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Abstract

At SCN 2018, Fiore and Pagnin proposed a generic compiler (called “Matrioska”) allowing
to transform sufficiently expressive single-key homomorphic signatures (SKHSs) into multi-key
homomorphic signatures (MKHSs) under falsifiable assumptions in the standard model. Ma-
trioska is designed for homomorphic signatures that support programs represented as circuits.
The MKHS schemes obtained through Matrioska support the evaluation and verification of ar-
bitrary circuits over data signed from multiple users, but they require the underlying SKHS
scheme to work with circuits whose size is exponential in the number of users, and thus can only
support a constant number of users.

In this work, we propose a new generic compiler to convert an SKHS scheme into an MKHS
scheme. Our compiler is a generalization of Matrioska for homomorphic signatures that support
programs in any model of computation. When instantiated with SKHS for circuits, we recover
the Matrioska compiler of Fiore and Pagnin. As an additional contribution, we show how
to instantiate our generic compiler in the Turing Machines (TM) model and argue that this
instantiation allows to overcome some limitations of Matrioska:

• First, the MKHS we obtain require the underlying SKHS to support TMs whose size
depends only linearly in the number of users.

• Second, when instantiated with an SKHS with succinctness poly(λ) and fast enough ver-
ification time, e.g., S · log T + n · poly(λ) or T + n · poly(λ) (where T , S, and n are the
running time, description size, and input length of the program to verify, respectively),
our compiler yields an MKHS in which the time complexity of both the prover and the
verifier remains poly(λ) even if executed on programs with inputs from poly(λ) users.

While we leave constructing an SKHS with these efficiency properties as an open problem, we
make one step towards this goal by proposing an SKHS scheme with verification time poly(λ) ·T
under falsifiable assumptions in the standard model.

1 Introduction

Consider a user Alice who outsources storage of her data x to a powerful server, and let Bob be
another user (also referred here as client) who wants to evaluate a public function f on Alice’s data
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x. Since x may be very large (and f may be expensive) Bob can delegate this computation to the
server which evaluates y = f(x) and returns y to Bob. How can Bob be convinced that the server’s
computation was done correctly, when receiving only a small amount of information (i.e., much less
than the size of x)?

Homomorphic signatures [7] provide a generic solution to this problem. In homomorphic signa-
tures, Alice has a private signing key sk corresponding to a public verification key pk that is known
to anyone, including Bob and the server. Alice sends to the server x along with a signature σ on
x. The server can now compute y as before, and homomorphically generate a signature σ∗ proving
that indeed y = f(x). A distinguishing property of homomorphic signatures is that the size of
σ∗ is significantly smaller than that of x, i.e., logarithmic or constant in |x|. Note that without
such requirement homomorphic signatures could be trivially realized from regular digital signatures
as the server could send to Bob x and Alice’s signature on it. If the computational efficiency of
verifying σ∗ with respect to f is also a concern (namely, it is too expensive for Bob), some works
introduced the notion of efficient verification. The idea is that Bob can do a one-time preprocessing
for the function f , and later verify any signatures for f ’s outputs in constant time.

Multi-key homomorphic signatures (MKHSs) [15] are a generalization of homomorphic signa-
tures (from hereon referred to as “single-key homomorphic signatures”, SKHS, for distinction) to
t ≥ 1 users. In MKHS, each user has a pair of keys (pk i, sk i) and signs its own input xi obtaining
a signature σi that is outsourced to the server (along with the corresponding input). The server
now computes y = f(x1, . . . , xt) and homomorphically evaluates a signature σ∗ proving that y was
computed correctly. Verification of σ∗ now requires the public keys of all the clients.

MKHS were introduced by Fiore et al. [15] who proposed a construction based on lattices. In
2018, Fiore and Pagnin [16] proposed a generic compiler (called Matrioska) for turning SKHSs into
MKHSs. Using their transform, each user can sign its own input using the signing algorithm of
the underlying SKHS. Matrioska exploits the homomorphic property of the SKHS to combine the
signatures from different clients in t steps. The length of the final signature σ∗ is t · `, where ` is
the signature length in the underlying SKHS.

Although the result of [16] establishes a general connection between SKHSs and MKHSs, this
result is limited to the case when the number of users is a small constant. The reason of this
limitation is that, in order to create an MKHS scheme that supports the evaluation of a circuit of
size s, the Matrioska compiler needs to start from an SKHS that supports a circuit of size sc

t−1
,

where c is some constant that depends on the SKHS scheme.
This double-exponential dependence on t stems from the compiler’s approach of [16] in which

one builds t circuits such that, roughly speaking, the circuit at step i takes as input the description
of the circuit built in the previous step i− 1. So, by assuming that each circuit has size polynomial
in its input length, the growth is double-exponential.

1.1 Our results

The first contribution of our work is the proposal of a new generic compiler for turning an SKHS
into an MKHS and that supports the evaluation and verification of programs represented in any
model of computation.

We designed our compiler by abstracting away the compiler of [16] (that was designed to work
specifically for programs represented as circuits) in order to support general computational models.
Such abstraction allows us to separate the steps of the compiler that rely on the properties of the
SKHS from those steps that instead solely depend on the given computational model. We believe
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this separation also offers a better explanation of the Matrioska compiler. A crucial building
block for the steps unrelated to the SKHS scheme is an algorithm, called Mask, that on input
the description of a function F and a portion of the input x (the suffix x′′ that we want to fix in
the description of the function), outputs the description of another function F ′ that is the partial
application of F on x′′, i.e., s.t. for any x = (x′, x′′), F ′(x′) = F (x′, x′′).

A bit more precisely, to be used in our compiler, this Mask algorithm must satisfy some other
properties related to efficiently locating the fixed input in F ′ description and to recursively applying
Mask (due to the high technicality of these properties we refer to Section 4.1 for more details).

Therefore, to instantiate our compiler in a given model of computation one needs to plug in
two main ingredients: an SKHS and the implementation of Mask, both for programs described in
the given model.

Since our compiler is abstract we cannot provide a concrete efficiency analysis of the MKHS it
produces. What we provide generically, though, is a framework to conduct such analysis based on
the following parameters:

• the efficiency of the SKHS verification algorithm, expressed as two functions TV (·) and SV (·)
that determine the running time and the description size of the verification algorithm in terms
of the running time T and size S of the program to verify;

• the efficiency of the Mask function, i.e., the size and running time of the function with
hardcoded inputs that it returns.

The second parameter, the efficiency of Mask, is specific to the computational model as its imple-
mentation (and complexity) depends on how programs are represented. The first parameter, the
efficiency of SKHS verification, is specific to the SKHS scheme one starts from. To test our compiler
we consider five representative cases that span from a realistic one (i.e., the one achieved by the
SKHS of [21] where verification would take time p(λ)T log T ) to a nearly optimal one, where the
verification time is S + n · poly(λ) (where T , S, and n are the running time, description size, and
input length of the program to verify, respectively).

Next, we show that the Matrioska compiler of [16] can be seen as an instantiation of our
compiler in the circuits model. For this case we revisit the efficiency analysis of [16] that estimate
the size of the circuits supported by the SKHS scheme in order to be used to create an MKHS for t
users. We show that, even under the most favorable assumption about the SKHS verification, i.e.,
S + n · poly(λ), the SKHS must support circuits of size at least exponential in t. Such lower bound
somehow shows the limits of applying this compiler to the circuits model.

Our second main contribution is then to propose an instantiation of our compiler for programs
represented as (multi-tape) Turing machines. In particular, our technical contribution is the design
of the Mask algorithm for programs represented as TMs thanks to which we can overcome the afore-
mentioned limitations of the circuits model (and of the Matrioska compiler). The first advantage of
our compiler for TMs is that, independently of the efficiency of the SKHS verification, we obtain an
MKHS scheme that supports the multi-key evaluation of a TM of size S for t users, starting from an
SKHS scheme that supports TMs of size, roughly, S + t ·Sv, where Sv is the (fixed) size of the TM
expressing the SKHS scheme’s verification algorithm. Namely, with respect to the size of the TMs,
we obtain only a linear dependence on the number of users. In contrast, in the original Matrioska
transform, the circuits size supported by the SKHS scheme must be exponentially smaller than that
supported in the multi-key evaluation. The second advantage is that, by assuming the underlying
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SKHS to have verification times (TV (T, S, n, λ) = T + np(λ), TV (T, S, n, λ) = S log T + np(λ), or
TV (T, S, n, λ) = S + np(λ)), we obtain an MKHS in which the underlying SKHS is executed on
programs whose running time depends only linearly on t. This means that our compiler yields an
MKHS that can support up to poly(λ) number of users. In contrast, in the circuit model, under
the same assumption about TV , the compiler yields an MKHS that can support constant number
of users. We defer the reader to Section 6.3 for the detailed analysis.

Towards efficiently instantiating our compiler To the best of our knowledge, no existing
SKHS directly supports Turing machines, and thus our compiler needs to take into account the
overhead required to represent Turing machines as circuits. If we consider the state-of-the-art
SKHS [21], its verification time for a TM running in time at most T is poly(λ) · T log(T ), which
does not fit the most efficient cases of our compiler mentioned earlier (i.e., those allowing to support
a super-constant number of users).

As the last contribution of this paper, we make progress towards closing this gap. In particular,

we show how to construct an efficiently verifiable SKHS with verification time T
O( 1

log2(logλ(T ))
)
+ n ·

poly(λ) from any SKHS with verification time T . The latter is achieved leveraging so-called non-
interactive delegation systems, which exist under falsifiable assumptions in the standard model [23].

The only drawback is that the signature length is T
O( 1

log2(logλ(T ))
)
, and thus still depends on T .

When using the SKHS scheme of [21] in the instantiation, we can obtain a single-key scheme with
verification time poly(λ)T (p) that for the sake of our compiler needs to support TMs running up
to poly(λ)tT (p) time. We leave it as an open problem to design a delegation scheme with better
succinctness, which would directly allow our MKHS compiler to have a polynomial verification
time, and thus support an arbitrary polynomial number of users.

1.2 Paper organization

In Section 2, we review known constructions of homomorphic signatures. We recall a few standard
preliminaries in Section 3. The general definition of the compiler is described and analyzed in
Section 4. We recall the original Matrioska compiler in Section 5 and do an efficiency analysis
of this compiler. In Section 6, we proposed our TM-based compiler and analyzed its efficiency.
Finally, in Section 7, we propose a generic transform for improving the verification time of SKHSs.
We conclude our paper in Section 8.

2 Related work

Homomorphic signatures were introduced by Johnson et al. [22], and the first scheme for computing
linear functions over signed vectors was proposed by Boneh et al. [6]. Several works then proposed
constructions of linearly-homomorphic signatures [1, 8, 3, 11, 12, 18, 4, 25, 9, 14, 10]. Only a few
works propose constructions that support more expressive functions such as polynomials [7, 13] and
circuits of bounded polynomial depth [21].

In [15], Fiore et al. introduced multi-key homomorphic signatures and showed a construction
for functions represented as circuits with bounded depth under standard lattice-based assumptions.
Compared to the scheme in [15], the MKHS schemes obtained from our compiler perform worse,
as [15] can tolerate a polynomial number of users while keeping the complexity of the scheme
polynomial-time. However we stress that [15] builds a scheme based on specific algebraic techniques,
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whereas the goal of our work is to establish a general result that works for any SKHS. Lai et al. [24]
show how to construct MKHSs using SNARKs and standard digital signatures; however, SNARKS
inherently require non-falsifiable assumptions [20]. More recently, Schabhüser et al. [26] and Aranha
et al. [2] construct MKHSs supporting linear functions using bilinear maps.

3 Preliminaries

Notation. Let λ be the security parameter, M be a message space, poly(λ) be a polynomial

function based on λ, and let [n] := {1, . . . , n}. The notation s
$←− S denotes uniformly sampling

a value s from a set S. A function negl(λ) said to be negligible in λ, if for every polynomial p,
there exists an integer N such that for all integers n > N , negl(λ) < 1

p(n) . If A is a probabilistic

algorithm (i.e., it uses random coins), y ← A(·) denotes assigning the output of the execution of A
to the variable y. We use the notation O(1) for a constant value and p(λ) for a fixed polynomial
based on the security parameter λ.

3.1 Homomorphic signature schemes

In this section, we first recall the notion of labeled programs introduced by Gennaro and Wichs
[19] and extended by Fiore et al. [15] for programs with inputs from more than one user. Then, we
review the definitions of SKHS and MKHS schemes and the correctness, succinctness, and security
properties of them.

Labeled programs The input program in most single-key and multi-key homomorphic signature
schemes is modeled as a labeled program. A labeled program P = (f, (`1, ..., `n)) consists of an
n-variate function f :Mn →M and a set of labels `1, ..., `n ∈ {0, 1}∗. Labeled programs P1,...,PN
can be composed using a function G : MN → M. The function G evaluates on the outputs of
P1, ...,PN . The inputs of the composed program P∗ = G(P1, ...,PN ) are all distinct inputs of the
labeled programs P1, ...,PN (the inputs with the same labels are grouped together). For multi-key
homomorphic signatures [15], the identity of the user (i.e. id) are added to the labels such that
` = (id, τ) where τ is a tag. Actually, τ is a string to determine a data item in a set of inputs
generated by the user with identity id.

Multi-labeled programs [5] A multi-labeled program P∆ is a pair (P,∆), where P is a labeled
program and ∆ ∈ {0, 1}∗ is a dataset identifier. Multi-labeled programs P1,∆,P2,∆, ...,PN,∆ with
the same ∆, can also be composed using a function G :MN →M as P∗∆ = G(P1, ...,PN )

In SKHS schemes, labels in a labeled program are tags used to specify on which inputs, among
a set of data items, the program is to be executed.

Definition 1 (Multi-key homomorphic signature scheme [15]). A multi-key homomorphic signature
scheme is a tuple of the following five probabilistic polynomial time (PPT) algorithms ΠMH =
(MH.Setup,MH.KeyGen,MH.Sign,MH.Eval, MH.Verif).

- pp← MH.Setup(1λ): given the security parameter λ, this algorithm outputs the public param-
eter pp which is the default input of other algorithms. This parameter describes a message
space M, a label space L = ID × T , where ID is an identity space and T is a tag space, a
signature space Y, and a set of admissible functions F :Mn →M.
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- (sk , pk) ← MH.KeyGen(pp): given the public parameter pp, this algorithm outputs a secret
key sk and a public key pk.

- σ ← MH.Sign(sk ,∆,m, ` = (id, τ)): given the secret key sk, a dataset identifier ∆ ∈ {0, 1}λ, a
message m ∈M, and a label of the message ` ∈ L, this algorithm outputs a signature σ ∈ Y.

- σ′ ← MH.Eval(P,∆,
{
σi, pk idi

}n
i=1

): given a labeled program P, a dataset identifier ∆ ∈
{0, 1}λ, and a set of public key and signature pairs

{
(σi, pk idi)

}n
i=1

, this algorithm outputs
an authenticator σ′ that is supposed to vouch for the correctness of the result message m =
f(m1, ...,mn).

- b ← MH.Verif(P,∆,
{

pk id
}
id∈P , σ

′,m): given a labeled program P, a dataset identifier ∆ ∈
{0, 1}λ, a set of public keys for identities contributed in P, an authenticator σ′, and a message
m ∈M, this algorithm outputs b = 1 for accepting or b = 0 for rejecting the result.

MKHS correctness An MKHS scheme is correct if it has the authentication correctness and
evaluation correctness properties defined as follows.

- Authentication correctness: Let pp← MH.Setup(1λ), and let (sk id, pk id)← MH.KeyGen(pp)
be a key pair for any user with identity id ∈ ID. For any m ∈ M, any dataset identifier
∆ ∈ {0, 1}λ, and any ` = (id, τ) ∈ L, if σ is the output of MH.Sign(sk id,∆,m, `), then we
have MH.Verif(I,∆, pk id, σ,m) = 1, where I = (I, `) is the labeled program for the identity
function such that I(m) = m.

- Evaluation correctness: Let pp← MH.Setup(1λ), and let {(sk id, pk id)← MH.KeyGen(pp)}id∈ÎD
be a set of key pairs for a set of users with identifier id ∈ ÎD where ÎD ⊆ ID. Let G :Mω →
M be a function for composing labeled programs. For any triples {(Pi,mi, σi)}ωi=1 and a
fixed dataset identifier ∆, if for each i, HS.Verif(Pi,∆, {pk id}id∈Pi , σi,mi) = 1, then we have
HS.Verif

(
P∗,∆, {pk id}id∈P∗ , σ∗,m∗) = 1, where P∗ = G(P1, ...,Pω), m∗ = G(m1, ...,mω) and

σ∗ = HS.Eval(G,∆, {σi, {pk id}id∈Pi}ωi=1).

MKHS succinctness Let pp← MH.Setup(1λ), let P = (f, `1, ..., `n) be a labeled program with
`i = (idi, τi), let {(sk id, pk id) ← MH.KeyGen(pp)}id∈{id1,...,idn} be a set of key pairs, and let {σi ←
MH.Sign(sk idi ,∆,mi, `i = (idi, τi))}ni=1 be a set of signatures. We say that an MKHS scheme has the
succinctness property if and only if the size of the authenticator σ′ ← MH.Eval(P,∆, {σi, pk id}id∈P)
logarithmically depends on n, but possibly linearly in t. Namely, there is a fixed polynomial p such
that |σ′| = p(λ, t, log(n)).

MKHS security In the security model defined by Fiore et al. [15], in addition to asking for
signatures, the adversary can also corrupt signers. Since each user has its own secret and public
keys, corrupting a user doesn’t violate the integrity of computations on messages signed by other
users. Let ΠMH = (MH.Setup,MH.KeyGen,MH.Sign,MH.Eval,MH.Verif) be an MKHS scheme and
A be a probabilistic polynomial-time adversary. To define the security of the scheme, we define a
game expMKHS

A,ΠMH
(λ) between the adversary A and the challenger C as follows:

• Setup: We assume that the adversary A knows the security parameter λ. The challenger C
initializes Lcorr = ∅ as the of corrupted identities, runs pp ← MH.Setup(1λ) and sends the
public parameter pp to A.
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• Signing Queries: A is given the oracle access to the MH.Sign algorithm (OSign) and can
adaptively send requests of the form (∆, ` = (id, τ),m) to OSign where ∆ ∈ {0, 1}λ, m ∈ M,
id ∈ ID and τ ∈ T . When A sends his/her query, C examines the following conditions and
sends σ to A:

- If L∆ does not exist (i.e., it is the first query with dataset ∆) C creates L∆ ← ∅.
- If no signing query with label ` = (id, ·) or corruption query on id was ever issued, C

generates and stores (sk id, pk id)← MH.KeyGen(pp).

- If L∆ already contains a pair (`,m′) for some message m′, C ignores the query.

- If L∆ does not contain any pair (`, ·), C computes σ ← HS.Sign(sk ,∆,m, `), and adds
(τ,m) to L∆.

• Corruption Queries: In corruption queries, A is given oracle access to MH.KeyGen algo-
rithm (OKeyGen) and can adaptively send queries of the form q = id to OKeyGen. During the
game, C initiates an empty list Lcorr of corrupted users. When A sends a corruption query
q = id such that id ∈ ID to C, C examines the following conditions and sends (sk id, pk id) to
A:

- If A request id for the first time, C adds id to Lcorr and returns (sk id, pk id) (if a
key pair for id was not generated before, it generates it in this step, (sk id, pk id) ←
MH.KeyGen(pp)).

- If A request an identity which was requested before (i.e., id ∈ Lcorr), C sends to A the
previously computed pair (sk id, pk id).

• Forgery: Finally, A outputs a tuple (P∗,∆∗,m∗, σ′∗) where P∗ = (f∗, `∗1, ..., `
∗
ω). The ad-

versary A wins the game, if and only if MH.Verif(P∗, ∆∗, {pk id}id∈P∗∆∗ , σ
′∗, m∗) = 1, for all

id ∈ P∗, id /∈ Lcorr, and at least one of the following forgeries occurs:

1. Type-I forgery: ∆∗ is a new dataset which is not queried before.

2. Type-II forgery: ∆∗ is not a new dataset (∆∗ was queried to the signing oracle), for
all i ∈ [ω], (τ∗i ,mi) ∈ L∆∗ and m∗ 6= f∗(m1, ...,mω).

3. Type-III forgery: L∆∗ exists and there exists at least an index j ∈ [ω] such that
(τ∗j , ·) /∈ L∆∗ . In other words, (`∗1, ..., `

∗
ω) contains at least one label `j = (idj , τj) which

was never queried to the signing oracle and idj is not a corrupted identity, namely
idj /∈ Lcorr.

We say that scheme ΠMH is secure if for all probabilistic polynomial-time adversaries A, there is a
negligible function negl(.) such that:

Pr[expMKHS
A,ΠMH

(λ) = 1] ≤ negl(λ)

Non-adaptive corruption queries We remind the reader about a proposition shown in [15] to
argue that, when corruption queries are made non adaptively, it is enough to prove security for
adversaries that make no corruptions.

Proposition 1 ([15]). MKHS is secure against adversaries that do not make corruption queries if
and only if MKHS is secure against adversaries that make non-adaptive corruption queries.
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Remark 1. An instantiation of the MKHS definition where only one key is generated and the same
id is used for all labels covers the definition of the SKHS scheme as a special case.

4 Our generic compiler from SKHS to MKHS

In this section we propose our generic compiler that converts a single-key homomorphic signature
scheme into a multi-key homomorphic signature scheme. Our compiler generalizes the one pro-
posed by Fiore et al. [16] (called “Matrioska”) that works for homomorphic signature schemes for
programs that are modeled as circuits. In contrast, our compiler works for schemes that supports
programs defined in any model of computation (not limited to circuits).

4.1 Notation and building blocks

To define our compiler, we first introduce some notation and building blocks.

Notation. We denote by M the message space of the SKHS scheme. We denote a function
with n inputs and m outputs by F : Mn → Mm. By slightly abusing notation, we also use its
name, namely F , to denote the description of the function, which is assumed to be a string in M`

for some integer length `. For a function F we denote by T (F ) its running time, and by S(F ) (or
|F |) the size of its description. Note that the description depends on the computational model at
hand, e.g., it can be the description of a circuit, a Turing machine or a RAM machine.

Definition 2 (Equality function (EQy)). For a given y ∈M, the equality function EQy(x) takes
as input a value x ∈M and is defined as follows:

EQy(x) =

{
1 if x = y

0 otherwise
,

Definition 3 (Composition function (Compose)). We assume the existence of a polynomial-time
computable function Compose that on input the description of two functions F,G outputs the de-
scription of a function H that computes their sequential composition. More formally, on input two
functions

F :Mn →Mm, G :Mm →M`,

we have H ← Compose(F,G) such that ∀x ∈Mn

H(x) = G(F (x))

Masking function (Mask). This is a central building block of our compiler. Intuitively, Mask is a
polynomial-time computable function that on input the description of a function F and a portion
of an input string, it outputs the description of a function F ′ which computes the same as F but
with the specified inputs already fixed. Namely, F ′ is a partial application of F . In addition to
this basic functionality we assume a few more properties.

The first one is that one can specify a set of indices, among the input symbols that are fixed,
so that for each of these indices Mask returns the position in the description of F ′ where the
corresponding symbol was written. Essentially we can keep track of where the fixed symbols are in
the description of the new function. This property is useful in the compiler where we provide F ′ as
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an “almost” fixed input of the SKHS verification function, where “almost” is due to the fact that
some of the inputs fixed in F ′ are not provided and thus we need to locate where they are.

The other property of Mask is more specific to our application in the compiler. Let us say there
are t functions G1, . . . , Gt and a function E1 which encodes fixed inputs (x2, . . . , xt). Also, let us
assume that one iteratively applies Mask on the function Gi and a fixed input that is the description
of Ei except for the input value xi+1. Notice that with such iterative applications, at the step t− 1
one obtains a function Et in which none of the original inputs (x2, . . . , xt) is fixed anymore. Then
the last property of Mask requires that for such a scenario there exists an alternative algorithm
Mask∗ that can produce directly Et without knowing (x2, . . . , xt).

We stress that in this section we only provide an abstract description of Mask, including its
functionality and its properties. The actual implementation of Mask heavily depends on the compu-
tational model used to represent the functions. Therefore to instantiate our compiler, one needs to
specify how Mask can be implemented. For the circuits model, this essentially recovers the proposal
in [16] that, roughly, is based on creating a new circuit where the fixed inputs are hardwired in
constant gates in such a way that they can be easily located. For the Turing machines model, we
show how to implement Mask in section 6.

In what follows we provide a formal definition of Mask.

Definition 4 (Mask). Mask takes as input a tuple (F, I, V, J) and returns a pair (F ′, I ′) where:

- F is the description of a function with n ∈ N inputs.

- I ⊆ [n] is a set of indices, of cardinality m ∈ {0, . . . , n}, that correspond to the inputs that
we want to fix.

- V : I →M are the values of the input string that we want to fix. For example, for an input
x ∈Mn, V is defined so that, for every i ∈ I, V (i) = xi.

- J ⊆ I is the subset of indices that correspond to the inputs that we want to track.

- F ′ is the description of a function with n′ = n−m inputs.

- J ′ ⊆ [|F ′|] is the set of indices in the description of the function F ′ that correspond to the
inputs that were specified to be tracked in the set J . Hence the cardinality of J ′ is the same
as that of J .

The Mask function should satisfy four properties:

I. Partial application of F . Namely, the function F ′ is the same as executing F partially applied
on the inputs in (I, V ). More formally, let I ′ = [n] \ I = {i′1, ..., i′n′}. Then for any x′ ∈Mn′,
we have F ′(x′) = F (v′) where v′ ∈Mn is such that

v′i =

{
V (i) if i ∈ I
x′k if i ∈ I ′ such that i = i′k

II. Locate the fixed inputs in F ′. The intuition behind this property is that J specifies a subset
of indices, among the ones in the set I, so that for every j ∈ J one can track where V (j) is
written in the description of F ′. To this end, the Mask function returns another set J ′ that
specifies where each of these inputs has been written. More formally, if we let J = {j1, . . . , j|J |}
and J ′ = {j′1, . . . , j′|J |}, then it holds for all k ∈ [|J |] : F ′j′k

= V (jk).
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III. Iterative execution of Mask. There exists a function Mask∗ that takes as input a tuple

(F, I, V ∗, J, {Gi, V ∗i , Ii}t−1
i=1)

and outputs a pair (Et, Jt) where

- F is the description of a function with n inputs.

- I ⊆ [n].

- J ⊆ I.

- V ∗ : I \ J →M.

- Gi is the description of a function with Ni inputs.

- Ii ⊂ [Ni]

- V ∗i : I∗i →M for some I∗i ⊂ Ii.

and that satisfies the following property.

Let F be a function with n inputs, I ⊆ [n], J ⊆ I be two subsets of indices, and V : I →M
be a function that encodes inputs to be fixed. Consider, a first execution of Mask

(E1, J
′
1)← Mask(F, I, V, J)

and then, for i = 1 to t− 1, consider the iterative executions

(Ei+1, J
′
i+1)← Mask(Gi, Ii, Vi, Ii ∩ J ′i)

where:

- Each Gi is some function with Ni ≥ |Ei| inputs.

- Ii ⊂ [Ni] is such that ([Ni] \ Ii) ⊂ Ji. Namely, the indices of inputs that are not fixed
(i.e. they became variable in the new function Ei+1) must be contained in J ′i.

- Vi : Ii →M is such that for all j ∈ [|Ei|] ∩ Ii we have Vi(j) = Ei,j. This models that we
are considering a partial application of Gi on Ei as first input, except that some indices
are removed from its description.

Then, it holds that
(Et, Jt) = Mask∗(F, I, V ∗, J, {Gi, V ∗i , Ii}t−1

i=1)

with

- V ∗ : I \ J →M such that V ∗(i) = V (i),∀i ∈ I \ J . In other words, V ∗ only contains the
inputs that will stay fixed until the last execution.

- V ∗i : Ii \ [|Ei|] → M such that V ∗i (j) = Vi(j), ∀j ∈ Ii \ [|Ei|]. In other words, V ∗i only
contains the additional inputs (other than Ei) that are provided to Gi

In summary, the third property of the Mask function models that, an interative application of
it as above, it should be possible to create the description of the last function without knowing
the original inputs with indices in the set J .

IV. Complexity of Mask. There are two functions TMask(·) and SMask(·) that determine the running
time and the description size, respectively, of the function F ′ that is returned by Mask on input
a function F .
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4.2 Our compiler

Let us now describe our compiler for turning an SKHS into an MKHS.

Definition 5 (SKHS to MKHS Compiler). Let ΠSH = (HS.Setup, HS.KeyGen, HS.Sign, HS.Eval,
HS.Verif) be an SKHS scheme for programs in a given computational model, and let EQ,Compose,
Mask be three functions as in Definitions 2, 3, and 4. The compiler described below outputs an
MKHS scheme ΠMH = (MH.Setup,MH.KeyGen, MH.Sign, MH.Eval, MH.Verif) for programs in the
same computational model as the SKHS one.

- pp ← MH.Setup(1λ, Nt, cp). The MH.Setup algorithm takes as input a security parameter λ,
a bound Nt for the number of distinct users, and a computation cost parameter cp. This
parameter determines some upper bounds for the acceptable computational costs of the input
functions to the MH.Eval and MH.Verif algorithms in the given model of computation. It
outputs pp = 〈ID, pp′〉 where ID is the users identity space and pp′ is generated by invoking
the HS.Setup algorithm as follows.

pp′ ← HS.Setup(1λ, cp′)

where cp′ (which is derived from cp) determines some bounds for the computational complex-
ity of functions supported by the HS.Eval and HS.Verif algorithms. The public parameter pp′

includes a message space M, a tag space T , a signature space Y, and a set of admissible
functions F determined according to cp′. Note, we slightly depart from the notation of Def-
inition 1 assuming that MH.Setup takes Nt and cp as additional inputs (and similarly for
HS.Setup). This is more convenient here to show more clearly the dependence of parameters.
Also it can be done without loss of generality as we could assume that there is an algorithm
for each choice of these values.

- (sk , pk)← MH.KeyGen(pp). The key generation takes as input the public parameter pp, parses
it as 〈ID, pp′〉, and invokes the HS.KeyGen(pp′) algorithm to generate the secret/public key
pair (sk , pk).

This algorithm is run by each user with identity id ∈ ID. Throughout the paper, we use
(sk id, pk id) to denote that the keys are associated to the user with identity id.

- σ ← MH.Sign(sk ,∆,m, `). This algorithm takes as input the secret key sk of the user with
identity id ∈ ID, the data set identifier ∆, the message m ∈ M, and the label ` = (id, τ)
where τ ∈ T , and runs the following algorithm:

σ ← HS.Sign(sk ,∆,m, τ)

- σ′ ← MH.Eval(P,∆,
{

pk idi , σi
}n
i=1

). Let t ≤ Nt be the number of distinct public keys taken
as input by the algorithm. Let P = (F, (`1, ..., `n)) be the labeled program where n ≥ t and for
each j ∈ [n], `j = (idi, τj) such that idi ∈ [t] and τj ∈ T . The resulting signature is computed
as follows.

For t = 1, there is only one signing user with identity id and public key pk id. Namely,
all signatures {σ1, ..., σn} belong to this user and in the labeled program P, all labels has the
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form `j = (id, τj) with j ∈ [n] and some τj ∈ τ . In this case, the MH.Eval algorithm directly
runs the HS.Eval algorithm as follows.

σ′ ← HS.Eval(P,∆, pk id, {σ1, ..., σn})

For t > 1, there is more than one signing users with identifiers {id1, ..., idt} and different
public keys {pk id1

, ..., pk idt}. Assume that each user with identity idi contributes ni mes-

sages such that n =
∑t

i=1 ni. We assume ( without loss of generality) that labels and their
corresponding messages and signatures are ordered based on the user’s identifier. Namely,
the set of triples of labels, messages, and signatures belong to the user with identity idi is
{(`j ,mj , σj)}Iej=Is where Is = 1 +

∑i−1
j=0 nj, n0 = 0, and Ie =

∑i
j=1 nj. In this case, the

MH.Eval algorithm executes the following t+ 1 steps.

– Step 0: compute y ← F (m1, ...,mn) and convert F to a single output function by
running E0 ← Compose(F, EQy). Hence, we have that

E0(m1, ...,mn) =

{
1 if F (m1, ...,mn) = y

0 otherwise
,

E0 works by running F on the inputs and comparing its output to the embedded value y,
to check whether it is equal to y or not.

Notice that the function E0 takes its inputs from all users. However, recall that the
HS.Eval algorithm can be executed on functions with inputs from one user only. For this
reason, in the next steps we apply repeatedly the Mask function to create a function Ei
takes ni inputs only from user idi, and has inputs from users idi+1, . . . , idt fixed in its
description. To do this we also exploit the property of the SKHS verification algorithm.

– Step 1: First, compute

(E1, J1)← Mask(E0, I0, V0, J0)

where I0 = {n1 + 1, ..., n}, V0 : I0 → M such that ∀i ∈ I0 : V (i) = mi, and J0 = I0.
Essentially, E1 is the partial application of E0 on the last n− n1 inputs mn1+1, . . . ,mn.
Hence,

E1(m1, ...,mn1) =

{
1 if E0(m1, ...,mn) = 1

0 otherwise
,

Also, by setting J0 = I0 we are asking Mask to keep track of all the inputs from users
idi+1, . . . , idt, and therefore the set J1 contains the indices in [|E1|] in which the inputs
{mn1+1, ...,mn} have been written in the description of E1. Now that the function E1

takes inputs from the first user only, we execute the SKHS evaluation algorithm on it as
follows.

σ′1 ← HS.Eval
((
E1, (τ1, ..., τn1)

)
,∆, pk1, {σ1, ..., σn1}

)
– Step i, 2 ≤ i ≤ t: From this step on, the goal is to prove that σ′i−1 verifies correctly with

the program Ei−1. Let us consider the case of i = 2 in which one would like to verify
σ′1. The challenge is that the verifier would need to reconstruct the function E1 whose
description, however, contain inputs from all users except the first one. To eliminate
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this dependency, the following procedure is repeated for the remaining users. Let HSVi
be the program that models the SKHS verification algorithm on the appropriate input
length Ni = |Ei−1|+ ni−1|τ |+ |∆|+ |pk i−1|+ |σ′ + i− 1|+ 1.1 By the correctness of the
SKHS verification we have that

HSVi

((
Ei−1, (τs, ..., τe)

)
,∆, pk i−1, σ

′
i−1, 1

)
= 1

where s = (
∑i−2

j=1 nj) + 1 and e =
∑i−1

j=1 nj.

Also, we denote INPi =
((
Ei−1, (τs, ..., τe)

)
,∆, pk i−1, σ

′
i−1, 1

)
∈MNi.

Therefore, in the i-th step we create Ei by fixing the input tuple INPi of HSVi except for
the values of user idi that are present in the description of Ei−1. Notice that the set Ji−1

records the indices where the inputs from users idi, idi+1, . . . , idt are in the description
of Ei. Let us parse this set with the following notation Ji−1 = {js, js+1, . . . , jn}. The
Mask function is executed as follows

(Ei, Ji)← Mask(HSVi, Ii, Vi, Ii ∩ Ji−1)

where

- Ii ← ([|Ei−1|] \ {js+1, . . . , je}) ∪ {|Ei−1|+ 1, . . . , Ni} ⊂ [Ni].

- Vi : Ii → M such that for all j ∈ Ii, we have Vi(j) = INPi,j. Such definition
of (Ii, Vi) models that we are asking Mask to fix the whole input INPi except those
values that correspond to the inputs of user idi that, by the correctness of the previous
Mask execution, are in the positions {js+1, . . . , je} in Ei−1’s description.

We also observe that by passing Ii ∩ Ji−1 as the last input of Mask, we are essentially
asking Mask to keep track of the values in positions je+1, . . . , jn, and thus Ji contains
the indices where these values have been written in the description of Ei.

By the property I of Mask, if we assume s′ = s + ni−1 and e′ = e + ni, the function Ei
is such that

Ei(ms′ , ...,me′) =


1 if HS.Verif

((
Ei−1(ms, ...,me), (τs, ..., τe)

)
,

∆, pk i−1, σ
′
i−1, 1

)
= 1

0 otherwise

,

Since the function Ei takes in only inputs of user idi, we can run HS.Eval on it as below
to create σ′i.

σ′i ← HS.Eval
((
Ei, (τs′ , ..., τe′)

)
,∆, pk i, {σs′ , ..., σe′}

)
Finally, notice that in the last step, the function Et just takes its inputs from the last
user and the evaluation algorithm is executed on it as follows.

σ′t ← HS.Eval
((
Et, (τ1+

∑t−1
j=1 nj

, ..., τn)
)
,∆, pk t, {σ1+

∑t−1
j=1 nj

, ..., σn}
)

1The use of an input-specific function is done for generality to capture both uniform (e.g., Turing machines) and
non-uniform (e.g. circuits) computational models.
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The tuple of the signatures σ̂ = 〈σ′1, ..., σ′t〉 is sent to the verifier as an authenticator for
verifying the result y.

- b := MH.Verif
(
P,∆,

{
pk i
}t
i=1
, σ̂, y

)
. The verification algorithm takes as inputs the labeled

program P =
(
F, (`1, ..., `n)

)
, the public key of all users, the dataset identifier ∆, the authen-

ticator σ̂ = 〈σ′1, ..., σ′t〉, and the result message y ∈M, and outputs one bit b ∈ {0, 1} deciding
whether the result is correct or not.

For t = 1, the labeled program P = (F, (`1, ..., `n)) takes inputs from a single user with identity
id and public-key pk, and for every j ∈ [n], `j = (id, τj) for some τj ∈ T . In this case σ̂ = 〈σ〉
and the verifier only runs the verification algorithm in the SKHS scheme as bellow and returns
b.

b := HS.Verif
((
F, (τ1, ..., τn)

)
,∆, pk , σ, y

)
For t > 1, the labeled program P = (F, (`1, ..., `n)) takes inputs from more than one user.
The verifier constructs E0 like the Step 0 explained in the MH.Eval algorithm, parses σ̂ to
〈σ′1, ..., σ′t〉, and reconstructs Et using the public values 〈(τ1, ..., τn), {pk i}t−1

i=1,∆, {σ′i}
t−1
i=1〉, and

the third property of the Mask function as

(Et, φ)← Mask∗(E0, I0, V
∗, J0, {HSVi, V ∗i , Ii}t−1

i=1)

where the sets of indices I0, J0 are as in the MH.Eval algorithm, V ∗ is the empty function, the
sets Ii are defined as in MH.Eval, and each V ∗i encodes only the inputs of HSVi after Ei−1

(that are public). Finally, the verifier runs the following algorithm.

b := HS.Verif
(
(Et, τ(

∑t−1
i=1 ni)+1, ..., τn),∆, pk t, σ

′
t, 1
)

4.3 Succinctness, correctness and security of the compiler

The succinctness, correctness, and proof of security of the compiler follows the ones given for
Matrioska [16].

Succinctness Let ΠHS be an SKHS scheme with the succinctness l. The succinctness of the
multi-key homomorphic signature scheme which is obtained by the compiler is determined by the
size of σ′ which is the output of the MH.Eval algorithm. As σ̂ = (σ′1, ..., σ

′
t) and each σ′i is the

output of the HS.Eval algorithm, so the succinctness of the MKHS scheme is l.t.

Correctness Let ΠHS = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,HS.Verif) is an SKHS scheme
with the correctness property, then MKHS scheme ΠMH = (HS.Setup,HS.KeyGen,HS.Sign,HS.Eval,
HS.Verif) obtained from the compiler has the correctness property according to the correctness of
scheme defined in the Definition 1.

Proof. The correctness property consists of the authentication correctness and evaluation correct-
ness. The main idea of the proof is quite similar to the proof of the Matrioska [16], with the
difference that in our case the steps are generalized to any computational model and make use of
the properties of the generic Mask function. Hence, the correctness of the MKHS scheme obtained
from the compiler is reduced to the correctness of the SKHS scheme. The details of the proof is in
Appendix A.
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Security Let ΠHS be a secure SKHS scheme, then the MKHS scheme ΠMH generated by the
compiler is secure.

Now, we explain an intuition of the security proof for the MKHS generated by the compiler and
details of the proof can be found in [16].

Proof. Let A be a PPT adversary against the ΠMH MKHS scheme. We show that if the adversary
A makes a forgery in ΠMH, we can create another PPT adversary B that outputs a forgery against
the SKHS scheme ΠHS such that Pr[expMKHS

A,ΠMH
(λ) = 1] < t · Pr[expSKHSB,ΠHS

(λ) = 1] where t is the
maximum number of distinct identities.

LetA outputs a forgery (P∗,∆∗,m∗, σ′∗) where σ′∗ = (σ′∗1 , ..., σ
′∗
t ) and MH.Verif

(
P∗,∆∗, {pk id}id∈P∗∆∗ ,

σ′∗, 1
)

= 1. For (t = 1), since the MKHS scheme generated by the compiler is similar to an SKHS
scheme, it is obvious that a forgery in ΠMH leads a forgery in ΠHS. For (t > 1), we show how a
forgery in ΠMH leads a forgery in ΠHS.

- Let A outputs a Type-I forgery, namely ∆∗ be a new dataset identifier. In the verifier side,
the MH.Verif algorithm invokes HS.Verif

(
(E∗t , (τn−nt , ..., τn)),∆∗, σ′∗t , 1

)
algorithm. So, if ∆∗

is not queried before, then B outputs a Type-I forgery in ΠHS.

- Let A outputs a Type-II forgery in ΠMH such that E0(m1, ...,mn) = 0 and MH.Verif
(
(E0,

(τ1, ..., τn)),∆∗, {pk i}ti=1, σ
′∗, 1

)
= 1. This algorithm creates Et and calls HS.Verif

(
(Et, (τn−nt ,

. . . , τn)),∆∗, pk t, σ
′∗
t , 1

)
algorithm which outputs 1. Therefore, in at least one step i ∈ [t] of

the compiler, there is a function Ei−1 such that

HS.Verif
((
Ei−1, (τ(

∑i−1
j=1 nj)+1, ..., τ

∑i
j=1 nj

)
)
,∆, pk (i-1), σ

′
(i-1), 1

)
= 1

and Ei−1(m∑i−2
j=1 nj

, ...,m∑i−1
j=1 nj

) = 0. Therefore the adversary B can output a Type-II forgery

in ΠHS.

- Let A outputs a Type-III forgery in ΠMH and there is at least an index i ∈ [n] such that
`i = (idi, τi) /∈ L∆∗ . Since in the steps of the compiler, the functions are created using the
input program and they are used in HS.Verif algorithm as the input function, then the Type-
III forgery is unavoidable in ΠHS. Another case that the adversary A can output a type-III
forgery in ΠMH is that there is a σ∗i′ such that σ∗i′ be a Type-II forgery in ΠHS for some identity
idi′ which is used during the verification in the compiler.

Remark 2. Lai et al. [24] introduced the notion of insider-unforgeability for SKHS and MKHS and
proposed constructions of these schemes from non-falsifiable assumptions. We observe that in the
case our compiler is applied to an insider-unforgeable SKHS scheme, the resulting MKHS scheme
would also satisfy insider unforgeability. Intuitively, this is due to the fact that an SKHS with
insider unforgeability is essentially a succinct proof system. Note though that applying our compiler
to an insider-unforgeable SKHS makes the purpose of the compiler less interesting. Indeed, insider
unforgeable SKHS imply SNARGs, which are known to require non-falsifiable assumptions under
which one could build directly a more efficient MKHS (as proposed in [24]).
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4.4 General efficiency analysis

In this section, we provide a general framework to analyze the efficiency of the MKHS scheme
obtained through our compiler. In particular, we are interested in analyzing the complexity of
running the MH.Eval and MH.Verif algorithms. To this end, our analysis focuses on showing the
running time and the description size of the functions Ei built during the steps of the MH.Eval
algorithm – this is in fact the main burden of our general compiler. This analysis clearly includes
also the complexity of the last function Et that the verifier feeds to the HS.Verif algorithm.

We stress that here we only provide a general framework to analyze these costs. As we shall
see, the final complexity depends on the specific SKHS we start from, the computational model
supported by it, and the Mask function.

Given a function Ei built in the i-th step of the compiler, we denote its running time with T (Ei)
and the size of its description with S(Ei).

LetHSV be the program that realizes the HS.Verif algorithm on an input ((E, τ1, . . . , τn),∆, pk , σ, y).
We assume that its running time T (HSV ) and description size S(HSV ) are determined using the
following functions:

T (HSV ) = TV
(
S(E), T (E), n, λ

)
, S(HSV ) = SV

(
S(E), n, λ

)
Namely, they are both a function of HSV ’s input length and the security parameter, and the
running time of HSV may also depend on the running time of E.
Let us now review the steps of the compiler to analyze the growth in the description size and the
verification time. Let E0 be the program we start from and let us assume it has size S(E0) and
that runs in time at most T (E0) on n inputs.

- Step 1: We build the function E1 using the mask function as (E1, J1)← Mask(E0, I0, V0, J0).
By the property IV of the Mask function (see Definition 4), we have

T (E1) = TMask(T (E0)), S(E1) = SMask(S(E0))

- Step i (i ≥ 2): let HSVi be the program that models the SKHS verification algorithm to be
run on a labeled program of size S(Ei−1) and with running in time at most T (Ei−1) on ni−1 in-
puts. The function Ei is created using the mask function as (Ei, Ji)← Mask(HSVi, Ii, Vi, Ii∩
Ji−1).

By the property IV of the Mask function, we have

T (Ei) = TMask(T (HSVi)), S(Ei) = SMask(S(HSVi))

In turn, as mentioned earlier the time and size costs of HSVi are

T (HSVi) = TV
(
S(Ei−1), T (Ei−1), ni−1, λ

)
,

S(HSVi) = SV
(
S(Ei−1), ni−1, λ

)
Therefore, by combining these equations we obtain the following relation at every step 2 ≤
i ≤ t− 1:

T (Ei) = TMask(TV
(
S(Ei−1), T (Ei−1), ni−1, λ

)
), (1)

S(Ei) = SMask(SV
(
S(Ei−1), ni−1, λ

)
) (2)
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At this point it is clear that to resolve this relation one needs to instantiate the functions TV
and SV (that depends on the SKHS scheme used in the compiler), and the functions TMask

and SMask (that depend on the Mask function, which in turn depends on the computational
model).

For this reason we defer the reader to the following two sections to see how the analysis can be
completed in two models of computation, that of circuits (which recovers the result of Fiore et
al. [16]) and that of Turing machines (that we show how to instantiate in this work).

To ease the comparison, we assume that the function SV can be expressed generally as below:

SV (S(E), n, λ) = as(S(E), λ) · S(E) + bs(n, λ)

for some functions as and bs that are both polynomials in their inputs. We can see in Section 5.1
and Section 6.4, how the computational model and implementation of the Mask function can affect
the description size of the final function Et created in the compiler. In particular, one can see that
in a uniform model of computation such as Turing machines the description of the Turing machine
can be independent of the input length, i.e., SV (S(E), n, λ) is a fixed polynomial bs(λ), whereas in
a model like circuits the size of the circuit description is at least as large as the input size.

Regarding the running time of the HS.Verif algorithm, to ease the comparison we consider the
following five cases of the function TV :

- Case 1: TV (T, S, n, λ) = p(λ)T log(T ).

- Case 2: TV (T, S, n, λ) = p(λ)T .

- Case 3: TV (T, S, n, λ) = cT + np(λ) for a constant c ∈ N.

- Case 4: TV (T, S, n, λ) = S log(T ) + np(λ).

- Case 5: TV (T, S, n, λ) = S + np(λ).

Notably, the first case models the efficiency of the state-of-the-art SKHS scheme for circuits pro-
posed by Gorbunov et al. [21]. In case 1, even if we assume that TMask is the identity function,
it is not hard to see that the recurrence of equation (1) would resolve T (Et) having a factor λt−1,
exponential in the number t of users. For this reason, we consider the additional cases 2–5 as they
show the potential of our compiler and can motivate further research in designing SKHS with more
efficient verification algorithms. We note that the last case 5 is the most optimistic one, as it is
saying that the running time of the SKHS verification depends linearly in the description size of
the function to verify, without any multiplicative factor, depending on a constant (i.e., c · S) or
the security parameter (i.e., λ · S). Finally, we stress that the verification algorithm must read the
function to verify, which is an input, and thus it seems unrealistic to assume a verification time
smaller than the size S.

5 Our compiler in the circuits model: Matrioska

The compiler proposed by Fiore et al. [16] can be seen as an instantiation of our general compiler
described in Section 4.2 when instantiated in the circuits model of computation. Below we recall
the circuit model used in [16] and explain how the Mask and Compose functions work there.

In the circuit model, a circuit C is described using a tuple C = (ni, oi, qi, Li, Ri, Gi) where
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- ni is the number of inputs,

- oi is the number of outputs,

- qi is the number of gates,

- Li is a function determines the left wire for a given gate g ∈ [qi],

- Ri is a function determines the right wire for a given gate g ∈ [qi],

- G is a function that maps each gate g ∈ [qi] to a bit.

In Matrioska, the EQy, Compose, and Mask functions that are used by the compiler are modeled
using circuits. The function EQy is modeled by a circuit that models the xor operation. The
Compose function just binds the outputs of the first circuit to the inputs of the second circuit,
and is used by the function Mask(C, I, V, J). In Algorithm 1 we show how the description of this
provided in [16] can be seen as an instance of our Mask definition. In a nutshell, the algorithm
creates a mask circuit M that outputs the inputs of the circuit C and them it runs the Compose
function to binds the outputs of M to the inputs of C. We defer the reader to [16] for more details.

Algorithm 1 : Mask function in Matrioska

1: procedure Mask(C, I, V, J)
2: Parse C to (n, o, q, L,R,G);
3: Define empty arrays Lm[n], Rm[n], Gm[n];
4: for each i ∈ I do
5: Set Lm(i) = 0, Rm(i) = 0, Gm(i) = V (i);
6: end for
7: for each i ∈ [n] \ I do
8: Set Lm(i) = 1, Rm(i) = 1, Gm(i) = 0;
9: end for

10: Create a mask circuit M = (1, n, n, Lm, Rm, Gm);
11: Run C ′ = compose(M,C);
12: for each i ∈ J do
13: Set J ′i to the location of Ji in C ′;
14: end for
15: Return (C ′, J ′)
16: end procedure

Let us assume that (MH.Setup, MH.KeyGen, MH.Sign, MH.Eval, MH.Verif) are the algorithms
generated by Matrioska. The algorithms MH.KeyGen and MH.Sign are exactly the same as the
algorithms presented in Definition 5. In the inputs of the MH.Setup algorithm, the computation
cost parameter cp is a pair (s, d) where s and d are upper bounds for the size and depth of the
circuits supported by the generated MKHS scheme, respectively. In the MH.Eval and MH.Verif
algorithms, the steps are the same as the steps described in Definition 5, but the EQy, Mask,
Compose, and every function Ei created in the i-th step of these algorithms are modeled using a
circuit.
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5.1 Efficiency analysis

Fiore and Pagnin analyzed the efficiency of their compiler [16] by showing how the circuits Ei
grow and what is the size of the last circuit Et, which is the one that needs to be computed by
the verifier. In their analysis, this size depends in a double exponential manner on t, roughly
S(HSVt) ≈ S(C)c

t
, where c is a constant such that the SKHS verification on input a circuit C is a

circuit with p(λ)S(C)c gates. The depth of the circuit is a function of its size. This assumption is
quite general (it simply assumes that the verification circuit is a polynomial of its input size) but
not very tight.

For a fair comparison with the compiler proposed in this paper, we revisit the complexity
analysis of Matrioska considering the most favorable assumption regarding the complexity of the
SKHS verification with respect to the input program. Even in such optimistic case, we show
that the MKHS scheme obtained through the Matrioska compiler implies a blowup that is at least
exponential in the number t of users.

In the circuit model we take the circuit size (i.e., the number of gates) as a measure for the
running time, while the description size of a circuit with q gates is assumed to be ≈ q log q, following
the model adopted in [16]. Therefore, applying the case 5, in what follows we assume that

T (HSVi) = TV (T (Ei−1), S(Ei−1), ni−1, λ) = S(Ei−1) + ni−1 · p(λ)

and S(HSVi) = T (HSVi) log(T (HSVi)).
Let us now review how the compiler proceeds.

- Step 1: In the first step, the circuit E1 is created by running the Mask function that invokes
Compose(M1, E0). The size of this circuit is S(E1) = S(E0) + n where n is the total number
of inputs of E1 and the number of gates in the masking circuit M1.

- Step i (2 ≤ i ≤ t−1): Let HSVi be the description of the circuit that models the verification
algorithm of the SKHS scheme that is created in the i-th step of the compiler. This circuit is
to be run on the input

INPi =
((
Ei−1, (τ1+(i−1)n′ , ..., τin′)

)
,∆, pk i−1, σ

′
i−1, 1

)
Next, Ei is built using the Mask function that internally computes Ei = Compose(Mi, HSVi)
where Mi is a “mask” circuit that is as large as the input INPi above (see Algorithm 5). Let
l(λ) be a poly(λ) such that l(λ) = |∆| + |pk | + |σ′| +1. The size of the circuit Ei is

S(Ei) = S(Mi) + S(HSVi)

= S(Ei−1) + ni−1|τ |+ l(λ) + T (HSVi) log(T (HSVi))

= S(Ei−1) + ni−1|τ |+ l(λ)

+(S(Ei−1) + ni−1 · p(λ)) log(S(Ei−1) + ni−1 · p(λ))

As one can see, from the above equation we can easily derive a lower bound

S(Ei) ≥ 2 · S(Ei−1)

and with an easy inductive proof we also get that for every 1 ≤ i ≤ t

S(Ei) ≥ 2i−1 · S(E0)

19



Hence, we obtain that in the Matrioska compiler the complexity growth in case 5 is still exponential
in the number of users, namely

S(Et) ≥ 2t−1 · S(E0)

T (Et) ≥ S(Et−1) + nt−1p(λ) ≥ 2t−2 · S(E0) + nt−1p(λ)

6 Instantiating our compiler for Turing machines

In this section, we show how to instantiate our compiler of Section 4.2 for SKHS that support
programs modeled as Turing Machines (TM). To this end, we show how the building blocks of
section 4.1 can be instantiated in the TM model.

In particular, a crucial difference with the Matrioska compiler of [16] is a more efficient im-
plementation of the Mask function that, independently of the complexity of the SKHS verification
algorithm, avoids an exponential blowup in the size of the TMs Ei built during the steps of the
compiler.

In Matrioska, the exponential blow up in the circuit size is mainly due to “gluing” the Mask
circuit to the description of the circuit HSVi used in each step. The size of the Mask circuit depends
on the input size of HSVi, that in turn includes the size of the circuit Ei−1 created in the previous
step.

In the case of the Turing machines instantiation, we overcome this blowup by defining the
Turing machines in such a way that the input values are located at the beginning of the input tape.
This way we can finding and remove the input values in each step in a much simpler way than in
Matrioska as we can simply “cut” the tape from the left at an appropriate location. In the next
section we begin by describing our TM model.

6.1 Turing machines conventions

We model the functions in our compiler by using multi-tape Turing machines. Since every multi-
tape Turing machine has an equivalent single-tape Turing machine [27], all of the multi-tape Turing
machines used in this paper can be realized by transforming them to a traditional single-tape
Turing machine. A multi-tape Turing machine is a 7-tuple

〈
Q,Σ,Γ, δ, qs, qa, qr

〉
with the following

semantics:

- Q is the set of all states.

- Σ is the input alphabet (the union of all input alphabets for all tapes i.e. Γ =
k⋃
i=1

Γi).

- Γ = Σ ∪ {B,♦,B,C} is the tape alphabet. It is the union of the input alphabet and four
special symbols, which are not in the input alphabet. B symbol is used for determining
the blank cells, ♦ symbol is used for separating values on the tape, B symbol is used for
determining the beginning of the values, and C symbol is used for determining the end of the
values on a tape.

- qs ∈ Q is the start state.

- qa ⊆ Q is the set of accept states.
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- qr ⊆ Q is the set of reject states.

- δ : Q× (Γ)k → Q× (Γ)k×{R,L,S}k is the transition function where k is the number of tapes
used in a Turing machine and R, L, and S stand for Right, Left, and Stop, respectively.

We use TM instead of Turing machine for simplicity throughout the paper. For describing a TM,
we add a new part to the general description of the multi-tape TMs. The description of TMs used
in our compiler contains

TM(i) =
〈
cv,Q(i),Σ(i),Γ(i), δ(i), q(i)

s , q
(i)
a , q

(i)
r

〉
where i is a TM identifier and cv is the constant inputs of a TM. The transition function of TMs
used in our compiler is δ(i) : Q(i)× (Γ(i))4 → Q(i)× (Γ(i))4×{L,R,S}4 and all TMs have four tapes
as:

- Variables tape: This tape contains variable inputs of TMs.

- Constants tape: This tape is read-only and contains constant inputs of TMs and is deter-
mined in the description of TMs. Intuitively, this tape contains values that are hardwired in
the TM description.

- Work tape: This tape is used during the execution of TMs.

- Outputs tape: This tape contains the outputs that are determined after the execution of a
TM.

Each of these four tapes has a head that can read/write one symbol at a time. The beginning (resp.
end) of the values on the tapes is determined by the tape symbol B (resp. C).

Without loss of generality, in our compiler we assume that all the TMs have the following
behavior. Before executing a computation, the TM copies the content of the variable tape to the
work tape, then appends the values of the constant tape on the work tape, and terminates the
work tape with the C symbol. Then, the TM executes its transition function on the work tape
without needing to read the variable and constant tapes. The output of the TM is the content of
the output tape when the TM halts. At the start state of TMs, we assume the heads should be at
the beginning of the values on the tapes. In halting states, the head of the output tape comes back
to the beginning of the output values, and the values on the work tape are erased (because, in the
sequential composition of TMs, the next TM works on the same work tape).

6.2 TM-based instantiation of our compiler’s building blocks

In the instantiation of the compiler proposed in Definition 5 for Turing machines model of com-
putation, we use three families of four-tape Turing machines: (1) a family of Turing machines
for modeling the main functions to be evaluated, (2) a family of Turing machines for modeling
the equality check operation, and (3) a family of Turing machines for modeling the verification
algorithm of a single-key homomorphic signature. We give more details on these machines below:

- TM(p): This machine runs the program p(x1, ..., xn) and writes its output on the output tape.
The input values {x1, ..., xn} can be constant or variable. The constant inputs are specified
in cv(p). In a situation where all inputs are variable, this tape can be empty. The description
of this machine is
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TM(p) =
〈
cv(p),Q(p),Σ(p),Γ(p), δ(p), qs

(p), qa
(p), qr

(p)〉.
- TM(EQy): This machine simply checks if a variable input on the variable tape is equal to the

constant input y (it is in cv(EQy)) or not. If the equality check is satisfied, it writes the value
1 otherwise writes the value 0 on the output tape. The description of this TM is

TM(EQy) =
〈
cv(EQy),Q(EQy),Σ(EQy),Γ(EQy), δ(EQy), qs

(EQy), qa
(EQy), qr

(EQy)〉.
- TM(v): This Turing machine models the verification algorithm of a sufficiently expressive

single-key homomorphic signature. It takes as constant inputs (they are in cv(v)), the de-
scription of a Turing machine TM(i), the public key of the verifier pk , the dataset identifier
∆, the result bit b, and the signature of the result σ. If the verification is satisfied, the value
1 otherwise the value 0 is written on the output tape. The description of this machine is

TM(v) =
〈
cv(v),Q(v),Σ(v),Γ(v), δ(v), qs

(v), qa
(v), qr

(v)〉.
We also define two deterministic functions Compose and Mask that operate on Turing machines
and create a new Turing machine as their output.

6.2.1 TM-based composition function

A composition function, Compose, is a function that takes as input two TMs and combines them
to make a new TM. Let

TM(1) =
〈
cv(1),Q(1),Σ(1),Γ(1), δ(1), qs

(1), qa
(1), qr

(1)
〉
,

and
TM(2) =

〈
cv(2),Q(2),Σ(2),Γ(2), δ(2), qs

(2), qa
(2), qr

(2)
〉
,

are two TMs and Q(1)∩Q(2) = ∅. To construct TM(3) =
〈
cv(3),Q(3),Σ(3),Γ(3), δ(3), qs

(3), qa
(3), qr

(3)
〉
,

the function Compose takes TM(1) and TM(2) as the inputs and specifies the following parameters:

- cv(3) = cv(1) || cv(2),

- Q(3) = Q(1) ∪Q′ ∪Q(2),

- Σ(3) = Σ(1) ∪ Σ(2),

- Γ(3) = Γ(1) ∪ Γ(2),

- δ(3) = δ(1) ∪ δ′ ∪ δ(2),

- qs
(3) = qs

(1),

- qa
(3) = qa

(2),

- qr
(3) = qr

(2).

To complete the construction, we need to determine the parameter δ′ and Q′ (the rest of the
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Figure 1: Values of the tapes after the execution of TM(1).

parameters are available). The transition function δ′ contains essential transitions for going from
the halting states of TM(1) to the start state of TM(2). The contents of the tapes after the execution
of TM(1), are shown in Figure 1.

At first, δ′ should copy the content of the output tape (the output of TM(1)) to the end of the
variable tape. It should move the head of the output tape to the right, copy the output values to
the variable tape, remove the output values from the output tape, and finally return the head of
the variable tape to the beginning of the values belongs to TM(2). The transition function δ′ for
4 tapes is defined as follows,

δ
′

:
(
{qa

(1), qr
(1)} ∪Q

′)
×

(
Γ(3))4 7→

(
{qs

(2)} ∪Q
′)
×

(
Γ(3))4 × {L,R,S}4,

where Q
′

= {q′1, q′2} and for each (v, c, w, o) ∈
(
Σ(3)

)4
. The set of transitions in δ′ are as follows:

- At the end of the execution of TM(1), the work tape is empty and the location of the heads
are shown in Figure 1. This transition moves the head of the variable and constant tapes to
the right.(
q, (C,C,B,B)

)
7→

(
q, (C,C,B,B), (R,R,S,S)

)
where q ∈ {qr

(1) ∪ qa
(1)}

- This transition writes B symbol on the variable tape for determining the beginning of the
variable inputs of TM(2) and moves the head of variable tape and output tape to the right.(
q, (B,B,B,B)

)
7→

(
q′1, (B,B,B,B), (R,S,S,R)

)
where q ∈ {qr

(1) ∪ qa
(1)}

- This transition copies the content of the output tape to the variable tape and writes the blank
symbol on the output tape.(
q′1, (B,B,B, o)

)
7→

(
q′1, (o,B,B,B), (R,S,S,R)

)
- When the output tape reaches the end of the output values determined with C, the head of

the variable tape returns to the beginning of the variable inputs of TM(2).(
q′1, (B,B,B,C)

)
7→

(
q′2, (C,B,B,B), (L,S,S,S)

)(
q′2, (v,B,B,B)

)
7→

(
q′2, (v,B,B,B), (L,S,S,S)

)
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- when the head of the variable tape reaches the beginning of the variable inputs of TM(2), this
transition moves to the start state of TM(2).(
q′2, (B,B,B,B)

) 7→ (
qs

(2), (B,B,B,B), (S,S,S,S)
)

6.2.2 TM-based Mask function

Here we show a realization of the Mask function for our TM model. For simplicity, our realization
works for a slightly more restricted case than that of Definition 4: we assume that (I, V ) always
encodes a suffix of the input, rather than an arbitrary subset. Note that this is sufficient when
instantiating our compiler of section 4.2 in our TM model as the constant tape is always at the
beginning of the description and then, by the convention mentioned in section 6.2, the TM works
on the variable input followed by the constant input.

The function Mask(TM(1), I1, V1, J1) takes as input the description of a Turing machine TM(1) =〈
cv(1),Q(1),Σ(1),Γ(1), δ(1), qs

(1), qa
(1), qr

(1)
〉

that accepts inputs of length n(1), a set I1 = {s +

1, . . . , n(1)} for some s ≥ 0, a function V1 : I1 → M and a set J1 ⊂ I1. Notice that the integer s
essentially denotes where to “cut” the input so that only inputs after s are fixed. Mask outputs
a new Turing machine TM(2) =

〈
cv(2),Q(2),Σ(2),Γ(2), δ(2), qs

(2), qa
(2), qr

(2)
〉

and a set J2 that are

built as follows. The constant tape cv(2) is cv(2) =
(
V1(s + 1), . . . , V1(n(1)), cv(1)

)
, while the rest

of the TM stays the same, i.e., Q(2) = Q(1), Σ(2) = Σ(1), Γ(2) = Γ(1), δ(2) = δ(1), qs
(2) = qs

(1),
qa

(2) = qa
(1), qr

(2) = qr
(1). The set J2 is defined as {j − s : j ∈ I1}. Namely, we are simply shifting

the indices in I1, as in cv(2) those values are at the beginning.
In other words, we are placing at the beginning of the constant tape of TM(2) the suffix of the

input encoded by (I1, V1), let us call it v, that we want to fix. Since our TMs always copy the
variable inputs followed by the constant tape in the work tape, we obtain that executing TM(2) on
an s-long input v′ works the same as executing TM(1) on (v′, v).

We define the following theorem to show that our TM-based Mask function satisfies the four
properties of Mask function defined in Definition 4 (when executed on suffixes of inputs).

Theorem. The TM-based Mask function satisfies the properties of the general Mask function de-
fined in Definition 4 when executed on sets I1 of the form I1 = {s+ 1, . . . , n(1)} for some s ≥ 0.

Let (TM(2), J2) = Mask(TM(1), I1, V1, J1) where TM(1) and TM(2) have n(1) and n(2) ≤ n(1) inputs,
respectively. We recall each property defined in Definition 4 and prove that the TM-based Mask
function satisfies each of them.

I. Partial application of TM(1). Let I2 = [n(1)] \ I1 = {i2,1, ..., i2,n(2)}. Then for any x′ ∈ Mn(2)
,

we have TM(2)(x′) = TM(1)(v′) where v′ ∈Mn(1)
is such that

v′i =

{
V1(i) if i ∈ I1

x′k if i ∈ I2 such that i = i2,k

Proof. First, notice that by construction I2 = {1, . . . , s} and n(2) = s. Next, according to the
Turing machine conventions explained in Section 6.1, before executing TM(2), the content of
its variable tape and constant tape are written on its working tape, receptively. Thus, the
content of the working tape of TM(2) will be

(
x′1, ..., x

′
s, V1(s+1), ..., V1(n(1)), CV1

)
. According

to the definition of TM-based Mask function, we have Q(2) = Q(1), Σ(2) = Σ(1), Γ(2) = Γ(1),
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δ(2) = δ(1), qs
(2) = qs

(1), qa
(2) = qa

(1), qr
(2) = qr

(1). Thus, executing TM(2) on x′ is the same
as executing TM(1) on the input v′ =

(
x′1, ..., x

′
s, V1(s+ 1), ..., V1(n(1))

)
(since it is also written

on the working tape and cv(1) is appended to it).

II. Locate the fixed inputs in TM(2).

Proof. In the Turing model used in this paper, the constant inputs of a Turing machine are
located in the beginning of its description. Thus, finding the new indices of the fixed inputs in
TM(2) is a simple work which is done by shifting the indices in J1 such that J2 = {j−s : j ∈ I1}
where s is where the inputs are cut from the constant tape.

III. Iterative execution of Mask. This property of the Mask function models that, by iterative
execution of Mask function as explained in the third property of Definition 4, there is a
TM-base function Mask∗ that can create the description of the last Turing machine without
knowing the original inputs with indices in the set J .

Proof. Let (TMt, Jt) = Mask∗(TM, I, cv∗, J, {Gi, cv∗i , Ii}
t−1
i=1) where

- TM = 〈cv,Q,Σ,Γ, δ, qs, qa, qr〉 is a Turing machine with n inputs.

- I ⊆ [n]

- J ⊆ I
- cv∗ contains the inputs of TM that will stay fixed until the last execution.

- Each Gi = 〈cv(i),Q(i),Σ(i),Γ(i), δ(i), qs
(i), qa

(i), qr
(i)〉 is some Turing machine with Ni ≥

|TMi| inputs.

- Ii ⊂ [Ni] is such that ([Ni] \ Ii) ⊂ Ji.
- cv∗i is the set of fixed values that only contains the additional inputs (other than TMi)

that are provided to Gi

In the iterative execution of the TM-based Mask function, the description of TMt will be as
follows.

TMt =
〈
...,
〈(〈(

cv∗
)
,Q,Σ,Γ, δ, qs, qa, qr

〉
,

, cv∗1
)
,Q(1),Σ(1),Γ(1), δ(1), qs

(1), qa
(1), qr

(1)
〉
, ...
〉

, cv∗t ),Q
(t),Σ(t),Γ(t), δ(t), qs

(t), qa
(t), qr

(t)
〉

There is a sample pseudocode in Algorithm 2 that can create this description without knowing
the original inputs.
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Algorithm 2 : Mask∗ function in TM-based compiler

1: procedure Mask∗(TM, I, cv∗, J, {Gi, cvi
∗, Ii}t−1

i=1)
2: parse TM to 〈cv∗,Q,Σ,Γ, δ, qs, qa, qr〉;
3: set header = “”;
4: set body = “cv∗),Q,Σ,Γ, δ, qs, qa, qr〉”;
5: for i = 1; i < t do
6: header = header || “〈(”;
7: parse Gi to 〈cvi

∗,Q(i),Σ(i),Γ(i), δ(i), qs
(i), qa

(i), qr
(i)〉;

8: body = body || “, cvi
∗),Q(i),Σ(i),Γ(i), δ(i), qs

(i), qa
(i), qr

(i)〉”;
9: end for

10: TM(t) = header||body;
11: Set s = I(t−1,1) − 1;
12: Set Jt = {j − s : j ∈ It−1};
13: return (TMt, Jt)
14: end procedure

IV. Complexity of Mask. There are two functions TMask(·) and SMask(·) that determine the running
time and the description size, respectively, of the Turing machine TM(2) that is returned by
Mask on input a function TM(1).

Proof. At run time, the variable and constant inputs are written on the work tape and the
Turing machine executes on the work tape. Since the sum of the constant and variable inputs
size is the same in TM(1) and TM(2) and δ(1) = δ(2), we have TMask(TM(2)) = T (TM(1)).
Regarding to the description size, the TM-based Mask adds n(1) − s value from the constant
tape and SMask(TM(2)) = S(TM(1)) + n(1) − s.

6.3 Complexity analysis of the TM-based compiler

In this section, we describe the effect of using the TM computational model on the complexity
of the proposed compiler compared to using the circuit model of computation. We define some
notations used for complexity analysis in Table 1. For the TM instantiation we call TM(i) the TM
instantiation of the function Ei generated in the i-th step of the compiler.

Table 1: Notation used in the complexity analysis in Turing based compiler
Notation Description

Sp the size of the program TM(p) to be verified.

Tp the running time of TM(p).

SEQy the size of TM(EQy).

bs(λ) the size of TM(v).

Scmp the additional three states and six transitions in the Compose function.

Si the size of TM(i) created in the i-th step of the compiler.

Ti the running time of TM(i) created in the i-th step of the compiler.

TVi the verification time of TM(i−1).
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6.4 Growth in the description size

Let l(λ) be a polynomial function expressing the size of a tuple 〈∆, pk , σ′, 1〉, and let the size of the
TM expressing the verification algorithm of the SKHS be a fixed polynomial, i.e. bs(λ). In what
follows we analyze the growth of the TMs used through the steps of our compiler. In our compiler
TM(0) is created using the compose function and its size is S0 = Sp + SEQy + Scmp + |y|. At step
1, the machine TM(1) obtained from the application of Mask is essentially the same as TM(0) with
the inputs of all the users but the first one in the constant tape. Hence, its size is

S1 = S0 + n− n1.

At step i, with i ≥ 2, the compiler uses a machine TM(i) whose size is that of TM(v), i.e., bs(λ),
plus what is written in the constant tape, which is: the description of TM(i−1) with the first ni
inputs removed, the ni−1 labels and the tuple consisting of public key, signature and output bit,
which has size l(λ).

Si = Input size + program size (in step i)

More formally, we claim that

Si =

{
S0 + n− n1 i = 1

S0 + n− ni + (|τ | − 1)
∑i−1

j=1 nj + (i− 1)(bs(λ) + l(λ)) 1 ≤ i ≤ t
,

We prove this claim as follows.

- Step 1: This follows by the construction of TM(1) as already mentioned above.

- Step i ≥ 2: we show the claim by induction. Let us assume that

Si−1 = S0 + n− ni−1 + (|τ | − 1)
i−2∑
j=1

nj + (i− 2)(bs(λ) + l(λ))

In every step i for i ≥ 2, the machine TM(i) is created by adding to the constant tape of
TM(v) the description of TM(i−1) without the ni inputs of user i that in its constant tape
cv(i−1). Hence we have

Si = bs(λ) + Si−1 + ni−1|τ |+ l(λ)− ni

= S0 + n− ni−1 + (|τ | − 1)

i−2∑
j=1

nj + (i− 2)(bs(λ) + l(λ)) +

bs(λ) + ni−1|τ |+ l(λ)− ni

= S0 + n− ni + (|τ | − 1)
i−1∑
j=1

nj + (i− 1)(bs(λ) + l(λ))

which equals the value to be proven.

We notice that for i = t, St can be simplified with

St = S0 + |τ |(n− nt) + (t− 1)(bs(λ) + l(λ))

This bound establishes our claim that the size of the last Turing machine depends only linearly on
the number of the users.
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6.5 Running time analysis

For analyzing the running time in our compiler, we explain the growth in the running time for
different cases explained in Section 4.4. First of all, we analyzed that the Case 1 where TVi =
a(λ)Ti−1 log(Ti−1) corresponds to the way our compiler can be instantiated using the existing SKHS
construction of Gorbunov et al. [21]. Then, in Section 6.5.2, we generally analyze the verification
cost in other cases.

6.5.1 Efficiency of constructing the MKHS from the existing SKHS

The SKHS scheme proposed by Gorbunov et al. [21] can evaluate any circuit with bounded depth.
The main cost of the verification algorithm in this scheme is the homomorphic evaluation of the
circuit to be verified. This is done gate-by-gate, and each gate evaluation has a fixed p(λ) = poly(λ)
cost. Therefore, for a circuit with N gates, the verification cost is N · p(λ). This scheme can be
used for programs represented as Turing machines by using the following result, which shows how
to represent a Turing machine using a Boolean circuit.

Theorem 1. Fischer and Pippenger [17] have shown that a T (n) time-bounded Turing machine
(TM) can be simulated on n bits by a combinational (Boolean) circuit with O(T (n) · log T (n)) gates.

Thinking of the verification algorithm of [21] as a Turing machine that evaluates a circuit in
poly(λ) · N steps, and by using the above theorem we get that TV = p(λ)Tp log(Tp) for a fixed
polynomial p(λ) = poly(λ), where TV and Tp are the running time of the verification algorithm
and input program, respectively. In this case we claim that the verification time in the i-th step is

TVi ≤

{
p(λ) · Tp log(Tp) i = 1

Tp · 5i−1(i− 1)! · (p(λ) log(Tp))
i 2 ≤ i ≤ t

Proof. The case for i = 1 follows immediately by construction. For 2 ≤ i ≤ t we prove the claim
by induction.

• For i = 2, the verification time of TM(2) is:

TV2 = p(λ)TV1 log(TV1)

= p(λ)2 · Tp log(Tp) ·
(

log(p(λ)) + log(Tp) + log log(Tp)
)

≤ p(λ)2 · Tp log(Tp) ·
(
3 log(Tp)

)
≤ 5Tp ·

(
p(λ) log(Tp)

)2
where in the first inequality we used the assumption Tp ≥ p(λ).

• For i > 2, let us assume that TVi−1 = Tp ·5i−2(i−2)! · (p(λ) log(Tp))
i−1. Then the verification
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time of TM(i) is:

TVi = p(λ)TVi−1 log(TVi−1)

≤ Tp · p(λ)i5i−2(i− 2)! · log(Tp)
i−1
(

log T (p) + log(5i−2) +

log((i− 2)!) + log(p(λ)i−1) + log(log(Tp)
i−1)

)
≤ Tp · p(λ)i5i−2(i− 2)! · log(Tp)

i−1(log Tp + (i− 2) log(5) +

(i− 2) log(i− 2) + (i− 1) log(p(λ)) + (i− 1) log(log(Tp)))

≤ Tp · p(λ)i5i−2(i− 2)! · log(Tp)
i−1(log Tp + (i− 1) log(5) +

(i− 1) log(i− 2) + (i− 1) log(p(λ)) + (i− 1) log(log Tp)

≤ Tp · p(λ)i5i−2(i− 2)! · log(Tp)
i−1(5(i− 1) log Tp)

= Tp · p(λ)i5i−1(i− 1)! · log(Tp)
i

Above, in the first inequality we applied the inductive hypothesis, in the second we used that,
for i ≥ 3, (i − 2)! ≤ (i − 2)(i−2), in the third step we used (i − 2) ≤ (i − 1), and in the last
inequality we used the assumption Tp ≥ p(λ), 5, (i−2) (namely the result holds asymptotically
for such sufficiently large running time Tp).

Therefore, the upper bound for TVt is 5t−1(t−1)!Tp
(
p(λ) log(Tp)

)t
. This means that for existing

SKHS scheme, our compiler can support a constant number of users.

Comparison with the compiler of [16] For a fair comparison, in B we also analyze the effi-
ciency of the Matrioska compiler [16] using a similar assumption, namely that the SKHS verification
circuit has p(λ)Sp logSp gates, where Sp is the description’s size for the input program P that is
modeled with the model of [16]. From our analysis in B we get that the size of the verification
circuit in the last step is, at least

Sp · kt · t! · (t+ 1)! · p(λ)t(log p(λ))2t

which is slightly worse than our upper bound.

6.5.2 General efficiency analysis of our compiler

As we proved in Section 6.5.1, the verification time of the MKHS created using the existing SKHS
scheme is exponential. In this section, we examine how the compiler performs in the other cases
defined in Section 4.4 and show the cases where our compiler can support a polynomial number of
users. We summarize the results of this analysis in Table 2.
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Table 2: The verification time in TM-based compiler.
SKHS verification time MKHS verification time number of users

Case 1 TV = p(λ)Tp log Tp exponential O(1)

Case 2 TV = p(λ)Tp exponential O(1)

Case 3 TV = cTp + np(λ)
exponential O(1)

quasi-polynomiala polylog(λ)
polynomial ( if c = 1) poly(λ)

Case 4 TV = Sp log(Tp) + np(λ) polynomial poly(λ)

Case 5 TV = Sp + np(λ) polynomial poly(λ)

aif we can tolerate quasi-polynomial verification cost.

We provide an example of the verification cost for each case in Table 2 and compute the
verification cost in the MKHS creates using our compiler.

• Case 2: TV = p(λ) · Tp for some fixed p(λ) = poly(λ).

In this case, it is easy to see that for all i = 1 to t, TVi+1 ≤ p(λ)i · Tp, and thus the running
time of MH.Verif is at most p(λ)t · Tp. In this case, the number of users can be constant.

• Case 3: Tp = c · Tp + n · p(λ) for a constant c ≥ 1 and a fixed p(λ) = poly(λ).

The verification time of the Turing machine created in step i of our compiler is:

TVi+1 = ci · Tp + p(λ)
i∑

j=1

nj · ci−j

which we prove inductively as follows.

For i = 1, TV2 = c · Tp + n1p(λ) holds by construction and by the assumption on TV .

For any i ≥ 2, let us assume that

TVi = ci−1 · T (p) + p(λ)
i−2∑
j=1

nj · ci−j−1,

then by following the construction we have

TVi+1 = c · TVi + nip(λ)

= c(ci−1 · T (p) + p(λ)
i−2∑
j=1

nj · ci−j−1) + nip(λ)

= ci · T (p) + p(λ)
i−1∑
j=1

nj · ci−j)

which yields the claimed value. Notice that the value of T can be simplified with an upper
bound

TVi+1 ≤ ci(Tp + p(λ)
i∑

j=1

nj

≤ ci(T (p) + i · n · p(λ))
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From this bound we deduce that in this case (4) our compiler can support up to t = O(log λ)
without incurring in an exponential running time.

• Case 4: TV = Sp log Tp + np(λ) for a fixed p(λ) = poly(λ).
According to the size analysis in Section 6.4, we have

Si = Sp − ni + (|τ | − 1)
i−1∑
j=1

nj + (i− 1)(bs(λ) + l(λ))

We assume for all i ∈ [t], Si ≤ S where S = poly(λ). Thus, we have

TVi+1 ≤ Si log Ti + nip(λ) (3)

Let S′ = max{Tp, S}. We claim that the verification time in step i of our compiler is:

TVi+1 ≤ 5 · S · log(S′) + nip(λ)

which we prove inductively as follows.

For i = 1, TV2 = Sp log Tp+n1p(λ) holds by construction and by the assumption on TV , and
clearly satisfies the upper bound above.

For any i ≥ 2, let us assume that

TVi ≤ 5 · S log(S′) + ni−1 · p(λ)

then we obtain the claimed value from the following sequence of inequalities

TVi+1 ≤ S log(TVi) + nip(λ)

≤ S log
(
5S log(S′) + ni−1p(λ)

)
+ nip(λ)

≤ S
(

log 5 + logS + log log(S′) + log(ni−1) + log(p(λ))
)

+ nip(λ)

≤ 5 · S log(S′) + nip(λ)

where the first equality holds by the equation 3, the second inequality holds by applying our
inductive hypothesis, and the last one holds by assuming that S′ = max{Tp, S}.
Since S linearly depends on t, thus S′ is a polynomial value based on the security parameter.
From this bound we deduce that in this case (4) our compiler can support up to t = poly(λ)
users.

• Case 5: TV = Sp + np(λ) for a fixed p(λ) = poly(λ).
In this case we have

TVi+1 = Si + nip(λ)

Since, Si linearly depends on the number of users. Thus we can assume, for some S = poly(λ),
and all i ∈ [t], Si ≤ S. Clearly the verification time in step i of our compiler is:

TVi+1 ≤ S + np(λ)

From this bound we deduce that in this case (5), our compiler can support up to t = poly(λ)
users.
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7 Decreasing the verification cost

The verification time for the existing SKHS construction [21] is poly(λ)T (p) log(T (p)) and it depends
on the time of the input program. In our compiler, this dependency makes the verification time of
MKHS grows exponentially with respect to the number of users (as explained in Section 6.5.1). In
this section, we explain how to reduce the verification time of an SKHS with the verification time
poly(λ)T (p) log(T (p)) to T (p) + n(p)poly(λ).

By considering the efficiency of the delegation system proposed by Kalai et al. [23], we claim that
every SKHS which its verification time does not depend linearly to the time of the input program
and its input length, can be converted to a new construction such that its verification time linearly
depends on the time of the input program. For this conversion, we define the following theorem.

Theorem 2. Let ΠHS be a single-key homomorphic signature scheme that is correct and unforgeable.
If ΠHS has succinctness l and verification time of poly(λ)T log(T ) where T is the execution time of
the input function, and we have an adaptively sound non-interactive delegation scheme Πdel with

the proof length L = T
O( 1

log2(logλ(T ))
)

and the verification time O(L)+n ·poly(λ) where n is the input
length, we can build an efficiently verifiable single-key homomorphic signature, which is correct and
unforgeable with the succinctness l + L and verification time of O(L) + n · poly(λ).

For proving this theorem, we first recall the delegation system introduced by Kalai et al. [23]
and then, we construct an efficiently verifiable single-key homomorphic signature scheme. Finally
we prove the properties described for this scheme.

7.1 Publicly verifiable non-interactive delegation

Let M be a Turing machine with the halting time bound T and input length n. We define UM as
a language consisting of tuples (x, T ) such that M accepts x if and only if M halts in atmost T
steps where x ∈ {0, 1}n and n ≤ T ≤ 2λ.

Definition 6 (Publicly verifiable non-interactive delegation scheme [23]). A publicly verifiable non-
interactive delegation scheme ΠDel for the Turing machine M with the time-bound T and the input
length n, is a tuple of three probabilistic polynomial-time algorithms (Del.S,Del.P,Del.V):

- (del.pk, del.vk) ← Del.S(1λ, T,n): the setup algorithm takes the security parameter λ, time-
bound T , and input length n as input and outputs the public-key del.pk, and the verification-
key del.vk of the delegation system.

- π ← Del.P(del.pk, x): the proving algorithm takes the public-key del.pk and input message x
as inputs, and outputs a proof π. This algorithm is run by the prover.

- b := Del.V(del.vk, x, π): the verification algorithm takes the verification-key del.vk, input
message x, and proof π as inputs, and outputs a Boolean value. If proof is valid, it outputs
one otherwise outputs zero. This algorithm is run by the verifier.

This delegation system has the following properties:

• completeness: for all λ,n and T we have

pr

[
Del.V(del.vk, x, π) = 1

∣∣∣∣ (del.pk,del.vk)← Del.S(1λ, T,n)
π ← Del.P(del.pk, x)

]
= 1
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• soundness: for all probabilistic polynomial time adversary A and security parameter λ we
have

pr

[
Del.V(del.vk, x, π) = 1
(x, T ) /∈ UM

∣∣∣∣ (del.pk, del.vk)← Del.S(1λ, T,n)
(x, π)← A(del.pk,del.vk)

]
≤ negl(1λ)

• efficiency: the proof and CRS length is L = T
1

log2(logλ(T )) , the prover’s run time is poly(T, λ)
and the verifier’s run time is O(L) + n · poly(λ).

7.2 Efficiently verifiable single-key homomorphic signature

Recently, Kalai et al. [23] introduced a publicly verifiable non-interactive delegation system with
adaptive soundness for any program with the execution time T which is secure in the CRS
model. Their proposed delegation system is efficient, namely, the CRS and the proof length is

L = T
O( 1

log2(logλ(T ))
)

and the prover’s and verifier’s run time are poly(T, λ) and O(L) + n · poly(λ),
respectively.

To reduce the verification time in the known SKHS scheme, we use this delegation scheme. In
other words, we build an efficiently verifiable single-key homomorphic signature (ESKHS) from the
standard SKHS scheme ΠHS = (HS.Setup, HS.KeyGen, HS.Sign, HS.Eval, HS.Verif) by using the
delegation system described in Definition 6. Actually, we use the proof generated by the prover of
the delegation system to prove the correct execution of the verification algorithm in the single-key
homomorphic signature.

Let x = ((f, (τ1, ..., τn)),∆, pk , σ′, y) be the input of the HS.Verif algorithm and M̂ be the Turing
description of this algorithm. An efficiently verifiable SKHS is a tuple of five probabilistic poly-
nomial time (PPT) algorithms ΠEHS = (EHS.Setup,EHS.KeyGen,EHS.Sign, EHS.Eval,EHS.Verif)
described in Figure 2. As we can see in Figure 2, the length of σ” is L + l. So ΠEHS satisfies a

weaker succinctness property because the signature has a component of length L = T
O( 1

log2(logλ(T ))
)
,

where T is the runtime of the SKHS verification. Furthermore, the EHS.Verif algorithm runs Del.V;
so, the verification time is O(L) + |x| · d(λ) for a fixed polynomial d(λ) = poly(λ).

In the case T = p(λ)T (p) log(T (p)), notice that we can bound

L = (p(λ)T (p) log(T (p)))
1

log2 logλ(p(λ)T (p) log(T (p))) ≤ p(λ)(T (p))
2

log2 logλ(p(λ)T (p) log(T (p)))

which is ≤ p(λ)T (p) whenever log2 logλ(p(λ)T (p) log(T (p))) > 2, which for example holds for T (p) ≥
λ8.

Correctness Proving the correctness of ΠEHS consists of proving the correctness of each signed
messages and the correctness of the signature which is the output of the EHS.Eval algorithm.

- Authentication correctness: Authentication correctness is directly derived from the au-
thentication correctness of Πsk .

- Evaluation correctness: Since σ” = (σ′, π), σ′ is correct based on the evaluation correctness
of Πsk , and π is correct based on the completeness of Πdel, so ΠEHS has the evaluation
correctness property.
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EHS.Setup(1λ, T (v),n)

- Run pp′ ← HS.Setup(1λ)

- Run (del.pk, del.vk)← Del.S(λ, ,n)

- Return pp = (pp′,del.pk, del.vk)

EHS.KeyGen(pp)

- Parse pp to (pp′,del.pk, del.vk)

- Run (sk ′, pk ′)← HS.KeyGen(pp′)

- Return
(
sk = sk ′, pk = pk ′

)
EHS.Sign(SK,∆,m, `)

- Run σ ← HS.Sign(sk ,∆,m, `)

- Return σ

EHS.Verif((f, (τ1, ..., τn)),∆, pk , σ”,m)

- Parse σ” to (σ′, π)

- Run b := Del.V(x,del.vk, π)

where x = (f, pk ,∆, σ′, y).

- Return b

EHS.Eval(f,∆, pk , ~σ)

- Parse pp to (pp′, del.pk,del.vk)

- Let ~m = (m1, ...,mn)

and m = f(m1, ...,mn).

- Run σ′ ← HS.Eval(f,∆, pk , ~σ)

- Run π ← Del.P(x,del.pk) where x is

the inputs of the HS.Verif algorithm

which is ((f, (τ1, ..., τn)),∆, pk , σ′,m).

- Return σ” = (σ′, π)

Figure 2: Efficiently verifiable SKHS

Security For proving the security of ΠEHS, we define the following theorem:

Theorem 3. If ΠHS is an unforgeable single-key homomorphic signature and Πdel is an adaptively
sound publicly verifiable non-interactive delegation system under Definition 6, then the efficiently
verifiable single-key homomorphic signature scheme ΠEHS is also unforgeable.

Proof. Let there exists an adversary AEHS who wins the unforgeability game for the proposed
efficiently verifiable single-key homomorphic and outputs a forgery in ΠEHS. We show how to
construct a new adversary A, that can use ΠEHS to do a forgery in ΠHS or break the soundness
of Πdel. Actually, A plays the role of the challenger C in the SKHS unforgeability game for the
adversary AEHS.

If the adversary AEHS outputs a forgery (P∗,∆∗,y∗,σ”∗) where σ”∗ = (sig′∗, π∗), A can check
the validity for the signature σ′∗ using b := HS.Verif(P∗,∆∗, pk , σ′∗, y∗) algorithm:

• if b = 0, A breaks the soundness of the delegation system and the security of this scheme is
reduced to the security of the delegation system.

• if b = 1, A does a forgery in the SKHS scheme and the security of this scheme is reduced to
the security of the SKHS scheme.

Using EHS in our compiler Let us analyze the efficiency of the MKHS scheme that results
from using EHS in our compiler as the input SKHS scheme. Also, we consider an instantiation
with an SKHS scheme where the verification takes time T = p(λ)T (p) log(T (p)), for which we can
assume L ≤ p(λ)T (p).

So, in the EHS signature scheme, we have C(HSV ) = p(λ)T (p) + n(v)poly(λ) where n(v) is the
input size of the verification algorithm. Considering that EHS signatures are not fully succinct,
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as |σ”| = |σ′| + L, we have that the input size n(v) of the verification algorithm also depends
on T . Essentially, for EHS with T (v) = poly(λ)T (p), which follows our Case 1 in Section 6.5.1,
means that with this construction the number of users t needs to be a constant in order to have a
polynomial-time verifier.

This leaves the interesting open problem of finding a delegation system, secure in the standard
model, in which proofs have better complexity, so that our compiler can yield a more efficient
MKHS that can support O(log λ) users.

8 Conclusion

In this paper, we generalized the compiler proposed by Fiore et. al. [16] for converting a single-key
homomorphic signature to a multi-key homomorphic signature in any model of computation (not
limited to circuits model). We provide a generic efficiency analysis for the compiler. However, this
is rather a framework and the full analysis can be obtained only when instantiating the compiler
for a specific computational model. We show how Matrioska [16] can be viewed as an instantiation
of our compiler in the circuit model and provide an efficiency analysis under tighter assumptions
about the complexity of the SKHS verification algorithm. Notably, we show that this instantiation
has a growth exponential in the number t of users. Then, we proposed our TM-based instantiation
of the general compiler. In particular the technical contribution of this instantiation is the definition
of the multi-tape TM model and the design of the Mask function that works efficiently on it. Then,
we analyze the efficiency of the TM-based instantiation. Notably, we show that some assumptions
our compiler yields a MKHS in which the growth is linear in the number of users and thus it can
tolerate a polynomial number of users. Since the verification time of the SKHS scheme affects on
the verification time of the MKHS scheme created by our compiler, we provide a transformation to
improve the efficiency of the verification algorithm in the SKHS scheme using a delegation system.
With state-of-the-art delegation schemes that are secure in the standard model (i.e., no random
oracles) under falsifiable assumptions, we obtain an SKHS scheme whose verification is poly(λ)tT (p).
We leave it as an open problem to design an SKHS or a delegation scheme with better succinctness,
which would directly allow our MKHS compiler to have a polynomial verification time, and thus
support an arbitrary polynomial number of users.
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A Proof of the correctness

We prove the correctness of MKHS scheme generated by the compiler by defining the following two
lemmas.

Lemma 1 (Authentication correctness). Let ΠHS = (HS.Setup,HS.KeyGen, HS.Sign,HS.Eval,HS.Verif)
be an SKHS scheme that has the authentication correctness property, then the MKHS scheme
ΠMH = (MH.Setup,MH.KeyGen, MH.Sign, MH.Eval, MH.Verif) obtained from the compiler has the
authentication correctness property according to the correctness of the scheme defined in Definition
1.

Proof. Let the MH.Setup(1λ, Nt, cp) algorithm generates pp and MH.KeyGen(pp) algorithm gener-
ates sk id and pk id for the user with identity id ∈ ID. For any m ∈ M, any dataset identifier
∆ ∈ {0, 1}∗, and any ` = (id, τ) ∈ L, if σ is the output of MH.Sign(sk id,∆,m, `), we should show
that we have MH.Verif(I,∆, pk id, σ,m) = 1, where I = (I, `) is an identity function such that
I(m) = m. In our compiler, MH.Sign(sk id,∆,m, ` = (id, τ)) runs the σ ← HS.Sign(sk id, ∆,m, τ)
algorithm. For verifying the output of the identity program I, since t = n = 1, the compiler runs
HS.Verif

(
(I, (τ)),∆, pk id, σ,m

)
. So, If ΠHS has the authentication correctness property, ΠMH also

has the authentication correctness property.

Lemma 2 (Evaluation correctness). Let ΠHS = (HS.Setup, HS.KeyGen, HS.Sign, HS.Eval, HS.Verif)
is an SKHS scheme that has the evaluation correctness property, then the MKHS scheme ΠMH =
(HS.Setup, HS.KeyGen, HS.Sign, HS.Eval, HS.Verif) obtained from the compiler has the evaluation
correctness property according to the correctness of scheme defined in Definition 1.

Proof. For proving the evaluation correctness, we show that the output of computation on the
signed messages which are signed correctly, should verified correctly. If (t = 1), the compiler
works like the SKHS scheme. So, if Πsk has the evaluation correctness property, ΠMH also has
the evaluation correctness property. If (t > 1), we prove the evaluation correctness property using
induction. Let E0 is the function created by running the Compose function on F to get a single
output function.

- For the first user, the HS.Eval algorithm runs on E1 and generates σ′1. Verification of σ′1
is done using HS.Verif algorithm which is run on E1. If E1(m1, ...,mn) = 1, then HS.Verif
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outputs one. Since E1 takes its inputs from the first user, if ΠHS has the evaluation correctness
property, then σ′1 is verified correctly.

- In the i-th step in the compiler where i ∈ [t], the MH.Eval algorithm, creates a new function
Ei which works on inputs from the user with identity idi. Let si =

∑i−1
j=1 nj and ei =

∑i
j=1 nj .

Each of this functions is evaluated using the evaluation algorithm as below.

σ′i ← HS.Eval
((
Ei, (τsi , ..., τei)

)
,∆, pk i, {σsi , ..., σei}

)
For proving the evaluation correctness using induction, we assume σ′t−1 is verified correctly,
then we should show that σ′t is verified correctly, too. In the verifier side, using the third
property of Mask, Et is created using the function Mask∗. The other way to create Et is by
running the mask function on HSVt which is the description of the function corresponding

to the HS.Verif
((
Et−1, (τst−1 , ..., τet−1)

)
, ∆, pk t−1, σ

′
t−1, 1

)
algorithm. By the property I of

Mask, the function Et will be such that

Et(mst , ...,met) =


1 if HS.Verif

((
Et−1(mst−1 , ...,met−1), (τst−1 , ..., τet−1)

)
,

∆, pk t−1, σ
′
t−1, 1

)
= 1

0 otherwise

,

Since we assume σ′t−1 is the correct signature for the output of Et−1, then the output of Et
will be one. Since one is the correct output of Et and ΠHS has the evaluation correctness
property, thus σ′t is verified correctly. So all the signatures (σ′1, ..., σ

′
t) are verified correctly

and ΠMH has the evaluation correctness property.

B Circuit size growth in Matrioska for the existing SKHS scheme

Let S determines the size of the circuit C that models the program p. We assume SKHS verification
circuit has qHSV = p(λ)S logS gates for a fixed p(λ) = poly(λ) and investigate the growth in the
circuit size.

Let the description size of the circuit Ei is denoted by Si. As explained in [16], the description
size of the circuit Ei = (ni, oi, qi, Li, Ri, Gi) is computed as Si = (ni+qi) log(ni+qi). Let HSVi = (
nHSVi , 1, qHSVi , LHSVi , RHSVi , GHSVi) be the description of a circuit that models the verification
algorithm of the SKHS scheme that is created in the i-th step of the compiler. This circuit is

supposed to be run on inputs
((
Ei−1, (τ1+

∑i−1
j=1 nj

, ..., τ∑i
j=1 nj

)
)
, ∆, pk i−1, σ

′
i−1, 1

)
. For simplicity

we assume that l(λ) = |∆|+ |pk |+ |σ′|+ 1.

In this case, for every 1 ≤ i ≤ t, we have that qHSVi = p(λ)Si−1 log(Si−1). Let E0 be a circuit with
q0 gates; hence S0 = kq0 log q0. We claim that

Si ≥

{
kq0 log q0 i = 1

ki+1 · i! · (i+ 1)! · p(λ)iq0(log p(λ))2i+1 2 ≤ i ≤ t
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• For i = 1, we know E1 = Compose(M1, E0), by using our assumption on E0, we get qE1 =
n+ q0. Hence

S1 ≥ k · q0 log(q0)

For 2 ≤ i ≤ t we prove the claim by induction.

• For i = 2, we know E2 = Compose(M2, HSV2). Hence

S2 ≥ Size(HSV2) = kqHSV2 log(qHSV2)

≥ kp(λ) · S1 log(S1) · log(p(λ)S1 log(S1))

≥ k3 · 2 · p(λ)2q0(log p(λ))3 · log(2k2p(λ)q0(log p(λ))3) ·
log(p(λ)22k2q0(log p(λ))3)

≥ k3 · 2 · p(λ)2q0(log p(λ))3 · (log p(λ) + log q0) · (2 log p(λ) + log q0)

≥ k3 · 2 · p(λ)2q0(log p(λ))3 · 2 log(p(λ)) · 3 log(p(λ))

≥ k3 · 2! · 3! · p(λ)2q0(log p(λ))5

where in the first inequality we used our assumption on qHSVi = p(λ)Si−1 log(Si−1); in the
second inequality we used the bound on S1 shown above (with a simplification); and in the
fourth inequality we used the assumption that q0 ≥ p(λ).

• For i > 2, let us assume that

Si−1 ≥ ki · i! · (i− 1)! · p(λ)i−1q0(log p(λ))2i−1

Then we have

S1 ≥ Size(Compose(Mi, HSVi))

≥ Size(HSVi) = kqHSVi log(qHSVi)

≥ kp(λ) · Si−1 log(Si−1) · log(p(λ)Si−1 log(Si−1))

≥ ki+1 · i! · (i− 1)! · p(λ)iq0(log p(λ))2i−1 ·
log(ki · i! · (i− 1)! · p(λ)i−1q0(log p(λ))2i−1) ·
log(p(λ)ki · i! · (i− 1)! · p(λ)i−1q0(log p(λ))2i−1)

≥ ki+1 · i! · (i− 1)! · p(λ)iq0(log p(λ))2i−1 ·
((i− 1) log p(λ) + log q0) ·
(log p(λ) + (i− 1) log p(λ) + log q0)

≥ ki+1 · i! · (i− 1)! · p(λ)iq0(log p(λ))2i−1 · i log p(λ) · (i+ 1) log p(λ)

= ki+1 · i! · (i+ 1)! · p(λ)iq0(log p(λ))2i+1

where in the first inequality we used our assumption on qHSVi = p(λ) Si−1 log(Si−1); in the
second inequality we used the bound on Si−1 from the inductive assumption; and in the fourth
inequality we used the assumption that q0 ≥ p(λ).
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