follow
from the robustness of Pedersen's DKG as long as enough honest participants
remain in the scheme after excluding the cheaters. Suppose k is the number of
cheating participants. The KeyGen is robust if n− t ≥ k.

26 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Weak robustness of Sign. The Sign protocol is able to identify the cheater
whenever it fails and therefore provides weak robustness. Each run of the protocol
identi�es and removes one malicious participant. Suppose S is the set of signers
consisting of at least t honest participants. According to Proposition 3, after at
most k runs of the Sign protocol, it will output a valid signature (because in
each run one malicious participant will be detected and removed).

In (t, n) ICE FROST, since KeyGen is robust while Sign in weakly robust,
the maximum number of runs that will guarantee a successful execution of the
signature scheme depends only on the number of cheating participants in the
Sign protocol. We present this as the following proposition for easier reference.

Proposition 4. For (t, n) ICE FROST protocol, let k1 be the number of cheat-
ing participants in KeyGen and k2 be the number of cheating participants in
Sign. Then ICE FROST will run successfully after at most k2 runs as long as
k1 ≤ n− t.

5 ICE FROST with Static Public/Private Keys

One of the primary motivations for developing the ICE FROST signature scheme
is using it in blockchain environments. In particular, we consider a blockchain
environment consisting of the main chain and an arbitrary number of side-chains.
Each side-chain will use the ICE FROST scheme to sign messages that need to
be veri�ed by the main chain. In such an environment, it is desirable to assign
static public and private keys to each side-chain to avoid transmitting updated
public keys after each round of key generation.

In this section, we use a Proactive Secret Sharing (PSS) scheme to modify
the ICE FROST scheme into a signature scheme that uses static group public
and private keys to sign messages. To guarantee the security of the group's
long-lived keys, we update the long-lived signing keys of each participant every
so often, while keeping the group's signing keys unchanged. The key update
protocol will replace the key generation protocol in Section 4.1. Moreover, the
key update protocol allows changing the setup of the protocol into a scheme
with a di�erent set of participants (probably with di�erent cardinality) and a
di�erent threshold. This �exibility is especially important after identifying the
cheating participant in ICE FROST because the cheater will be excluded from
the protocol in subsequent rounds.

5.1 Key Update Protocol for ICE FROST with Static Keys

The key update protocol is a redistribution of secret shares that provides each
share-holding participant with a fresh signing share while allowing to adjust the
total number of participants, the signature's threshold, and the set of share-
holding participants to be updated at each round of execution. More precisely,
the key update protocol allows an (t, n) ICE FROST protocol executed by a set
of participants P to be updated into an (t′, n′) ICE FROST protocol executed
by a possibly di�erent set of participants P ′.

ICE FROST Protocol 27

The uth execution of the key update protocol is speci�ed by KeyUpd(u),
where 0 ≤ u ≤ T , and T is the maximum number of key update executions that
subsequently speci�es the life-time of the group's long-lived private and public
keys, and KeyUpd(0) is the KeyGen protocol described in Fig 1. We denote the
set of participants in KeyUpd(u) by P(u), where |P(u)| = n(u) and the desired

threshold for the signature is t(u). The �ow of KeyUpd(u) for 0 < u is described
in Fig. 4. The key update protocol uses the PSS scheme of [DJ97] to redistribute
shares.

Key Update protocol (KeyUpd(u))

Let s
(u−1)
i be the private signing share of Pi ∈ P(u−1) that is obtained by running

KeyUpd(u−1). The rest of the setting is the same as the KeyGen setting in Fig. 1.

Round 1

� For 1 ≤ i ≤ n(u−1), every Pi secretly shares s
(u−1)
i by sampling t(u) − 1 random

values (ai1, ..., ai(t−1))
$← Zq and uses them as coe�cients to de�ne a degree t(u)−1

polynomial fi(x) = s
(u−1)
i +

∑t(u)−1
j=1 aijx

j .
� Follow Steps 2 to 7 of Round 1 in KeyGen.

Round 2

� Follow Steps 1 to 3 of Round 2 in KeyGen.
� Each Pi calculates their private signing share by computing s

(u)
i =∑

Pl∈QL∗ fl(i).λl, where λl is the Lagrange coe�cient corresponding to Pl with

an ID idl. Then Pi stores s
(u)
i securely, and deletes each fl(i).

� Each Pi calculates their public veri�cation share Yi = gs
(u)
i and the group's public

key Y =
∏

Pj∈QL∗ Y
λj

j . Any participant can compute the veri�cation share of

any other participant by �nding Yi =
∏

Pj∈QL∗

(

t(u)−1∏
k=0

ϕik mod q
jk)λj . Each Pi then

broadcasts Y .

Fig. 4: Key update protocol in ICE FROST

A note for share renewal. If the set of participants and the threshold remain the
same, the purpose of executing the key update protocol is only to refresh the
shares in order to remove possible leaks. In this case, it is su�cient for every
participant to execute the KeyGen protocol but instead of dealing the secret,
pass the value �0� and distribute the corresponding shares to other participants.

28 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Each participant obtains their renewed share by adding up the received shares
and adding the result to their previous secret share value.

5.2 Forward Secrecy

Protecting long-lived signing keys of a threshold signature scheme requires a
guarantee of the long-term security of the encrypted communication during each
session. ICE FROST provides this guarantee by establishing and exploiting in-
dependent DH keys for each session. In each session, the DH keys exchanged
between each pair of participants depend only on the (ephemeral) public and
private keys used by that pair. Therefore, if a single session is compromised,
it a�ects only the security of the current session, and an adversary cannot use
the compromised secret keying material to extract information from previous
sessions. This property ensures that as long as an adversary cannot compro-
mise more than t− 1 participants in each session, the signature scheme remains
unforgeable (according to Theorem 1 and the adversary cannot combine their
knowledge from attacks in multiple sessions to recover the long-lived signing
keys.

The described property is called forward secrecy in literature and was �rst
de�ned by Di�e et al. in [DVOW92]. According to them, �an authenticated key
exchange protocol provides perfect forward secrecy (PFS) if disclosure of long-
term secret keying material does not compromise the secrecy of the exchanged
keys from earlier runs.� In ICE FROST, forward secrecy is o�ered to securely
communicate shares between participants because the only long-term secret key-
ing material stored by users is what they use for authentication. If this secret
key is compromised, the security of the exchanged keys from earlier runs is not
a�ected because an independent Di�e-Hellman key exchange is used in each
session; Di�e-Hellman key exchange has no long-term keying material.

6 ICE FROST with Large Number of Participants

In the following, we elaborate on a few operational considerations that can im-
prove the e�ciency of ICE FROST when the total number of participants n is
relatively large. Let γ be the ratio of cheating participants and ν < 1− γ be the
ratio of honest participants required to generate a signature.

6.1 Improving Weak Robustness of ICE FROST

As noted in Proposition 4, the maximum number of re-runs to guarantee the
successful signature generation by ICE FROST depends only on the number
of cheating participants in the Sign protocol. When n is too large, the number
of cheating participants will also be too large (k = γ.n); it means that weak
robustness, in this case, may not provide su�cient guarantee of the signature
generation in a relatively short time. An e�cient solution to decrease k in this
situation is to randomly choose S, the set of signers and, instead of choosing

ICE FROST Protocol 29

another set S ′ after identifying a cheating participant Pc, update S by elimi-
nating only Pc from it; that is S ′ = S\{Pc}. Let s be the size of S, then with
a random choice of S and eliminating cheaters from it, assuming a large n, the
protocol will run successfully after almost γ.s < γ.n runs as long as S includes
enough (t = ν.n) honest participants. The random choice of signers is especially
practical in blockchain environments where a public veri�able randomness for
the choice of S is available and S can be chosen from the set of online validators.

6.2 Choice of the Size of the Group of Signers

Ideally, the size of the set of signers S should be as small as possible because
i)smaller S means fewer participants need to be online for signing messages ii)
the signature generation will proceed faster (more e�ciently) with a smaller
number of participants, and iii) smaller S contains fewer cheating participants,
which means that the protocol is gauranteed to generate a valid signatures after
fewer re-runs. The only restriction is that S should contain at least t honest
participants.

To relate s, the size of randomly chosen set of signing participants, to the
probability of having at least t honest participants in S, let's index participants
in S from i = 1, . . . , s. Next, consider the following random variable: Xi = 1
when the party Pi is �honest� and Xi = 0 otherwise. Then X =

∑n
i=1 Xi is the

number of honest parties. The question is, �What is the minimum amount of s
that ensures Pr[X ≥ t+1] ≥ α, where α is the probability of containing t honest
participants in S?�

We use the Cherno� bounds to s, the size of the group of signers who perform
a (t, n) ICE FROST protocol. First, we restate these bounds:

Cherno� bounds[C+52]. Let X =
∑n

i=1 Xi , where Xi = 1 with proba-
bility pi and Xi = 0 with probability 1 − pi, and all Xis are independent. Let
µ = E(X) =

∑n
i=1 pi. Then

(i) Upper Tail: Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ

(ii) Lower Tail: Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2

We use the lower tail of the Cherno� bound to get an upper bound on the
failure probability, that is Pr[X ≤ t+1]. Suppose n is the total number of parties,
h is the number of honest parties, and k is the number of cheating participants.
We have

µ = s
h

n
= s(1− γ)

(1− δ)µ = t = ν.n⇒ δ = 1− ν.n

µ
= 1− ν.n

s(1− γ)

⇒ Pr[X ≤ ν.n] ≤ e−(s(1−γ)−ν.n)2/2s(1−γ)

To guarantee that the failure probability of the protocol is less than a small
probability 1− α, we need to have

30 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

e−(s(1−γ)−ν.n)2/2s(1−γ) ≤ 1− α⇒ (s(1− γ)− ν.n)2/2s(1− γ) ≥ −ln(1− α)

By �nding the value of s according to the above inequality we can make sure
the success probability is always more than α.

Approximation: Suppose 1− α = e−x and x = s(1−γ)
x′ . Then we have

s(1− γ)− nu.n ≥
√
2/x′s(1− γ)⇒ s(1− γ)(1−

√
2/x′) ≥ ν.n

⇒ s ≥ ν.n

(1− γ)(1−
√
2/x′)

.

Now note that the value of x is conventionally in the [1-4] interval (to having an
error rate between 50% to 0.1%). Therefore, for a large enough n and not too
small γ, the value of x′ is relatively large and 1−

√
2/x′ is close to 1. That is,

s ≈ ν.n

1− γ

For a more accurate approximation, we use s(1 − γ) ≥ γ.n and thus x′ ≈
γn/x. Therefore,

s ≈ ν.n

1− γ
/(1−

√
2x/γn)

After choosing appropriate s, the number of cheating participants in S de-
noted by k′ determines the maximum number of runs of the Sign protocol in
order to guarantee that a valid signature will be generated. If n is large enough,
then k′ = γ.s ≈ γ.ν.n

(1−γ) .

For the case where γ.n = ν.n − 1, Table 1 gives numerical values for the
probability of containing at least t honest participants in S depending on the
number of selected participants for generating the signature.

Minimum s value

n Pr γ = 0.2 γ = 0.33

100
90% 30 56
99.9% 35 62
100% 42 68

500
90% 133 259
99.9% 143 273
100% 202 332

Table 1: Minimum size of the group of signers for a (probabilistically) successful
generation of a (t, n) signature

ICE FROST Protocol 31

7 Implementation

We have implemented the protocols for key generation, complaint creation and
management, and signing for the proposed scheme. The results con�rm that the
signature scheme is e�cient and fast enough for practical applications. We run
benchmarks on the ICE FROST version of protocol from Section 4 (which uses
non-static public/private keys for participants). We compare the performance of
our protocol to the runtimes of FROST in [KG20]. The complaint management
sub-protocol is speci�c to ICE FROST, so for a fair comparison to FROST, we
consider ICE FROST without any issued complaints.

All benchmarks were performed on Ubuntu 18.04 LTS running on an Azure
Esv3 machine with 32 CPUs and 256GB of RAM. Each benchmark is associated
with the computation time related to a given task performed by one partici-
pant. Therefore the communication time is not considered in our benchmarks.
In general, communication time depends mainly on the infrastructure where the
protocol is executed and may vary for di�erent infrastructures. The communi-
cation complexity of our protocol can be estimated theoretically (see Section 9
for details).

Benchmark data are averaged over 1000 consecutive runs of the protocol to
eliminate possible inaccuracies in individual runs. Our implementation di�ers
slightly from the description of ICE FROST and FROST protocols in Section 4
and [KG20, Section 5], respectively: the �rst step in Round 2 of both protocols
(where each participant calculates shares for other participants) is included in
Round 1. Also, to implement the required �secure communication� in FROST,
we encrypt shares during Round 1 before sending. For a fair comparison, we used
the same encryption scheme, AES encryption in Counter Mode of operation, to
encrypt secret shares in FROST and ICE FROST.

It should be noted that we implemented our scheme in Rust. Finite �eld com-
putations of our benchmarks were performed on the elliptic curve Curve25519

from [Lov], and by default, we used a u64 backend type for this curve. For the
benchmarks, we used the criterion tool [Too].

7.1 Benchmarking Key Generation Time

Key generation in FROST and ICE FROST consists of two rounds. In both
protocols, Round 2 takes longer than Round 1, mainly because of the share
veri�cation step in Round 2.

We benchmark the protocols for the number of participants n = 100, 200, 300,
and 500 and the threshold t = n/3 and 2n/3. As one would expect, the time cost
of the protocol increases as the number of participants or the threshold grows.

We expect the running time of Round 1 to consist of the following elements:

� Ccg(t) : the execution time for generating polynomial coe�cients and then
committing to them. This time is a linear function of the threshold and can
be written as Ccg(t) = t× xcg, where t is the threshold and xcg is the time
for generating one single coe�cient and committing to it.

32 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

� Cpg : the execution time for generating proof of knowledge by each partic-
ipant. This step is independent of the number of players or the threshold.
This time in ICE FROST is twice the time in FROST because each partic-
ipant in ICE FROST generates two proofs of knowledge instead of one in
FROST.

� Cpv(n) : the execution time for verifying other participants' proofs. This
time in ICE FROST is twice the time in FROST because two proofs are
veri�ed in ICE FROST, while only one proof is veri�ed in FROST. The
veri�cation time is a linear function of the total number of participants and
can be written as Cpv(n) = n × xpv for FROST and Cpv(n) = 2n × xpv,
where n is the total number of participants and xpv is the veri�cation time
for one proof.

� Csh(t, n) : the execution time for calculating each participant's share and
the mutual DH key, and then encrypting the share under the DH key. This
step is a function of t, the degree of the share calculation polynomial, and
n, the total number of participants; it can be expressed as O(tn).

Using our benchmark data, we estimated the above constants in milliseconds as
follows: xcg = 0.035 ms, Cpg = 1.2 ms, and xpv = 0.094 ms. Therefore, for run-
ning time of the �rst round in the key generation phase of a (t, n) FROST/ICE
FROST scheme, we have:

TimeKGen-1
FROST (t, n) = Cpg + t× xcg + (n− 1)× xpv + Csh

= 1.2 + t× 0.035 + (n− 1)× 0.094 +O(nt)

TimeKGen-1
ICE-FROST (t, n) = 2Cpg + t× xcg + 2(n− 1)× xpv + Csh

= 2.4 + t× 0.035 + 2(n− 1)× 0.094 +O(nt)

The running time of Round 2 in the key generation protocol (excluding the
�rst step) consists of the following three components:

� Cshv(t, n) : the execution time for decrypting and then verifying the received
shares. This step's running time depends on the degree of the secret-sharing
polynomial (t) and the number of received shares n.

� Ckc(n) : the execution time for calculating the long-lived key, i.e., the sum
of received shares. This step's running time depends only on n, the number
of participants.

� Cgpk(n) : the execution time for calculating the group's public key that will
be used for signing. This step's running time depends only on n, the number
of participants.

Note that we do not consider the time required to verify public veri�cation
shares of participants, but depending on the level of trust in the system, each
participant can verify public veri�cation shares of all other participants or only
some of them. The total running time of Round 2 in both FROST and ICE
FROST is

ICE FROST Protocol 33

TimeKGen-2
(ICE)FROST (t, n) = Cshv(t, n) + Ckc(n) + Cgpk(n)

The raw benchmark data for key generation of FROST and ICE FROST are
given in Tables 2 and 3, respectively, in Appendix B.

7.2 Benchmarking Signing

We benchmark the signing time for a single participant and the signature ag-
gregation time for t participants. The signing time depends only on the number
of active participants (t) but does not depend on n, the total number of par-
ticipants. This benchmark is the same for FROST and ICE FROST since the
signing protocol is the same in both protocols:

The output of the signing protocol is a regular Schnorr signature that will
be veri�ed by a Schnorr signature veri�cation algorithm. The veri�cation time
is independent of t and n and, in our setting, is 0.097 milliseconds.

The raw benchmark data for signing are given in Table 4 in Appendix B.

7.3 Benchmarking Complaint Management

We benchmark complaint generation and veri�cation time in our protocol:

complaint generation : 0.11 ms

complaint veri�cation : 0.27 ms

Note that for the rest of the benchmarks, we assumed that none of the partici-
pants would cheat, therefore, the complaint management protocol would not be
triggered. Depending on the number of cheating participants (k), the running
time of the key generation protocol may increase by another k × (0.11 + 0.27)
milliseconds.

7.4 Benchmarking Data Complexity

The signature consists of a point in the Ristretto group (4 FieldElement, by
default with u64 backend for a total of 4× 5 u64 = 160 bytes) + a scalar of 32
bytes. Total signature size = 192 bytes. For a threshold t, the total amount of
data d in bytes that the signature aggregator will receive, is

dICE-FROST(t) = t× 192 Bytes

8 Security Against Known Attacks and Vulnerabilities

Security of ICE FROST covers not only the unforgeability of the signature. It
provides security against a number of known attacks that we list and describe
in the following.

34 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Rogue-key attack. Security against rogue-key attacks is achieved through Step
2 of Round 1 in ICE FROST by requiring each participant to prove knowledge
of their secret value.

Malicious signature aggregator. A malicious aggregator is not able to forge
a valid signature. This follows from the unforgeability of the signature scheme
and the fact that an aggregator does not have any extra knowledge compared to
the system adversary. However, a malicious signature aggregator does have the
power to perform denial-of-service attacks.

Replay attack. The replay attack in ICE FROST is prevented by using the
context string Φ.

Attack via Wagner's Algorithm. Drijvers et. al. [DEF+19] found an attack
against some two-round Schnorr multisignature schemes. This attack can be per-
formed when the adversary has control over either choosing the message m to
be signed or the ability to adaptively choose their own individual commitments
used to determine the group commitment ϕ after seeing commitments from all
other signing parties. This attack in FROST and ICE FROST is prevented by
using a binding technique made e�ective in step 4 of the signing algorithm.

Known ki,l in consecutive rounds. After the execution of complain/exclude
between the participants Pi and Pl, the secret key ki,l is revealed and cannot
be used in future rounds of the protocol. To avoid this attack, the party who
is marked as malicious at the end of complain/exclude is only allowed to take
part in the next rounds of the protocol if it updates its key pair (the previous
public key will be blacklisted).

Next, we discuss the potential security vulnerabilities of ICE FROST. Al-
though these vulnerabilities will not necessarily lead to a major attack on the
security of the scheme, we consider them and discuss potential mitigations.

Public/Private Key Distribution Bias. Gennaro et al. [GJKR99] showed
that an adversary with control of more than 2 out of t participants can bias
the generated public key during Pedersen's DKG algorithm [Ped91b] (see the
description of the protocol in the beginning of Section 3). Let's assume that
the adversary wants to bias the distribution toward keys whose last bit is 0.
The adversary uses two corrupted parties P1 and P2 to conduct this attack.
Initially, P1 sends inconsistent shares to exactly t − 1 parties (causing t − 1
complaints, which is not su�cient for making P1 disquali�ed). The adversary
calculates α =

∏n
i=1 Ai0, where Ai0 = gai0 and ai0 is the secret shared by Pi.

If the last bit of α = 0, the adversary does nothing, otherwise (α = 1), P2

issues a complaint against P1 and makes P1 disquali�ed. This attack produces
a bias on the distribution of the generated key. As a mitigation, they proposed
an alternative three-round protocol that doesn't allow the adversary to bias the

ICE FROST Protocol 35

key distribution. In a more recent paper, Gennaro et al. [GJKR03] proved the
security of a threshold signature scheme based on Pedersen's DKG algorithm
without requiring the shared key to be uniformly random. However, achieving
the security of the three-round protocol with the old approach requires using
larger groups.

A similar attack can also a�ect the ICE FROST protocol. After seeing α, a
malicious party can issue a fake complaint and eliminate itself from the protocol
to bias the public key toward its will. By choosing large enough groups for the
computations, this attack will not a�ect the security of the system according to
[GJKR03]. However, we can improve the e�ciency of the protocol by mitigating
this attack and staying with smaller-size groups for the computations.

Mitigation for the public key bias attack. At the end of the KeyGen protocol,
one of the remaining quali�ed participants is randomly selected (using a public
veri�able randomness) and removed, causing their share to be eliminated from
the calculation of the public key to ensure the generated public key is uniformly
random.

Security implication of the attack mitigation. As mentioned before, Gennaro
et al. [GJKR03] proved the security of the threshold Schnorr signature scheme
implemented with Pedersen's DKG in spite of the attack corresponding to bi-
asing the public key. However, the security reduction to the underlying hard
problem is less e�cient than the security reduction that exist for the original
Schnorr scheme. Suppose qh is the number of random oracle queries made by
the adversary who breaks the unforgeability of a Schnorr signature scheme with
probability ϵ. Then, according to the results of [PS96], this forgery implies the

computation of the discrete logarithm with probability ϵ2

qh
in comparable time

with the forgery computation time. This means that by managing to remove the
key bias attack and reducing the scheme of [GJKR03] to the original Schnorr
signature, the forgery with probability ϵ corresponds to breaking the hardness

of discrete logarithm with probability ϵ2

qh
. This is while the unforgeability proof

of [GJKR03] (without reducing to the original Schnorr protocol and therefore
without mitigating the key bias attack) shows that a forgery with probability ϵ

implies solving the discrete logarithm problem with probability ϵ2

q2h
in compara-

ble time with the forgery computation time. This is a factor of qh degradation
of security compared to the centralized version of this scheme.

Similar implication follows from our unforgeability proof. We show that if qh1
is the number of random oracle queries during Key Generation protocol and qh2
is the number of random oracle queries during Signing protocol, then a signature
forgery that happens with probability ϵ, implies breaking the discrete logarithm

with probability proportional to ϵ2

(qh1+qh2).qh1
. This is a factor of qh1 degradation

of security compared to the centralized version as well as the FROST scheme. We
note that in FROST, due to the abortion of protocol after detecting a malicious
action, the key bias attack is naturally resolved at the cost of loosing robustness.
Our mitigation of the key bias attack on the other hand allows achieving the

36 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

same level of security as the original Schnorr (and FROST) scheme while having
a robust threshold signature scheme.

Proving the randomness of the generated key as the result of our mitigation
and then proving the unforgeability of ICE FROST by reducing it to the original
Schnorr signature with random keys remains as future work.

9 Computation and Communication Comparison

In this section we compare the computation and communication complexity of
the proposed protocol with two other protocols; The �rst protocol is the original
FROST protocol, where the extra computation and communication brings the
cheating identi�ability property to us. The second protocol is the DKG proto-
col in [NBBR16], which to the best of our knowledge, is the only other DKG
algorithm that allows precise identi�cation of malicious participants.

Comparison with FROST. In the absence of a malicious participant ICE
FROST will run similar to FROST except for transmitting the shares. While
in FROST each participant sends secret shares securely to the corresponding
receivers, in ICE FROST shares are encrypted and then broadcast. As a result,
during the KeyGen phase, each participant in FROST will receive n − 1 secret

shares, while in ICE FROST each participant will receive n(n−1)
2 messages related

to secret shares, from which n − 1 messages will be decrypted and the rest
will be used if a related complaint is issued. The computation complexity of
the complain/exclude protocol is the same as non-interactive zero-knowledge
proofs; that is, O(qγ), where 2γ is the error probability of the zero-knowledge
protocol. Since every party has to verify the proof, the total complexity related
to this part will be O(nqγ), where n is the maximum number of participants.
This is an extra complexity of ICE FROST that brings cheating identi�ability
property in exchange.

Comparison with DKG of [NBBR16]. The common idea in both schemes is
to encrypt and then broadcast the secret shares (instead of securely sending to
the recipient). However, in ICE FROST we use a symmetric encryption scheme,
while in [NBBR16] a public-key encryption scheme is used. As a result ICE
FROST will run much faster. The other advantage of the DKG protocol of ICE
FROST compared to [NBBR16] is that in ICE FROST, when a complaint is
issued by Pi against Pj , the symmetric key kij will be revealed. After detecting
the cheater and removing it from the protocol, the honest participant can still use
its previous private key securely but in [NBBR16], the same situation requires
both Pi and Pj to reveal their private keys and as a result the private key of
both of them (even though one of them is honest) will be expired and need to
be updated.

The last advantage of ICE FROST compared to [NBBR16] is that it is se-
cure against rogue key attacks because we require the participant to show the
knowledge of the private key at the beginning of the protocol while this is not
the case in [NBBR16].

ICE FROST Protocol 37

10 Conclusion

In this work, we introduced ICE FROST, an improvement over FROST Schnorr
based threshold signature scheme that allows identi�cation of cheating entities in
KeyGen protocol. The cheating identi�ability property provides a weak robust-
ness guarantee for the threshold signature scheme that can be improved when
the set of signers is randomly chosen and is su�ciently large. Our cheating iden-
ti�ability mechanism allows every participants to individually check the validity
of issued complaints against possibly cheating participants. This is done by re-
vealing the DH key that is used for the encryption of secret shares between two
particular participants who are involved in the complaint procedure. The partic-
ipant who receives the complaint is responsible for defending itself by revealing
the DH key and the prove to show the validity of the revealed key.

We implement our proposed scheme. Our implementation benchmarks show
that the run time of the protocol is feasible for real world applications and in
comparison to FROST doesn't have that much over head.

Our �nal contribution in this work is the introduction of static public keys
for ICE FROST. With static public keys, the group's established public and
private keys stays constant for the life-time of signers but the signing shares of
each participant will be updated over time that ensures long-term security of
the static keys. This contribution eases the veri�cation process of the generated
threshold signature as the group of signers only communicate their public key
with the veri�er once in their whole life.

There are di�erent directions for future works. Achieving robustness in sign-
ing protocol of ICE FROST is an interesting question that remains to be an-
swered in future. Implementation of ICE FROST in real blockchain systems is
also a practical direction for future works. The proposed scheme is not optimized
in terms of public communications that happen during the key generation phase
(quadratic in terms of the number of participants). Optimizing the communica-
tion cost of ICE FROST is another direction for future works.

Acknowledgements. We thank Theo Gauthier, Travis Alan Baumbaugh, and
Vijay Singh, our colleagues at ToposWare corporation, for helpful discussions on
the robustness of ICE FROST and careful review and suggestions for improving
the quality of our work.

References

AAM19. Aysajan Abidin, Abdelrahaman Aly, and Mustafa A Mustafa. Collab-
orative authentication using threshold cryptography. In International
Workshop on Emerging Technologies for Authorization and Authentica-
tion, pages 122�137. Springer, 2019.

BBS03. Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness
re-use in multi-recipient encryption schemeas. In International Workshop
on Public Key Cryptography, pages 85�99. Springer, 2003.

38 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

BDN18. Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In International Conference on the Theory and Ap-
plication of Cryptology and Information Security, pages 435�464. Springer,
2018.

BGG17. Dan Boneh, Rosario Gennaro, and Steven Goldfeder. Using level-1 homo-
morphic encryption to improve threshold dsa signatures for bitcoin wallet
security. In International Conference on Cryptology and Information Se-
curity in Latin America, pages 352�377. Springer, 2017.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In International conference on the theory and application of
cryptology and information security, pages 514�532. Springer, 2001.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Proceedings of the 13th ACM con-
ference on Computer and communications security, pages 390�399, 2006.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-di�e-hellman-group signature scheme. In In-
ternational Workshop on Public Key Cryptography, pages 31�46. Springer,
2003.

C+52. Herman Cherno� et al. A measure of asymptotic e�ciency for tests of a
hypothesis based on the sum of observations. The Annals of Mathematical
Statistics, 23(4):493�507, 1952.

CDD+99. Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and
Tal Rabin. E�cient multiparty computations secure against an adaptive
adversary. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 311�326. Springer, 1999.

CDF01. Ronald Cramer, Ivan Damgård, and Serge Fehr. On the cost of recon-
structing a secret, or vss with optimal reconstruction phase. In Annual
International Cryptology Conference, pages 503�523. Springer, 2001.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. Uc non-interactive, proactive, threshold ecdsa with iden-
ti�able aborts. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1769�1787, 2020.

CGMA85. Benny Chor, Sha� Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
�able secret sharing and achieving simultaneity in the presence of faults. In
26th Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 383�395. IEEE, 1985.

Cho11. Ashish Choudhury. Simple and asymptotically optimal t-cheater identi�-
able secret sharing scheme. IACR Cryptol. ePrint Arch., 2011:330, 2011.

DEF+19. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1084�1101. IEEE, 2019.

Des87. Yvo Desmedt. Society and group oriented cryptography: A new concept.
In Conference on the Theory and Application of Cryptographic Techniques,
pages 120�127. Springer, 1987.

DF89. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Conference
on the Theory and Application of Cryptology, pages 307�315. Springer,
1989.

DJ97. Yvo Desmedt and Sushil Jajodia. Redistributing secret shares to new
access structures and its applications. Technical report, Citeseer, 1997.

ICE FROST Protocol 39

DK01. Ivan Damgård and Maciej Koprowski. Practical threshold rsa signatures
without a trusted dealer. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 152�165. Springer, 2001.

DVOW92. Whit�eld Di�e, Paul C Van Oorschot, and Michael J Wiener. Authentica-
tion and authenticated key exchanges. Designs, Codes and cryptography,
2(2):107�125, 1992.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information theory,
31(4):469�472, 1985.

FD92. Yair Frankel and Yvo Desmedt. Parallel reliable threshold multisignature.
Technical report, Citeseer, 1992.

Fel87. Paul Feldman. A practical scheme for non-interactive veri�able secret
sharing. In 28th Annual Symposium on Foundations of Computer Science
(sfcs 1987), pages 427�438, 1987.

FGMY97a. Yair Frankel, Peter Gemmell, Philip D MacKenzie, and Moti Yung. Proac-
tive rsa. In Annual International Cryptology Conference, pages 440�454.
Springer, 1997.

FGMY97b. Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proac-
tive rsa. In Burton S. Kaliski, editor, Advances in Cryptology � CRYPTO
'97, pages 440�454, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identi�cation and signature problems. In Conference on the theory and
application of cryptographic techniques, pages 186�194. Springer, 1986.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa
with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 1179�1194, 2018.

GG20. Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa with
identi�able abort. IACR Cryptol. ePrint Arch., 2020:540, 2020.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-
optimal dsa/ecdsa signatures and an application to bitcoin wallet security.
In International Conference on Applied Cryptography and Network Secu-
rity, pages 156�174. Springer, 2016.

GJKR96a. Rosario Gennaro, Stanisªaw Jarecki, Hugo Krawczyk, and Tal Rabin. Ro-
bust and e�cient sharing of rsa functions. In Annual International Cryp-
tology Conference, pages 157�172. Springer, 1996.

GJKR96b. Rosario Gennaro, Stanisªaw Jarecki, Hugo Krawczyk, and Tal Rabin. Ro-
bust threshold dss signatures. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 354�371. Springer,
1996.

GJKR99. Rosario Gennaro, Stanisªaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 295�310. Springer, 1999.

GJKR03. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure applications of pedersen's distributed key generation protocol. In
Cryptographers' Track at the RSA Conference, pages 373�390. Springer,
2003.

GMR88. Sha� Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
computing, 17(2):281�308, 1988.

40 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

GMR89. Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
18(1):186�208, 1989.

Gro21. Jens Groth. Non-interactive distributed key generation and key resharing.
IACR Cryptol. ePrint Arch., 2021:339, 2021.

HJJ+97. Amir Herzberg, Markus Jakobsson, Stanislªaw Jarecki, Hugo Krawczyk,
and Moti Yung. Proactive public key and signature systems. In Proceedings
of the 4th ACM Conference on Computer and Communications Security,
pages 100�110, 1997.

HJKY95. Amir Herzberg, Stanisªaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage. In annual
international cryptology conference, pages 339�352. Springer, 1995.

IOS12. Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters
without an honest majority. In Theory of Cryptography Conference, pages
21�38. Springer, 2012.

JO08. Stanisªaw Jarecki and Josh Olsen. Proactive rsa with non-interactive sign-
ing. In International Conference on Financial Cryptography and Data Se-
curity, pages 215�230. Springer, 2008.

KG20. Chelsea Komlo and Ian Goldberg. Frost: Flexible round-optimized schnorr
threshold signatures. IACR Cryptol. ePrint Arch, 852:2020, 2020.

KOO95. Kaoru Kurosawa, Satoshi Obana, and Wakaha Ogata. t-cheater identi-
�able (k, n) threshold secret sharing schemes. In Annual International
Cryptology Conference, pages 410�423. Springer, 1995.

Kra10. Hugo Krawczyk. Cryptographic extraction and key derivation: The hkdf
scheme. In Annual Cryptology Conference, pages 631�648. Springer, 2010.

Lan95. Susan K Langford. Threshold dss signatures without a trusted party.
In Annual International Cryptology Conference, pages 397�409. Springer,
1995.

Lov. Isis Agora Lovecruft. dalek-cryptography/curve25519-dalek. https://

github.com/dalek-cryptography/curve25519-dalek.

MOR01. Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup
multisignatures. In Proceedings of the 8th ACM Conference on Computer
and Communications Security, pages 245�254, 2001.

MS81. Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and reed-
solomon codes. Communications of the ACM, 24(9):583�584, 1981.

NBBR16. Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. Distributed key
generation protocol with a new complaint management strategy. Security
and communication networks, 9(17):4585�4595, 2016.

Oka88. Tatsuaki Okamoto. A digital multisignature scheme using bijective public-
key cryptosystems. ACM Trans. Comput. Syst., 6(4):432�441, nov 1988.

Ped91a. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
veri�able secret sharing. In Annual international cryptology conference,
pages 129�140. Springer, 1991.

Ped91b. Torben Pryds Pedersen. A threshold cryptosystem without a trusted party.
In Workshop on the Theory and Application of of Cryptographic Tech-
niques, pages 522�526. Springer, 1991.

PK96. Choonsik Park and Kaoru Kurosawa. New eigamal type threshold digi-
tal signature scheme. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 79(1):86�93, 1996.

https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek

ICE FROST Protocol 41

PS96. David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 387�398. Springer, 1996.

Rab98. Tal Rabin. A simpli�ed approach to threshold and proactive rsa. In Annual
International Cryptology Conference, pages 89�104. Springer, 1998.

RBO89. Tal Rabin and Michael Ben-Or. Veri�able secret sharing and multiparty
protocols with honest majority. In Proceedings of the twenty-�rst annual
ACM symposium on Theory of computing, pages 73�85, 1989.

Sch89. Claus-Peter Schnorr. E�cient identi�cation and signatures for smart
cards. In Conference on the Theory and Application of Cryptology, pages
239�252. Springer, 1989.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612�613, 1979.

Sho00. Victor Shoup. Practical threshold signatures. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 207�
220. Springer, 2000.

SS01. Douglas R Stinson and Reto Strobl. Provably secure distributed schnorr
signatures and a (t, n) threshold scheme for implicit certi�cates. In Aus-
tralasian Conference on Information Security and Privacy, pages 417�434.
Springer, 2001.

Too. Tool. Crate criterion. https://docs.rs/criterion/0.3.5/criterion/.

https://docs.rs/criterion/0.3.5/criterion/

42 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Appendices

A Proof of the Main Theorem

To prove the unforgeability of ICE FROST we use the simulation technique. We
use the general forking lemma [BN06, lemma 1] in our proof. First, we review
this lemma.

Lemma 1 (General forking lemma [BN06]). For a given integer q ≥ 1 and
a set H of size h ≥ 2, let A be a randomized algorithm that on input x, h1, . . . , hq

returns a pair (J, σ), where J ∈ {0, 1, . . . , q}, and σ is over an arbitrary alpha-
bet. Let IG be a randomized algorithm called the input generator. The accepting
probability of A , denoted acc, is de�ned as the probability that J ≥ 1 in the
following experiment

x
$← IG;h1, . . . , hq

$← H; (J, σ)
$← A(x, h1, . . . , hq).

The forking algorithm FA associated to A is the randomized algorithm that takes
input x proceeds as follows:

Algorithm FA(x)

� Pick coins ρ for A at random

� h1, . . . , hq
$← H

� (I, σ)← A(x, h1, . . . , hq; ρ)
� If I = 0 then return (0, ϵ, ϵ)

� h′
I , . . . , h

′
q

$← H
� (I ′, σ′)← A(x, h1, ..., hI−1, h

′
I , ..., h

′
q; ρ)

� If (I = I ′ and hI ̸= h′
I) then return (1, σ, σ′)

Else return (0, ϵ, ϵ).

Let

frk ≜ Pr
[
b = 1 : x

$← IG; (b, σ, σ′)
$← FA(x)

]
.

Then

frk ≥ acc ·
(acc

q
− 1

h

)
A.1 Simulating KeyGen in ICE FROST

According to the described proof sketch in Section 4.2, ICE FROST is unforge-
able, because otherwise there exists an algorithm C that uses the forger adversary
and solves the discrete logarithm problem for an arbitrary challenge value ω ∈ G.

ICE FROST Protocol 43

For this, C embeds the challenge value ω into the group public key Y by simulat-
ing honest parties and runs the simulator algorithm A(Y, {h1, . . . , hnr

}, β) who
invokes the forger F by simulating the responses to its random oracle queries
using {h1, . . . , hnr}. The simulation is successful if the adversary cannot distin-
guish the real world from the simulated world.

Without loss of generality, suppose the forger adversary F controls t − 1
participants P1 to Pt−1. The algorithm C simulates the (honest) participants Pt

to Pn. Simulation e�ectively is generating valid messages on be half of honest
participants. However, the simulator does not know the secret key corresponding
to honest participants.

To simulate the public communication between two honest participants Ph

and Pj the simulator C samples a DH key key at random from Zq and encrypts
�0� under this key, that is, ehj = EncSym(key, 0).

To simulate messages from honest participants to those participants controled
by the adversary, the simulator needs kSym

ha , the mutual DH key between the
honest participant Ph and the adversarial participant Pa. Then Ph can encrypt
the secret share fh(a) under k

Sym
ha or decrypt received messages from Pa and issue

a complaint message if inconsistency is detected. Note that since the simulator C
doesn't know the honest participant's secret key, it can only derive the DH key
using Pa's secret key ska. The simulator uses the generalized forking algorithm to
get two valid proofs of knowledge of the secret key τa = (Sa, νa) and τ ′a = (S′

a, ν
′
a)

from the adversary and extract ska from the two proofs that is possible when
Sa = S′

a. Suppose qh1 is the number of random oracle queries made during
the Key generation protocol. According to Lemma 1, the simulator derives ska
successfully with probability at least qh1−1

qh1
(qh1−1

q2h1
− 1

h), where h is the size of the

random oracle outputs that is very large. Therefore, the success probability of
the simulator in deriving ska and hence successfully proceed with the simulation
is almost 1

qh1
.

We consider the following sequence of games to model the adversary's inter-
action with the simulator algorithm:

Game0: This is the real unforgeability experiment. The game outputs 1 if the
adversary produces a forgery by corrupting less than t participants. For sim-
plicity, we assume that participants P1 to Pt−1 are corrupted while Pt, . . . , Pn

are honest.
Game1: Exactly as Game0 but the DH keys between an honest participant Pn

and other honest participants Pt, . . . , Pn−1, i.e., kn,t, . . . , kn,n−1 are changed
into random group elements5.

Game2: Exactly as Game1 but the ciphertexts en,t, . . . , en,n−1, containing the
shares fn(t), . . . , fn(n − 1), are computed as en,j = Encsym(kDH

n,j , 0) for
t ≤ j < n.

In Game2 the adversary's advantage of successfully forging a signature can be
bounded by the advantage of breaking the discrete logarithm in almost exactly

5 We can pick any arbitrary honest participant instead of Pn and change its mutual
DH key with other honest participants to random group elements to de�ne Game1.
We picked Pn for the simplicity of presentation.

44 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

the same ways as it is proven for the original FROST. This follows from the fact
that in Game2 it is possible to randomly sample the t − 1 honest-to-malicious
shares, while the honest-to-honest shares are all set to 0. For completeness, in
the �nal part of this proof we bound the probability of forging in Game2 as in
the original proof.

To conclude our �nal claim, we show two lemmas stating the indistinguisha-
bility of the di�erent games.

Lemma 2. For any forger F there exists an adversary B1 against the DDH
assumptions such that |Pr[Game0(F) = 1] − Pr[Game1(F) = 1]| ≤ AdvDH(B1),
where AdvDHB1 is B1's advantage of distinguishing a DH key from a uniform
key under the DDH assumption.

Proof. We construct an adversary B1 against the DDH assumption that receives
triples of the form (X,Y, Z) ∈ G3 and decides if Z is the DH key or a random
string. B simulates Game0(F) as follows: it sets Pn's public key to X and samples
rt, . . . , rn−1 ← Zq, and sets Y rt , . . . Y rn−1 as the public keys of Pt, . . . , Pn−1,
respectively. The key between participants Pn and Pj is computed as Zrj for
t ≤ j < n. It is direct to conclude that, when Z is uniform, B1's output follows
exactly the same distribution as in Game1. On the other hand, when Z = Y logX ,
the output of B1 follows exactly the same distribution as in Game0.

Lemma 3. For any forger F there exists an adversary B2 such that |Pr[Game1(F) =
1] − Pr[Game2(F) = 1]| ≤ (n − t) · AdvCPAEncsym(B2), where AdvCPA

Encsym(B2)
is B2's CPA advantage in distinguishing the encryption of two distinct messages
encrypted by Encsym(·) scheme.

Proof. The result follows from a simple hybrid argument where at each step
we change an encrypted share. At the j-th step of the hybrid argument we
construct a CPA adversary which samples Pn's random polynomial itself, and
uses its encryption oracle to encrypt fn(t), . . . , fn(j−1) and n− j zeros. For the
j-th share it uses its LoR oracle to encrypt either fn(j) or 0.

Lemma 4. Consider n signing participants and a threshold of t; qh1 and qh2 be
the number of queries made to the random oracle in key generation and signing
algorithms, respectively; π be the batch size in preprocessing protocol, qp be the
number of allowed preprocess queries, and qs be the number of signing queries.
If the discrete logarithm problem in G is (τ ′, ϵ′)-hard then

ϵ′ ≤ Pr[Game2(F) = 1]2

qh1 ·
(
2(qh1 + qh2) + (π + 1)qp + 1

)
Proof. Suppose the forger adversary F controls t−1 participants P1 to Pt−1. We
construct an algorithm C that starts a perfect simulation of Game2(F) embedding
discrete log challenge in the global public key. As described, the simulator needs
a PoK extractor to extract the secret keys of the participants controlled by the
adversary and then derive the corresponding mutual DH keys and use them for
encryption and decryption of messages communicated between adverserial and

ICE FROST Protocol 45

honest participants. The extractor will derive the secret key with probability
1

qh1
according to our argument. Then, in the �rst round of Key Generation

Ci = ⟨ϕi0, . . . , ϕi(t−1)⟩ is the set of public commitments for participant Pi. The
simulation of a participant Pn is as follows;

1. Randomly generates values x1, . . . , xt−1 to serve as secret shares ft(1), . . . ,
fn(t− 1), respectively.

2. Set ϕn0 to be the the challenge value ω.
3. Calculates ϕn1, . . . , ϕn(t−1) by performing Lagrange interpolation in the ex-

ponent. That is, ϕnk = ωλn0 .g
∑t−1

i=1 λki.xi .

Then Ct is broadcasted and in the second round
((n, 1), Encsym(ksymt,1 , x1), . . . , ((n, t−1), Encsym(ksymn,t−1, xt−1) is sent to the ma-
licious participants P1, . . . , Pt−1. Further, C simulates the proof of knowledge for
at1, . . . , at(t−1). In addition, C derives the signing public key for Pt by following
the same steps they would use to calculate the public key for their peers (as the
discrete log of the challenge value ω is unknown), by performing:

Yt =

n∏
j=1

t−1∏
k=0

ϕtk mod q
jk

The participants controlled by F can derive their secret key shares si by
directly following the KeyGen protocol, then deriving Yi = gsi . Each party
(honest or corrupted by F) can follow the KeyGen protocol to derive the group's
long-lived public key, by calculating Y =

∏n
j=1 ϕj0.

In addition, C must obtain F's secret values a10, ..., a(t−1)0 using the extractor
for the zero-knowledge proofs that F generates, while at0, . . . , a(n−1)0 are directly
computed by the simulation. C will use these values next in order to convert the
discrete logarithm for the group public key Y into the discrete logarithm for the
challenge value ω.

Finding the Discrete Logarithm of the Challenge Input.As described in [KG20,
Section A.1.3], using the two forgeries (σ, σ′), the discrete logarithm of ω can
be derived. Then according to Forking Lemma (Lemma 1) the probability of
generating two valid forgeries and therefore returning the correct discrete loga-

rithm of ω by C is at least ϵ2

nr
and therefore the total success probability is at

least Pr[Game2(F)=1]2

nr
, where nr is the total number of queries made to the ran-

dom oracle during all stages of the forgery. That is 2(qh1 + qh2) + (π+ 1)qp + 1.
We note that the success probability of the simulation is 1

qh1
and therefore,

ϵ′ ≤ Pr[Game2(F)=1]2

qh1

(
2(qh1+qh2)+(π+1)qp+1

) .
Proof of Theorem 1:

Proof. According to Lemma 2 and Lemma 3,

Pr[Game0(F) = 1] = Pr[Game0(F) = 1]± Pr[Game1(F) = 1]± Pr[Game2(F) = 1]

⇒ Pr[Game2(F) = 1] ≤ AdvDH(B1) + (n− t)AdvCPA
Encsym(B2) + Pr[Game0(F) = 1]

46 A. González, H. Ratoanina, R. Salen, S. Shari�an, V. Soukharev

Since the probability of generating a valid forgery is ϵ, we have Pr[Game0(F) =
1] = ϵ. Therefore, from Lemma 4:

ϵ′ ≤ Pr[Game2(F) = 1]2

qh1
(
2(qh1 + qh2) + (π + 1)qp + 1

) ≤
(
ϵ+ AdvDH(B1) + (n− t)AdvCPA

Encsym(B2)
)2

qh1
(
2(qh1 + qh2) + (π + 1)qp + 1

)
Since in above expression the numerator is of order O(n2), we conclude that un-

forgeability is achieved given that n << qh1, qh2. This is usually the case in settings
that we consider.

B Raw Benchmarking Data

In the following, we present our raw benchmark data from the implementation
described in Section 7.

In Table 2 and Table 3, we present benchmarks for running the key generation
protocols of FROST and ICE FROST, respectively. Each table contains running
times for four parts of the protocol as follows:

� Participant creation, consists in Round 1, steps 1 to 3 of [KG20, Figure
1(KeyGen)]. For ICE FROST, it includes NIZK proof generation for the DH
key pair.

� Round One, consists of Round 1, step 5 and Round 2, step 1 of [KG20, Figure
1(KeyGen)]. In both original FROST and ICE FROST, it includes encryp-
tion of shares and NIZK proofs veri�cation (one in FROST for participant
secret key, two in ICE FROST for the previous and DH key pair).

� Round Two consists of Round 2, step 2 of [KG20, Figure 1(KeyGen)] plus the
decryption step for the received shares, for both FROST and ICE FROST.

� Finish consists of Round 2, steps 3-4 of the original paper.

t-out-of-n Participant creation Round 1 Round 2 Finish

34-out-of-100 0.696 17.890 227.10 0.074
67-out-of-100 1.325 18.425 439.99 0.129
67-out-of-200 1.323 37.042 885.97 1.216
134-out-of-200 2.569 41.556 1764.30 2.446
101-out-of-300 1.970 58.188 2001.00 2.769
201-out-of-300 3.885 69.291 3980.63 6.023
167-out-of-500 3.226 110.630 5507.92 9.472
334-out-of-500 6.386 141.290 11151.00 20.561

Table 2: FROST key generation running time (in ms)

ICE FROST Protocol 47

t-out-of-n Participant creation Round 1 Round 2 Finish

34-out-of-100 0.727 27.866 232.14 0.076
67-out-of-100 1.356 28.603 447.45 0.135
67-out-of-200 1.356 56.768 893.73 1.190
134-out-of-200 2.632 61.830 1773.30 2.373
101-out-of-300 2.005 88.804 2009.66 2.880
201-out-of-300 4.007 102.087 3986.53 5.761
167-out-of-500 3.361 160.244 5522.80 9.650
334-out-of-500 6.636 199.984 11537.22 19.978

Table 3: ICE FROST key generation running time (in ms)

t-out-of-n Single signature generation Signature aggregation Signature veri�cation

34-out-of-100 3.0559 8.304 0.0974
67-out-of-100 5.9797 17.206 0.0985
67-out-of-200 5.9541 17.081 0.0959
134-out-of-200 11.898 38.441 0.0985
101-out-of-300 8.9412 27.453 0.0979
201-out-of-300 17.828 64.057 0.0982

Table 4: FROST/ICE FROST signing protocol running time (in ms)

	Identifiable Cheating Entity Flexible Round-Optimized Schnorr Threshold (ICE FROST) Signature Protocol

