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Abstract. A large proportion of modern symmetric cryptographic build-
ing blocks are designed using the Substitution-Permutation Networks
(SPNs), or more generally, Shannon’s confusion-diffusion paradigm. To
justify its theoretical soundness, Dodis et al. (EUROCRYPT 2016) re-
cently introduced the theoretical model of confusion-diffusion networks,
which may be viewed as keyless SPNs using random permutations as
S-boxes and combinatorial primitives as permutation layers, and estab-
lished provable security in the plain indifferentiability framework of Mau-
rer, Renner, and Holenstein (TCC 2004).
We extend this work and consider Non-Linear Confusion-Diffusion Net-
works (NLCDNs), i.e., networks using non-linear permutation layers, in
weaker indifferentiability settings. As the main result, we prove that
3-round NLCDNs achieve the notion of sequential indifferentiability of
Mandal et al. (TCC 2012). We also exhibit an attack against 2-round
NLCDNs, which shows the tightness of our positive result on 3 rounds. It
implies correlation intractability of 3-round NLCDNs, a notion strongly
related to known-key security of block ciphers and secure hash functions.
Our results provide additional insights on understanding the complexity
for known-key security, as well as using confusion-diffusion paradigm for
designing cryptographic hash functions.

Keywords: Block ciphers · substitution-permutation networks · confusion-
diffusion · indifferentiability · correlation intractability

1 Introduction

Modern block ciphers roughly fall into three classes. The first class consists of
Feistel networks and their generalizations, with DES, LBlock [41], and many
other block cipher standards as popular instances. The second class are the
Lai-Massey structures designed for IDEA [28, 27]. This paper focuses on the
last class, namely the Substitution-Permutation Networks (SPNs). Concretely,
an SPN yields an wn-bit block cipher via iterating the following three steps:



1. Key-addition: XOR a round key with the wn-bit state;
2. Substitution: break down the wn-bit state into w disjoint chunks of n bits,

and evaluate a small n-bit permutation, typically called an S-box, on each
chunk;

3. Permutation: apply a keyless permutation to the whole wn-bit state.

The S-boxes are usually highly non-linear. On the other hand, while modern
block ciphers tend to use linear or affine mappings for the Permutation, there
is actually no a priori restriction, and the use and advantages of non-linear
permutations was recently explored [29].
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Fig. 1. Comparison of SPN and CDN, with SPN on the left and CDN on the right

The SPNs well fit into the confusion-diffusion paradigm: usually, the substi-
tution is viewed as “confusion”, while the permutation is viewed as “diffusion”.
The idea of confusion-diffusion goes back to the seminal paper of Feistel [17] and
even back to Shannon [37]. Various popular primitives have been built upon this,
including block ciphers such as the AES [13] and RECTANGLE [43] and hash
functions such as the Keccak-f permutations of the SHA [5]. Motivated by this
popularity, SPNs have been the topic of various researches [12, 35, 40]. In partic-
ular, modeling the S-boxes as random or pseudorandom functions/permutation,
SPNs can be proved as a strong pseudorandom permutation SPRP (i.e., indis-
tinguishability from a truly random permutation), the standard security notion
for block ciphers [25, 33, 7, 18].1 We refer to [18] for a detailed survey of these
SPRP results. In these security proofs, the S-boxes act as the only source of
cryptographic hardness, while the permutation layers only supply auxiliary com-
binatorial properties. This limits the provable security to the domain-size of the
S-boxes, which is unfortunately as small as 8 bits in, e.g., the AES. Consequently,
provable results on SPNs do not relate to any concrete SPN-based block ciphers.

1 We remark that, as proving such security for concrete block ciphers such as AES
seems out of the reach of current techniques, it is actually the usual approach to
idealize some underlying primitives and prove that the high-level structure meets
certain security definitions.

2



Instead, they should be viewed as theoretical support for the SPN approach to
constructing block ciphers. Indeed, the above results have confirmed (in a widely
recognized theoretical model) that, the use of non-linear permutation layers en-
sures more security than linear ones. The provable bounds become meaningful
when the “S-boxes” enjoy sufficiently large domains, e.g., when the “S-boxes”
themselves are block ciphers such as the AES or cryptographic permutations
such as the Keccak-f . Therefore, on the practical side, the above results yield
domain extension of block ciphers or permutations.

1.1 Indifferentiability of Confusion-Diffusion Networks

The aforementioned SPRP notion is formalized using the indistinguishability
framework. A generalization of indistinguishability, named indifferentiability,
was introduced by Maurer et al. [32]. Briefly, a construction CF built upon
an ideal primitive F is indifferentiable from the ideal cryptographic primitive G,
if there exists an efficient simulator SG such that the two systems (CF ,F) and
(G,SG) are indistinguishable. The role of the simulator is to imitate the behavior
of F , such that it appears like the “underlying primitives” of the ideal primitive
G. The consistency of the simulation is possible by accessing G.

Indifferentiability comes with a secure composition lemma, meaning that an
indifferentiable cryptographic scheme could safely replace its ideal counterpart,
even in the settings with no secret keys. Unsurprisingly, indifferentiability was
soon adopted as a standard for evaluating cryptographic constructions, with
applications to hash functions [10, 4], block cipher paradigms [11, 1, 22], and en-
cryption schemes [3]. Due to this success, the authors won the TCC Test-of-Time
award at TCC 2016-B [31].

The indifferentiability analysis of SPNs was initiated by Dodis et al. [16].
In detail, they introduced the model of Confusion-Diffusion Networks (CDNs),
which may be viewed as SPNs without key-additions. In other words, CDNs is
SPNs without key (see Fig. 1). Their CDN models are purely built upon public
random S-boxes and non-cryptographic “D-boxes” (i.e., permutation layers), and
indifferentiability measures the distance between such CDNs and wide random
permutations. When the “D-boxes” are non-linear (and thus achieve a stronger
diffusion), they showed that 5 rounds are sufficient for indifferentiability, and
the concrete security bounds increase with the number of rounds. When the “D-
boxes” are linear (as in common SPN ciphers), they showed that 9 rounds are
sufficient for indifferentiability. This confirmed (in a widely recognized theoretical
model) that, the use of non-linear diffusion layers ensures more security than
linear ones. Dodis et al. also exhibited an attack against 2-round CDNs with
arbitrarily strong (yet non-idealized) D-boxes [16, Section 3]. These justify the
soundness of using fixed-key block ciphers as “random looking” permutations
for constructing hash functions [36] and other sophisticated cryptosystems [21].
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1.2 Weaker Variants of Indifferentiability

By incorporating different restrictions, the definition of indifferentiability has
been generalized to various variants. Firstly, Yoneyama et al. [42], Dodis et
al. [15], and Naito et al. [34] independently proposed the concept of public in-
differentiability, in which the simulator SG is aware of all queries made by the
distinguisher to the target ideal primitive G. This captures the settings in which G
only evaluated on public inputs, which fits into the use of, e.g., digital signatures.
At TCC 2012, Mandal et al. [30] proposed another weakened variant named se-
quential indifferentiability (seq-indifferentiability for short), which restricts the
distinguisher’s queries to be “primitive-construction-sequential”. Namely, the
distinguisher consists of two phases. In the first phase, it queries the (simu-
lated) “underlying primitive” F or SG in arbitrary, without making any query
to the “construction” CF or SG . In the second phase, it queries the “construc-
tion” CF or G in arbitrary, without making any query to the “primitive” F or
SG . It finally outputs the decision. Seq-indifferentiability is actually equivalent
to the aforementioned public indifferentiability for natural constructions [30],
while the former is easier to handle in the security analyses. In addition, seq-
indifferentiability implies correlation intractability of Canetti et al. [6], i.e., there
is no “non-trivial” relation between the inputs and outputs of the construction.

1.3 Our Results

As noted [39], indifferentiability appears imperfect for block cipher paradigms:
security proofs are highly involved, and complexities of provably secure schemes
appear far beyond necessary. In contrast, the notions of seq-indifferentiability
and correlation intractability are directly linked to known-key security of block
ciphers [26, 9], and are already sufficient for establishing security for block cipher-
based hash functions. Due to these, several papers have characterized the seq-
indifferentiability and correlation intractability of Feistel networks [30, 39] and
variants of Even-Mansour ciphers [8, 23]. Though, the natural extension of this
line of works to CD networks remains open.

With the above discussion, we characterize the sequential indifferentiability
of NLCDNs, i.e., CD networks with non-linear D-boxes. [16] investigated full in-
differentiability of CD networks (with both non-linear and linear D-boxes), while
we study the weaker notion of sequential indifferentiability of CD networks with
non-linear D-boxes only. As mentioned before, the motivation is that sequential
indifferentiability was believed more suitable for known-key security of block
ciphers, to some extent.

In this respect, our first observation is that Dodis et al.’s attack on 2-round
NLCDNs [16, Section 3] is not sequential in any sense, and our first contribution is
a primitive-construction-sequential distinguisher against 2-round NLCDNs with
any (non-idealized) D-boxes. Depending on the D-boxes in use, the running time
of our distinguisher may be exponential. Though, the query complexity is merely
2, indicating that 2-round CD networks are insecure in the information theoretic
setting.
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As positive results, we prove that 3-round NLCDNs are seq-indifferentiable,
as long as the D-boxes satisfy some moderate conditions. The number of rounds
is 40% less than that required for plain indifferentiability.2 In addition, as dis-
cussed, the round complexity is tight in the information theoretic setting. As
mentioned before, these imply that 3-round NLCDNs (tightly) achieve correla-
tion intractability, and are thus sufficient for known-key security of CD networks
(in the sense of correlation intractability).

Interpretations. Since initiated [26], models or adversarial goals for known-key
attacks has incurred intensive discussion. In fact, for the AES, the 7- [26] and
8-round known-key distinguishers [19, Sect. 4.1] attacked correlation intractabil-
ity of the round-reduced ciphers, while the 10-round distinguishers [19, Sect.
4.2] and beyond [20] are closer to breaking “indifferentiability-like” properties.
The meaningfulness and influences of these two sorts of known-key models have
incurred intensive discussion or even debt [19, 20].

By our results, for the natural paradigm underlying common block ciphers
including the AES, the complexity for correlation intractability is 40% less than
the complexity for indifferentiability. This matches the aforementioned cryptana-
lytic practice. While similar results have been shown with respect to the iterated
Even-Mansour ciphers [8, 14], the model of CD network is more fine-grained (de-
spite the inherently weak bounds), and we thus believe it sheds some lights on
known-key attack model from the perspective of provable security.

1.4 Other Related Work

Certain models for SPNs could be proved secure against certain cryptanalytic
approaches [12, 35, 33, 40]. As a variant of indifferentiability, public indifferen-
tiability is introduced independently by Dodis et al. [15], Naito et al. [34] and
Yoneyama et al. [42]. Mandal et al. [30] introduce a new and simpler variant
of indifferentiability called seq-indifferentiability. Soni and Tessaro [38] intro-
duced another form of seq-indifferentiability called CP-sequential indifferentia-
bility, which restricts the distinguisher’s queries to be “construction-primitive-
sequential”. Some other variants of indifferentiability were introduced in [2,
9] in order to formalize known-key security of block ciphers. Finally, Dodis
et al. [16] shows the first positive results for the indifferentiability security of
the CDNs. Based on this work, we prove that 3-round NLCDNs achieve seq-
indifferentiability.

1.5 Organization

We supply necessary notations and definitions in Section 2. Then present our at-
tack on 2-round NLCDNs in Section 3. Our main result, the seq-indifferentiability
proofs for 3-round NLCDNs, is then given in Section 4. Finally, Section 5 con-
cludes.

2 Recall that 5 rounds are needed for NLCDNs to achieve plain indifferentiability [16].
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2 Preliminaries

2.1 Notations

We write [w] for the set of integers {1, . . . , w}. We denote by bold letters, e.g.,
x, bit strings of length wn, where |x| stands for its length. Using n-bit S-boxes,
such a string x will be divided into w blocks, each of which is of n bits. For
i ∈ [w], the i-th n-bit block of x is denoted x[i] (i.e., |x[i]| = n). We let N = 2n

to simplify notations.
A random (invertible) permutation Z : {+,−} × {0, 1}wn → {0, 1}wn ac-

cepts queries of the form (+, x) (i.e., forward queries) or (−, y) (i.e., backward
queries). As our positive result addresses a 3-round CDN with non-linear dif-
fusion layers (NLCDN for short), we use Aj , Bj , Cj to refer to the S-boxes in
the 1st, 2nd, and 3rd rounds (as sketched in Fig. 3). The idealized model of
such a 3-round NLCDN relies on a tuple of 3w independent random permuta-
tions P = (PA1

, . . . ,PAw
,PB1

, . . . ,PBw
,PC1

, . . . ,PCw
), where PTj := {+,−} ×

{0, 1}n → {0, 1}n for every T ∈ {A,B,C} and every j ∈ [w]. To simplify no-
tations, we assume that P provides a single interface P (Tj , δ, x) for all the 3w
permutations, where Tj ∈ {A1, ..., Aw, B1, ..., Bw, C1, ..., Cw} indicates the S-box
being queried, δ ∈ {+,−} indicates the direction of the query, and x ∈ {0, 1}n
indicates the concrete queried value.

2.2 Confusion-Diffusion Networks

The CDN and NLCDN constructions First, we formalize r-round confusion-
diffusion networks. Fix integers w, n, r ∈ N as parameters. Let

P = {Pi,j : (i, j) ∈ {r × w}}

be an array of wr permutations from {0, 1}n to {0, 1}n, i.e., Pi,j is a permutation
from {0, 1}n to {0, 1}n for each i ∈ [r] and each j ∈ [w] and will serve in the
confusion layers. Given x ∈ {0, 1}wn, we denote Pi(x) as

Pi(x) = Pi,1(x[1])‖Pi,2(x[2])‖...‖Pi,w(x[w])

which means the i-th confusion layer. In other words, Pi is a permutation of
{0, 1}wn and can also be defined by setting

P(x)[j] = Pi,j(x[j]).

Let
Π = (π1, . . . , πr−1)

be an arbitrary sequence or r− 1 permutations and each of them from {0, 1}wn
to {0, 1}wn. It will be the diffusion layer, which only has certain (simple) com-
binatorial properties rather than sophisticated cryptographic properties.

With all the above, the function CDN is written as

CDNPΠ(x) = Pr(πr−1(. . .P2(π1(P1(x))) . . . )) = y (1)
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The value w and r will be called width of confusion layer and rounds. As
mentioned, in our primary focus 3-round NLCDNs, we use A,B,C instead of
P1,P2,P3 for the S-boxes.

Combinatorial properties of the diffusion layers We now use the defini-
tions in [16] to formalize the properties that the diffusion layers Π have to fulfill
in order to result in a secure CD network. Given a vector x and two indices
j, j′ ∈ [w], we let πx

j,j′ : {0, 1}n → {0, 1}n be the function from {0, 1}n to {0, 1}n
obtained by restricting the i-th block of input of π to x[i] (i 6= j), by replacing
x[j] with the input x ∈ {0, 1}n, and by considering only the j′-th block of out-
put. The properties are defined unidirectionally: π might satisfy a property but
π−1 does not.

Then, the quantity MaxPreEx is defined as

MaxPreEx(π) = max
x,j,h,y

∣∣{x ∈ {0, 1}n : πx
j,h(x) = y}

∣∣.
Briefly, it formalizes the maximal number of x ∈ {0, 1}n such that, once “ex-
tended” to a wn-bit string x in a pre-defined manner, the corresponding wn-bit
image y = π(x) has at least one n-bit block equal y ∈ {0, 1}n. We further define

Then, the quantity MaxColl is defined as

MaxColl(π) = max
x,x′,j,h

∣∣{x ∈ {0, 1}n : πx
j,h(x) = πx′

j,h(x)}
∣∣.

Briefly, it formalizes the maximal number of x, x′ ∈ {0, 1}n such that, once
“extended” to a wn-bit strings x and x’, the corresponding wn-bit images y =
π(x) and y′ = π(x′) collide on at least one n-bit block. A concrete non-linear
D-box with MaxPreEx(π) = MaxColl(π) ≈ O(w) was given in [16, Appendix D].

2.3 Sequential Indifferentiability and Correlation Intractability

We first informally introduce indifferentiability, and we concentrate on CDNs to
ease understanding. In this setting, a distinguisher D is trying to distinguish
an idealized CDNP from a random wn-bit permutation Z, with the help of the
underlying random S-boxes P. Hence, in the real world, D is interacting with two
oracles, namely (CDNP ,P). In the ideal world, the “position” of the non-existing
oracle P will be filled by a simulator SZ . By these, CDNP is indifferentiable from
Z, if there exists an efficient simulator SZ making queries to Z, such that the
ideal system (Z,SZ) and the real system (CDNP ,P) are indistinguishable in the
view of any distinguisher D.

The sequential indifferentiability (seq-indifferentiability in short) setting also
considers a distinguisher D trying to distinguish the ideal (Z,SZ) and the real
(CDNP ,P). Unlike the above (plain) indifferentiability, seq-indifferentiability fo-
cuses on sequential distinguishers (seq-distinguishers for short), i.e., a certain
type of distinguishers that issue queries in a strict order. Concretely, a seq-
distinguisher D is primitive-construction-sequential, if it proceeds with three
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steps: (1) D queries the (real or ideal) construction CDNP or Z, without query-
ing the (real or simulated) primitive S or SZ ; (2) D queries the primitive S or
SZ , without querying the construction CDNP or Z; (3) D outputs its decision.
This order is reflected by the numbers in Fig. 2.

Using the notion of seq-distinguishers, the definition of seq-indifferentiability
due to [8] is as follows.

D D

CDNP P Z S

2 1 2 1

Fig. 2. The definition of sequential indifferentiability. The numbers near the arrows
indicate the order of distinguisher’s query. If the distinguisher first query “1”, it could
query “2” next. If it first query “2”, it could not query “1” any more

Definition 1 (Seq-indifferentiability). The idealized network CDNP with or-
acle access to random permutations P is statistically and strongly (q, σ, t, ε)-seq-
indifferentiable from a random wn-bit permutation Z, if there exists a simulator
SZ such that for any sequential distinguisher D making at most q queries, SZ
issues at most σ queries to Z and runs in time at most t, and it holds∣∣∣Pr

[
DCDNP ,P = 1

]
− Pr

[
DZ,S

Z
= 1
]∣∣∣ ≤ ε.

As mentioned, seq-indifferentiability already implies correlation intractabil-
ity in the idealized model [30, 8]. The notion correlation intractability was intro-
duced by Canetti et al. [6] to capture the feature that there is no exploitable
relation between the inputs and outputs of the function ensembles in question.
It was transposed to idealized models to guarantee similar feature on idealized
constructions. Formally, we first give the definition (from [8]) of evasive relation.

Definition 2 (Evasive Relation). An m-ary relation R over pairs of binary
sequences is said (q, ε)-evasive with respect to the random wn-bit permutation
Z, if for any PPT oracle Turing machine M issuing at most q oracle queries,
it holds

Pr
[
(x1, . . . , xm)←MZ : ((x1, . . . , xm), (Z(x1), . . . ,Z(xm))) ∈ R

]
≤ ε.
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Definition 3 (Correlation Intractability). Let R be an m-ary relation. The
idealized network CDNS with oracle access to the random S-boxes S is (q, ε)-
correlation intractable with respect to R, if for any oracle Turing machine M
issuing at most q oracle queries, it holds

Pr
[
(x1, . . . , xm)←MP : ((x1, . . . , xm), (CDNP(x1), . . . ,CDNP(xm))) ∈ R

]
≤ ε.

With the above definitions, the implication of seq-indifferentiability is for-
mally stated as follows [8].

Theorem 1. For an idealized block cipher construction CF which has oracle
access to ideal primitives F and makes at most c queries to F in total, if CF is
(q+cm, σ, ε)-seq-indifferentiable from another ideal primitive G (m is the number
of binary sequences), then for any m-ary relation R which is (σ+m, εR)-evasive
with respect to G, CF is (q, ε+ εR)-correlation intractable with respect to R.

3 Attack 2-round CD

The attack against 2-round CDN is neither primitive-construction-sequential nor
construction-primitive-sequential in [16]. In this section we exhibit a primitive-
construction-sequential distinguisher against 2-round CDN making only 2 oracle
queries to mitigate the gap. The assumption on the D-boxes is that it is an
efficiently computable function rather than an oracle. The running time of our
distinguisher may be exponentialO(2n) or evenO(2wn). Though, it remains valid
in the information theoretic setting, and confirms the tightness of our positive
result on 3 rounds.

1. Find b, d1, d2 ∈ {0, 1}n such that D(b‖d1)[1] = D(b‖d2)[1];

2. Query the right oracles for A−1
1 (b)→ a, A−1

2 (d1)→ c1, and A−1
2 (d2)→ c2.

3. Query the left oracle P for P (a‖c1) → f1‖h1 and P (a‖c2) → f2‖h2, and
outputs 1 if and only if f1 = f2.

If P is the 2-round CDN oracle, it necessarily holds f1 = f2 since D(b‖d1)[1] =
D(b‖d2)[1], which means the distinguisher always outputs 1. On the other hand,
to simulate consistently in the ideal world, the simulator has to run ahead to find
a pair of inputs/outputs y1 = Z(+, a‖c1) and y2 = Z(+, a‖c2) of the random
permutation Z such that y1[1] = y2[1], the probability of which is O(q2/2n)
within q queries. The distinguishing advantage is thus 1−O(q2/2n) ≈ 1 for any
simulator making q � 2n/2 queries to P .

4 Sequential Indifferentiability of 3-round NLCDNs

The main result of this work is formally stated as follows.
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Theorem 2. Assuming that P = (PA1
. . .PAw

,PB1
. . .PBw

,PC1
. . .PCw

) is a
tuple of 3w independent random n-bit permutations, then the 3-round confusion-
diffusion network with oracle access to CDNP is strongly and statistically (q, σ, t, ε)-
seq-indifferentiable from a wn-bit random permutation Z, where σ = qw, t =
O(qw) and

ε =
4qw(qw + q)

N − qw − q
+

4w(qw + q)2
(
MaxPreEx(π) + MaxCoPr(π)

)
N − qw − q

+
1

Nw
. (2)

As mentioned in Sect. 2.2, a non-linear D-box construction with

MaxPreEx(π) = MaxCoPr(π) ≈ O(w)

was given in [16, Appendix D]. It easy to verify that the other terms in Theorem
2 are all of the order O(q2w/N), which further means

ε = O
(q2w

2n

)
.

By Theorem 1, we have that for any (qw, εR)-evasive relation, the 3-round
NLCDN is (q, εR + O(q2w/2n))-correlation intractable with respect to R. We
stress that MaxPreEx(π) = MaxCoPr(π) ≈ O(w) and thus the above concrete
results are only achievable with non-linear D-boxes [16] (which is not surprising
in turn).

To prove it, we: (1) build a simulator (Section 4.1); (2) bound the complexity
of the simulator (Section 4.2); (3) introduce the intermediate system for the proof
(Section 4.3); (4) prove that the simulator simulates well (Sections 4.4 and 4.5).

4.1 Overview of the Simulator

We follow the approach of explicit randomness technique of [11, 8], namely,
letting the simulator S have explicit access to P and query it to obtain necessary
random values. We denote by S(P,Z) the simulator for 3 round CDN which
access P (and Z).

To keep track of previously answered queries, S internally maintains 3w
tables (A1, . . . , Aw, B1, . . . , Bw, C1, . . . , Cw) that have entries in the form of (x, y)
for x, y ∈ {0, 1}n. For T ∈ {A,B,C} and j ∈ [w], we denote by T +

j (x) the n-bit

value such that
(
x, T +

j (x)
)
∈ Tj , and write T +

j (x) = ⊥ if there is no pair of the

form (x, ?) in Tj . Similarly by symmetry, we denote by T −j (y) the n-bit value

such that
(
T −j (y), y

)
∈ Tj , and write T −j (y) = ⊥ once no such pair exists. For

δ ∈ {+,−}, we denote by δ̄ the opposite of δ. For example, when δ = +, T δ̄j
refers to T −j .

The basic idea is Coron et al.’s simulation via chain completion technique [11],
which has achieved succes in (weaker) indifferentiability proofs of a variety of
idealized block ciphers. It requires the simulator S to detect “partial” computa-
tion chains formed by the queries of the distinguisher, and completes the chains
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in advance by querying the random permutation Z, so that S is ready for an-
swering queries in the future. To simulate answers that are consistent with Z,
S has to use the answer from Z to define some simulated answers: this action
is called adaptation. Specifically, our simulator views every tuple of w queries
to the (2nd round) S-boxes B1, ..., Bw as a partial chain, and completes it by
defining entries in A1, ..., Aw or C1, ..., Cw depending on the context, as depicted
in Fig. 3.
S offers an interface Query(Tj , δ, x) to the distinguisher (which is the same as

the interface of P), where T ∈ {A,B,C} and j ∈ [w] indicate the concrete S-box
being queried, δ ∈ {+,−} indicates whether this a direct of inverse query, and
x ∈ {0, 1}n is the actual queried value. Upon a query Query(Tj , δ, x), S checks
the table Tj to see whether the corresponding answer T δj (x) is already defined.

When this is the case, it returns T δj (x) to finish this response. Otherwise, it
draws a random response y ← P(Tj , δ, x) from the random permutation P and
invokes a private procedure SetTable(T δj , x, y). The latter procedure adds (x, y)
to Tj .

Then, if = B, S invokes another private procedure AdaptC (resp. AdaptA)
if δ = + (resp. δ = −) to complete detected partial chains as mentioned before.
In detail, when δ = +, then for every xB [j] = x, S calls AdaptC, which further
computes xC = π2(yB), xA = Block(A,−, π−1

1 (xB)),4 and queries Z(−,xA)→
yC . The procedure AdaptC then adapts: for j = 1, ..., w, it defines (xC [j],yC [j])
as a new entry of the table Cj . Entries to-be-adapted may cause inconsistency
when an entry of the form (xC [j], ?) or (?,yC [j]) already exists in Cj . In this
case, our simulator overwrites the existing entries and breaks the bijectivity of
the partially defined maps. This is the major source of inconsistency, and its
unlikeness constitutes a main intermediate goal of our remaining proofs. The
procedure AdaptA is similar to the above by symmetry. The chain completion
strategy is illustrated in Fig. 3. S eventually returns T δj (x) as the response. This
means queries of the form (Aj , δ, x) or (Cj , δ, x) won’t trigger chain detection,
and are simply answered with randomness from P. The formal description in
pseudocode is given in Algorithm 1.

4.2 Simulator Efficiency

As the first step, we must prove that the complexity of the simulator S is poly-
nomial in q.

Lemma 1. If the simulator receives at most q queries in total, then for every
j ∈ [w], the tables A1, . . . , Aw, B1, . . . , Bw, C1, . . . , Cw of S has |Bj | ≤ q,

∣∣Aj∣∣ ≤
qw + q, and

∣∣Cj∣∣ ≤ qw + q. The simulator executes AdaptA and AdaptC for at
most qw times, makes at most qw queries to Z and runs in time O(qw).

Proof. For j ∈ [w], it is clear that
∣∣Bj∣∣ only increases by at most 1 when the

distinguisher makes a query to Query(Bj , δ, x), and thus
∣∣Bj∣∣ ≤ q. On the other

hand,
∣∣Aj∣∣ may increase in two cases:

4 The private procedure Block(T , δ, t) computes a complete S-box layer on the input
t ∈ {0, 1}wn, where T ∈ {A,B,C} and δ ∈ {+,−}.
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Algorithm 1 Simulator S(Z,P)

1: procedure Query(Tj , δ, x)
2: if T δj (x) = ⊥ then
3: y ← P(Tj , δ, x)
4: SetTable(Tj , x, y)
5: if T = B and δ = + then
6: forall xB ,yB s.t. xB [j] = x do
7: AdaptC(xB ,yB)
8: if T = B and δ = − then
9: forall xB ,yB s.t. yB [j] = x do

10: AdpatA(xB ,yB)
11: return T δj (x)
12:
13: private procedure AdaptC(xB ,yB)
14: xC = π2(yB)
15: xA = Block(A,−, π−1

1 (xB))
16: yC = Z(+,xA)
17: forall j ∈ {1, . . . , w} do
18: SetTable(Cj ,x

C [j],yC [j])

19: private procedure AdaptA(xB ,yB)
20: yA = π−1

1 (yB)
21: yC = Block(C,+, π2(yB))
22: xA = Z(−,yC)
23: forall j ∈ {1, . . . , w} do
24: SetTable(Aj ,x

A[j],yA[j])
25:
26: procedure SetTable(T δj , x, y)
27: T δj (x)← y

28: T δ̄j (y)← x
29:
30: private procedure Block(T , δ, t)
31: forall j ∈ {1, . . . , w} do
32: if T δj (t[j]) = ⊥ then
33: u[j]← P(Tj , δ, t[j])
34: SetTable(Tj , t[j],u[j])
35: u[j]← T δj (t[j])
36: return u

...

...

...

A1 A2 Aw

π1

B1 B2 Bw

π2

C1 C2 Cw

xB

yB

detect

adapt

adapt

Fig. 3. Our simulation strategy.
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(1) The distinguisher makes a query to Query(Aj , δ, x), and
(2) S executes AdaptA(xB ,yB).

The procedure AdaptA is executed once for every wn-bit “combined” string
xB ∈ B1×· · ·×Bw detected by S. Therefore, the number of executions is at most
qw. This plus the increment due to the q adversarial queries yield

∣∣Aj∣∣ ≤ qw + q.

The argument for
∣∣Cj∣∣ ≤ qw + q is similar by symmetry. Then, each execution of

AdaptA/AdaptC makes 1 query to Z, which establishes the qw query complexity.
Finally, the simulator computations are clearly dominated by the executions of
AdaptA/AdaptC, and this establishes the O(qw) time complexity. ut

4.3 Intermediate Systems

We follow [8] and use three games to facilitate the proof (see Fig. 4). The
game G1 captures the interaction between the distinguisher and the ideal world
(Z,S(Z,P)). Z is a wn-bit random permutation and P is a tuple of n-bit inde-
pendent random permutation (PA1

. . .PAw
,PB1

. . .PBw
,PC1

. . .PCw
), plays the

role of S-boxes in CDN which is mentioned in Section 2.3. The simulator S(Z,P)
has access to both Z and P. Our rules for constructing game strictly follow the
rules constructed in [1, 8], and all use random permutation P as source of ran-
domness. The game G3 captures interaction between the distinguisher and the
real world (CDNP ,P). We construct a intermediate system G2. It lies between
G1 and G3 and functions as a bridge to simplify the proof. The intermediate
game G2 captures the interaction between the distinguisher and the system
(CDNS(Z,P),S(Z,P)), i.e., it is modified from G1 by replacing Z with the CDN
construction. In other words, the right oracle is the simulator S(Z,P) with ora-
cle access to random permutation Z, but now the left oracle is CDN construction
with oracle access to S(Z,P).

4.4 Probability of Overwriting

As mentioned before, during executing the procedures AdaptA and AdaptC,
our simulator may overwrite already defined entries and cause inconsistency. In
this section we show this event of overwriting, in fact, happens with a bounded
probability.

The event overwriting only occurs during the execution of SetTable. We
begin by considering the probability of line 4 and line 34. These lines only cause
overwriting when the sampled values collide with the value previously added
by AdaptA or AdaptC. Since the size of Aj and Cj is qw + q by Lemma 1,
the obtained y ← P(Tj , δ, x) is uniform in at least N − qw − q possibilities.

The probability that y already exists is 2(qw+q)
N−qw−q since there are at most qw + q

random assignment in tables Aj and Cj . The procedure AdaptA, resp. AdaptC,
is executed by at most qw times. By these, we have

Pr
[
line 4, 34 overwrite

]
≤ 2qw(qw + q)

N − qw − q
. (3)
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D D D

Z S

P

CDN S

Z P

CDN P

G1 G2 G3

Fig. 4. Games and the involved primitives used in our proof.

Then, we consider the overwriting in AdaptC or AdaptA. During execut-
ing the former AdaptC, the occurrence of overwriting is due to Cj(x) 6= ⊥
or C−1

j (y) 6= ⊥. Assume that table Cj already have k pairs (k ≤ qw + q)

(xC1 ,y
C
1 ), . . . , (xCk ,y

C
k ) before this execution. By construction (line 14), we define

xCi = π2(yBi ) has chance to cause the following two types of overwriting:

– PreEx: xCi [j] ∈ Cj , (1 ≤ i ≤ k, 1 ≤ j ≤ w)
– Coll: xCi [j] = xCi′ [j], (1 ≤ i ≤ i′ ≤ k, 1 ≤ j ≤ w)

where Cj is represented as the domain of table Cj . In other words, Cj = {x ∈
{0, 1}n : Cj(x) 6= ⊥}. It is clear that PreEx and Coll includes all the possibilities
of bad events in AdaptC. By Lemma 1, the size of Cj is at most q2 + q. We first
discuss the probability of occurrence of PreEx. As mentioned before, we denoted
πx
j,j′ be the function from {0, 1}n to {0, 1}n. It represents in the D-boxes, we

split the input x and output y into the j-th and j′-th block. We now define:

MaxPreEx(π2) = max
x,j,h,y

∣∣{x ∈ {0, 1}n : πx
j,h(x) = y}

∣∣.
Since the size of Cj is at most qw + q, xCi is uniformly random in a set of

size at least N − qw − q, So we can find the probability of occurrence of PreEx
for xCi [j] = π2(yB) at most:

MaxPreEx(π2)|Cj |
N − qw − q

.

For all xC , the probability would be at most:

Pr

[
k∏
i=1

w∏
j=1

PreEx

]
≤ wk(qw + q)MaxPreEx(π2)

N − qw − q
. (4)
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Next, we consider the probability of Coll. Coll occurs if and only if xCi [j] =
xCi′ [j]. There are two different situations here: if xCi , xCi′ are from distinct calls,
the probability of xCi [j] = xCi′ [j] is at most:

MaxPreEx(π2)

N − qw − q
.

In this case, the value range of bad event has only one value. |Cj | is replaced by
1. If xCi , xCi′ are from the same calls, the probability of xCi [j] = xCi′ [j] is at most:

MaxColl(π2)

N − qw − q
,

which we define that:

MaxColl(π2) = max
x6=x′,j,h

∣∣{x ∈ {0, 1}n : πx
j,h(x) = πx′

j,h(x)}
∣∣.

We let MaxCoPr(π) = max(MaxPreEx(π),MaxColl(π)), thus:

Pr

[
k∏
i=1

k∏
i′=1

w∏
j=1

Coll

]
≤ wk2MaxCoPr(π2)

N − qw − q
. (5)

Gathering Eqs. (4) and (5), and using k ≤ qw + q, the probability to have
overwriting due to executing AdaptC is bounded by

Pr[AdaptC overwrites] ≤ wk(qw + q)MaxPreEx(π2)

N − qw − q
+
wk2MaxCoPr(π2)

N − qw − q

=
w(qw + q)2

(
MaxPreEx(π2) + MaxCoPr(π2)

)
N − qw − q

.

(6)

Similar reasoning holds for AdaptA executions by symmetry, giving rise to
the same bound

Pr[AdaptA overwrites] ≤ wk(qw + q)MaxPreEx(π1)

N − qw − q
+
wk2MaxCoPr(π1)

N − qw − q

=
w(qw + q)2

(
MaxPreEx(π1) + MaxCoPr(π1)

)
N − qw − q

.

(7)

Gathering Eqs. (3) and (7), we evetually have the probability of overwriting.

Pr
[
Overwriting

]
≤ 2qw(qw + q)

N − qw − q
+

2w(qw + q)2
(
MaxPreEx(π) + MaxCoPr(π)

)
N − qw − q

,

(8)
where MaxPreEx(π), MaxColl(π), and MaxCoPr(π) stand for the maximal quan-
tity among the two diffusion layers π1, π2, i.e.,

MaxPreEx(π) = max
(
MaxPreEx(π1), . . . ,MaxPreEx(π−12 )

)
MaxColl(π) = max

(
MaxColl(π1), . . . ,MaxColl(π−12 )

)
MaxCoPr(π) = max

(
MaxCoPr(π1), . . . ,MaxCoPr(π−12 )

)
.
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4.5 Statistical Distance Between Games

In this section, we will complete the final step of the proof. Recall from Section
4.3 that we built three games to imitate real world and ideal world. First, we
consider the transition from G1 to G2. Note that both G1 and G2 has the same
pair (Z,P), Z is the random wn-bit permutation and P is a tuple of random
permutations PTj . The pair is bad, if the simulator overwrites an entry of the
table Tj , specifically, Aj , Cj during G2; otherwise, the pair is good.

We first address the statistical distance between G1 and G2.

Lemma 2. For any distinguisher D making at most q queries, the statistical
distance between G1 and G2 is bounded by∣∣∣Pr

[
DG1(S(Z,P),Z) = 1

]
− Pr

[
DG2(S(Z,P),CDNS(Z,P))

]∣∣∣ ≤ Pr
[
(Z,P) is bad

]
.

Proof. Since the distinguisher is sequential in the sense of Definition 1, in G1

and G2, it necessarily first queries S(Z,P) and then Z (in G1) or CDNS(Z,P)

(in G2) only. If the pair is good, the answers D received from G1 and G2 are
the same since they stem from the same randomness source. On the other side,
Z is an ideal primitive and CDN is the structure that exists in the real state,
they could not trigger bad event. So, the statistical distance between G1 and
G2 is determined by pair (Z,P) and will not be greater than the pair (Z,P) is
bad. Bad event will not triggered by S unless the pair (Z, P) is bad. Hence,
the statistical distance between G1 and G2 is actually the probability of bad
events. ut

Next, we consider the transition from G2 and G3, i.e. the transition from
(Z,P) to P which is the most important part. Thus, we use the randomness
mapping argument of Holenstein et al. [24]. In detail, we define a map Γ on tuples
of random permutations (Z,P). When the pair (Z,P) is bad, Γ (Z,P) = ⊥ which
is a special symbol. Otherwise, Γ (Z,P) is the tuple of 3w tables β = (β1, ..., β3w)
standing at the end of the execution G2(Z,P). It is easy to see such tables
β = (β1, ..., β3w) defines 3w partial permutations and a partial permutation
is a function βi : {+,−} × {0, 1}n → {0, 1}n ∪ {∗} such that for all x, y ∈
{0, 1}n, βi(+, x) = y 6= ∗ ⇔ βi(−, y) = x 6= ∗. The map Γ is defined for good
pairs (Z,P) as follows: run DG2(Z,P), and consider the tables Tj of the S at the
end of the execution; then fill all undefined entries of the Tj with the special
symbol *.

We say that a tuple of permutation P extends a tuple of partial permutation
β = (β1, ..., β3w), denoted P ` β, if for each βi and P agree on all entries such
that βi(δ, x) 6= ∗. By the definition of the randomness mapping, for any good
tuple of partial permutation β, the output of DG2(Z,P) and DG3(P) are equal for
any pair (Z,P) such that Γ (Z,P) = β and any tuple of permutations P such
that P ` β. We can conclude that for all β, the distance ∆(G2, G3) between G2
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and G3 is bounded by

∆(G2, G3) =
∣∣∣Pr

[
DG2(Z,P) = 1

]
− |Pr

[
DG3(P) = 1

]∣∣∣
≤ Pr[(Z,P) is bad] +

∑
Pr[Γ (Z,P) = β]−

∑
Pr[P ` β]. (9)

For DG3(P), let q̄Tj be the good execution of P ` β, then:

Pr[P ` β] =
∏
T

w∏
j=0

|q̄Tj
|−1∏

l=0

1

N − l
. (10)

For DG2(Z,P), let p̄Tj be the good pair of Γ (Z,P) = β, then:

Pr[Γ (Z,P) = β] =

( |Z|−1∏
l=0

1

Nw − l

)
·
(∏
T

w∏
j=1

|p̄Tj
|−1∏

l=0

1

N − l

)
. (11)

Lemma 3. Under the conditions of (10) and (11), for T ∈ {B}, |p̄Tj | = |q̄Tj |,
and for T ∈ {A,C}, if there exist two non-negative integers a,c such that a+c =
|Z|, then |q̄Aj

| = |p̄Aj
|+ a, |q̄Cj

| = |p̄Cj
|+ c

Proof. Recall that G3 is the real world, |q̄Tj | = |Tj | since there is no adapt
mechanism in it. In G2, |Bj | will never be adapted, so |p̄Tj | = |Tj | = |q̄Tj | if
T ∈ {B}. |Aj | and |Cj | is adapted when the simulator call procedures AdaptA
or AdaptC. Noted that Z is only called by AdaptA or AdaptC, so the times
AdaptA or AdaptC called is equal to the size of table Z. Assume that AdaptA
is called a times and AdaptC is called c times, so clearly |Z| = a+ c. Due to the
adapt mechanism of G2, |q̄Aj

| = |p̄Aj
|+ a, |q̄Cj

| = |p̄Cj
|+ c. ut

We divide (10) by (11), and apply Lemma 3:

Pr[P ` β]

Pr[Γ (Z,P) = β]
=

∏
T
∏w
j=0

∏|q̄Tj
|−1

h=0
1

N−h(∏|Z|−1
h=0

1
Nw−h

)
·
(∏

T
∏w
j=1

∏|p̄Tj
|−1

h=0
1

N−h

)
≥

a−1∏
h=0

1

(N − h)w
·
c−1∏
h=0

1

(N − h)w
·
a+c−1∏
h=0

(Nw − h)

=
Nw − 1

Nw
·
a−1∏
h=1

1

(N − h)w
·
c−1∏
h=1

1

(N − h)w
·
a+c−1∏
h=2

(Nw − h)

=
Nw − 1

Nw
·
∏a+c−1
h=a (Nw − h)∏c−1
h=1(N − h)w

≥ Nw − 1

Nw
= 1− 1

Nw
.

(12)
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Gathering Eqs. (12) and (9), we have

∆(G2, G3) ≤ Pr[(Z,P) is bad] +
∑

Pr[Γ (Z,P) = β]−
∑

Pr[P ` β]

= Pr[(Z,P) is bad] +
∑

Pr[Γ (Z,P) = β]

(
1− Pr[Γ (Z,P) = β]

Pr[P ` β]

)
≤ Pr[(Z,P) is bad] +

∑
Pr[Γ (Z,P) = β] · 1

Nw

≤ Pr[(Z,P) is bad] +
1

Nw
. (13)

Using Lemma 3 again, we eventually have Eq. (2).∣∣∣Pr
[
DG1(Z,P) = 1

]
− |Pr

[
DG3(P) = 1

]∣∣∣
≤ ∆(G2, G3) + Pr[(Z,P) is bad]

= 2 Pr[(Z,P) is bad] +
1

Nw

=
4qw(qw + q)

N − qw − q
+

4w(qw + q)2
(
MaxPreEx(π) + MaxCoPr(π)

)
N − qw − q

+
1

Nw
.

(14)

5 Conclusion

We characterize the sequential indifferentiability of Confusion-Diffusion Net-
works (CDNs). Assuming using random permutations as S-boxes and non-linear
permutations as the diffusion layer, we exhibit a sequential distinguisher against
2-round CDNs (strengthening Dodis et al.’s negative result [16]) and prove se-
quential indifferentiability for 3-round CDN. Non-linear D-boxes satisfy certain
combinatorial requirements, and this is crucial for the proof of Section 4.4. This
was also central for the full indifferentiability results of [16]: as mentioned in
our Introduction, using non-linear D-boxes 5 rounds are proved indifferentiable,
while 9 rounds are needed for linear D-boxes. Hence, to achieve sequential in-
differentiability, the exact number of rounds required by non-linear CDNs is 3,
which is better than that (5 rounds) needed for full indifferentiability. These
complement Dodis et al.’s results in the full indifferentiability setting [16] and
deepen the theory of known-key security of block ciphers.
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