
Privacy-Preserving Authenticated Key Exchange
for Constrained Devices?

Löıc Ferreira

Orange Labs, Applied Crypto Group, Caen, France
loic.ferreira@orange.com

Abstract. In this paper we investigate the field of privacy-preserving
authenticated key exchange protocols (PPAKE). First we make a cryp-
tographic analysis of a previous PPAKE protocol. We show that most of
its security properties, including privacy, are broken, despite the security
proofs that are provided. Then we describe a strong security model which
captures the security properties of a PPAKE: entity authentication, key
indistinguishability, forward secrecy, and privacy. Finally, we present a
PPAKE protocol in the symmetric-key setting which is suitable for con-
strained devices. We formally prove the security of this protocol in our
model.

Keywords: Authenticated key agreement · Internet of Things · Crypt-
analysis · Privacy · PPAKE · Security model.

1 Introduction

Entity authentication and indistinguishability for the session key are the pri-
mary goals that a key exchange protocol aims at achieving. With the growth
of social networks, and virtual communications, privacy-preserving techniques
have gained interest in the design of real-world protocols (e.g., TLS 1.3 [32]).
With the development of the Internet of Things (IoT) and its novel use cases
interest in privacy is revived.

IoT provides applications in many fields: patient remote monitoring, energy
consumption, air pollution control, traffic management, retail and logistics, etc.
IoT technologies deal with and combine sets of data which makes increasingly
difficult to distinguish between information that enable identification and infor-
mation which do not [38]. For instance, smartphones gather critical amount of
private data about their owner (identifiers, location, activity) that bear privacy
risks. The diversity of connected objects form a large intelligent network that
can serve as a medium for the leakage of personal data [29]. Rather soon the
threats induced by the distributed nature of the IoT have been highlighted [23],
among which one can cite identification, tracking, and profiling.

? A preliminary version of this paper appears in the proceedings of the 20th Inter-
national Conference on Applied Cryptography and Network Security (ACNS 2022).
This is the full version.

Devising a security protocol for the IoT is a challenging task since the de-
vices that must implement and execute the protocol are constrained in terms
of energy, computation, and memory in particular. Consequently, the protocols
are often built on symmetric-key functions for efficiency reasons. In turn, these
“symmetric” protocols do not achieve the same security properties as “asymmet-
ric” protocols (i.e., based on public-key schemes). Adding yet another security
property (privacy) is not a trivial task.

In this paper we focus our attention on the SAKE protocol proposed by
Avoine, Canard, and Ferreira [5]. Built solely upon symmetric-key functions,
SAKE is an efficient protocol for constrained devices. It provides mutual authen-
tication, key exchange, and forward secrecy. Its security is proved in a strong
model (roughly the same type of model as those used to analyse protocols based
on asymmetric algorithms). Moreover, with a suitable choice of symmetric func-
tions, SAKE is quantum secure. This raised the attention of the French National
Cybersecurity Agency (ANSSI) which indicates that SAKE is a possible alter-
native to current “classical” authenticated key exchange (AKE) protocols in a
quantum world [2]. Our goal is to turn SAKE into a privacy-preserving protocol,
while keeping all its security properties, and to formally prove the security of
the resulting protocol in a model at least as strong as that of used to analyse
the original protocol.

1.1 Related Work

Most of the privacy-preserving protocols for low-resource devices, and the cor-
responding adversarial models are related to the RFID field (e.g., [7, 17–19, 25,
27, 28, 36] to cite a few). Privacy-preserving mechanisms have also been investi-
gated in other IoT contexts such as smart homes [31,35] or low-power wide area
networks (LPWAN) [4, 37]. However most of these works consider the privacy
property only, focus on a specific setting (LPWAN), require a specific hardware
(physically unclonable functions), or are built on questionable techniques with
respect to security and efficiency (chaotic maps).

In [1], Aghili, Jolfaei, and Abidin propose a privacy-preserving authenticated
key exchange protocol (PPAKE) with forward secrecy dedicated to IoT. This
protocol builds upon Avoine et al.’s proposal [5]. Aghili et al. propose a variant
of this protocol that aims in particular at guaranteeing privacy. However, and
despite the security proofs they provide, their proposal is flawed (see Section 3).

Restarting from Avoine et al.’s protocol, we fix the issues of Aghili et al.’s
protocol, and devise a clean and proper security model that we use to formally
prove the security of the corrected PPAKE protocol.

1.2 Contributions

In this paper we investigate the field of privacy-preserving authenticated proto-
cols. First we make a security analysis of a previous PPAKE protocol [1]. Then

2

we describe a new security model which captures privacy (among other secu-
rity properties) for authenticated key exchange protocols. Finally, we present a
PPAKE protocol secure in our model.

Cryptanalysis. In [1], Aghili et al. propose a PPAKE protocol dedicated to IoT.
Built upon a previous work by Avoine et al. [5], their proposal aims at keeping
the same security properties as Avoine et al.’s protocol: entity authentication,
key indistinguishability, and forward secrecy, and at being resistant to several at-
tacks: “replay attacks”, “time-based attack”, and “tracking” (cf. [1, Sections 6.1
and 9]). We make a cryptographic analysis of Aghili et al.’s protocol and show
that most of the claimed security properties are broken (we respect the same
attack settings that are considered in [1], in particular the powers granted to the
adversary).

Security Model. We present a security model that captures strong guarantees
for authenticated key exchange protocols. We extend the security model used by
Avoine et al. [5] to prove the security of their protocol by introducing a crite-
rion for indistinguishability of identities. That is, in order to define the privacy
property, we borrow the concept of virtual identifier from Hermans, Pashalidis,
Vercauteren, and Preneel [24], which appears also in Ouafi and Phan [30]. This
concept allows hiding the identity of the party the adversary interacts with. The
privacy property guarantees not only that the identity of an end-device is hidden,
but that two different protocol runs are unlinkable. We also follow the paradigm
proposed by Schwenk, Schäge, and Lauer [33], and incorporate the privacy prop-
erty together with the other security properties. This approach guarantees that
the different security properties are independent of each other. More specifically,
our resulting model requires that, say, the key indistinguishability property holds
even in the presence of attacks that adaptively unmask identities. Conversely,
confidentiality of identities is ensured even in the presence of queries that let the
attacker reveal session keys. This yields a strong security model which can serve
as a tool to analyse other authenticated key exchange protocols that implement
mechanisms to guarantee privacy.

Privacy-Preserving AKE. Starting anew from the SAKE protocol proposed by
Avoine et al., we take another look at the concept of PPAKE for constrained
devices. To the security properties guaranteed by SAKE, we add privacy. This
results in a PPAKE protocol suitable for constrained devices that we naturally
call Privacy-Preserving SAKE (PPSAKE). We formally prove that PPSAKE is
secure in our strong security model.

2 Description of the SAKE Protocol

2.1 SAKE

SAKE [5] is a two-party AKE based on symmetric-key functions and pre-shared
keys (see Figure 2). The two parties A and B share a derivation master key K

3

and an authentication master key K ′. In order to mutually authenticate, each
party exchanges a pseudo-random value (rA, rB). A MAC tag is computed over
this challenge and returned to the sender (messages mB and mA). The session
key is computed from the two pseudo-random values rA and rB and the deriva-
tion master key: sk ← KDF(K, rA, rB). Forward secrecy is guaranteed by using
a key evolving scheme. That is, once both parties are mutually authenticated
and the session key is computed, the derivation master key is updated with a
one-way function: K ← update(K). Therefore the previous session keys remain
safe even if (updated) K is disclosed.

As soon as two parties make a shared (symmetric) key evolve, a synchro-
nisation problem arises: one of the parties has to make the first move whereas
the other remains late, at least temporarily. This issue is solved with the au-
thentication master key. The initiator A in SAKE stores the authentication keys
corresponding to three consecutive epochs: previous (K ′j−1), current (K ′j), and
future (K ′j+1) (see Figure 1).

K′0 K′1 K′2 K′3 · · ·

K0 K1 K2 K3 · · ·

sk0 sk1 sk2 sk3

update

update

K
D
F

Fig. 1: Party A stores authentication master keys corresponding to three consec-
utive epochs (j − 1, j, j + 1), and one derivation master key (illustration with
j = 2 with the blue dashed box). Party B stores one sample of each master key
(in blue).

Upon reception of the MAC-ed challenge computed by B (message mB), A
detects which epoch B belongs to by checking its MAC tag. Then, in the subse-
quent message (mA), A indicates B if it must catch up (with the bit ε). Likewise,
if A is late, it updates its master keys and then proceeds with the regular op-
erations (upon reception of message τ ′B). Eventually, both parties update the
authentication master keys the same way they do for the derivation master key.
Only the initiator needs to keep the authentication master keys of three consec-
utive epochs. Avoine et al. have proved that the initiator A can only be either
one step behind, or in sync, or one step ahead to B (hence the figure of three
keys K ′j−1, K ′j , K

′
j+1). That is δAB ∈ {−1, 0, 1} where δAB is the gap between

A and B. Since the derivation master key and the authentication master key are
independent, keeping previous authentication master keys does not jeopardise
forward secrecy.

Once a correct and complete session ends, three goals are achieved in the same
protocol run: (i) the two parties have updated their master keys, (ii) their master

4

A
(K, K′j−1, K′j , K

′
j+1)

B
(K, K′)

rA
$←− {0, 1}λ

idA‖rA
−−−−−−−−−−→

rB
$←− {0, 1}λ

τB ← Mac(K′, idB‖idA‖rB‖ rA)
mB ← idB‖rB‖τB

mB←−−−−−−−−−−
if (Vrf(K′j , idB‖idA‖rB‖ rA , τB) = true)

δAB ← 0
K′ ← K′j ; kdf; updA; ε← 0

else if (Vrf(K′j−1, idB‖idA‖rB‖ rA , τB) = true)
δAB ← 1
K′ ← K′j−1; ε← 1

else if (Vrf(K′j+1, idB‖idA‖rB‖ rA , τB) = true)
δAB ← −1
K′ ← K′j+1; updA; kdf; updA; ε← 0

else
abort

τA ← Mac(K′, ε‖idA‖idB‖rA‖rB)
mA ← ε‖rA‖τA

mA−−−−−−−−−−→
if (Vrf(K′, ε‖idA‖idB‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB

kdf; updB
τ ′B ← Mac(K′, idB‖idA‖rB‖rA)

τ ′B←−−−−−−−−−−
if (ε = 0)

K′ ← K′j
if (Vrf(K′, idB‖idA‖rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (Vrf(K′, idB‖idA‖rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← Mac(K′, rA‖rB)

τ ′A−−−−−−−−−−→
if (Vrf(K′, rA‖rB , τ ′A) = false)

abort

Fig. 2: The SAKE/SAKE-AM protocol. Elements surrounded by a blue dashed
box appear only in SAKE. Elements in blue appear only in SAKE-AM.

5

keys are synchronised, and (iii) they share a new session key. Therefore mutual
authentication, key exchange (with forward secrecy), and resynchronisation are
done in the continuity of a single session. Moreover, there is no need for an
additional procedure (e.g., resynchronisation phase) or functionality (e.g., shared
clock). The protocol is made of five messages at most, and can be reduced to
four messages if the two parties are synchronised at the beginning of the session.

Notations. For the sake of clarity, we use the following notation in Figure 2:

– kdf corresponds to: sk ← KDF(K, rA, rB)
– updA corresponds to

1. K ← update(K)
2. K ′j−1 ← K ′j
3. K ′j ← K ′j+1

4. K ′j+1 ← update(K ′j+1)
– updB corresponds to

1. K ← update(K)
2. K ′ ← update(K ′)

Moreover, Vrf(k,m, τ) denotes the MAC verification function that takes as input
a secret key k, a message m, and a tag τ . It outputs true if τ is a valid tag on
message m with respect to k. Otherwise, it returns false.

2.2 SAKE-AM

From SAKE a complementary mode can be derived: SAKE-AM (which stands for
“agressive mode”). Compared to SAKE, the first message (idA‖rA) is skipped.
Hence, in SAKE-AM, B is the initiator (and stores two master keys K, K ′).
What becomes the first message is computed as mB = idB‖rB‖τB with τB =
Mac(K ′, idB‖idA‖rB). The second message is computed as mA = ε‖rA‖τA (with
τA computed as in SAKE). The other messages and calculations are essentially
the same as in SAKE.

Used together, SAKE and SAKE-AM allow any party to be either initiator
or responder in a protocol run. Moreover the smallest amount of calculation
is always done by the same party (irrespective of its role). This is particularly
convenient in the context of a set of end-devices communicating with a back-end
server. When the end-device wants to initiate a communication, protocol SAKE-
AM is launched. Otherwise (the server is initiator), SAKE is used. Therefore,
the end-device always does the lightest computations.

3 A Flawed Proposal

In [1] Aghili et al. propose to modify SAKE/SAKE-AM in order to turn the
protocol into a privacy-preserving scheme.1 They consider a setting where party

1 Our description of Aghili et al.’s protocols is mainly based on Section 6 comple-
mented with Section C.2 of their paper [1].

6

A is a server communicating with a set of end-devices (many parties B). They
modify the SAKE and SAKE-AM protocols in order to achieve three main goals:

1. Forbidding identification and tracking of a party B (in particular with idB).
2. Forbidding the replay of the first message (mB) in SAKE-AM. In SAKE-

AM, a message mB corresponding to the previous epoch (i.e., computed with
the authentication master key K ′j−1) can be replayed multiple times to A
(until a new session is completed), and A computes and responds with a
message mA. Although this is not sufficient for the responder A to “accept”
and to authenticate the initiator B (eventually the session aborts), Aghili
et al. aim at preventing such a possibility. In contrast, in TLS 1.3 with
0-RTT mode [32] the server must deem the initial message (Client Hello)
as authentic, and execute the request herein included [21]. Consequently,
mitigations are necessary in TLS 1.3 (cf. [32, Section 8]).

3. Forbidding recognition of a party B based on the amount of calculations done
by A. In some cases (see below), when party A receives a message mB in
Aghili et al.’s version of SAKE and SAKE-AM, A must try all authentication
master keys it stores in its database in order to verify the message, until
a match is found. Therefore the time spent by A to find the correct key
allows an adversary to recognise which party B communicates with A (the
measurement done by the adversary is used as an index that designates B).

3.1 Issues

Aghili et al. modify the SAKE/SAKE-AM protocol as follows (see Figures 8
and 9 in Section B). First they add identifiers in the messages in order for two
communicating parties A and B to distinguish which messages are intended to
them, among the flow of messages sent by all parties. That is, they necessar-
ily mix the communication and the application (cryptographic) layers since the
former may include parameters (identifier) that contradict the goals they want
to achieve.2 In addition, upon reception of mA, idB is updated by B (A does
also the same): idB ← update(idB‖K ′). This new identifier value is transmitted
in the subsequent message sent by B and also in the first message of the next
protocol run. We can see that there is a first issue since the same identifier idB
is used in two consecutive sessions. Therefore it is trivial to track party B (this
contradicts goal 1).

Moreover, idB is replaced with a pseudo-random value rα in mB if message
mA was not received by B during the previous session. The purpose is to avoid
that the same identifier idB be used in two consecutive messages mB (a cor-
rect message mA triggers the update of idB , hence idB remains the same in the
absence of such a message). In Aghili et al.’s version of SAKE-AM, this means
that mB = x‖rB‖τB with x ∈ {idB , rα} and τB = Mac(K ′, idB‖idA‖rB). When
x = rα, party A tries all the authentication master keys K ′ (corresponding to

2 In [5], Avoine et al. describe the message flow of a cryptographic protocol. Conse-
quently, they indicate only the parameters that are necessary on a cryptographic
point of view.

7

different communicating parties B) it stores in its database until a match is
found. The issue here is that rα is not included in the computation of τB even
when it replaces idB in mB . Therefore an adversary can alter mB without A
being able to notice the change. This breaks entity authentication because, in
the adopted security model, partnership is based on the notion of “matching
conversations” (i.e., equality of transcript of messages) [26].

Furthermore this invalidates goal 3. Indeed when the adversary modifies idB
in mB this compels A to try all the authentication master keys, which helps the
adversary to recognise which party B has sent the message mB , hence to track
that party (defeating goal 1 again).

In order to achieve goal 2 (which concerns SAKE-AM only), A stores the
pseudo-random value rB received in the two previous sessions. This countermea-
sure is not enough and can easily be bypassed. The adversary merely intercepts
three times consecutively an initial message mB sent by the initiator B, and
not received by A (dropped by the adversary). Next the adversary lets A and
B complete successfully one protocol run. The three messages mB highly likely
carry pairwise distinct values rB . When the adversary sends any of these mes-
sages, they are accepted by A because they carry an unknown value rB , and
because they all correspond to the previous epoch from A’s perspective (i.e.,
computed with K ′j−1). Therefore A computes and sends a message mA. Alter-
natively sending these three messages “flushes” A’s memory of rB values. Hence
A keeps sending messages mA in response.

The issues raised above break the security properties claimed in [1, Sec-
tions 6.1 and 9] (respecting the same security experiments and adversarial model
considered by Aghili et al.): replay, time-based attack, tracking, entity authen-
tication.

3.2 Countermeasures

The vulnerabilities in Aghili et al.’s proposal can be thwarted as follows. In
order to fix the issue in the entity authentication, the pseudo-random value rα
must also be involved in the computation of the MAC tag τB of message mB .
In addition the identity parameter must be involved in the computation of the
two MAC tags of the messages m′A and m′B .

To thwart the replay attack, A must detect all values rB previously received.
This can be done efficiently with a Bloom filter [14] or a Cuckoo filter [20].
Such mechanisms allow detecting all replays (no false negative) with a constant
storage in memory. The rate of false positives depends on the size of the filter.

The time-based attack can be mitigated by equalising the time spent to
explore the set of authentication keys (e.g., all keys are tried even when the
correct one is found), or by randomly exploring this set [6].

To forbid any tracking, a value idB must be used once only per session. That
is, an updated version of idB must be used during each new session.

The vulnerabilities we describe question also the correctness of the security
proofs provided in [1], made in the computational model (using the game-based
methodology [11,34]), and with the ProVerif verification tool [13]. In particular,

8

the privacy property is not captured by the security model used in [1]. This
highlights the importance of devising and using a suitable security model.

The relevance of the countermeasures is shown in the security proofs (cf.
Section 6) for our privacy-preserving AKE protocol described in Section 5.

4 Security Model

In this section, we present our security model for PPAKE protocols. We use the
model for authenticated key exchange protocols described by Avoine et al. [5]
to prove the security of their SAKE and SAKE-AM protocols, which is based
on the model of Brzuska, Jacobsen, and Stebila [16]. This model captures entity
authentication, key indistinguishability, and forward secrecy in the symmetric-
key setting.

We extend this model by introducing a criterion for indistinguishability of
identities. That is, in order to define the privacy property, we borrow the con-
cept of virtual identifier from Ouafi at al. [30] and Hermans et al. [24]. This
concept allows hiding the identity of the party the adversary is interacting with.
The privacy property guarantees not only that the identity of an end-device is
hidden, but that two different protocol runs are unlinkable. Given the two-party
protocol which we want to prove the security, and its deployment context, we
aim at guaranteeing the end-device’s privacy only. However our model can be
extended in a straightforward manner to provide privacy to any party involved
in a protocol run (end-device and server).

Finally, we follow the paradigm proposed by Schwenk et al. [33], and incor-
porate the privacy property together with the other security properties. This
approach guarantees that the different security properties are independent of
each other. More specifically, our resulting model requires that, say, the key in-
distinguishability property holds even in the presence of attacks that adaptively
unmask identities. Conversely, confidentiality of identities is ensured even in the
presence of queries that let the attacker reveal session keys. Hence our model is
stronger than models where security properties are considered separately (e.g.,
privacy and key indistinguishability), and not all the adversarial queries are
available in all the security experiments (e.g. [3, 22]).

In our model, the long-term symmetric keys shared by the two communi-
cating parties can not be given to the adversary before the session is completed
(i.e., our security model does not capture key compromise impersonation attacks
[14]). However these keys can be disclosed once one of the two instances accepts
(this captures forward secrecy). This makes our model stronger than other mod-
els used in the symmetric-key setting (e.g., [22]), and comparable in terms of
powers granted to the adversary to security models used in the asymmetric set-
ting (e.g., [16, 26]).

We do think that this security model can serve as a tool to analyse other
authenticated key exchange protocols that implement mechanisms to guarantee
privacy.

9

4.1 Execution Environment

Parties. Let E be a set of end-devices, and S a set of servers. The type of a
party Pi is denoted type(Pi) ∈ {end-device, server}.

A two-party protocol is carried out by an end-device and a server. Each
party Pi ∈ E ∪ S has an associated long-term key Pi.ltk, and is identified with
two parameters: its permanent identifier which we also denote by Pi, and its
current identifier Pi.id. The same long-term key is shared by a unique pair of
parties (Pi, Pj). That is: Pi.ltk = Pj .ltk.

In addition, a party Pi ∈ S stores a database which each entry corresponds
to the long-term key of an end-device party Pj .ltk, its current identifier Pj .id,
along with its permanent identifier Pj .

Instances. Each party can take part in multiple sequential executions of the
protocol. We prohibit parallel executions of the protocol. Indeed, since the pro-
tocol we propose is based on shared evolving symmetric keys, running multiple
instances in parallel may cause some executions to abort.3 This is the only re-
striction we demand compared to AKE security models used in the public-key
setting.

Each run of the protocol is called a session. To each session of a party Pi, an
instance πsi is associated which embodies this (local) session’s execution of the
protocol, and has access to the long-term key and current identifier of the party.
Pi is called the parent of πsi , and the type of an instance is the type of its parent:
type(πsi) = type(Pi) ∈ {end-device, server}. In addition, each instance maintains
the following state specific to the session.

– ρ: the role ρ ∈ {initiator, responder} of the session in the protocol execution,
being either the initiator or the responder.

– pid: the identity pid ∈ P of the intended communication partner of πsi .
– α: the state α ∈ {⊥, running, accepted, rejected} of the instance.
– sk: the session key derived by πsi .
– κ: the status κ ∈ {⊥, revealed} of the session key πsi .sk.
– sid: the identifier of the session.
– b: a random bit b ∈ {0, 1} sampled at initialisation of πsi .

We use the notion of initiator and responder on the one hand, and end-device,
server on the other hand. An initiator instance sends the first message of the
protocol, whereas a responder instance responds to it. An end-device party hides
its “real” identity, whereas a server party does not. In Section 5, we present two
protocols that allow an end-device party to behave either as initiator or responder,
and conversely a server can be either responder or initiator. Therefore the notion
of end-device and server is mainly used in the privacy experiment in order to
indicate which party the adversary’s goal is to find the identity.

3 This is a technical feature of the SAKE and SAKE-AM protocols, which our PP-
SAKE protocol is based on. In this regard, we refer the reader to [5, Section 6]. Note
that alternatives exist, based on puncturable PRFs in order to update the master
keys [15].

10

We put the following correctness requirements on the variables α, sk, sid and
pid. For any two instances πsi , π

t
j , the following must hold:

πsi .α = accepted⇒ πsi .sk 6=⊥ ∧πsi .sid 6=⊥ (1)

πsi .α = πtj .α = accepted ∧ πsi .sid = πtj .sid⇒


πsi .sk = πtj .sk
πsi .pid = Pj
πtj .pid = Pi

(2)

Virtual identifier. In order to hide to the adversary which end-device party it is
interacting with, the notion of virtual identifier is used. A virtual identifier vid =
Pi|Pj refers to two parties Pi, Pj ∈ E , which are known to the adversary. The real
involved party is designated by realvid(vid), depending on a secret bit b ∈ {0, 1}.
This bit is sampled at initialisation of vid. If vid.b = 0, then realvid(vid) = Pi.
If vid.b = 1, then realvid(vid) = Pj . In addition, type(vid) = end-device.

Adversarial queries. The adversary A is assumed to control the network, and
interacts with the instances by issuing the following queries to them.

– DrawParty(Pi, Pj): this query creates a virtual identifier vid = Pi|Pj , adds
vid to the list Lvid, and returns vid. If Pi /∈ E or Pj /∈ E , then it returns ⊥.
If Pi or Pj are used in a virtual identifier already in Lvid, then it returns ⊥.

– NewSession(id, ρ, id′): this query creates a new instance πsi at party id, having
role ρ, and intended partner id′. If type(id) = type(id′), the query aborts. If
id is a virtual identifier, then the parent of πsi is realvid(id). If id′ is a virtual
identifier, then πsi .pid = realvid(id′). πsi .α is set to running. If ρ = initiator, it
produces the first message of the protocol which is returned to the adversary.

– Send(πsi ,m): this query allows the adversary to send any message m to πsi .
If πsi .α 6= running, it returns ⊥. Otherwise πsi responds according to the
protocol specification.

– Corrupt(Pi): if type(Pi) = end-device, this query returns the long-term key
Pi.ltk of Pi. If type(Pi) = server, this query returns all long-term keys Pj .ltk,
Pj ∈ E , stored by Pi. If Corrupt(Pi) is the ν-th query issued by the adversary,
then we say that Pi is ν-corrupted. For a party that has not been corrupted,
we define ν = +∞. Moreover we say that a virtual identifier vid = Pi|Pj is
corrupted if either Pi or Pj is corrupted.

– Reveal(πsi): this query returns the session key πsi .sk, and πsi .κ is set to
revealed.

– Unmask(πsi): this query returns the permanent identifier Pi of πsi ’s parent.
– Test(πsi): this query may be asked only once throughout the game. If πsi .α 6=

accepted, then it returns ⊥. Otherwise it samples an independent key sk0
$←−

K, and returns skb with b = πsi .b, where sk1 = πsi .sk. The key skb is called
the Test-challenge-key.

– Free(vid): this query removes vid from Lvid. Moreover, for any instance
πsi such that either vid is the parent of πsi or πsi .pid = vid, if πsi .α ∈
{⊥,running}, then it sets πsi .α = rejected.

11

The adversary is an active Man-in-the-Middle which can interact with par-
ties, and adaptively issue queries. The adversary is granted the ability to query
the used identities of arbitrary session partners (with the Unmask query). Our
goal is to consider a strong adversary, in the sense that we allow as far as possible
all queries (Corrupt, Reveal, Send, Unmask, etc.) except the queries that allow
trivial attacks (i.e., attacks that allow the adversary to win, regardless of the
design of the protocol).

Definition 1 (Partnership). Two instances πsi and πtj are partners if πsi .sid =
πtj .sid.

A privacy-preserving authenticated key exchange protocol (PPAKE) is a two-
party protocol satisfying the correctness requirements 1 and 2, and where the
security is defined in terms of a PPAKE experiment played between a challenger
and an adversary. This experiment uses the execution environment described
above. The adversary can win the PPAKE experiment in one of three ways: (i)
by making an instance accept maliciously, (ii) by guessing the secret bit of the
Test-instance, or (iii) by guessing the secret bit of the privacy experiment.

Definition 2 (Entity Authentication (EA)). An instance πsi of a protocol
Π is said to have accepted maliciously in the PPAKE security experiment with
intended partner Pj, if

1. πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,
2. Pi and Pj are ν- and ν′-corrupted with ν0 < ν, ν0 < ν′, and
3. there is no unique instance πtj such that πsi and πtj are partners.

The adversary’s advantage is defined as its winning probability:

advent-auth
Π = Pr[A wins the EA game].

Definition 3 (Key Indistinguishability). An adversary A against a protocol
Π, that issues its Test-query to instance πsi during the PPAKE security exper-
iment, answers the Test-challenge-key correctly if it terminates with output b′,
such that

1. πsi .α = accepted and πsi .pid = Pj when A issues its ν0-th query,
2. πsi .κ 6= revealed and Pi is ν-corrupted with ν0 < ν,
3. for any partner instance πtj of πsi , we have that πtj .κ 6= revealed and Pj is

ν′-corrupted with ν0 < ν′, and
4. πsi .b = b′.

The adversary’s advantage is defined as

advkey-ind
Π =

∣∣∣∣Pr[πsi .b = b′]− 1

2

∣∣∣∣ .
Note that the definition of key indistinguishability incorporates a requirement

for forward secrecy.

12

Definition 4 (Privacy). An adversary A against a protocol Π, wins the pri-
vacy game during the PPAKE security experiment, if it terminates with output
(πsi , b

′), such that

– type(πsi) 6= type(πsi .pid)
– If type(πsi) = server, let vid be the (virtual) identifier of πsi .pid:

1. πsi .α = accepted when A issues its ν0-th query,
2. πui .α = accepted when A issues its ν1-th query, where πui is the instance

created after πsi such that its parent and intended partner are the same
as those of πsi ,

3. the parents of πsi and vid are ν- and ν′-corrupted with ν1 < ν, ν0 < ν′,
4. A did not issue an Unmask query to πtj for any instance πtj such that πtj

is partnered with πsi and type(πtj) = end-device, and
5. vid.b = b′.

– If type(πsi) = end-device, let vid be the (virtual) identifier of the parent of
πsi :
1. πsi .α = accepted when A issues its ν0-th query,
2. πvj .α = accepted when A issues its ν1-th query, where πvj is created

after πtj for any partner πtj of πsi , such that πvj .pid is πsi ’s parent and
πvj ’s parent is πsi .pid,

3. vid and πsi .pid are ν- and ν′-corrupted with ν0 < ν, ν1 < ν′,
4. A did not issue an Unmask query to πsi , and
5. vid.b = b′.

The adversary’s advantage is defined as

advprivacy
Π =

∣∣∣∣Pr[vid.b = b′]− 1

2

∣∣∣∣ .
Definitions 2, 3, and 4 allow the adversary to corrupt an instance involved

in the security experiment (after some time, in order to exclude trivial attacks).
Therefore, protocols secure with respect to Definition 5 below provide forward
secrecy. We do not allow the targeted instance to be corrupted before it accepts.
That is, this security model does not capture key-compromise impersonation at-
tacks (KCI) [12] since that would allow trivially breaking key exchange protocols
solely based on shared symmetric keys.

Definition 5 (PPAKE Security). We say that a two-party protocol Π is a se-
cure PPAKE protocol if Π satisfies the correctness requirements 1 and 2, and for
all probabilistic polynomial time adversary A, advent-auth

Π , advkey-ind
Π , and advprivacy

Π

are a negligible function of the security parameter.

4.2 Security Definitions of the Building Blocks

In our proofs, we rely upon standard security definitions. The security definition
of a pseudo-random function (PRF) is taken from Bellare, Desai, Jokipii, and Ro-
gaway [8], and that of a MAC strongly unforgeable under chosen-message attacks
from Bellare and Namprempre [9]. We rely also on the definition of matching
conversations initially proposed by Bellare and Rogaway [10], and modified by
Jager, Kohlar, Schäge, and Schwenk [26].

13

5 Privacy-Preserving SAKE/SAKE-AM

In this section we present the protocol obtained when applying to [1] the mit-
igations described in Section 3. We call these corrected versions respectively
Privacy-preserving SAKE (PPSAKE) and Privacy-preserving SAKE-AM (PP-
SAKE-AM).

Description. The protocol PPSAKE is depicted by Figure 4. It illustrates
the generic case when party A is a server communicating with a set of end-
devices (parties B). As in [1], B uses either an ephemeral identity parameter
idB (which evolves the same way as its master keys K and K ′) or a pseudo-
random value, depending if the previous protocol run has completed success-
fully (this is tracked with the flag φ, initialised to 0). ¯idB = idB allows A
to retrieve the set of parameters corresponding to B in its database db. For
each party B, A stores the identity parameter of three consecutive epochs, as
it is done with the authentication master key (each entry in db is of the form:
K, (idB,j ,K

′
j), (idB,j−1,K

′
j−1), (idB,j+1,K

′
j+1)).

When B transmits a pseudo-random value ¯idB (instead of idB), A must
explore (in constant time) the database (function find-entry) in order to find
the matching authentication master key (i.e., which allows verifying the MAC
tag τB). This happens only if the previous session (between A and B) was not
successful.

idB,0 idB,1 idB,2 idB,3 · · ·

K′0 K′1 K′2 K′3 · · ·

K0 K1 K2 K3 · · ·

sk0 sk1 sk2 sk3

update

update

update

K
D
F

Fig. 3: Party A stores authentication master keys and identifiers corresponding
to three consecutive epochs (j − 1, j, j + 1), and one derivation master key
(illustration with j = 2 with the blue dashed box). Party B stores one sample
of each master key, and identifier (in blue).

The same value ¯idB is used in a given session, and a new value is used in the
next session (see Figure 3). The identity parameter ¯idB appears in all messages
(but the first one in PPSAKE). The purpose is to allow A to recognise which
keys to use (when ¯idB is output by the update function), but also to allow B
detecting which messages sent by A are intended to it. Likewise, with ¯idB (equal

14

A
(idA, db)

B
(idB , K, K′, φ)

rA
$←− {0, 1}λ

idA‖rA−−−−−−−−−−→
if (φ = 0)

¯idB ← idB
φ← 1

else if (φ = 1)

¯idB
$←− {0, 1}λ

rB
$←− {0, 1}λ

τB ← Mac(K′, ¯idB‖idA‖rB‖rA)
mB ← ¯idB‖rB‖τB

mB←−−−−−−−−−−
if (¯idB ∈ db.id)

entry ← get corresponding entry
if (verif-entry(entry,mB) = false)

abort
else

entry ← find-entry(mB)
if (entry = ∅)

abort

τA ← Mac(K′, ε‖idA‖ ¯idB‖rA‖rB)
mA ← ε‖ ¯idB‖τA

mA−−−−−−−−−−→
if (Vrf(K′, ε‖idA‖ ¯idB‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB

kdf; updB
φ← 0
τ ′B ← Mac(K′, ¯idB‖rB‖rA)
m′B ← ¯idB‖τ ′B

m′B←−−−−−−−−−−
if (ε = 0)

K′ ← K′j
if (Vrf(K′, ¯idB‖rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (Vrf(K′, ¯idB‖rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← Mac(K′, ¯idB‖rA‖rB)
m′A ← ¯idB‖τ ′A

m′A−−−−−−−−−−→
if (Vrf(K′, ¯idB‖rA‖rB , τ ′A) = false)

abort

Fig. 4: The Privacy-preserving SAKE protocol

15

A
(idA, db, htable)

B
(idB , K, K′, φ)

if (φ = 0)
¯idB ← idB
φ← 1

else if (φ = 1)

¯idB
$←− {0, 1}λ

rB
$←− {0, 1}λ

τB ← Mac(K′, ¯idB‖idA‖rB)
mB ← ¯idB‖rB‖τB

mB←−−−−−−−−−−
if (¯idB ∈ db.id)

entry ← get corresponding entry
if (verif-table(htable,mB) = true)

abort
if (verif-entry(entry,mB) = false)

abort
else

entry ← find-entry(mB)
if (entry = ∅)

abort
if (verif-table(htable,mB) = true)

abort

insert-table(htable,mB)

rA
$←− {0, 1}λ

τA ← Mac(K′, ε‖idA‖ ¯idB‖rA‖rB)
mA ← ε‖ ¯idB‖rA‖τA

mA−−−−−−−−−−→
if (Vrf(K′, ε‖idA‖ ¯idB‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB

kdf; updB
φ← 0
τ ′B ← Mac(K′, ¯idB‖idA‖rB‖rA)
m′B ← ¯idB‖τ ′B

m′B←−−−−−−−−−−
if (ε = 0)

K′ ← K′j
if (Vrf(K′, ¯idB‖idA‖rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (Vrf(K′, ¯idB‖idA‖rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← Mac(K′, ¯idB‖rA‖rB)
m′A ← ¯idB‖τ ′A

m′A−−−−−−−−−−→
if (Vrf(K′, ¯idB‖rA‖rB , τ ′A) = false)

abort

Fig. 5: The Privacy-preserving SAKE-AM protocol

16

to idB or pseudo-random), A can correlate the messages mB , m′B and the cor-
responding parameters in database. The identity parameter idA used by A is
explicit, and never changed as the privacy property aims at protecting B.

In PPSAKE-AM (see Figure 5), party A stores efficiently (e.g., using a Bloom
or a Cuckoo filter) the messages mB it receives (this is not necessary in PP-
SAKE). Upon reception of a message mB , A verifies if it has already been re-
ceived (these operations are done respectively with functions insert-table and
verif-table). This prevents A from responding to a replayed message mB . We use
a global table. Note that using one table per entry in the database db (i.e., one
table per end-device party) may lead to privacy breaches depending on how the
privacy experiment is defined (in particular if the table can be revealed).

We observe that, depending on the communication layer, it may not be nec-
essary to include ¯idB in all messages. For instance, if the messages are sent
through a radio link, A and B can negotiate a specific radio frequency they will
use during the session. Likewise, if the messages are sent through a wired link,
some ephemeral per-session identifier (e.g., IP address or any equivalent) can be
used by A and B to discriminate the messages intended to them. Nonetheless,
in order to make the protocol agnostic with respect to the communication layer,
we opt for an ephemeral identifier ¯idB in the messages.

As in [5], using PPSAKE-AM together with PPSAKE (both protocols are
based on the same inner functions) allows any party to be either initiator or
responder of a session, such that the smallest amount of calculation is always
done by the same party (i.e., the low-resource end-device).

Notations. The notations updA, and updB are defined as follows:

– updA corresponds to
1. K ← update(K)
2. idB,j−1 ← idB,j
3. idB,j ← idB,j+1

4. idB,j+1 ← update(K ′j+1, idB,j+1)
5. K ′j−1 ← K ′j
6. K ′j ← K ′j+1
7. K ′j+1 ← update(K ′j+1)

– updB corresponds to
1. K ← update(K)
2. idB ← update(K ′, idB)
3. K ′ ← update(K ′)

The function verif-entry (see Figure 6) takes as input an entry entry ∈ db, and
a message mB (we assume that the other values used in verif-entry are “global”
parameters). It outputs true if entry allows verifying correctly mB .

The function find-entry (see Figure 7) takes as input a messagemB = ¯idB‖rB‖
τB , and outputs either an entry entry ∈ db or ∅.

The function verif-table takes as input a hash table htable, and a value x, and
outputs true if x is present in htable. Otherwise it returns false.

The function insert-table takes as input a hash table htable, and a value x,
and inserts x into htable.

17

if (Vrf(K′j , ¯idB‖idA‖rB‖rA , τB) = true)
δAB ← 0
K′ ← K′j
kdf
updA
ε← 0
return true

else if (Vrf(K′j−1, ¯idB‖idA‖rB‖rA , τB) = true)
δAB ← 1
K′ ← K′j−1

ε← 1
return true

else if (Vrf(K′j+1, ¯idB‖idA‖rB‖rA , τB) = true)
δAB ← −1
K′ ← K′j+1

updA
kdf
updA
ε← 0
return true

else

return false

Fig. 6: Pseudo-code of function verif-entry. Elements surrounded by a blue dashed
box appear only in PPSAKE (not in PPSAKE-AM).

foreach entry ∈ db
if (verif-entry(entry,mB) = true)

return entry
return ∅

Fig. 7: Pseudo-code of function find-entry

18

6 Security of Privacy-Preserving SAKE/SAKE-AM

In this section we prove that PPSAKE and PPSAKE-AM are secure PPAKE
protocols according to Definition 5. We refer the reader to [5] regarding the
soundness of PPSAKE and PPSAKE-AM (the proof is the same as that of
SAKE and SAKE-AM in this regard).

In order to prove that the protocol PPSAKE/PPSAKE-AM is a secure
PPAKE protocol, we use the execution environment described in Section 4.1.
We define the partnering between two instances with the notion of matching
conversations. That is, we define sid to be the transcript, in chronological order,
of all the (valid) messages sent and received by an instance during the key ex-
change, but, possibly, the last one. Furthermore, we choose the function update
to be a keyed PRF, that is update : (k, x) 7→ PRF(k, x), and we define:

– update(k) = PRF(k, c) if k is a derivation (K) or authentication (K ′) master
key, and c is some (constant) value

– update(K ′, idB) = PRF(K ′, idB)

Theorem 1. The protocol Π ∈ {PPSAKE,PPSAKE-AM} is a secure PPAKE
protocol, and for any probabilistic polynomial time adversary A in the PPAKE
security experiment against Π

advent-auth
Π ≤ nq

(
(nq − 1)2−λ + (nE(q − 1) + 2)advprf

update + (nE + 1)advsuf-cma
Mac

)
advkey-ind

Π ≤ nq
(

(q − 1)advprf
update + advprf

KDF

)
+ advent-auth

Π

advprivacy
Π ≤ nq

(
q · advprf

update + 2advprf
Mac + 2−κ

)
+ advent-auth

Π

where nE is the number of end-device parties, nS the number of server parties,
n = nE +nS, q the maximum number of instances (sessions) per party, κ the size
of the derivation master key K, λ the size of the pseudo-random values (rA, rB),

and advprf
update, advsuf-cma

Mac , advprf
KDF, and advprf

Mac are the advantage of an adversary
to break respectively the PRF-security of update, the SUF-CMA-security of Mac,
the PRF-security of KDF, and the PRF-security of Mac.

A sketch of proof of Theorem 1 is given below. The full proof is presented in
Section A.

Proof (Sketch). We proceed through a sequence of games between a challenger
and an adversary A. First we consider the entity authentication experiment. We
use the following hops.

Game 0 corresponds to the entity authentication security experiment de-
scribed in Section 4.1.

In Game 1, the challenger aborts if there exists an instance that chooses a
random value rA or rB that is not unique. There is at most n × q random val-
ues, each uniformly drawn at random in {0, 1}λ. Therefore, the two games are

equivalent up to a collision term nq(nq−1)
2λ

.

19

In Game 2, the challenger tries to guess which instance π will be the first to
accept maliciously, and aborts the game if the guess is wrong. The security loss
is a factor nq.

In Game 3, the challenger aborts if the initiator (resp. responder) instance
π ever receives a message mB (resp. mA), but no instance having a matching
conversation to π has output that message. Here, we reduce the probability
of this event to the security of the functions Mac (used to compute the MAC
tags) and update (used to update the MAC key). Since there are at most q
sessions per party, and accounting that the initiator may try all authentication
master keys present in its database (i.e., nE keys), the security loss is equal to

nE

(
(q − 1)advprf

update + advsuf-cma
Mac

)
.

In Game 4, the challenger aborts if the targeted instance π ever receives a
valid message τ ′B (resp. τ ′A), but no instance having a matching conversation to
π has output that message. We reduce the probability of the adversary to win
this game to the security of the Mac function used to compute the message τ ′B
(resp. τ ′A). In turn we rely on the randomness of the MAC key, hence on the
security of the function update used to update the MAC key K ′. Hence a loss
equal to 2advprf

update + advsuf-cma
Mac .

To that point, the only way for the adversary to make π accept maliciously
is to send a valid message τ ′B (resp. τ ′A) different from all the messages sent
by all the instances. However, in such a case, the challenger aborts. Hence the
adversary has no chance to win.

Now we prove the key indistinguishability security.
Game 0 corresponds to the key indistinguishability experiment described in

Section 4.1.
In Game 1, the challenger aborts the experiment and chooses b′ ∈ {0, 1} uni-

formly at random if there exists an instance that accepts maliciously. In other
words, in this game we make the same modifications as in the games performed
during the entity authentication proof. Hence a loss equal to advent-auth

PPSAKE .
In Game 2, the challenger tries to guess which instance is targeted by the

adversary, and aborts the game if the guess is wrong. The security loss is a factor
nq.

In Game 3, we reduce the advantage of the adversary to win this game to
the security of the function KDF used to compute the session key. In turn we
rely on the PRF-security of the function update used to update the derivation
master key K. Since there is at most q sessions per party, this implies a security
loss equal to (q − 1)advprf

update + advprf
KDF.

To that point, the adversary can do no better than guessing.
Now we prove the privacy security.
Game 0 corresponds to the privacy experiment described in Section 4.1.
In Game 1, the challenger aborts the experiment and chooses b′ ∈ {0, 1}

uniformly at random if there exists an instance that accepts maliciously. Hence
a loss advent-auth

PPSAKE .
In Game 2, the challenger tries to guess which instance is targeted by the

adversary, and aborts the game if the guess is wrong. The loss is a factor nq.

20

In Game 3, the challenger aborts if the adversary succeeds in guessing the
derivation master key (with this key and a Corrupt query, the adversary can
recognise the “real” party involved in the session). Hence a loss equal to 1

2κ .
In Game 4, the challenger aborts if the adversary succeeds in correlating

any value (besides idA) exchanged during the current session with any value ex-
changed during a previous session. In order to claim that the values exchanged
during the session (in particular idB and the MAC tags) are random and in-
dependent of all previous sessions, we rely upon the PRF-security of update
and Mac used to compute respectively idB and the MAC tags. These function
are keyed with (different values of) the authentication master key. In turn the
latter is computed with update. Overall this implies a security loss equal to
q · advprf

update + 2advprf
Mac

To that point the adversary can do no better than guessing the secret bit of
the privacy experiment. ut

7 Conclusion

In this paper we have investigated the field of privacy-preserving authenticated
key exchange protocols (PPAKE).

First we have made a cryptographic analysis of a previous PPAKE protocol
intended to the IoT [1], and shown that most of its security properties, includ-
ing privacy, are broken. Furthermore we have described countermeasures that
allow preventing these vulnerabilities. The attacks that we exhibit question the
correctness of the security proofs provided in [1], and highlight the importance
of using a suitable security model.

Secondly, we have presented a security model which captures the security
properties of a PPAKE protocol: entity authentication, key indistinguishability,
forward secrecy, and privacy. The approach that we take guarantees that the
different security properties are independent of each other, which yields a strong
security model. We do think that this security model can serve as a tool to anal-
yse other authenticated key exchange protocols that implement mechanisms to
guarantee privacy.

Finally, we have described a PPAKE protocol in the symmetric-key setting
which is suitable for constrained devices. We have formally proved the security
of this protocol in our strong model.

References

1. Aghili, S.F., Jolfaei, A.A., Abidin, A.: SAKE+: Strengthened symmetric-key au-
thenticated key exchange with perfect forward secrecy for IoT. Cryptology ePrint
Archive, Report 2020/778, 20200714:112142 (2020)

2. ANSSI: Should Quantum Key Distribution be Used for Secure Communications?
(May 2020)

3. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of the
TLS 1.3 protocol. PoPETs 2019(4), 190–210 (Oct 2019)

21

4. Ashur, T., Delvaux, J., Lee, S., Maene, P., Marin, E., Nikova, S., Reparaz, O.,
Rozic, V., Singelée, D., Yang, B., Preneel, B.: A privacy-preserving device tracking
system using a low-power wide-area network. In: Capkun, S., Chow, S.S.M. (eds.)
CANS 17. LNCS, vol. 11261, pp. 347–369. Springer, Heidelberg (Nov / Dec 2017)

5. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 199–224. Springer, Heidelberg (Feb 2020)

6. Avoine, G., Coisel, I., Martin, T.: Time measurement threatens privacy-friendly
RFID authentication protocols. In: Yalcin, S.B.O. (ed.) Radio Frequency Identifi-
cation: Security and Privacy Issues - 6th International Workshop, RFIDSec 2010.
LNCS, vol. 6370, pp. 138–157. Springer (2010)

7. Avoine, G., Coisel, I., Martin, T.: Untraceability Model for RFID. IEEE Transac-
tions on Mobile Computing 13(10), 9 (Oct 2014)

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS. pp. 394–403. IEEE Computer Society Press
(Oct 1997)

9. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology 21(4),
469–491 (Oct 2008)

10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
1994)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006)

12. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) 6th IMA International Conference on Cryp-
tography and Coding. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (Dec 1997)

13. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.01: Automatic cryp-
tographic protocol verifier, user manual and tutorial (April 2020)

14. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (July 1970)

15. Boyd, C., Davies, G.T., de Kock, B., Gellert, K., Jager, T., Millerjord, L.: Symmet-
ric key exchange with full forward security and robust synchronization. Cryptology
ePrint Archive, Report 2021/702 (2021)

16. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels:
On the security of EAP-TLS and TLS key exporters. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 670–698. Springer,
Heidelberg (May 2016)

17. Canard, Sébastien Coisel, I.: Data Synchronization in Privacy-Preserving RFID
Authentication Schemes. In: Radio Frequency Identification: Security and Privacy
Issues - 4th International Workshop, RFIDSec 2008 (2008)

18. Canard, S., Coisel, I., Etrog, J., Girault, M.: Privacy-preserving RFID systems:
Model and constructions. Cryptology ePrint Archive, Report 2010/405 (2010)

19. Dimitriou, T.: Key Evolving RFID Systems. Ad Hoc Netw. 37(P2), 195–208
(February 2016)

20. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo filter: Prac-
tically better than bloom. In: Seneviratne, A., Diot, C., Kurose, J., Chaintreau,
A., Rizzo, L. (eds.) Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies, CoNEXT 2014. pp. 75–88.
ACM (2014)

22

21. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). pp. 60–75. IEEE (April 2017)

22. Fouque, P.A., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA
protocol. PoPETs 2016(4), 255–275 (Oct 2016)

23. Hedbom, H.: A Survey on Transparency Tools for Enhancing Privacy. In: Matyáš,
V., Fischer-Hübner, S., Cvrček, D., Švenda, P. (eds.) The Future of Identity in the
Information Society. pp. 67–82. Springer (2009)

24. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy
model. In: Atluri, V., Dı́az, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer, Heidelberg (2011)

25. Huang, H.F., Yu, P.K., Liu, K.C.: A privacy and authentication protocol for mobile
RFID system. In: International Symposium on Independent Computing – ISIC
2014 (2014)

26. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012)

27. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE J.Sel. A. Commun.
24(2), 381–394 (September 2006)

28. Juels, A., Weis, S.A.: Defining Strong Privacy for RFID. In: Fifth Annual IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops
(PerComW’07). pp. 342–347 (2007)

29. Malina, L., Srivastava, G., Dzurenda, P., Hajny, J., Ricci, S.: A Privacy-Enhancing
Framework for Internet of Things Services. In: Liu, J.K., Huang, X. (eds.) Network
and System Security. pp. 77–97. Springer International Publishing (2019)

30. Ouafi, K., Phan, R.C.W.: Traceable privacy of recent provably-secure RFID pro-
tocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
08. LNCS, vol. 5037, pp. 479–489. Springer, Heidelberg (Jun 2008)

31. Ray, A.K., Bagwari, A.: Study of smart home communication protocol’s and secu-
rity privacy aspects. In: 7th International Conference on Communication Systems
and Network Technologies (CSNT). pp. 240–245 (2017)

32. Rescorla, E.: The transport layer security (TLS) protocol version 1.3 (August 2018)

33. Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange
and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020, Part II. LNCS, vol. 12111, pp. 567–596. Springer, Heidelberg (May
2020)

34. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

35. Song, T., Li, R., Mei, B., Yu, J., Xing, X., Cheng, X.: A Privacy Preserving Commu-
nication Protocol for IoT Applications in Smart Homes. IEEE Internet of Things
Journal 4(6), 1844–1852 (2017)

36. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASI-
ACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (Dec 2007)

37. You, I., Kwon, S., Choudhary, G., Sharma, V., Seo, J.T.: An Enhanced LoRaWAN
Security Protocol for Privacy Preservation in IoT with a Case Study on a Smart
Factory-Enabled Parking System. Sensors 18(6) (2018)

38. Ziegeldorf, J.H., Morchon, O.G., Wehrle, K.: Privacy in the Internet of Things:
threats and challenges. Secur. Commun. Networks 7(12), 2728–2742 (2014)

23

A Extended Proof for PPSAKE/PPSAKE-AM

We give a proof of Theorem 1 for Π = PPSAKE. The reasoning for Π =
PPSAKE-AM is similar.

A.1 Extended Proof for Entity Authentication

In order for an initiator instance πsi at some party Pi to accept, two valid mes-
sages (i.e., with valid MAC tags) must be received by πsi (mB and τ ′B). We reduce
the security of the Mac function to the (in)ability to forge a valid output. There-
fore we use the fact that the key K ′ is random. By assumption, the genuine value
of K ′ (i.e., the value used during the first session between two same parties) is
uniformly chosen at random. Yet K ′ (and K) is updated throughout the session
with the function update. If K ′ is random, we can rely on the pseudo-randomness
of update(·) = PRF(·, ·). In turn, since PRF(K ′, ·) can be replaced with a truly
random function, its output (updated K ′) is random. Therefore, one can rely
upon the pseudo-randomness of the function update keyed with this new value
K ′, and so forth. Each transition (i.e., each update of K ′) implies a loss equal to

advprf
update corresponding to the ability of an adversary A0 to distinguish update

from a random function.
If Pi is synchronised with the responder (δAB = 0), Pi updates its master

keys once (upon reception of mB). If Pi is in advance (δAB = 1), it updates its
keys at most once (if a valid message τ ′B is received). If Pi is late (δAB = −1),
it updates its keys twice. Yet, in that case, Pi did not update its keys during
the previous session. Therefore, on average, Pi updates its keys at most once per
session. Hence, when the u-th session starts, Pi has updated its keys at most
u− 1 times on average, and, upon reception of τ ′B , Pi updates the keys at most
two times.

This is similar regarding the responder. A responder instance πtj at some
party Pj accepts only if the two messages mA and τ ′A are valid. Upon reception
of a valid message mA, the keys are updated once (ε = 0) or twice (ε = 1). In
the latter case, the keys have not been updated during the previous session. This
means that the keys are updated on average at most once per session. Therefore,
when the u-th session starts, Pj has updated its keys at most u − 1 times on
average, and, upon reception of mA, the keys are updated at most two times.

We can now proceed with the proof. We proceed through a sequence of
games [11, 34], where each consecutive game aims at reducing the challenger’s
dependency on the functions Mac, update and KDF. We first prove the entity
authentication security. Let Ei be the event that the adversary win the entity
authentication experiment, as defined by Definition 2, in Game i.

Game 0. This game corresponds to the entity authentication security experiment
described in Section 4.1. Therefore

Pr[E0] = advent-auth
PPSAKE

24

Game 1. The challenger aborts if there exists any instance that chooses a random
value rA or rB that is not unique. There is at most n×q random values (with n =
nE + nS), each uniformly drawn at random in {0, 1}λ. Therefore the probability

that at least two random values be equal is at most nq(nq−1)
2λ

. Hence

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ

Game 2. The challenger tries to guess which instance will be the first to accept
maliciously. If the guess is wrong, the game is aborted. The number of instances
is at most nq. Therefore

Pr[E2] = Pr[E1]× 1

nq

Game 3. Let π be the instance targeted by the adversary. In this game, we
add an abort rule. The challenger aborts the experiment if π ever receives a
valid message mB (resp. mA) if it is an initiator (resp. responder) instance, but
no instance having a matching conversation to π has output that message. We
reduce the probability of this event to the security of the functions Mac and
update. As explained above, when the u-th session starts, the master keys have
been updated at most u− 1 times already. The genuine value of K ′ is uniformly
chosen at random. In order to be able to replace, during the current session, the
key used to compute the MAC tag in mA (resp. mB) with a random value, one
must rely upon the pseudo-randomness of the function update that outputs (the
new value of) K ′. In turn, this relies upon the (previous) key K ′ being random
(and on the pseudo-randomness of update). Therefore, in order to replace K ′

with a random value one must take into account the successive losses advprf
update,

each corresponding to the ability of an adversary A0 to distinguish the function
update (keyed with a different key K ′) from a random function. Since there is at

most q sessions, this loss is at most (q − 1)advprf
update. Then we reduce the proba-

bility of the adversary A to win this game to the ability of an adversary A1 to
forge a valid tag τB (resp. τA).

Therefore, we replace each function update(K ′) = PRF(K ′, c) (keyed with a
different key K ′ throughout the, at most, q − 1 successive sessions established,
prior to that current session, by the same party that owns π) with truly ran-

dom functions Fupdate
0 , . . ., Fupdate

q−2 . Moreover, if an instance uses the same key
K ′ = K ′i, 0 ≤ i < q − 1, to key update, then we replace update with the cor-

responding random function Fupdate
i . Since, to that point, the key K ′ = K ′q−1

used to compute the authentication tag τB (resp. τA) is random, we reduce the
ability of A to win to the security of the Mac function.

This reasoning holds if the initiator verifies the MAC tag with one authen-
tication master key. However, it may happen that the initiator tries multiple
authentication keys (when φ = 1), possibly all of them, in order to find the
proper one. Accounting that the initiator stores at most nE entries (hence nE

authentication master keys) in its database, we have that

Pr[E2] ≤ Pr[E3] + nE ×
(

(q − 1)advprf
update + advsuf-cma

Mac

)
25

Game 4. The challenger aborts the experiment if π ever receives a valid message
τ ′B (resp. τ ′A), but no instance having a matching conversation to π has output
that message. Between the message mB (resp. mA) being received by π, and
the message τ ′B (resp. τ ′A) being received by π, the master keys are updated at
most twice. We reduce the probability of the adversary to win this game to the
security of the Mac function used to compute the message τ ′B (resp. τ ′A). In turn
we must rely on the randomness of the MAC key, hence on the security of the
function update used to update the MAC key K ′ (recall that, due to Game 3,
the current key K ′ is random). Therefore

Pr[E3] ≤ Pr[E4] + 2advprf
update + advsuf-cma

Mac

To that point, the only way for the adversary to make π accept maliciously
is to send a valid message τ ′B (resp. τ ′A) different from all the messages sent
by all the instances. However, in such a case, the challenger aborts. Therefore
Pr[E4] = 0.

Collecting all the probabilities from Game 0 to 4, we have that

advent-auth
PPSAKE = Pr[E0]

≤ Pr[E1] +
nq(nq − 1)

2λ

= nqPr[E2] +
nq(nq − 1)

2λ

≤ nq
(

Pr[E3] + nE

(
(q − 1)advprf

update + advsuf-cma
Mac

))
+
nq(nq − 1)

2λ

≤ nq
(

Pr[E4] + (nE(q − 1) + 2)advprf
update + (nE + 1)advsuf-cma

Mac

)
+
nq(nq − 1)

2λ

= nq
(

(nq − 1)2−λ + (nE(q − 1) + 2)advprf
update + (nE + 1)advsuf-cma

Mac

)
A.2 Extended Proof for Key Indistinguisability

Let Ei be the event that an adversary win the key indistinguishability experi-
ment, as defined by Definition 3, in Game i, and advi = Pr[Ei]− 1

2 .

Game 0. This game corresponds to the key indistinguishability experiment de-
scribed in Section 4.1. Therefore

Pr[E0] =
1

2
+ advkey-ind

PPSAKE =
1

2
+ adv0

Game 1. The challenger aborts the experiment and chooses b′ ∈ {0, 1} uniformly
at random if there exists an instance that accepts maliciously. In other words,
in this game we make the same modifications as in the games performed during
the entity authentication proof. Hence

adv0 ≤ adv1 + advent-auth
PPSAKE

26

Game 2. The challenger tries to guess which instance is targeted by the adver-
sary. If the guess is wrong, the game is aborted. The number of instances is at
most nq. Therefore

adv2 = adv1 ×
1

nq

Game 3. Let π be the instance targeted by the adversary. We reduce the ad-
vantage of the adversary to win this game to the security of the function KDF
used to compute the session key. That is, we rely upon the pseudo-randomness
of the KDF function. This is possible if the key K is random. The genuine value
of K is uniformly chosen at random by assumption. Then K is updated with
update at most once per session on average. Therefore, when the u-th session
starts, K has been updated at most u − 1 times already. Therefore we must
take into account the successive losses due to the key update with respect to the
pseudo-randomness of update. Since there is at most q sessions per party (i.e.,

per original key K), this loss is at most (q − 1)advprf
update. Hence we replace each

function update(K) = PRF(K, c) (keyed with a different key K throughout the,
at most, q − 1 successive sessions established, prior to that current session, by
the same party that owns π) with truly random functions Gupdate

0 , . . ., Gupdate
q−2 .

Moreover, if an instance uses the same key K = Ki, 0 ≤ i < q−1, to key update,
then we replace update with the corresponding random function Gupdate

i . Since,
to that point, the key K = Kq−1 used to compute the session key is random, we
reduce the ability of A to win to the security of KDF. Therefore

adv2 ≤ adv3 + (q − 1)advprf
update + advprf

KDF

To that point the session key is random, therefore the adversary has no
advantage in guessing π.b. That is

adv3 = 0

Collecting all the probabilities from Game 0 to 3, we have that

advkey-ind
PPSAKE = adv0

≤ adv1 + advent-auth
PPSAKE

= nq × adv2 + advent-auth
PPSAKE

≤ nq
(

adv3 + (q − 1)advprf
update + advprf

KDF

)
+ advent-auth

PPSAKE

= nq
(

(q − 1)advprf
update + advprf

KDF

)
+ advent-auth

PPSAKE

A.3 Extended Proof for Privacy

Let Ei be the event that an adversary wins the privacy experiment, as defined
by Definition 4, in Game i, and advi = Pr[Ei]− 1

2 .

27

Game 0. This game corresponds to the privacy experiment described in Sec-
tion 4. Therefore

Pr[E0] =
1

2
+ advprivacy

PPSAKE =
1

2
+ adv0

Game 1. In this game, we add an abort rule. The challenger aborts the exper-
iment and chooses b′ ∈ {0, 1} uniformly at random if there exists an instance
that accepts maliciously. In other words, we make the same modifications as in
the games performed during the entity authentication proof. Hence

adv0 ≤ adv1 + advent-auth
PPSAKE

At this point, we have excluded active adversaries. Moreover, for any instance
πsi , there exists a unique instance πtj such that πsi and πtj have matching conver-
sations. Therefore any accepting instance has an unique identified partner.

Game 2. The challenger tries to guess which instance is targeted by the adver-
sary. If the guess is wrong, the game is aborted. The number of instances is at
most (nE + nS)× q = nq. Therefore

adv2 = adv1 ×
1

nq

Game 3. The challenger aborts the experiment if the adversary succeeds in
guessing the initial value of the derivation master key K used by the two in-
stances πsi and πtj .

The rule aims at precluding the following attack. The adversary can try to
guess the initial value of K as follows: from a guess value, it updates the value
as many times as necessary in order to get the presumed value for the derivation
master key used to compute the current session key. The adversary computes
the presumed session key s̃k. Then, when πsi accepts, the adversary issues a
Reveal query which yields the current session key sk. The adversary compares
sk and s̃k in order to verify if its guess for the initial value of K is correct. Once
the initial value for K is found, the adversary computes the current value of
the derivation master key. Once πsi accepts, it issues a Corrupt query to Pi and
Pj (where vid = Pi|Pj is the virtual identifier of the parent of either πsi or πtj ,
whichever is an end-device instance). This yields the derivation master key of
Pi and Pj . The adversary compares these two keys with K̃ which indicates the
secret bit.

Let κ be the bit length of the derivation master key. Since the initial value
of the derivation master key is uniformly drawn at random, we have that

adv2 ≤ adv3 +
1

2κ

Game 4. The challenger aborts the experiment if the adversary succeeds in
correlating any value (besides idA) exchanged during the current session with

28

any value exchanged during a previous session. The adversary can rely on two
parameters: the identity value idB , and the MAC tags.

The identity parameter is updated as update(K ′, idB) = PRF(K ′, idB). The
authentication master key is updated as K ′ = update(K ′) = PRF(K ′, c). Since
the initial value K ′ is random, we replace update(K ′) = PRF(K ′, c) with a truly

random function Fupdate
0 . Moreover if an instance uses the same value K ′ to key

update, we replace update with Fupdate
0 .

When the u-th session starts, the authentication master key used to compute
the current identity parameter has been updated at most u−2 times. Since there
is at most q sessions per party, this means that the authentication master key
used to compute the current identity parameter has been updated at most q− 2
times. Therefore, we replace each function update(K ′) = PRF(K ′, c) (keyed with
a different key K ′ throughout the, at most, q− 1 successive sessions established,
prior to that current session, by the same parties that own πsi and πtj) with

truly random functions Fupdate
0 , . . ., Fupdate

q−3 . Moreover, if an instance uses the
same key K ′ = K ′i, 0 ≤ i < q − 2, to key update, then we replace update

with the corresponding random function Fupdate
i . Hence, to that point, the key

K ′ = K ′q−2 used to compute the identity parameter idB is random. This implies

a security loss at most (q− 2)advprf
update. To that point, idB is computed with the

function update keyed with a random key (K ′ = K ′q−2). Therefore, we rely on
the pseudo-randomness of update in order to replace idB with a random value
(i.e., idB is output by Fupdate

q−2). This adds a security loss advprf
update. Moreover,

the identity parameter exchanged in messages of a given session is either output
by the update function (if φ = 0) or uniformly chosen at random (if φ = 1).
Therefore, idB in the current session can be replaced with a random value.

Regarding the MAC tags, when the u-th session starts, the authentication
key has been updated u− 1 times on average, and it is updated once on average
during the current session (two different values for the authentication key are
used during the current session if the latter completes successfully). Since there
is at most q sessions, this means that the authentication key is updated q − 1
times when the current session starts, and once again during the current session.
Continuing the previous reasoning, this leads to a security loss q×advprf

update with
respect to the PRF-security of update.

Finally, we rely upon the pseudo-randomness of the MAC function. This
implies a loss equal to 2 × advprf

Mac corresponding to the ability of an adversary
A3 to distinguish the function Mac from a random function (because the MAC
tags are output by the function Mac keyed with two different authentication
master keys during the same session, when the latter is successful). Therefore,
the MAC tags in the current session can be replaced with random values.

Therefore we have that

adv3 ≤ adv4 + q × advprf
update + 2× advprf

Mac

To that point, the identity value and the MAC tags that are exchanged
during the current session are random and independent of all previous sessions.
Therefore the adversary has no advantage in guessing which previous session the

29

current session is related to. In particular it has no advantage in guessing vid.b
where vid is the virtual identifier of πsi if type(πsi) = end-device or πsi .pid = vid
if type(πsi) = server. Hence

adv4 = 0

Collecting all the probabilities from Game 0 to Game 4, we have that

advprivacy
PPSAKE = adv0

≤ adv1 + advent-auth
PPSAKE

= nq × adv2 + advent-auth
PPSAKE

≤ nq
(

adv3 +
1

2κ

)
+ advent-auth

PPSAKE

≤ nq
(

adv4 + q · advprf
update + 2advprf

Mac +
1

2κ

)
+ advent-auth

PPSAKE

= nq
(
q · advprf

update + 2advprf
Mac + 2−κ

)
+ advent-auth

PPSAKE

B Aghili et al.’s Protocols

Our description of Aghili et al.’s protocols is mainly based on Section 6 comple-
mented with Section C.2 of their paper [1]. The following notations are used in
Figures 8 and 9.

The predicate “x ∈ db.id” means that x is equal to one of the identity pa-
rameters idB,t stored in database db.

The value id′B in mA is the identity parameter corresponding to the authen-
tication master key which verifies correctly τB in mB (operation done by A).

The parameter entry, and each entry of the database db are of the form:
(K, (idB,j ,K

′
j), (idB,j−1,K

′
j−1), (idB,j+1,K

′
j+1), rtemp).

The parameters ε, K ′, and id′B are set in the function verif-entry (which is
also called by the function find-entry).

The notation updr corresponds to the update of rtemp = (r′′, r′) with rB ,
and is defined as follows:

1. r′′ ← r′

2. r′ ← rB

The notations kdf, updA, and updB are defined as follows:

– kdf corresponds to: sk ← KDF(K, rA, rB)
– updA corresponds to

1. K ← update(K)
2. idB,j−1 ← idB,j
3. idB,j ← idB,j+1

4. idB,j+1 ← update(idB,j+1‖K ′j+1)
5. K ′j−1 ← K ′j
6. K ′j ← K ′j+1

30

7. K ′j+1 ← update(K ′j+1)
– updB corresponds to

1. K ← update(K)
2. idB ← update(idB‖K ′)
3. K ′ ← update(K ′)

The function verif-entry takes as input an entry entry ∈ db, and a mes-
sage mB = x‖rB‖τB (we assume that the other values used in verif-entry are
“global” parameters). It outputs true if entry allows verifying correctly mB .
The function verif-entry is described with the pseudo-code given in Figure 10.
The line “rA ← ∅” in Figure 9 indicates that rA is not involved in the sub-
sequent calls to the function verif-entry (when the end-device is initiator). For
instance, the first “if” statement in Figure 10 corresponds then to the predicate
“Vrf(K ′j , idB,j‖idA‖rB , τB) = true”.

The function find-entry takes as input a message mB = x‖rB‖τB , and out-
puts either an entry entry ∈ db or ∅. The function find-entry is described with
the pseudo-code given in Figure 11.

31

A B
(idA, db) (idB , K,K

′, φ)

rA
$←− {0, 1}λ

idA‖rA−−−−−−−−−−→

rB
$←− {0, 1}λ

τB ← Mac(K′, idB‖idA‖rB‖rA)

if (φ = 0)
mB ← idB‖rB‖τB
φ← 1

else if (φ = 1)

rα
$←− {0, 1}λ

mB ← rα‖rB‖τB
mB←−−−−−−−−−−

// mB = x‖rB‖τB
if (x ∈ db.id)

entry ← get corresponding entry
if (rB ∈ rtemp)

abort
if (verif-entry(entry,mB) = false)

abort
else

entry ← find-entry(mB)
if (entry = ∅)

abort
if (rB ∈ rtemp)

abort

updr

τA ← Mac(K′, ε‖idA‖id′B‖rA‖rB)
mA ← ε‖id′B‖τA

mA−−−−−−−−−−→
if (Vrf(K′, ε‖idA‖idB‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB

kdf; updB
φ← 0
τ ′B ← Mac(K′, rB‖rA)
m′B ← idB‖τ ′B

m′B←−−−−−−−−−−
if (ε = 0)

K′ ← K′j
if (Vrf(K′, rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (Vrf(K′, rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← Mac(K′, rA‖rB)
m′A ← idB‖τ ′A

m′A−−−−−−−−−−→
if (Vrf(K′, rA‖rB , τ ′A) = false)

abort

Fig. 8: Aghili et al.’s protocol when the server is initiator

32

A B
(idA, db) (idB , K,K

′, φ)

rB
$←− {0, 1}λ

τB ← Mac(K′, idB‖idA‖rB)

if (φ = 0)
mB ← idB‖rB‖τB
φ← 1

else if (φ = 1)

rα
$←− {0, 1}λ

mB ← rα‖rB‖τB
mB←−−−−−−−−−−

// mB = x‖rB‖τB
rA ← ∅
if (x ∈ db.id)

entry ← get corresponding entry
if (rB ∈ rtemp)

abort
if (verif-entry(entry,mB) = false)

abort
else

entry ← find-entry(mB)
if (entry = ∅)

abort
if (rB ∈ rtemp)

abort

updr

rA
$←− {0, 1}λ

τA ← Mac(K′, ε‖idA‖id′B‖rA‖rB)
mA ← ε‖id′B‖τA‖rA

mA−−−−−−−−−−→
if (Vrf(K′, ε‖idA‖idB‖rA‖rB , τA) = false)

abort
if (ε = 1)

updB

kdf; updB
φ← 0
τ ′B ← Mac(K′, rB‖rA)
m′B ← idB‖τ ′B

m′B←−−−−−−−−−−
if (ε = 0)

K′ ← K′j
if (Vrf(K′, rB‖rA, τ ′B) = false)

abort
else if (ε = 1)

K′ ← K′j+1

if (Vrf(K′, rB‖rA, τ ′B) = false)
abort

kdf; updA

τ ′A ← Mac(K′, rA‖rB)
m′A ← idB‖τ ′A

m′A−−−−−−−−−−→
if (Vrf(K′, rA‖rB , τ ′A) = false)

abort

Fig. 9: Aghili et al.’s protocol when the end-device is initiator

33

if (Vrf(K′j , idB,j‖idA‖rB‖rA, τB) = true)
δAB ← 0
K′ ← K′j
id′B ← idB,j

kdf
updA
ε← 0
return true

else if (Vrf(K′j−1, idB,j−1‖idA‖rB‖rA, τB) = true)
δAB ← 1
K′ ← K′j−1

id′B ← idB,j−1

ε← 1
return true

else if (Vrf(K′j+1, idB,j+1‖idA‖rB‖rA, τB) = true)
δAB ← −1
K′ ← K′j+1

id′B ← idB,j+1

updA
kdf
updA
ε← 0
return true

else

return false

Fig. 10: Pseudo-code of function verif-entry in Aghili et al.’s protocols

foreach entry ∈ db
if (verif-entry(entry,mB) = true)

return entry
return ∅

Fig. 11: Pseudo-code of function find-entry in Aghili et al.’s protocols

34

