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Abstract. SHA-3 is considered to be one of the most secure stan-
dardized hash functions. It relies on the Keccak-f{1600] permutation,
which operates on an internal state of 1600 bits, mostly represented as
a 5 X b X 64—bit matrix. While existing implementations process the
state sequentially in chunks of typically 32 or 64 bits, the Keccak-f[1 600]
permutation can benefit a lot from speedup through parallelization. This
paper is the first to explore the full potential of parallelization of Keccak-
f[1600] in RISC-V based processors through custom vector extensions on
32-bit and 64-bit architectures. We analyze the Keccak-f[1 600] permuta-
tion, composed of five different step mappings, and propose ten custom
vector instructions to speed up the computation. We realize these ex-
tensions in a SIMD processor described in SystemVerilog. We compare
the performance of our designs to existing architectures based on vector-
ized application-specific instruction set processors (ASIP). We show that
our designs outperform all related work thanks to our carefully selected
custom vector instructions.
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1 Introduction

Data integrity is a crucial metric to guarantee the accuracy and reliability of
transmitted information [6]. The Secure Hash Algorithm (SHA), a family of
cryptographic hash functions published by the National Institute of Standards
and Technology (NIST), has a wide range of applications in the domain of data
integrity verification [3]. SHA-3, the newest generation, is used in a number
of candidate algorithms in the NIST Post Quantum Cryptography (PQC) con-
test [8]. Especially in lattice-based schemes, SHA-3 functions are used to calcu-
late hashes and generate random numbers on a large scale. The Keccak permu-
tation in SHA-3 is computationally intensive due to its high number of rounds
and a high number of state bits. It is always one of the speed-critical compo-
nents in lattice-based algorithms [11?7,?]. In CRYSTALS-Kyber, the same seeds



are usually adopted as input data to generate the polynomial matrix A, the
secret key vectors s, and the error data vectors e using SHA-3 functions. Take
the matrix A generation in Kyber1024, for example [1]. The public 4 x 4 matrix
A is generated from a two-layer loop structure by SHAKE-128, an extendable
output function in SHA-3, whose input data is the seed concatenated with the
row order and the column order. Because of the large amount of computation
and similar input data, it would be beneficial if one or more Keccak states could
work simultaneously to generate A, s, and e. This work explores the feasibility of
using vector instructions to make one or more Keccak states work in parallel. To
realize this goal, we need a vector instruction set architecture (ISA) supporting a
flexible vector length that is large enough to include one or more Keccak states.
RISC-V vector extensions meet this requirement. To the best of our knowledge,
there are no other papers that use RISC-V vector extensions for speeding up
SHA-3.

To investigate how RISC-V vector extensions can improve the performance
of SHA-3, we use the same scalable SIMD RISC-V based processor as in [7] to
do ASIP designs. We allow different numbers of elements in one vector register
to process one or more Keccak states simultaneously. We analyze the algorithm
consisting of five different step mappings in the Keccak permutation, propose ten
custom vector extensions for 32-bit and 64-bit architectures, and realize all these
custom extensions in the SIMD processor described in SystemVerilog. Then, we
design the Keccak permutation targeting the 32-bit and 64-bit architectures
using our custom vector extensions and existing vector extensions for RISC-V.
Our contributions include the following aspects:

— We use RISC-V vector extensions to vectorize the Keccak-f[1 600] permuta-
tion of the SHA-3 function. To the best of our knowledge, we are the first to
use these extensions to speed up SHA-3.

— We analyze the five step mappings in the Keccak permutation, propose ten
custom vector extensions for 32-bit and 64-bit architectures and realize all
these extensions in a SIMD processor written in System Verilog.

— We optimize the Keccak program for the 32-bit and 64-bit architectures us-
ing the custom and existing RISC-V vector extensions. The results show
that our ASIP designs significantly outperform all previously proposed im-
plementations.

2 Background

All SHA-3 functions use the Keccak-f[1 600] permutation, which works on a 1 600-
bit state, which is ordered as a three-dimensional x X y X z matrix. where x and y
are 5, and z is 64. Therefore, the 5 x 5 x 64—bit state can be viewed as 25 lanes,
with each lane consisting of 64 bits. They can be partitioned plane-wise as 5
planes, with each plane containing 5 lanes in the same row. Plane-wise partition
is preferable to work with vector instructions, where lanes within the same row
can be processed simultaneously by the same instructions [2]. We follow this
processing approach in this work.



The Keccak-f[1 600] permutation comprises 24 rounds. Each round contains
five step mappings, denoted as 6, p, m, X, ¢t. The detailed operations for plane-
per-plane processing are shown in Algorithm 1. The 6 step mapping, designed
for linear diffusion, changes the lane value through XORing each state bit with
parities of adjacent columns. The p step mapping, designed for inter-slice dis-
persion, rotates each lane over a variable number of positions according to its
location. The 7 step mapping, designed for disturbing horizontal/vertical align-
ment, scrambles the location of all lanes. The x step mapping, designed for
non-linearity, updates the value of each row with AND, NOT, and XOR op-
erations among different lanes. The ¢ step mapping, designed for breaking the
symmetry, XORs a round constant with lane 0. The round constant (RC) value
changes according to the round number.

2.1 RISC-V Vector ISA
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Fig. 1: Vector register file and address allocation [7].

RISC-V is an open and freely accessible ISA with small base instructions
(ISA bases) for simplified general-purpose computers and rich optional instruc-
tion extensions for more comprehensive applications. RISC-V vector extensions
(RISC-V vector ISA) are designed for vector operations. It includes the following
main features according to the most recent version 1.0 (RVV1.0) [I1]:

1. There are 32 vector registers in total. The vector length, VLEN, defines the
number of bits in a single vector register. The element length, ELEN, defines
the number of bits in every vector element that any operation can produce
or consume. The number of elements, EleNum, defines the number of vector
elements in one vector register. EleNum is determined by VLEN/ELEN.
The vector length, VL, specifies the number of elements to be operated on
in parallel within a vector extension [I1]. It can be smaller or greater than



Algorithm 1 Keccak-f[1600] step mappings in plane-per-plane processing [4]
Input: Keccak state A[z,y]

Output: Keccak state H[z, y]

Note:

1. B,C,D,E,F, G are all intermediate values.

2. The pairs [x, y] define the lane(x,y), with 0 < z<5 and 0 < y<5.

3. r[x, y] is the rotation value for each lane in the p step mapping.

4. RCJi] is the round constant value in the ¢ step mapping.

1) 0 step mapping;:
for z =0 to 4 do
Blz] = Alz,0) ® Afz,1] ® Alz,2] ® Alz, 3] ® Alx, 4]
end for
for x =0 to 4 do
Clz] = B[(z — 1) mod 5] ® ROT(B[(z + 1) mod 5], 1)
end for
for y=0to 4 do
for =0 to 4 do
Diz,y] = Alz,y] ® Cla]
end for
end for
2) p step mapping:
for y=0to 4 do
for z =0 to 4 do
E[z,y] = ROT(D[z,y], r[z, y])
end for
end for
3) 7 step mapping:
for y=0to 4 do
for z =0 to 4 do
Flz,y] = E[(z + 3y) mod 5, z]
end for
end for
4) x step mapping;:
for y=0to 4 do
for z =0 to 4 do
Glz,y] = (F[(z + 1) mod 5,y] & 1) - F[(z + 2) mod 5, ]
Hlz,y] = Flz,y] & Gz, y]
end for
end for
5) ¢ step mapping;:
H[0, 0] = H[0,0] ® RC[{]




EleNum. When VL is smaller than EleNum, all elements are put in the same
vector register. When VL is greater than EleNum, several vector registers are
grouped to work under the same instruction. The vector length multiplier,
LMUL, specifies the maximum number of vector registers grouped under the
same instruction. LMUL supports integer values no larger than 8, that is,
1,2,4, or 8.

2. There are three types of instructions: configuration-setting instructions, vec-

tor load, store instructions, and vector arithmetic instructions. The configuration-

setting instructions define VL, LMUL, ELEN, etc. The vector load and store
instructions define how to move values between vector registers and data
memory. Vector arithmetic instructions define the operands and the opcode.
Their funct3 field specifies whether the two operands are vector-vector (.vv),
vector-immediate (.vi), or vector-scalar (.vx).

3. Masking is supported on many vector instructions and can be applied to
the specific locations of vector elements in the vector register. The vm field
in the vector load and store instructions and vector arithmetic instructions
denotes whether the corresponding instructions are masked off or not. When
vm equals 1, the instruction is unmasked. Every element in the operand
vectors will participate in the corresponding operation. When vm equals
0, the instruction is masked. The corresponding operation only happens to
these elements whose mask bit is 1 in the mask vector register, which resides
in the vector register file.

4. The SIMD processor needs to do vector address remapping according to
LMUL. Figure [l| shows the working procedure for the instruction {vadd.vv
v0,v0,v2}. The elements in the first vector register of vectors v0 and v2 are
read out simultaneously and sent to the respective execution module with
the same element index number for the addition operation. After the process
finishes, the result of every execution sub-module will be sent to vector v0
according to the element index number. Later, all elements from v! and v3
will be fetched and executed, and the result from every execution sub-module
will be written back to vector v1.

2.2 Related Work

Instruction Set Extension (ISE) is commonly used in ASIP designs to extend the
ISA with customized extensions for specific functions. These custom instructions
are usually suited to fine-grained operations that are best integrated into a pro-
cessor pipeline and still provide software programmability while only needing
small hardware changes to processors [12,?].

As far as we know, there are three implementations using ISE for SHA-3
implemented in FPGA or ASIC. All are application-specific instruction set pro-
cessors (ASIP), whose instruction set is tailored to meet the requirements of a
specific application. In 2015, Wang et al. [I3] were the first to propose custom
extensions for SHA-3 implemented in FPGA. In 2016, Elmohr et al. [5] proposed
two ASIPs based on a 32-bit processor for SHA-3. The first one (Native ISE) uses
four custom instructions, and the second one (Co-processor ISE) adds auxiliary



registers to supply parallel implementations. In the domain of the RISC-V, Rao
et al. in 2018 [9] proposed two SHA-3 ASIPs for IoT system. The first ASIP,
named OASIP, accelerates operations on the existing datapath with seven in-
struction extensions. The second ASIP, named DASIP, supports 21 instruction
extensions and make data and instructions work in parallel.

In the field of vector instructions, Rawat et al. [I0] proposed six vector
instruction extensions for 128-bit vector-processing units in some mainstream
processors such as ARM (NEON), Intel (SSE, AVX), etc. They designed the
assembly code program for Keccak-f[1600] for a 64-bit architecture and inte-
grated these vector instructions for simulation. As the authors mentioned in the
paper, they achieved 66 instructions per keccak-f[1600] round. Until now, no
other published works have used RISC-V vector extensions to design the Keccak
functionsEl In this work, we will use the four designs mentioned above as our
reference for performance comparison in Section

3 System Design

The authors in [7] realized a scalable SIMD processor that can support RISC-V
ISA bases and RISC-V vector extensions written in SystemVerilog. We will use
the same SIMD processor to investigate the performance improvement of SHA-3
with the goals of low latency and high throughput. The SIMD processor in [7]
contains a scalar core and a vector processing unit. Both parts are 32-bit archi-
tectures. However, as the configuration-setting instructions can set the ELEN
parameter to different values, the data width in the vector processing unit does
not have to be consistent with the scalar core. Following the description from
Reference [11], it can be any length that is a power of 2 and no smaller than 8.
This mismatch does not impact the load and store operations because the vector
load and store instructions can also define the width of the data read from the
data memory. We will set the element length (ELEN) to 64 bits and 32 bits sepa-
rately to realize the 64-bit architecture and the 32-bit architecture, respectively.
To show the entire vectorization process for the Keccak permutation, we do not
combine operations like many software designs do, for example, by combining
the p and 7 step mappings [2].

3.1 64-bit Architecture

For the 64-bit architecture, we set ELEN to 64 bits for making the SIMD proces-
sor’s vector processor unit deal with 64-bit operands. Keccak-f[1 600] is easy to
map to the 64-bit architecture as its lane width in the Keccak state is compatible
with the element length in the vector register.

We set the vector length VLEN, determined by VLEN/ELEN, to fit the 5x 5
lanes inside the vector register file, with 5 planes occupying 5 vector registers.

5 After we finished this work, the RISC-V Cryptography Extensions Task Group pub-
lished Vector Crypto Draft 20220920 on 20 September 2022. Until now, there are no
vector extensions for Keccak in the draft.
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Fig. 2: Memory allocation for Keccak states in the 64-bit architecture.

Moreover, as illustrated in Figure [2 if VLEN is large enough, more than one
Keccak state can be put in the vector register file. In this figure, the EleNum
parameter is 16, and s;, denotes the lane index in one Keccak state with row
index z and column index y. The planes with the same order from different
Keccak states reside in the same vector registers. We use the vector register
address to denote the y-axis and the element index order modulo 5 to indicate
the x-axis of one state. The first Keccak state, A0, occupies element index order
0 to 4, shown in green; the second Keccak state, Al, occupies element index

order 5 to 9, shown in purple; and the third Keccak state, A2, occupies element
index 10 to 14, shown in blue.

3.2 32-bit Architecture

For the 32-bit architecture, we set the ELEN parameter of the SIMD processor
to 32 bits. Later, we need to consider cutting the 64-bit lane into two 32-bit
lanes to reside inside the vector register file and work on 32-bit operands. The
most common way is the bit interleaving technique, where the odd bits are put
in one 32-bit word and the even bits in another 32-bit word. This technique is
beneficial for the rotation operation, especially in the p step mapping, where the
rotation length is sometimes larger than 32. However, when SHA-3 algorithms
work with other programs, extra efforts are required to separate the lane into
odd and even parts and then combine them. In this design, we divide each lane
into the most significant and least significant parts, with each part containing 32
bits. We store the two parts separately inside the vector register file, as shown

in Figure
3.3 Custom Vector Extensions

As the existing RISC-V vector instructions are for general-purpose applications,
specific instructions for implementing Keccak in the 64-bit and 32-bit archi-
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Fig. 3: Memory allocation for Keccak states in the 32-bit architecture

tectures are needed. For example, there are no vector rotation instructions in
RISC-V vector ISA, and vector slide instructions define behaviors that are not
applicable to our use case, etc. In this part, we propose custom vector exten-
sions for SHA-3 and realize them through SystemVerilog in the SIMD processor.
We define the parameter SN to denote the number of Keccak states working
in parallel. 5 x SN should not be greater than the number of elements in one
vector register. Note that all the following instructions only operate on elements
that store the Keccak state values (element index number € [0,5 x SN — 1]).
Elements with index numbers not smaller than 5 x SN are unchanged. In the
following parts, vd denotes the destination vector operand. v! and v2 denote
the source vector operands. uimm defines the unsigned immediate. simm speci-
fies the signed immediate. rs! specifies the scalar register operand. vm denotes
whether vector masking is enabled. In this design, we use custom instructions
and rewrite unused existing instructions to extend instructions in RISC-V. We
do not modify the compiler because it is too time-consuming and not flexible.
All instructions and their latency are shown in Table

Vector slide modulo five instructions In the 6 step mapping, intermediate
values move up and down the corresponding vector register after XORing all
planes. Moreover, inside the x step mapping, all planes must move down their
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Slide down with offset to be N:
for i from 0 by 1 to SN-1 do
for j from 0 by 1 to 4 do
Element[5xi+j] € Element[5xi+(j+ N) mod 5]
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Slide up with offset to be N:

for i from 0 by 1 to SN-1 do
forjfrom0Oby 1to4do

Element[5xi+j] € Element[5xi+(j-N) mod 5]

end for

A0 A1 end for A2
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Fig.4: Vector slide and modulo-five instructions. SN denotes the number of Keccak
states. N is the offset. Here, we take the offset of 1 as an example.

corresponding vector registers with offsets one and two, respectively. We pro-
pose two extensions for both architectures: vslidedownm to do the moving down
operation, and wvslideupm to do the moving up operation. To keep lanes belong-
ing to different Keccak states from interfering, we use modulo-five operations to
restrict the element index number, as shown in Figure [4]

Vector rotation instructions There are two step mappings using rotation
operations: 6 and p. In the 6 step mapping, the parity of the right column
rotates one bit towards the most significant direction. For the 64-bit architecture,
we propose the rotation operation wrotup with two vector operands and one
immediate value, which defines the offset. For the 32-bit architecture, we need
to concatenate two 32-bit words into one 64-bit word and then do the rotate
operation. As there are two vector operands, we choose the default rotation offset
of 1 and create two custom extensions: v32[rotup and v32hrotup. The results are
the low 32 bits and the high 32 bits of the rotated 64-bit data, respectively.
The p step rotates each lane over a variable number of positions. For the
64-bit architecture, we do not use the rotation operation wvrotup here because it
makes all lanes in one plane rotate with the same offset under the same imme-
diate value. We store the rotation values in a lookup table and create v64rho for
the 64-bit architecture, and v32lrho and v82hrho for the 32-bit architecture. For
v64rho, the two operands are vector and immediate data. When the immediate
is -1, all five planes in the Keccak are executed in sequence. The immediate -1
is used when LMUL is greater than 1. Here, we use a counter in the execution
module of the SIMD processor, named Imul_cnt to denote the row number for
reading the offset from the lookup table. When the immediate equals 0, 1, 2, 3, or
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Table 1: Vector instructions and latency. * denotes [VL/EleNum].

Instruction

Description

Latency

vslidedownm.vi vd, vs2, uimm, vm

for ¢ from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
vd[5 X i + j] 4 vs2[5 X i+
(j + utmm) mod 5]
end for
end for

14-*

vslideupm.vi vd, vs2, uimm, vm

for ¢ from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
vd[5 X i+ j] < vs2[5 X i+
(j — uimm) mod 5]
end for
end for

14+*

vrotup.vi vd, vs2, uimm, vm

vd < (vs2 € wimm) V (vs2 > (64 — uimm))
Note: V denotes a bit-wise OR operation.

14-*

v32lrotup.vi vd, vs2, vsl, vm

vd < (((vs2 ]| vsl) € 1) V ((vs2 || vsl)

> 63))[31 : 0]

Note: vs2 || vsl is the concatenation of vs2 and wvsl,
to build 64-bit word.

14+%*

v82hrotup.vi vd, vs2, vsl, vm

vd + (((vs2 ]| vsl) < 1) V ((vs2 || vsl)
> 63))[63 : 32]

1+*

vb4rho.vi vd, vs2, simm, vm

for ¢ from 0 by 1 to SN — 1 do

for j from 0 by 1 to 4 do

vd[5 X 1+ J] + (vs2[b x i +j] <

rho_shift[simm][j]) V (vs2[5 x i + j] > (64—
rho_shift[simm][j]))

end for
end for
Note: if simm is -1, the five rows process in sequence.
The counter Imul_cnt in hardware indexes the row.

14-*

v32lrho.vi vd, vs2, vsl, vm

1) vs2 || vsl;

2) The counter Imul_cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
least significant 32 bits are stored.

1+*

v82hrho.vi vd, vs2, vsl, vm

1) vs2 || vsl;

2) The counter Imul_cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
most-significant 32 bits are stored.

1+*

upt.vi vd, vs2, simm, vm

The process is illustrated in FigureH

1) Reading elements from vs2 in the vector register
file and re-arranging the elements into columns.

2) Storing each column in the vector register with the
starting address of the column equals to wvd.

3) If simm equals 0, 1, 2, 3, or 4, only one row is
processed. If simm is -1, the five rows process in
sequence. Imul_cnt in hardware indexes the row.

2%

viota.vr vd, vs2, rsl, vm

for ¢ from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
if( = 0)
vd[5 X i + j] + vs2[5 x i + j] ® RC[rsl]
else
vd[5 X i+ j] < vs2[5 X i + j]
end for
end for
Note: RC' are round constant data.

14+%*
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4, only one plane is operated with the row index defined by the immediate, and
LMUL should equal 1. For v32lrho and v32hrho, we combine two 32-bit words
into one 64-bit word and then do the rotate operation. As there are only two
operands, i.e., two vectors, there is no value defining the row number. Thus, they
also use the counter Imul_cnt to index the row number for reading the lookup
table. The results of v32irho and v32hrho, are the least-significant 32 bits and
the most-significant 32 bits of the rotated 64-bit data, respectively.

AO Al A2
|Soo |510 |520 Isao ISAOI sool Sml S20 Isac ISAOI Soo |510 I S20 lsao |540 I |

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stepl: Reading each row in
sequence and re-arranging
‘ the data into columns. The
column number is equal to
the Keccak state number.
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Step2: Storing each 16 | 00| S11| S22 Ss3 | Saa| Soo| Si1f S22 |Ss3 [Saafl 00 | S11| S22 |53 | Sas
column in the vector AO
Soo | Soo | Soo register file.

530 S30 | S30

Al A2

Fig.5: m operation in the design.

Vector 7 instruction The 7 step mapping contains two steps: 1) reading every
row from the vector register file in sequence and re-arranging the elements into
columns; 2) storing each column in the vector register. The column number is
equal to the Keccak state number, SN. The operation is illustrated in Figure 5
We add interfaces between the execution module and the vector register file in
the SIMD processor to make data writing in column mode available. We propose
a new custom extension vpt. This instruction can work in both architectures. The
two operands are vector and immediate data. When the immediate value is -1,
all five planes in the Keccak are executed in sequence. This is used for LMUL
greater than 1. When the immediate equals 0, 1, 2, 3, or 4, only one plane is

processed, where the order is defined by the immediate, and LMUL should equal
1.

Vector ¢ instruction We propose the instruction viota to XOR a round con-
stant with lane 0 in the first row of every Keccak state for the ¢ step mapping.
The two operands in the instruction are a vector register and a scalar register.
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The latter is used to index the round constant data. The data width of the round
constant for the 64-bit architecture is 64 bits. For the 32-bit architecture, every
round constant is divided into a high 32-bit value and a low 32-bit value, and
the viota instruction runs twice for each Keccak round.

4 Implementations and Results

This design uses one RISC-V GNU Compiler Toolchairﬁ to compile all our soft-
ware programs. The Xilinx Alveo U250 Data Center accelerator card is selected
as the hardware platform. We use Vivado 2020.1 tools to synthesize and imple-
ment the SIMD processor at 100 MHz. We compare our designs with the existing
ASIP designs mentioned in Section [2.2] which adopt tailored processors with a
subset of instructions to meet design requirements. In our implementations, we
also use a smaller set of instructions together with the custom extensions for Kec-
cak. We keep all instructions in the scalar core of the SIMD processor, where the
base RISC-V ISA and multiplication and division extensions are supported. The
vector processing unit reserves configuration-setting instructions, vector load and
store instructions, vector logical instructions in vector arithmetic, and all custom
extensions for different architectures.

Table 2: Results of our 64-bit architectures and comparison with a 64-bit reference
architecture. The execution time for one round is reported as the number of cycles to
complete one round (cyc/rnd). The execution time to complete the entire permutation
is reported as the number of cycles per byte (cyc/byte).

Implementation Execution time throughput Ar.ea Tl"lroughput/Are.a
cyc/rnd|cyc/byte|(bits /cycle) |(slices)|(bits /(cycle X slices))
Vector Extensions [10] 66 - 1010.1x10~° [(only simulation)
?é’lzli\?uﬁf;?/[i;;l 103 12.8 624.02x107% |7323 [85.21x107°
?é‘lgli\?uﬁflgﬁ?;ag) 103 12.8 1872.07x1073 (24785 |75.52x107°
?éizliﬁuvﬁfgg,h%;e; 103 12.8 3744.15x107% (48180 |[77.71x107°
?éizli\';u"r"rilil;yg:t;s 75 9.5 845.67x107° 7323 [115.48x10°°
?é‘lzli\?uvﬁflgﬁ?ga;i) 75 9.5 2537.00x107% |24789 [102.34x107°
?éizguﬁggg%Z%;SS) 75 9.5 5073.00x1073(48 180 (105.29x10~°

We compile all the optimized programs using vector extensions for three
different structures: (1) 64-bit architecture with LMUL equal to 1, (2) 64-bit ar-
chitecture with LMUL equal to 8, and (3) 32-bit architecture with LMUL equal

S https://github.com/riscv-collab/riscv-gnu-toolchain/
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Table 3: Results of our 32-bit architectures and comparison with 32-bit reference ar-
chitectures.

Execution time |Throughput |Area |Throughput/Area

Implementation cyc/rnd|cyc/byte|(bits /cycle) |(slices)|(bits /(cycle X slices))
LEONS3 [13] - 369 21.68 x10~° [8648 [2.51x10°°
MIPS Native [5] - 178.1 44.92x107% 6595 [6.81x107°°
MIPS Coprocessor [5] - 137.9 58.01x107°  [7643 [7.59x107°
OASIP [9] - 291.5 27.44x1073 981 27.97x107°
DASIP [9] - 130.4 61.36x10° 1522  [40.31x10°°
32-bit with LMUL=8 3 6
(EleNum=5, 1 state) 147 18.1 441.98x10 6359 [69.5x10
32-bit LMUL=8 _3 6
(EleNum=15, 3 states) 147 18.1 1325.97x107° |23408 |56.65x10
32-bit LMUL=8 147 18.1 2651.93x107%(48 036 [55.2x107°

(EleNum=30, 6 states)

to 8. Every generated binary machine code is stored inside the program memory
of the SIMD processor. The former two structures use the same System Verilog
code because the instructions can support different LMUL settings. As we in-
crease the EleNum value, the vector register file can hold more than one Keccak
state, and the architecture can perform multiple Keccak operations in parallel.
The Keccak state number (SN) determines the number of states processed in
parallel. The latency is the same no matter how many Keccak states there are
in the system simultaneously.

We compare our results to the four reference designs introduced in Sec-
tion All results and comparisons are shown in Table [2] and Table [3] All
references [I3I59] use the number of slices as the unit to represent the resource
utilization (area). In our work, we derive the number of slices from the post-
implementation results in Vivado. We define two types of execution time: cycles
per Keccak round (cycles/round) and cycles per message byte in one Keccak
state (cycles/byte). Cycles/round is the latency to finish one Keccak round,
while cycles/byte is the latency measured in clock cycles for hashing one byte
of the message in the entire 24-round Keccak permutation. Either is justified to
present the execution time. The reason to use the two is that different references
use different measures. For example, reference [5] uses cycles/byte to denote the
execution time; reference [9] adopts bytes/cycle to compare the performance. In
addition, reference [I0] uses cycles/round to represent its running time. Besides,
we do not include the clock frequency to compare the performance because the
reference designs either use different clock frequencies or do not mention their
frequency.

LMUL = 1 vs. LMUL = 8 In Table |2} we can see that in the 64-bit archi-
tecture, when LMUL is equal to 8, the performance improves. The throughput
increases with a factor of 1.35 compared to when LMUL equals 1.

64-bit architecture vs. 32-bit architecture When comparing the 64-bit
and 32-bit architectures with LMUL 8, we can see that the 64-bit architecture
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runs almost twice as fast as the 32-bit architecture, and both use similar re-
sources. The reason that the resources are similar is that the 32-bit architecture
uses more resources for the rotation instructions, while the 64-bit architecture
uses more resources for the datapath and the register file.

32-bit architecture vs. MIPS Co-processor ISE [5] When compared
with the Co-processor ISE in [5], where parallel operations are supported, the
throughput of our 32-bit architecture (LMUL = 8 and EleNum = 30) is improved
by a factor of 45.7. The area is increased by a factor of 6.3.

32-bit architecture vs. DASIP [9] Our 32-bit architecture (LMUL = 8
and EleNum = 30) is 43.2 times faster but 31.5 larger than DASIP [9], which
supports data-level and instruction-level parallelism.

64-bit architecture vs. Vector Extensions [L0] For the 64-bit architec-
ture (LMUL = 8 and EleNum = 30), the performance is increased by a factor
of 5.3 compared to the vector extensions design for Keccak in [10] because more
Keccak states can be processed simultaneously.

5 Conclusion and Future work

In this paper, we explore the use of custom vector instruction set extensions for
the implementation of the Keccak-f[1 600] permutation in SHA-3 hash functions.
We analyze the five step mappings, propose ten custom vector extensions for 64-
bit and 32-bit architectures, and realize these custom instructions in the SIMD
processor in SystemVerilog. Then, we design the Keccak-f[1 600] permutation for
both the 64-bit and the 32-bit architectures using the custom vector instructions
and the existing RISC-V vector extensions. Our results for the 32-bit architec-
ture show an improvement of 45.7 and 43.2 times in throughput compared to
two existing parallelized designs [5[9]. The 64-bit architecture offers optimiza-
tion of 5.3 times compared to an existing design where vector extensions are
supported [I0]. Our work uses instruction-set customization and does not fuse
adjacent operations for the purpose of showing the whole vectorization process
using RISC-V vector extension. Predictably, the two architectures’ performance
will improve more if we increase the granularity or combine some adjacent op-
erations.

In future work, we will integrate this work into the implementation of PQC
algorithms, such as CRYSTALS-Kyber and CRYSTALS-Dilithium to see how
the performance can be improved by the vectorization of Keccak-f[1600] per-
mutation. Moreover, we will investigate the optimization of the complete post-
quantum cryptography schemes with other techniques, such as polynomial mul-
tiplication optimizations.
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