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Abstract. Distributed key generation (DKG) is a key building block in
developing many efficient threshold cryptosystems. This work initiates
the study of communication complexity and round complexity of DKG
protocols over a point-to-point (bounded) synchronous network. Our key
result is the first synchronous DKG protocol for discrete log-based cryp-
tosystems with O(κn3) communication complexity (κ denotes a security
parameter) that tolerates any t < n/2 Byzantine faults among n par-
ties. We present two variants of the protocol: (i) a protocol with worst-
case O(κn3) communication and O(t) rounds, and (ii) a protocol with
expected O(κn3) communication and expected constant rounds. In the
process of achieving our results, we design (1) a novel weak gradecast
protocol with a communication complexity of O(κn2) for linear-sized
inputs and constant rounds, (2) a primitive called “recoverable set of
shares” for ensuring recovery of shared secrets, (3) an oblivious leader
election protocol with O(κn3) communication and constant rounds, and
(4) a multi-valued validated Byzantine agreement (MVBA) protocol with
O(κn3) communication complexity for linear-sized inputs and expected
constant rounds. Each of these primitives is of independent interest.

1 Introduction

The problem of distributed key generation (DKG) is setting up a common public
key and its corresponding secret keys among a set of participating parties without
a trusted entity. DKG protocols are used to reduce the number of trust assump-
tions placed in cryptographic protocols such as threshold signatures [11,55] and
threshold encryption schemes [21]. These threshold cryptosystems can them-
selves be used to implement random beacons [15, 24], reduce the complexity of
consensus protocols [56, 59], in multiparty computation protocols [36, 37], or to
outsource management of secrets to multiple, semi-trusted authorities [25,43].

Given its widespread applications and their recent adoption in practice (e.g.,
[24]), we need efficient solutions for DKG. An ideal solution for DKG would
have low communication complexity, low latency, optimal resilience, and pro-
vide uniform randomness of generated keys such that the generated keys can be
useful in a wider class of cryptosystems while being secure. This work focuses
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on the synchronous network setting. Synchronous protocols have the advan-
tage of tolerating up to a minority corruption. While a myriad of DKG proto-
cols [16, 33, 35, 49, 52] have been proposed in this setting, existing solutions fall
short in one way or the other. For example, Pedersen’s DKG [52] produces non-
uniform keys in the presence of the adversary, the DKG protocol due to Gennaro
et al. [33] has high latency as it requires additional secret sharing using Feld-
man’s VSS [27], and the protocol due to Gurkhan et al. [35] does not generate
keys for discrete log-based cryptosystems.

Moreover, all the DKG protocols considered in the synchronous model assume
a broadcast channel (that provides a consensus abstraction) and invoke Ω(n)
broadcasts across two or more rounds [6], where n is the number of parties. Since
the best-known Byzantine consensus protocols with optimal resilience incur at
least O(κn3) communication (κ is a security parameter) in the absence of DKG-
based threshold signatures, instantiating a broadcast channel with state-of-the-
art Byzantine broadcast [2, 23] or Byzantine agreement [41] trivially blows up
the communication complexity to O(κn4).

Moreover, due to the use of multiple broadcast channel rounds, the latency
of such protocols in a point-to-point network setting has not been explored. This
leaves us with the following open question: Can we design a synchronous DKG
protocol supporting a wide class of cryptosystems with o(κn4) communication
complexity, good latency, and tolerating a minority corruption?

We answer this question positively by showing two DKG protocols for discrete
log-based cryptosystems each with O(κn3) communication complexity. The first
protocol has worst-cast O(κn3) communication and O(t) rounds whereas the
second protocol has expected O(κn3) communication and constant rounds in
expectation.

1.1 Key Technical Ideas and Results

Our DKG protocols avoid the broadcast channel assumption and use a Byzantine
consensus process in a non-black-box fashion to achieve O(κn3) communication.
Compared to the existing broadcast-based DKG protocols which require Ω(n)
broadcasts over two or more rounds, our protocols require a single invocation
of consensus instance. While DKG protocols [3, 42] without broadcast channel
assumption have been explored in the asynchronous model, they either incur
high communication [42] or do not generate keys for discrete log-based cryp-
tosystems [3] or use stronger cryptographic assumptions [20]. More importantly,
protocols designed for asynchronous or partially-synchronous settings can only
tolerate up to t < n/3 Byzantine failures, which is sub-optimal for many DKG
applications such as random beacons [24]. In the synchronous model, we provide
the first solutions to DKG without a broadcast channel with all the desirable
properties with O(κn3) communication.

A typical approach among existing works is to perform n parallel verifiable
secret sharings [27, 51] such that all honest parties agree on a common set of
qualified parties QUAL who correctly performed secret sharing and then compute
final public key and secret keys from the secret shares of all parties in QUAL.
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Table 1: Comparison of related works on Distributed Key Generation

Net. Res. Comm. Round Sim. Dlog Setup
Crypto

Assumption

Pedersen [52] sync. 1/2 O(κn4) O(t) ✗ ✓ PKI DL
Gennaro et al. [33] sync. 1/2 O(κn4) O(t) ✓ ✓ PKI DL
Canetti et al. [16] sync. 1/2 O(κn4) O(t) ✓ ✓ PKI DL
Neji et al. [49] sync. 1/2 O(κn4) O(t) ✓ ✓ PKI RO+CDH
ETHDKG [54] sync. 1/2 O(κn4) O(t) ✗ ✓ PKI RO+CDH

Gurkhan et al. [35] sync. logn Õ(κn3) O(t) ✗ ✗ PKI RO+SXDH+CBDH
NIDKG [34] sync. 1/2 O(κn4) O(t) ✓ ✓ PKI RO+DDH+. . .*

Hybrid-DKG [39] psync. 1/3 O(κn4) O(t) ✓ ✓ PKI RO+DL
Kokoris et al. [42] async. 1/3 O(κn4) O(t) ✗ ✓ PKI RO+DDH

Abraham et al. [3] async. 1/3 Õ(κn3) E(O(1)) ✗ ✗ PKI RO+SXDH
Das et al. [20] async. 1/3 O(κn3) E(O(logn)) ✓ ✓ PKI RO+DCR+DDH
Das et al. [19] async. 1/3 O(κn3) E(O(logn)) ✓ ✓ PKI RO+DL

Our work (§ 9.1) sync. 1/2 O(κn3) E(O(1)) ✓ ✓ PKI+PoT RO+CDH+q-SDH
Our work (§ 9.2) sync. 1/2 O(κn3) O(t) ✓ ✓ PKI+PoT RO+q-SDH

κ is the security parameter. Net. refers to the network model. Res. refers to the number of
Byzantine faults tolerated in the system. Comm. refers to the communication complexity. Sim.

means the protocol maintains secrecy which can be proven via a simulator. Primitive refers to the
cryptographic primitives used. PoT refers to the power of tau setup required for bilinear

accumulators. This setup can be removed by making use of Merkle trees at the cost of logn
multiplicative communication overhead. E(.) implies “in expectation”. *NIDKG assumes RO,

rleaf-IND-CCA, DDH, Erasures, and one-more DH.

In our protocols, we replace broadcast channels with weaker primitives such as
gradecast [28,41]. Thus, parties first perform secret sharing by using this weaker
primitive to identify a set of at least n − t parties who correctly shared their
secrets, where t is the fault tolerance. During the sharing phase, no consensus
primitives are invoked to agree on the set of qualified parties. The downside of
this approach is that different honest parties may have different views regarding
the acceptance of shared secrets. As a result, different honest parties obtain
different sets of at least n − t parties (say AcceptListi for party Pi) who they
accept to have performed secret sharing correctly. For DKG, it is required that all
honest parties compute the final public key and secret keys from a common set of
parties. Thus, we need to agree on a common set of parties too. Parties then use
a Byzantine consensus primitive to agree on one common set where the input is
their individual AcceptList. Once, the Byzantine consensus primitive terminates
and outputs a common set AcceptListk, the final public key and secret keys
are computed from AcceptListk. Note that this approach requires only a single
instance of Byzantine consensus.

Key Building Blocks
1. Communication optimal weak gradecast. As a building block, we first
provide a communication optimal weak gradecast protocol satisfying the grade-
cast definition of Katz and Koo [41]5. Our weak gradecast protocol incurs O(nℓ+

5 This definition is slightly weaker than the one presented by Feldman and Micali [28].
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κn2) communication for ℓ bit input and does not require use of threshold signa-
tures. In the same setting, the gradecast protocol of Katz and Koo [41] incurs a
communication complexity of O(κn3) even for a single bit input. With q-Strong
Diffe Hellman (q-SDH) [12] setup assumption, we show the following result:

Theorem 1 (Informal). Assuming a public-key infrastructure and a universal
structured reference string under q-SDH assumption, there exists a gradecast
protocol for an input of size ℓ bits with O(nℓ + κn2) communication tolerating
t < n/2 Byzantine faults.

2. Recoverable set of shares using weak gradecast. We use the gradecast
primitive to perform communication efficient secret sharing. A consequence of
using gradecast (instead of broadcast channels) is that parties may have different
views regarding the acceptance of the shared secrets. For instance, each party
Pi outputs a different set AcceptListi and this set may also contain Byzantine
parties. However, we still do guarantee that for any set output by any party
(including Byzantine parties), there is verifiable proof vouching that all parties in
the set have correctly shared their secrets and these secrets are thus recoverable.
We call this sub-protocol “Recoverable set of shares”. Using our communication
optimal gradecast, our recoverable set of shares protocol can be achieved in
O(κn3) communication and constant rounds.

Table 2: Comparison of related works on MVBA with ℓ-bit input

Network Resilience Communication Round Assumption

Cachin et al. [14] async. 1/3 O(n2ℓ + κn2 + n3) E(O(1)) Threshold setup
VABA [4] async. 1/3 O(n2ℓ + κn2) E(O(1)) Threshold setup
DUMBO-MVBA [44] async. 1/3 O(nℓ + κn2) E(O(1)) Threshold setup

Our work sync. 1/2 O(n2ℓ + κn3) E(O(1)) PKI

E(.) implies “in expectation”.

3. Oblivious leader election. We design a communication efficient oblivi-
ous leader election (OLE) protocol with O(κn3) communication and constant
rounds. The OLE protocol elects a common honest leader with probability at
least 1

2 . To the best of our knowledge, all prior OLE protocols requires n2 weaker
VSS instances and incurred Ω(n4) communication [41] or required stronger cryp-
tographic assumptions to achieve O(κn3) communication [3]. In this work, we
build an OLE protocol using only n weaker VSS instances and a non-interactive
threshold signature scheme [15] to generate randomness. The security of our
OLE protocol is based on the computational Diffie-Hellman (CDH) problem in
the random oracle model. In particular, we show the following:

Theorem 2 (Informal). Assuming a public-key infrastructure, a universal struc-
tured reference string under q-SDH assumption, random oracle, and CDH, there
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exists an oblivious leader election protocol with O(κn3) communication and O(1)
rounds tolerating t < n/2 Byzantine faults.

4. Agreeing on a recoverable set of shares using efficient multi-valued
validated Byzantine agreement. Our next goal is to agree on one such set
output by one of the parties. We stress that due to the proof associated with
the output of the recoverable set of shares protocol, we can agree on the set
output by any party, including a Byzantine party. However, here, the size of
the set and its proof is linear, which can potentially worsen the communication
complexity again. Thus, we need a consensus primitive that takes long messages
as inputs and outputs one of the “valid” input values. Such a primitive is called
multi-valued validated Byzantine agreement (MVBA) [14] in the literature.

MVBA was first formulated by Cachin et al. [14] to allow honest parties
to decide on any externally valid values. Recent works [4, 44] have given com-
munication efficient protocols for MVBA in the asynchronous model tolerating
t < n/3 Byzantine faults. For long messages of size ℓ, the protocol due to Abra-
ham et al. [4] incurs O((ℓ + κ)n2) communication and the protocol due to Lu
et al. [44] incurs O(nℓ + κn2). Both of these works assume a threshold setup.
Without threshold setup assumptions, the communication blows up by a factor
of n in all of the above protocols.

To the best of our knowledge, no MVBA protocols have been formulated
in the synchronous model tolerating t < n/2 faults. Recently, Nayak et al. [48]
provides an efficient BA protocol for long messages. However, since it is a BA
protocol, they output a value only when all honest parties start with the same
large input. We construct the first MVBA protocol in the synchronous setting
without threshold setup. Our MVBA protocol incurs expected O(n2ℓ + κn3)
communication for inputs of ℓ bit and expected 36 rounds. Specifically, we show
the following result:

Theorem 3 (Informal). Assuming a public-key infrastructure, random oracle,
CDH, and a universal structured reference string under q-SDH assumption, there
exists a multi-valued validated Byzantine agreement protocol for an input of size
ℓ with expected O(n2ℓ + κn3) communication and expected 36 rounds tolerating
t < n/2 Byzantine faults.

Efficient distributed key generation. Using our recoverable set of shares
protocol where parties output different sets of size at least n − t parties and
our MVBA protocol, honest parties can agree on a common set from which the
final public key and secret keys are computed. In particular, we obtain a DKG
protocol with expected O(κn3) communication and expected 47 rounds.

Theorem 4 (Informal). Assuming public-key infrastructure, random oracle, a
universal structured reference string under q-SDH assumption and CDH, there
exists a protocol that solves secure synchronous distributed key generation tolerat-
ing t < n/2 Byzantine faults with expected O(κn3) communication and expected
47 rounds.
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Although the DKG protocol terminates in constant expected time, it can
take linear time in the worst case. In this case, the protocol incurs O(κn4) com-
munication. As an alternative, we provide a protocol that incurs O(κn3) com-
munication in the worst-case. RandPiper [10] provides a Byzantine fault tolerant
state machine replication (BFT SMR) protocol with O(κn2) communication per
epoch even for O(n)-sized input. Here, an epoch is a period that incurs 7 rounds.
In this protocol, we execute the BFT SMR protocol for t + 1 epochs with each
epoch coordinated by a distinct leader. The leader proposes his set AcceptList
along with the proof. Honest parties output the first committed set to compute
the final public key and secret keys. In particular, we obtain the following result:

Theorem 5 (Informal). Assuming a public-key infrastructure, and a universal
structured reference string under q-SDH assumption there exists a protocol that
solves secure synchronous distributed key generation tolerating t < n/2 Byzan-
tine faults with O(κn3) communication and 11 + 7(t+ 1) rounds.

Limitations. In this work, we assume that the adversary is static, similar to
several DKGs [33,35,38,49,52,54] in the literature. Canetti et al. [16] show how
to build adaptively secure DKG protocols and several of our techniques could
be applicable in realizing their protocol in the point-to-point network setting.
Very recently, Bacho et al. [5] gave a relaxed definition of DKG and show that
prior DKG protocols such as Gennaro et al [33] are adaptively-secure under this
relaxed definition. It could be interesting to see if our protocols are adaptively-
secure under their relaxed definition. In addition, our protocols make the q-SDH
assumption. This assumption is only used for bilinear accumulators which could
be replaced with Merkle tree accumulators resulting in a log n multiplicative
overhead in the communication complexity.

2 Related Work

2.1 Related Works in Distributed Key Generation Literature

We review the most recent and closely related DKG protocols. An overview of
the closely related work is provided in Table 1. While a myriad of DKG proto-
cols [16,18,26,33–35,49,52,54] have been proposed in the synchronous model, all
of these protocols assume a broadcast channel. All of these protocols invoke Ω(n)
parallel broadcasts. A natural choice to instantiate the broadcast channels is via
Byzantine consensus primitives such as Byzantine Broadcast [2,23] or Byzantine
agreement [41]. To the best of our knowledge, all optimally resilient deterministic
Byzantine consensus protocols incur O(κn3) communication without threshold
signatures and t + 1 rounds [23]. For randomized consensus protocols, the best
known protocol with optimal resilience in this setting is Katz and Koo [41] which
incurs O(κn4) communication. Although, randomized consensus protocols termi-
nate in expected constant rounds, n parallel instances of randomized consensus
requires expected O(log n) rounds to terminate [9]. For the sake of simplicity, we
assign a communication of O(κn4) and O(t) rounds for the DKG protocols that



Synchronous Distributed Key Generation without Broadcasts 7

use broadcast channel in Table 1. Compared to all prior DKG protocols, our
protocols do not use broadcast channel and use Byzantine consensus protocols.
In fact, our protocols require a single consensus invocation and incur either ex-
pected O(κn3) communication and expected O(1) rounds or worst-case O(κn3)
communication and O(t) rounds. Our protocols are secure against static failures
and generate uniform keys for discrete logarithm based cryptosystems.

We also argue that the protocols by Momose and Ren [47] and Tsimos et
al. [58] are relevant but not sufficient to achieve our goals. Momose and Ren [47]
gave a deterministic BA protocol with O(κn2) communication with sub-optimal
resilience of t < (1 − ϵ)n/2 for a small constant ϵ. Using their BA protocol to
instantiate broadcast channels will result in DKG protocols with O(κn3) com-
munication but with sub-optimal resilience and linear round complexity. Sim-
ilarly, Tsimos et al. [58] present a communication-efficient broadcast protocol
RandomBroadcast in the bulletin PKI setting. It works with t < (1 − ϵ) re-
silience, O(κ2n2) communication, linear round complexity, and negligible error
probability. Using RandomBroadcast to instantiate broadcast channels will re-
sult in DKG protocols with optimal resilience, O(κ2n3) communication, linear
round complexity and negligible error probability. In contrast, our protocols have
optimal resilience, O(κn3) communication and expected O(1) rounds (or O(t)
rounds).

Pedersen [52] introduced the first efficient DKG protocol for discrete log
cryptosystems in the synchronous setting. Their protocol is based on n parallel
invocations of Feldman VSS [27]. Gennaro et al. [33] showed that Pedersen’s
DKG protocol can be biased by an adversary to generate non-uniform keys.
To remove the bias, they proposed a new DKG protocol that requires additional
secret sharing rounds; hence, is less efficient. Canneti et al. [16] extended Gennaro
et al.’s DKG to handle adaptive corruptions.

Neji et al. [49] presented an efficient DKG protocol to remove the bias without
the additional secret sharing round. However, in their protocol, honest parties
still need to agree on whether to perform reconstruction for a secret shared by
a party which requires additional consensus invocation.

Gurkhan et al. [35] presented DKG protocol without a complaint phase by
using publicly verifiable secret sharing (PVSS) [17] scheme. However, they toler-
ate only log n Byzantine faults and do not generate keys for discrete-logarithms
based cryptosystems; reducing its usefulness.

Recently, Groth [34] presents a non-interactive DKG protocol with a refresh
procedure that allows refreshing the secret key shares to a new committee. Erwig
et al. [26] considers large scale non-interactive DKG protocol and handles mobile
Byzantine faults. Both of above protocols assume broadcast channels.

Very recently, Cascudo et al. [18] presented a DKG protocol using PVSS [17]
scheme which generates field elements as the secret keys. Their protocol assumes
broadcast channel and invokes Ω(n) broadcasts; hence their protocol would re-
quire O(κn4) communication and O(t) rounds in the point-to-point model. Using
our framework of reducing O(n) broadcasts to a single broadcast, we can indeed
use PVSS scheme (similar to their work) to obtain DKG protocol with improved
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round complexity but would require additional cryptographic assumptions such
as SXDH.

Several other works tackle the DKG problem from different angels. Kate
et al. [39] reduced the size of input to the broadcast channel from O(n) to
O(1) by using polynomial commitments [40]. Tomescu et al. [57] reduce the
computational cost of dealings in Kate et al. [39] at the cost of a logarithmic
increase in communication cost. Schindler et al. [54] instantiate the broadcast
channel with the Ethereum blockchain. In Table 1, we replaced the Ethereum
blockchain with Byzantine consensus primitives for fair comparison.

Kate et al. [39] gave the first practical DKG protocol in the partially syn-
chronous communication model which requires 3t + 2f + 1 parties to tolerate
t Byzantine faults and f crash faults. Kokoris-Kogias et al. [42] gave the first
DKG protocol in asynchronous communication model with optimal resilience
(t < n/3). Their protocol has O(κn4) communication and O(t) rounds overhead.
Abraham et al. [3] gave an improved DKG protocol with O(κn3) communica-
tion and expected O(1) round complexity. However, their protocol uses PVSS
and hence does not generate keys for dlog-based cryptosystems. Das et al. [20]
gave the dlog-based DKG protocol with O(κn3) communication and optimal
resilience in the asynchronous model. However, their protocol incurs expected
O(log n) round complexity and requires stronger Decisional Composite Resid-
uosity (DCR) assumption. Very recently, Das et al. [19] gave the dlog-based
DKG protocol with O(κn3) communication and optimal resilience in the asyn-
chronous model with discrete-log assumption. However, their construction still
incurs O(log n) round complexity. We note that while DKG protocols have been
designed with lesser assumption (i.e., DL assumption in Das et al. [19]) in the
asynchronous model tolerating t < n/3 Byzantine failures, designing protocols
tolerating t < n/2 Byzantine failures presents its own unique challenges and
does not make our protocols sub-optimal.

Concrete round complexity. All prior synchronous DKG protocols invoke
Ω(n) broadcasts over two or more rounds. Invoking broadcast channels with
the state-of-the art Byzantine consensus protocols would require at least 2t+ 2
rounds. Our expected constant round DKG protocol requires only 47 rounds
in expectation. When t > 23, the concrete round complexity of our protocol
is less compared to other protocols. We can alternatively use PVSS scheme to
share secrets (following Cascudo et al. [18]) to obtain improved concrete round
complexity (but would require stronger SXDH assumptions).

2.2 Related Works in Byzantine Agreement Literature

There has been a long line of work in improving communication and round
complexity of consensus protocols [2,4,13,29,41,47,56,59]. We review the most
recent and closely related works.

Multi-valued validated Byzantine agreement was first introduced by Cachin
et al. [14] to allow honest parties to agree on any externally valid values. Their
protocol works in asynchronous communication model and has optimal resilience
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(t < n/3) with O(n2ℓ+κn2+n3) communication for input of size ℓ. Later, Abra-
ham et al. [4] gave an MVBA protocol with optimal resilience and O((ℓ+ κ)n2)
communication in the same asynchronous setting. Lu et al. [44] extended the
work of Abraham et al. [4] to handle long messages of size ℓ with a communica-
tion complexity of O(nℓ+ κn2). All of these protocols assumed threshold setup.
In the absence of threshold setup, the communication complexity blows up by a
factor of n in all of these protocols.

To the best of our knowledge, no MVBA protocol has been formulated in the
synchronous setting tolerating t < n/2 Byzantine faults. Our MVBA protocol
incurs O(n2ℓ + κn3) for inputs of size ℓ and does not assume threshold setup
and terminates in expected constant rounds.

Our MVBA protocol can also be used for binary inputs as a Binary Byzantine
Agreement (BBA) protocol tolerating t < n/2 Byzantine faults and terminat-
ing in expected O(1) rounds. Feldman and Micali [29] were the first to give
a BBA protocol that terminates in constant expected rounds. Their protocol
works in plain authenticated model without PKI and tolerates t < n/3 Byzan-
tine faults (which is optimal). In the authenticated setting, Katz and Koo [41]
gave a BBA protocol tolerating t < n/2 Byzantine faults terminating in expected
constant rounds. Their protocol incurs O(κn4) communication and terminates
in expected 4 epochs. We extend the BBA protocol of Katz and Koo [41] and
reduce its communication by linear factor while handling multi-valued input by
designing a communication optimal gradecast protocol. A simple and efficient
BBA tolerating t < n/3 Byzantine faults in the authenticated model was given
by Micali [46]. Abraham et al. [2] reduced the round complexity of BBA proto-
col to expected 10 rounds. However, their protocol required a threshold setup
to generate a perfect common coin; a perfect common coin ensures all honest
parties output the same random value. Compared to their work, our work does
not require a threshold setup and executes with a weak common coin.

Very recently, Abraham et al. [1] gave a BBA protocol in the authenticated
model without PKI and digital signatures tolerating t < n/3 Byzantine faults.
Their protocol has an expected communication complexity of O(n4 log n) and
expected constant rounds.

2.3 Related Work in the Gradecast Literature

Gradecast was originally introduced by Feldman and Micali [28] in the authen-
ticated model with PKI and digital signatures. They gave a protocol tolerating
t < n/3 Byzantine faults. Katz and Koo [41] gave a slightly relaxed definition
of gradecast which allows honest parties with output any value with a grade of
1 when no honest party outputs a value with grade of 2. They gave a gradecast
protocol tolerating t < n/2 Byzantine faults in the authenticated model with
PKI and digital signatures. Their gradecast protocol incurs O(κn3) communi-
cation even for a single bit. We also recall the gradecast protocol with multiple
grades introduced by Garay et al. [32] and later improved by [31]. Their grade-
cast protocol supports arbitrary number of grades. Their protocol works in the
authenticated model with PKI and digital signatures and has a communication
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complexity of O(g∗(ℓ + κ)n2) for input of size ℓ bit where g∗ is the maximum
grade supported. Compared to all these works, our gradecast protocol satisfies
the definition of Katz and Koo [41] and tolerates t < n/2 Byzantine faults and
incurs O(nℓ + κn2) communication for inputs of size ℓ in authenticated model
with PKI and digital signatures.

3 Model and Preliminaries

We consider a system consisting of n parties (P1, . . . , Pn) with pair-wise reli-
able, authenticated point-to-point channels, where up to t < n/2 parties can be
Byzantine faulty. The model of corruption is static i.e., the adversary picks the
corrupted parties before the start of protocol execution. The Byzantine parties
may behave arbitrarily. A non-faulty party is said to be honest and executes the
protocol as specified. We assume a synchronous communication model. Thus, if
an honest party sends a message at the beginning of some round, the recipient
receives the message by the end of that round.
Setup. Let p be a prime number that is poly(κ) bits long, and G be a group of
order p such that it is computationally infeasible except with negligible proba-
bility in κ to compute discrete log. Let Zp denote its scalar field. Moreover, let
g and h denote the generators of G where a ∈ Zp such that ga = h is not known
to any t subset of the nodes.

We make the standard computational assumption on the infeasibility to com-
pute discrete logarithms called the discrete-log assumption [33]. In particular,
we assume that the adversary is unable to compute discrete logarithms modulo
large (based on the security parameter κ) primes.

We make use of digital signatures and PKI to prevent spoofing and replays
and to validate messages. Message x sent by a party Pi is digitally signed by Pi’s
private key and is denoted by ⟨x⟩i. We denoteH(x) to represent invocation of the
random oracleH on input x. In addition, we use a hash functionH ′ : G→ {0, 1}κ
in our leader election protocol.
Equivocation. Two or more messages of the same type but with different pay-
load sent by a party is considered an equivocation. In order to facilitate efficient
equivocation checks, the sender sends the payload along with signed hash of the
payload. When an equivocation is detected, broadcasting the signed hash suffices
to prove equivocation by the sender.

3.1 Definitions

Distributed key generation. A DKG protocol for n parties (P1, . . . , Pn) gen-
erates private outputs (x1, . . . , xn) called the shares and a public output y.

Definition 1 (Secure DKG for Dlog based cryptosystems [33]). A dlog
based DKG protocol that distributes a secret x among n parties through shares
(x1, . . . , xn) where xi is a share output to party Pi is t-secure if in the presence
of an adversary that corrupts up to t parties, the following requirements for
correctness and secrecy are maintained.
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Correctness.
C1. All subsets of t+ 1 shares provided by honest parties define the same
unique secret key x ∈ Zp.
C2. All honest parties have same value of public key y = gx ∈ G, where
x ∈ Zp is secret guaranteed by (C1).
C3. x is uniformly distributed in Zp (and hence y is uniformly distributed
in G).

Secrecy. No information on x can be learned by the adversary except for
what is implied by the value y = gx.
More formally, the secrecy condition is expressed in terms of simulatabil-

ity: for every (probabilistic polynomial-time) adversary A that corrupts up to t
parties, there exists a (probabilistic polynomial-time) simulator S, such that on
input an element y ∈ G, produces an output distribution which is polynomially
indistinguishable from A’s view of a run of the DKG protocol that ends with y
as its public key output.

Weak Gradecast. Weak gradecast is a relaxed version of gradecast [28] intro-
duced by Katz and Koo [41].

Definition 2 (Weak Gradecast [41]). A protocol with a designated sender
Pi holding an initial input v is a weak gradecast protocol tolerating t < n/2
Byzantine parties if the following conditions hold

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, 2}.
2. If the sender is honest, each honest party outputs v with a grade of 2.
3. If an honest party Pi outputs a value v with a grade of 2, then all honest

parties output value v with a grade of ≥ 1.

Oblivious leader election. An oblivious leader election protocol elects a com-
mon honest leader with some constant probability.

Definition 3 (Oblivious Leader Election [41]). A protocol for parties P1, . . . , Pn

is an oblivious leader election protocol with fairness α tolerating t Byzantine fail-
ures if each honest party Pi outputs a value vi ∈ [n] and the following conditions
holds with probability at least α:

There exists a value j ∈ [n] such that (i) each honest party Pi outputs vi = j,
and (ii) party Pj is honest.

Multi-valued validated Byzantine agreement. In an MVBA protocol, there
is an external validity function ex-validation that every party has access to. Every
honest party start with some externally valid input vi, and on termination must
output a value. An MVBA protocol has following properties:

Definition 4 (Multi-valued Validated Byzantine Agreement [4,44]). A
protocol solves multi-valued validated Byzantine agreement if it satisfies following
properties except with negligible probability in the security parameter κ:

– Validity. If an honest party decides a value v, then ex-validation(v) = true.
– Agreement. No two honest parties decide on different values.
– Termination. If all honest parties start with externally valid values, all

honest parties eventually decide.
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3.2 Primitives

In this section, we present several primitives used in our protocols.
Linear erasure and error correcting codes.We use standard (t+1, n) Reed-
Solomon (RS) codes [53]. This code encodes t+1 data symbols into code words
of n symbols using ENC function and can decode the t+1 elements of code words
to recover the original data using DEC function. More details on ENC and DEC
are provided in Section J.1.
Cryptographic accumulators.A cryptographic accumulator scheme constructs
an accumulation value for a set of values using Eval function and produces a wit-
ness for each value in the set using CreateWit function. Given the accumulation
value and a witness, any party can verify if a value is indeed in the set using
Verify function. More details on these functions are provided in Section J.2.

In this paper, we use collision free bilinear accumulators from Nguyen [50] as
cryptographic accumulators which generates constant sized witness, but requires
q-SDH assumption. Alternatively, we can use Merkle trees [45] (and avoid q-SDH
assumption) at the expense of O(log n) multiplicative communication.
Non-interactive threshold signature scheme. We use (t, n) non-interactive
threshold signature scheme of Cachin et al. [15] in one of our protocols. The
threshold signature scheme is secure against static adversary. The signature
scheme consists of the following efficient algorithms: KeyGenTS, SignTS, ShareVerifyTS,
CombineTS, VerifyTS. More details on these algorithms in provided in Section J.3.
Non-Interactive Proof-of-Equivalence of commitments [39]. Given two
commitments C⟨g⟩(s) = gs and C⟨g,h⟩(s, r) = gshr to the same value s for gener-
ators g, h ∈ G and s, r ∈ Zp, a prover proves that she knows s and r such that
C⟨g⟩(s) = gs and C⟨g,h⟩(s, r) = gshr. We denote it by NIZKPK≡Com(s, r, g, h, C⟨g⟩(s),
C⟨g,h⟩(s, r)) = π≡Com ∈ Z3

p. A full construction of NIZKPK≡Com is provided in
Section J.4.
Normalizing the length of cryptographic building blocks. Let λ denote
the security parameter, κh = κh(λ) denote the hash size, κa = κa(λ) denote
the size of the accumulation value and witness of the accumulator and κv =
κv(λ) denote the size of secret share and witness of a secret. Further, let κ =
max(κh, κa, κv); we assume κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout
the paper, we can use the same parameter κ to denote the hash size, signature
size, accumulator size and secret share size for convenience.

4 Secure DKG with Two Broadcast Rounds

We first present a secure DKG protocol assuming a broadcast channel moti-
vated from Gennaro et al. DKG [33]. The presented DKG reduces the number
of required rounds with broadcast to two, which is a significant improvement
over [33] requiring three broadcast rounds in the best case and five broadcast
rounds otherwise.6 In later sections, we replace the broadcast channel with a
novel consensus primitives to design communication-efficient DKG protocols.

6 Using NIZK similar to us, the number of rounds for Gennaro et al. DKG [33] can be
reduced to two in the best case and three otherwise in a rather straightforward man-
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Gennaro et al. [33] presented a secure DKG protocol that produces uniform
public keys based on Pedersen’s VSS [51]. In their protocol, each party, as a
dealer, selects a secret uniformly at random and shares the secret using Peder-
sen’s VSS protocol. Since Pedersen’s VSS provides information theoretic secrecy
guarantees, the adversary has no information about the public key and hence
cannot bias it. At the end of the secret sharing, a set of qualified parties QUAL
who correctly shared their secret is defined. Once the set QUAL is fixed, parties in
set QUAL invoke an additional round of secret sharing using Feldman’s VSS [27]
to generate the final public key. While this approach ensures generation of uni-
form keys and maintains secrecy, it adds additional overhead as it incurs more
latency and communication to perform additional secret sharing. In addition to
the above overhead, Pedersen VSS requires three broadcast rounds. In partic-
ular, parties post the commitment, complaints and secret shares corresponding
to the complaints on to the broadcast channel during the sharing phase.

The protocol in Figure 1 improves upon the DKG protocol of Gennaro et
al. [33] in the following ways.

Improving latency in the sharing phase. We improve latency by reducing
information posted on the broadcast channel by using improved eVSS (iVSS)
protocol [10] which requires only 2 broadcast rounds.7 Reducing the broadcast
rounds greatly improves latency as broadcast channels are generally instantiated
using Byzantine broadcast or Byzantine agreement protocols which have worst-
case linear round complexity.

In iVSS, the dealer posts commitments on the broadcast channel and pri-
vately sends the secret shares to each party. Instead of posting the complaints
on the broadcast channel, parties multicast blame message if they receive in-
valid secret shares or receive no secret shares at all. Parties then forward all
blame messages to the dealer8. The dealer is expected to send secret shares cor-
responding to the blame messages (i.e., secret shares sij , s

′
ij if a Pj sent blame

message against dealer Pi). If the dealer sends all secret shares corresponding
to the blame message it forwarded, a party sends a vote message to the dealer.
Upon receiving t+1 vote messages, the dealer posts a vote-certificate containing
t + 1 vote messages. Honest parties consider the dealer to be honest if they see
the vote-certificate on the broadcast channel.

Observe that using iVSS scheme, the dealer posts only the commitment and
vote-certificate on the broadcast channel. This improves the sharing phase by
one broadcast round.

Using commitments to evaluations instead of commitments to coef-
ficients. In VSS such as Pedersen’s VSS and Feldman’s VSS and thus in [33],
commitments to the secret share are commitments to the coefficients of a t-degree
polynomial, which imply verifying a share requires O(t) computations. This re-

ner; however, reducing to two broadcast rounds in all situations is the key challenge
here.

7 Alternatively, we can use broadcast optimal VSS protocol of Backes et al. [7] which
has 2 broadcast rounds. We prefer iVSS protocol for its simplicity.

8 In an implementation, we can only forward up to t blames instead of all the blames.
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Sharing Phase

1. Deal. Each party (as a dealer) Pi selects two random polynomials fi(y), f
′
i(y) ∈

Zp[y] of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′

i(y) = bi0 + bi1y + · · ·+ bity
t

Let si = ai0 = fi(0). Party Pi posts Cik = gfi(k)hf ′
i(k) ∀k ∈ {1, . . . , n} on the

broadcast channel. Party Pi computes the secret shares sij = fi(j), s
′
ij = f ′

i(j)
and sends sij , s

′
ij privately to Pj ∀j ∈ [n].

2. Blame. Each party Pi verifies that the commitment vector contains a t degree
polynomial (Equation (2)). For j ∈ [n], check if

gsji · hs′ji = Cji (1)
n∏

k=1

CCodekjk = 1G, where {Code1, . . . ,Coden} ∈ C⊥ using Equation (4) (2)

If the check fails for (dealer) party Pj , send ⟨blame, j⟩i to all parties and collect
all the blames.

3. Forward blame. If more than t blame messages are collected for party Pj as the
dealer in the previous step, do not send anything for dealer Pj until the Decide
step (Step 6).
Otherwise, for every ⟨blame, j⟩k received from party Pk, forward the blame mes-
sages to the dealer Pj .

4. Open. Each party Pi, who as a dealer, received ⟨blame, i⟩k from any party Pj ,
sends valid secret shares sik, s

′
ik (that verifies Equation (1)) to party Pj .

5. Vote. If in Step 2, a party Pi received ≤ t ⟨blame, j⟩k messages and party Pj sent
valid secret shares sjk, s

′
jk for every ⟨blame, j⟩k it forwarded to party Pj , send a

vote ⟨vote, j⟩i to party Pj . Forward the secret shares sjk, s
′
jk to party Pk.

6. Decide. If party Pi, as a dealer, receives t + 1 distinct ⟨vote, i⟩ messages (called
the vote-certificate), post the vote-certificate on the broadcast channel.
Each party Pi marks a party Pj qualified if it receives a vote-certificate for party
Pj on the broadcast channel; otherwise the party is disqualified. Party Pi builds
a set of non-disqualified parties QUAL.

Generating public key

7. Party Pi sets its share of the secret as xi =
∑

j∈QUAL sji, and computes

x′
i =

∑
j∈QUAL s

′
ji, C⟨g⟩(xi) = gxi , C⟨g,h⟩(xi, x

′
i) = gxihx′

i and π≡Comi =

NIZKPK≡Com(xi, x
′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i)). Party Pi sends (C⟨g⟩(xi), π≡Comi)

to all parties.
8. Upon receiving a tuple (C⟨g⟩(xj), π≡Comj), compute C⟨g,h⟩(xj , x

′
j) = gxjhx′

j locally
as follows:

gxjhx′
j =

∏
m∈QUAL

Cmj (3)

Ensure π≡Comj verifies NIZKPK≡Com between C⟨g⟩(xj) and C⟨g,h⟩(xj , x
′
j).

9. Upon receiving t + 1 valid gxj values, perform Lagrange interpolation in the ex-
ponent to obtain y = gx. Output y as the public key and xi as the private key.

Fig. 1: Secure distributed key generation in dlog-based cryptosystems
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sults in O(nt) computations per VSS instance in the complaint stage (where
every node verifies opening of up to t complaints) and during reconstruction.
SCRAPE [17, Section 2.1] showed how to commit (using discrete log commit-
ments) to evaluations instead of coefficients of the polynomial and verify that
the committed evaluations are of a degree t polynomial by using the property of
coding schemes: if C is the code space for an (n, t) sharing, then the following
vector

C⊥ := {Code1, . . . ,Coden;Codei = poly(i)
n∏

j=1,j ̸=i

1/(i− j)

poly(x) is a random polynomial of degree n− t+ 1} (4)

is orthogonal to C. We can check that the Pedersen’s commitments to the evalua-
tions are an (n, t) sharing (see Equation (1)). If λ is logg h, then commitments to

evaluations form a polynomial gfhf ′
= gf+λf ′

which is another (n, t) polynomial
thereby allowing to use the coding technique. This is an information-theoretic
technique and therefore does not affect the security of the underlying VSS.
Removing additional secret sharing while generating public key. We
remove the additional secret sharing performed using Feldman’s VSS by tak-
ing an alternate approach [39]. Instead of executing an additional secret shar-
ing, assuming random oracle, we make use of the NIZK proof of equivalence of
commitments NIZKPK≡Com to generate the public key. This approach does not
require additional secret sharing via Feldman’s VSS. Once the sharing phase is
completed, a set of qualified parties QUAL is finalized. Then, each party Pi com-
putes its share of the shared secrets i.e., xi =

∑
Pj∈QUAL sji and x′

i =
∑

Pj∈QUAL s
′
ji

along with commitments C⟨g⟩(xi), C⟨g,h⟩(xi, x
′
i). It then multicasts commitment

of its share C⟨g⟩(xi) and the corresponding NIZKPK≡Com proof π≡Comi to prove
Pi knows xi and x′

i.
All parties can compute the commitment C⟨g,h⟩(xi, x

′
i) locally as shown in

Equation (3) and verify the correctness of commitment C⟨g⟩(xi) using π≡Comi.
The final public key Y is computed via Lagrange interpolation in the exponent
using t+ 1 distinct commitments C⟨g⟩(xi).

We present detailed security analysis in Section K.

5 Communication Optimal Weak Gradecast

One of the main tools in the design of our communication efficient protocols
is our communication optimal weak gradecast protocol. Gradecast (aka graded
broadcast) is a relaxed version of broadcast introduced by Feldman and Mi-
cali [28] which can be obtained in constant number of rounds. Feldman and
Micali [28] provided a gradecast protocol tolerating t < n/3 Byzantine faults in
the plain authenticated model without PKI and digital signatures. Later, Katz
and Koo [41] provided a slightly weaker gradecast protocol in the authenticated
model tolerating t < n/2 Byzantine faults using PKI and digital signatures. The
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gradecast protocol of Katz and Koo [41] incurs O(κn3) communication even for
a single bit input in the absence of threshold signatures.

In this work, we present a gradecast protocol with an optimal communication
complexity of O(nℓ+ κn2) for ℓ bit input.

Deliver(mtype,m, ze, e) :

1. Partition input m into t+ 1 data symbols. Encode the t+ 1 data symbols into n
code words (s1, . . . , sn) using ENC function. Add an index j to each code word sj
to obtain D = [(1, s1), . . . , (n, sn)]. Compute accumulation value zi = eval(ak,D).
If ze ̸= zi abort. Otherwise, compute witness wj for each element (j, sj) ∈ D using
CreateWit function and send ⟨codeword,mtype, sj , wj , ze, e⟩i to party Pj ∀Pj ∈ P.

2. If party Pj receives the first valid code word ⟨codeword,mtype, sj , wj , ze, e⟩∗ for
the accumulator ze, forward the code word to all the parties.

3. Upon receiving t+ 1 valid code words for the first accumulation value ze, decode
m using DEC function.

Fig. 2: Deliver function

Our gradecast (refer Figure 3) implements weaker gradecast [41] (Defini-
tion 2) which relaxes gradecast [28] when no honest party outputs a grade of 2
and allows honest parties to output different values with a grade of 1. In partic-
ular, when an honest party Pj outputs a value v with a grade of 1, our primitive
allows other honest parties to output a different value v′ with a grade of 1 when
no honest party outputs a value with a grade of 2. This weaker gradecast suf-
fices for our purpose. In Section P, we show a quadratic lower bound on the
communication complexity of weak gradecast for completeness.
Deliver. As a building block, we first present a Deliver function (refer Figure 2)
used by an honest party to efficiently propagate long messages. This function is
adapted from RandPiper [10] where linear-sized messages are propagated among
all honest parties with O(κn2) communication cost. The Deliver function enables
efficient propagation of long messages using erasure coding techniques and cryp-
tographic accumulators. The input parameters to the function are a keyword
mtype, long message m, accumulation value ze corresponding to message m and
epoch e in which Deliver function is invoked. The input keyword mtype corre-
sponds to message type containing long message m sent by its sender. In order
to facilitate efficient leader equivocation, the input keyword mtype, hash of long
message m, accumulation value ze, and epoch e are signed by the sender of
message m. We omit epoch parameter when the Deliver function is not invoked
within an epoch. The Deliver function incurs 2 rounds.

The gradecast protocol is presented in Figure 3. In round 1, the designated
sender Pj sends value v by multicasting ⟨gcast, v, z⟩j where z is the accumulation
value for value v. We note that the size of input value v can be large. To facilitate
efficient equivocation checks, the sender Pj signs ⟨gcast, H(v), z⟩ and sends v
separately. Whenever an equivocation by the sender is detected, multicasting
signed hashes suffices to prove equivocation by the sender. All-to-all multicasting
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Set oi = ⊥ and gi = ⊥. Each party Pi performs the following operations:

- Round 1: If party Pj is the designated sender, then it multicasts its input value
v in the form of ⟨gcast, v, z⟩j where z is the accumulation value of v.

- Round 2: If party Pi receives pr := ⟨gcast, v, z⟩j for the first time, then invoke
Deliver(gcast, pr, z).

- Round 4: If party Pi invoked Deliver in round 2 and no party Pj equivocation
has been detected so far, set oi = v and gi = 2. Let vi be the first value received.
If vi = ⊥, set oi = ⊥ and gi = 0, else if oi = ⊥, set oi = vi and gi = 1. Output
(oi, gi).

- At any round: If equivocating hashes signed by party Pj are detected, multicast
the equivocating hashes.

Fig. 3: Weak Gradecast with O(nℓ+ (κ+ w)n2) communication.

of κ-sized signed hashes incurs only O(κn2) in communication. The reduction in
communication is obtained via the use of efficient erasure coding schemes [53],
cryptographic accumulators [8] and multicast of equivocating hashes (if any).

In round 2, if party Pi receives ⟨gcast, v, z⟩j , it invokes Deliver to propagate
long message v. Note that Deliver function requires 2 rounds. Round 3 accom-
modates steps of Deliver function invoked in rounds 2. In round 4, each party
Pi sets its output value and grade as follows. If party Pi received ⟨gcast, v, z⟩j
in round 2 and did not detect any equivocation so far, it outputs value v with a
grade of 2. Otherwise, party Pi outputs the first value it received with a grade
of 1. If no value has been received, Pi outputs ⊥ with a grade of 0. Note that if
node Pi receives ⟨gcast, v, z⟩j in round 1, but detects an equivocation at a later
point, it outputs value v with a grade of 1.
The first value. If node Pi receives a valid code word corresponding to value
v or ⟨gcast, v, z⟩j before receiving any other values (i.e, ⟨gcast, v′, z′⟩j or a valid
code word for any other value), then value v is the first value for Pi. Hereafter,
node Pi only decodes value v when it receives t+ 1 valid code words for it.

We present detailed security analysis in Section L.

6 Recoverable Set of Shares

In Section 4, we presented a secure DKG protocol by assuming broadcast chan-
nels. In general, broadcast channels are instantiated using Byzantine Broadcast
(BB) or Byzantine agreement (BA) protocols. To the best of our knowledge, all
known BB and BA protocols tolerating t < n/2 Byzantine faults incur O(κn3)
communication in the absence of threshold signatures [2, 23, 41]. The secure
DKG protocol required 2n broadcasts. Thus, instantiating broadcast channel
using BB or BA protocols for our secure DKG protocol trivially incurs O(κn4)
communication. In this section, we present a slightly weaker sharing protocol
by appropriately replacing the broadcast channel with multicast and our weak
gradecast. This protocol completes in constant rounds and acts as a building
block towards constructing the DKG. We call this protocol Recoverable Set of
Shares.
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In the sharing phase of our secure DKG protocol with broadcast channels
(Figure 1), each honest party outputs a common set QUAL consisting of size at
least n − t parties such that the secrets shared by parties in set QUAL can be
reconstructed. In more detail, honest parties have a common decision on which
parties correctly shared their secret at the end of the sharing phase. Requiring
this agreement was free in the presence of broadcast channels; however, under a
point-to-point network, it blows up communication complexity.

Thus, in our protocol, we instead rely on the use of weaker primitive such as
gradecast instead of consensus to share secrets. As a result, each honest party Pi

may have a different view regarding the acceptance of the shared secret. Thus,
each honest party Pi outputs a possibly different set AcceptListi of at least n− t
parties which they accept to have shared the secret correctly; i.e., party Pi

observes the secrets shared by parties in AcceptListi can be reconstructed. It is
in this regard, we call our protocol recoverable set of shares as the secret shared
by parties in AcceptListi can be reconstructed.

We stress that in recoverable set of shares protocol, honest parties need not
agree on a common set and may output a different set of at least n − t parties
which they believe have shared the secret properly. To ensure that the final keys
for DKG are generated for a common set, parties need to agree on one such set. In
the following section, we present a multi-valued validated Byzantine agreement
protocol to agree on a common set.

We call an AcceptList certified if it is accompanied by a set of signatures
from at least t + 1 parties. The set of t + 1 signatures on AcceptList forms the
certificate for AcceptList and denoted as AC(AcceptList).

Definition 5 (Recoverable Set of Shares). Each party Pi, as a dealer,
secret shares a uniformly random input si. Each honest party outputs an n el-
ement certifed list AcceptListi with an entry corresponding to each party as a
dealer such that AcceptListi[j] ∈ {0, 1, 2} ∀j ∈ [n]. A recoverable set of shares
protocol tolerating t Byzantine failures satisfies the following properties:

1. If dealer Pj is honest, then each honest party Pi outputs AcceptListi[j] = 2.

2. A certified AcceptListi must have |{h |AcceptListi[h] = 2}| ≥ n− t.

3. If AcceptListi is certified and AcceptListi[j] = 2, then secret sj can be recov-
ered from the secret shares sji received by each honest party Pi.

Protocol details. At the start of the protocol (refer Figure 4), each honest
party Pi selects two random t degree polynomials fi(y) =

∑
k aiky

k over Zp and
f ′
i(y) =

∑
k biky

k over Zp such that fi(0) = si and f ′
i(0) = s′i. Party Pi gener-

ates the commitment Cik = gfi(k)hf ′
i(k) ∀k ∈ {1, . . . , n}. Let VSS.C⃗i represent

Cik ∀k ∈ {1, . . . n.}. Party Pi multicasts the commitment in the form of a proposal

⟨propose,VSS.C⃗i, zpi⟩i where zpi is the accumulation value of VSS.C⃗i. In order to

facilitate efficient equivocation checks, party Pi signs ⟨propose, H(VSS.C⃗i), zpi⟩
separately and sends VSS.C⃗i separately. Party Pi also privately sends secret
share sij , s

′
ij to party Pj ∀j ∈ [n].
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Each party Pi performs the following operations:

1. (Round 1) Distribute. Each party Pi selects two random polynomials fi(y),
f ′
i(y) over Zp of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′

i(y) = bi0 + bi1y + · · ·+ bity
t

Let si = ai0 = fi(0). Party Pi generates the commitment Cik = gfi(k)hf ′
i(k) ∀k ∈

{1, . . . , n}. Let VSS.C⃗i represent Cik ∀k ∈ {1, . . . n}. Party Pi multicasts its pro-
posal ⟨propose,VSS.C⃗i, zpi⟩i. Party Pi computes the shares sij = fi(j), s

′
ij = f ′

i(j)
and sends sij , s

′
ij to Pj ∀j ∈ [n].

2. (Round 2) Blame/Forward. If party Pi receives commitment commj :=
⟨propose,VSS.C⃗j , zpj⟩j and valid secret share sji, s′ji (i.e., satisfy Equation (1)

with VSS.C⃗j and Equation (2)), then invoke Deliver(propose, commj , zpj ,−). If no
valid secret shares has been received from party Pj , multicast ⟨blame, j⟩i to all
parties.

3. (Round 3) Request open. Collect all blames received so far. If up to t blame
are received for party Pj , forward the blame messages to party Pj . If more than t
blame are received for party Pj , do not send anything for dealer Pj until Round 6.

4. (Round 4) Open. Party Pi sends secret shares sik, s
′
ik to party Pj , for every

blame ⟨blame, i⟩k received from party Pj .
5. (Round 5) Vote. Upon receiving valid secret shares sjk, s′jk for every
⟨blame, j⟩k it forwarded and no party Pj equivocation has been detected, send
⟨vote, H(commj)⟩i to party Pj . Forward secret share sjk to party Pk for every
⟨blame, j⟩k it received. If no blames for party Pj has been received by round 3 and
no party Pj equivocation has been detected, send ⟨vote, H(commj)⟩i to party Pj .

6. (Round 6) Vote cert. Upon receiving t + 1 distinct vote messages for commi

(denoted by C(commi)), invoke weak gradecast (refer Figure 3) to propagate
C(commi).

7. (Round 9) Propose Grade Let (oj,i, gj,i) be the output of weak grade-
cast with party Pj as the sender. Set AcceptListi[j] = gj,i. Multicast
⟨accept-list,AcceptListi⟩i.

8. (Round 10) Verify and Ack. Upon receiving ⟨accept-list,AcceptListj⟩j from
party Pj , if the following conditions hold send ⟨ack, H(AcceptListj)⟩i to party Pj .

(a) |{h |AcceptListj [h] = 2}| ≥ n− t
(b) If AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n].

9. (At any round) Equivocation. If equivocating hashes signed by party Pj are
detected, multicast the equivocating hashes.

Fig. 4: Recoverable Set of Shares

If a party Pj receives valid secret share sij , s′ij along with the proposal

commi := ⟨propose,VSS.C⃗i, zpi⟩i by the start of round 2, it invokes Deliver(propose,

commi, zpi,−) to propagate the commitment VSS.C⃗i; otherwise party Pj multi-
casts ⟨blame, i⟩j . Observe that we ignore the epoch e parameter in Deliver as the
current protocol is not executed in an epoch.

Party Pj waits to collect any blame messages sent by other parties. If up to
t blame messages are received for Pi, Pj forwards the blame messages to party
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Pi. Party Pi then privately sends secret shares sik, s
′
ik to party Pj , for every

blame ⟨blame, i⟩k received from party Pj . Upon receiving valid secret shares for
all ⟨blame, i⟩k it forwarded, party Pj sends a vote ⟨vote, H(commi)⟩ to party
Pi and also forwards secret shares sik, s

′
ik to party Pk if no party Pi has been

detected by round 5. Additionally, if no blame messages are received for Pi by
round 3, party Pj sends ⟨vote, H(commi)⟩ to party Pi at round 5.

Party Pi then waits to collect t + 1 vote messages for H(commi), denoted
by C(commi). A certificate on the commi implies that secret si shared by party
Pi can be reconstructed later. Party Pi then gradecasts C(commi). Invocation of
gradecast on C(commi) ensures that if the party Pi is honest, all honest parties
output a common C(commi) with a grade of 2 and if an honest party Pk output
C(commi) with a grade of 2, all other honest parties output the certificate with
a grade ≥ 1.

Note that all parties (at least all honest parties) are executing the secret
sharing phase. Thus, at the end of gradecast step, each honest party outputs
at least n − t certificates with a grade of 2 and outputs at most t values with
a grade ≤ 2. We call the list of grades for party Pj as AcceptListj . This list is
a set of parties which party Pj observes to have shared their secret properly
and each secret can be reconstructed. Party Pj then multicasts its AcceptListj
to all other parties. Party Pk then checks the validity of AcceptListj by check-
ing if (i) |{h |AcceptListj [h] = 2}| ≥ n − t, and (ii) if AcceptListj [h] = 2 then
AcceptListk[h] ≥ 1 ∀h ∈ [n]. The first check ensures that AcceptListj contains
at least n − t entries with AcceptListj [h] = 2. This check trivially satisfies for
AcceptList sent by an honest party as each honest party receives at least n − t
certificates with a grade of 2. Later, the DKG protocols use secrets from parties
in AcceptListj such that AcceptListj [h] = 2 to compute the final keys. This is
required to ensure security of DKG protocol. The second check ensures that all
the secrets corresponding to AcceptListj [h] = 2 are recoverable; observe that if
AcceptListj [h] = 2 then AcceptListk[h] ≥ 1 due to weak gradecast properties.
This implies party Pk has received a C(commh) from party Ph and C(commh)
implies the secret shared by party Ph can be reconstructed. If the checks pass,
party Pk sends ⟨ack, H(AcceptListj)⟩k to party Pj . A set of t + 1 ack (ack-cert)
messages for AcceptListj (denoted by AC(AcceptListj)) implies at least one hon-
est party has verified that all the secrets corresponding to AcceptListj [h] = 2 can
be recovered.

The idea of using gradecast to perform secret sharing has been explored
before in the works of Feldman and Micali [28, 29] to generate common source
of randomness. Compared to their work, our protocols work in authenticated
model with t < n/2 resilience and invoke a single gradecast per secret sharing.
Their protocols work in unauthenticated model without PKI with t < n/4 [28]
and t < n/3 [29] resilience and involved multiple invocation of gradecast per
secret sharing.

We present detailed security analysis in Section M.
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7 Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) (aka, common
coin) protocol that outputs a common honest leader with some constant proba-
bility called the fairness. In the absence of an existing threshold (DKG) setup,
the OLE protocol was designed via n2 parallel invocations of weaker VSS primi-
tives such as graded VSS [28] or moderated VSS [41] which trivially incurs Ω(n4)
communication. In a recent work, Abraham et al. [3] designed an OLE protocol
tolerating t < n/3 Byzantine faults using Aggregatable PVSS [35] for the asyn-
chronous model which incurs O(κn3) communication. Their protocol invokes n2

parallel invocation of Aggregatable PVSS. Since, Aggregatable PVSS [35] al-
lows a linear number of secret sharings to be aggregated into a single transcript
whose size is linear, their protocol incurs only O(κn3) communication. However,
Aggregatable PVSS requires additional cryptographic assumptions (i.e., SXDH
assumption) which is not desirable. In this work, we build a communication
efficient OLE protocol using only n parallel invocations of weaker VSS primi-
tives and a non-interactive threshold signature scheme [15]. Note that our OLE
protocol does not require a prior threshold (DKG) setup phase despite making
use of threshold signatures. The security of our OLE protocol is based on the
computational Diffie-Hellman (CDH) problem in the random oracle model. The
resulting protocol incurs a communication complexity of O(κn3) and constant
rounds.
Construction. The starting point of our construction is the threshold coin-
tossing scheme of Cachin et al. [15] which makes use of non-interactive thresh-
old signature scheme. The threshold signature scheme requires a prior thresh-
old setup which is essentially a DKG. The threshold setup establishes a tuple
(sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn) of verification keys. After the
threshold setup phase, each party signs a common message (e.g., an epoch num-
ber) with its threshold secret key to obtain a threshold share. A combination
of any t+ 1 valid threshold shares is then used to obtain a unique and random
threshold signature σ. A random oracle H ′′ : G→ {0, 1} is then used to generate
an unbiased and unpredictable random bit from the threshold signature σ.

Note that the threshold signature scheme requires a prior threshold setup
to establish a tuple (sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn) of veri-
fication keys. We fulfill this requirement by using the output of recoverable set
of shares protocol (from Section 6) to establish a local threshold setup corre-
sponding to each party. In the recoverable set of shares protocol, each party Pi

outputs an AcceptListi along with AC(AcceptListi). An AcceptListi (accompa-
nied by AC(AcceptListi)) consists of at least n− t entries with grades of 2 and all
honest parties must have received secret shares shared by parties in AcceptListi
whose grades are 2. Thus, each party Pj uses secret shares shared by parties in
an AcceptListi with grades of 2 to compute its secret key ski,j and verification
key vki,j = gski,j to establish local DKG setup local-dkg[i] corresponding to party
Pi.

In order to setup local-dkg[i], party Pi first invokes weak gradecast to propa-
gate its AcceptListi (along withAC(AcceptListi)). If party Pj outputs (AcceptListi,
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Each party Pi performs the following operations:

1. Each party Pi invokes recoverable set of shares protocol (refer Figure 4). Each
party Pi outputs (AcceptList2i AC(AcceptList2i)).

2. Each party Pi invokes weak gradecast to propagate
(AcceptList2i,AC(AcceptList2i)).

3. Let (oj,i, gradei[j]) be the output with party Pj as dealer. Let oj,i contains
AcceptList2j . If gradei[j] ≥ 1, set local-dkgi[j] = AcceptList2j , local-dkg-gradei[j] =
gradei[j].
- Set skj,i =

∑
m∈AcceptList2j |AcceptList2j [m]=2 smi, vkj,i = gskj,i , and sk′j,i =∑

m∈AcceptList2j |AcceptList2j [m]=2 s
′
mi.

- Compute C⟨g⟩(skj,i), C⟨g,h⟩(skj,i, sk′j,i)) and π≡Comj,i =
NIZKPK≡Com(skj,i, sk

′
j,i, g, h, C⟨g⟩(skj,i), C⟨g,h⟩(skj,i, sk′j,i)). Multicast

(vkj,i, π≡Comj,i) to all parties.

Fig. 5: Threshold setup protocol

AC(AcceptListi)) with a grade of ≥ 1, it uses AcceptListi to compute its secret key
ski,j and verification key vki,j = gski,j to establish local DKG setup local-dkg[i]
corresponding to party Pi. Note that this establishes a separate threshold setup
for each party Pi. With local DKG setup local-dkg[i] as the threshold setup for
party Pi, parties then sign a common message to generate a unique and random
threshold signature σi. Parties then use a random oracleH ′ : G→ {0, 1}κ to gen-
erate κ bit random coin value assigned to party Pi. Each party Pj uses the ran-
dom coin value assigned to party Pi if it outputs (AcceptListi, AC(AcceptListi))
with a grade of 2. From the set of parties for which party Pj outputs (AcceptListk,
AC(AcceptListk)) with a grade of 2, it selects the party with highest (or lowest)
coin value as its leader. With probability at least 1

2 , all honest parties select a
common honest leader using this approach.

Note that threshold coin-tossing scheme of Cachin et al. [15] produces a sin-
gle bit output. However, it can also be used to generate κ bit strings using κ-bit
hash function [14]. Looking ahead, the final DKG is also computed from one of
the valid AcceptList output from the recoverable set of shares. Making use of the
secret shares in an AcceptList output from the recoverable set of shares during
this local DKG setup phase will leak the final public key before the final DKG is
decided. Note that the final public key can be computed from t+ 1 verification
keys. This allows the adversary ability to force the final DKG to have certain
final public key. To circumvent this issue, we execute two separate instances of
recoverable set of shares in parallel; one instance to setup local DKG instances
and the other to setup the final DKG instance. To remove this ambiguity, we
call the accept list output from the recoverable set of shares executed for lo-
cal DKG as AcceptList2 i.e. each party Pi outputs an AcceptList2i along with
AC(AcceptList2i).
Protocol details. The setup phase of the protocol is presented in Figure 5.
Each party Pi invokes recoverable set of shares protocol and outputs AcceptList2i
(along with AC(AcceptList2i)). Each party Pi then invokes weak gradecast to
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propagate (AcceptList2i, AC(AcceptList2i)). At the end of the setup phase, each
party Pi sets up the local DKG instance for each party Pj (i.e., local-dkgi[j])
as AcceptList2j if local-dkg-gradei[j] ≥ 1. If local-dkg-gradei[j] = 2, due to weak
gradecast properties, all honest parties have a common local DKG instance for
party Pj (i.e., local-dkg[j]). In addition, for an honest party Pj , all honest parties
will have a common local DKG instance local-dkg[j]. Each party Pi also com-
putes required secret keys skj,i, verification keys vkj,i for local DKG instance
local-dkgi[j] computed from local-dkgi[j] as shown in Figure 5.

Let sid be the input of party Pi.
Set Xi ← ∅. Each party Pi performs following operations:

1. Perform σj,i = SignTS(skj,i, (j, sid)) and multicast σj,i if local-dkg-gradei[j] ≥ 1
∀j ∈ [n].

2. Upon receiving a set S of t + 1 valid signature shares for party Pj , compute
σj = CombineTS(pk, sid, S) and Xi[j]← H ′(σj).

3. Perform ℓ← argmaxh{Xi[h]|local-dkg-gradei[h] = 2}. Output Pℓ.

Fig. 6: Oblivious Leader Election

The OLE protocol is presented in Figure 6. The input to the protocol is a
sequence id sid. Once the local DKG instances are setup, each party Pi uses
its secret key skj,i to sign a common message i.e., (j, sid) (for party Pj) if
local-dkg-gradei[j] ≥ 1 to obtain a threshold share σj,i. A set of t+1 valid signa-
ture shares corresponding to local-dkg[j] is combined to form a single threshold
signature σj and a hash H ′(σj) generates κ bit coin value for party Pj . We
note that two or more parties could output the same grade list (i.e, AcceptList2)
in the recoverable set of shares protocol; hence their local DKG might be same.
However, parties sign a distinct message e.g. (j, sid) for party Pj . Such generated
threshold signatures are unique and random regardless of their local DKG in-
stance being common; hence the coin value assigned to each party is also random.
Honest parties consider coin values for party Pj only if local-dkg-gradei[j] = 2.
Note that if local-dkg-gradei[j] = 2, a threshold signature σj will exist for party
Pj . This is because all honest parties will have local-dkg-grade[j] ≥ 1 and a com-
mon local-dkg[j] due to weak gradecast properties and each honest party Pi will
send their signature share σj,i. A coin value is then computed as H ′(σj). The
party Pℓ with highest coin value is elected as leader.

Round complexity and communication complexity. The threshold setup
phase has a latency of 15 rounds to invoke recoverable set of shares, n parallel
instances of weak-gradecast and distribute verification keys. The OLE protocol
requires only 1 round to generate threshold signatures. The threshold setup
phase invokes recoverable set shares, n parallel weak-gradecasts with an input
of size O(κn) and sharing verification keys. This incurs O(κn3) communication.
The threshold signature generation incurs O(κn3) communication.

We present detailed security analysis in Section N.
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8 Multi-Valued Validated Byzantine Agreement

In Section 6, we presented a recoverable set of shares protocol where each honest
party Pi outputs a (possibly different) set AcceptListi along withAC(AcceptListi)–
both of which are linear sized. For DKG, all honest parties need to agree on a
common set of parties whose secret shares are used to compute final secret keys
and a public key. Thus, we need a consensus primitive that takes a different O(n)-
sized input from each party and outputs a common set which is valid. Here, a
valid set is accompanied by its ack certificate and can potentially also be the
input of a Byzantine party. Such a consensus primitive is called a multi-valued
validated Byzantine agreement.

Multi-valued validated Byzantine agreement (MVBA) was introduced by
Cachin et al. [14] to allow honest parties to agree on any externally valid value.
Recent works [4,44] have proposed MVBA protocols for the asynchronous com-
munication model tolerating t < n/3 Byzantine faults. To the best of our knowl-
edge, no MVBA protocol have been proposed in the synchronous communication
model for t < n/2 case. In this paper, we present a synchronous MVBA protocol
tolerating t < n/2 Byzantine faults with O(n2ℓ+κn3) communication for inputs
of size ℓ bits and expected constant rounds.

We extend the Binary Byzantine agreement (BBA) protocol of Katz and
Koo [41] to MVBA for large (ℓ = Θ(n)) input. The BBA protocol of Katz and
Koo [41] tolerates t < n/2 Byzantine faults and terminates in expected 4 epochs.
Their protocol involves invoking n parallel gradecasts; with each gradecast prop-
agating small sized input. As mentioned before, their gradecast protocol incurs
O(κn3) communication for a single bit input; thus, their protocol trivially incurs
O(κn4) communication. We replace their gradecast protocol with our commu-
nication optimal gradecast protocol from Section 5. Our gradecast protocol in-
curs only O(κn2) communication while propagating O(n)-sized input. Using our
gradecast protocol allows BBA protocol of Katz and Koo [40] to handle large
input while simultaneously reducing the communication to O(κn3).

To circumvent the linear round lower bound for a deterministic BA proto-
col [23], BA protocols use a common source of randomness called common coin
to achieve agreement in constant expected rounds. The common coin is weak if
all honest parties obtain a common honest leader with some constant probability
(and with the remaining probability either the common leader is Byzantine or
honest parties may disagree on the leader). In Katz and Koo BBA, the weak
common coin was obtained by invoking n2 moderated VSS instances which in-
curs Ω(κn4) communication and blows up the communication complexity. In
this work, we replace their weak common coin protocol with our communication
efficient leader election protocol from Section 7 which outputs a common honest
leader with probability at least 1

2 . Our OLE protocol incurs O(κn3) communica-
tion and a single round after an initial setup phase (refer Figure 5) which incurs
15 rounds.

Our MVBA protocol in presented in Figure 7. The underlying consensus
mechanism is identical to the BBA protocol of Katz and Koo [41]. In round 1,
each party Pi invokes weak gradecast protocol to propagate its input vi. Our
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Let vi be party Pi’s input and e be the current epoch. Each party Pi sets locki ← ⊥.
Each party Pi performs following operations.

1. (Round 1) Propose. Each party Pi invokes weak gradecast to propagate vi.
2. (Round 4) Update. Let (vj,i, gradei[j]) be the output with party Pj as the

dealer. Let Sv
i := {j : vj,i = v∧ gradei[j] = 2} and S̃v

i := {j : vj,i = v∧ gradei[j] ≥
1}. If locki = ⊥, then:
(a) If |S̃v

i | > t, update vi ← v.
(b) If |Sv

i | > t, set locki ← 1.
Invoke weak gradecast (refer Figure 3) to propagate vi.

3. (Round 7) Update2. Again, let (vj,i, gradei[j]) be the output with party Pj as
the dealer. Define Sv

i and S̃v
i as above. If locki = ⊥ and |S̃v

i | > t, set vi ← v.
Multicast vi.

4. (Round 8) Leader election. Invoke OLE protocol with input e.
5. (Round 9) Terminate/Advance Epoch. Let Pℓ be the output of leader elec-

tion protocol.
(a) If locki = 0, output vi and terminate.
(b) If locki = 1, set locki = 0. If locki = ⊥ and |Sv

i | ≤ t, vℓ,i ̸= ⊥ and
ex-validation(vℓ,i) = true, update vi ← vℓ,i. Advance to epoch e+ 1.

6. (At any round) Equivocation. If equivocating hashes signed by party Pj are
detected, multicast the equivocating hashes.

Fig. 7: MVBA with O(n2ℓ+ κn3) communication and expected 4 epochs.

weak gradecast protocol incurs 4 rounds. Rounds 2 and 3 accommodates the
steps of the weak gradecast protocol. Again in round 4, each party Pi invokes
weak gradecast protocol to propagate its updated input vi. Rounds 5 and 6
accommodates the steps of the weak gradecast protocol. In round 8, parties
invoke the OLE protocol to elect a leader.
Round complexity. By Theorem 10, a common honest leader is selected with
probability at least 1

2 and all honest parties terminate in the next 2 epochs.
Thus, the expected number of epochs required is 4 epochs.

We present detailed security analysis in Section O.

9 Distributed Key Generation

Finally, we present two communication efficient DKG protocols with O(κn3)
communication. The first protocol incurs expected O(κn3) communication and
terminates in expected constant rounds while the second protocol incurs O(κn3)
communication in the worst case and terminates in t + 1 epochs. The DKG
protocols in this section differs from the secure DKG protocol of Section 4 in the
following ways. First, we replace the broadcast channel with weaker consensus
primitives and use a single invocation of consensus instance. Second, in the
secure DKG protocol, the final public key and secret keys are computed from
the secret shares of all honest parties. In particular, all honest parties belong to
set QUAL and the public key and secret keys are computed from parties in QUAL.
In contrast, the DKG protocols in this section compute the final public key and
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1. Deal/Setup. Each party Pi invokes recoverable set of shares protocol (refer Fig-
ure 4). Each party Pi outputs a set AcceptListi with an ack-cert for AcceptListi
(i.e., AC(AcceptListi)). Each party Pi also invokes threshold setup phase (refer
Figure 5) in parallel.

2. MVBA. Each party Pi invokes MVBA (Figure 7) with input (AcceptListi,
AC(AcceptListi)). Let AcceptListk be the output of all honest parties.

3. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and

x′
i =

∑
j∈AcceptListk|AcceptListk[j]=2 s

′
ji be the sum of secret shares

in AcceptListk. Compute C⟨g⟩(xi), C⟨g,h⟩(xi, x
′
i) and π≡Comi =

NIZKPK≡Com(xi, x
′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i)).

- Multicast (C⟨g⟩(xi), π≡Comi) to all parties.
- Verify the received (C⟨g⟩(xi), π≡Comj) as shown in Equation (3).
- Upon receiving t+ 1 valid C⟨g⟩(xi), interpolate them to obtain y = gx. Set y
as the public key and xi as the private key.

Fig. 8: DKG with expected O(κn3) communication and expected O(1) rounds

secret keys from a common set of at least n − t parties where at least n − 2t
parties are honest (i.e., at least one honest party when n = 2t+1). This suffices
to ensure construction of a secure DKG protocol.

9.1 DKG with O(κn3) communication and expected O(1) rounds

The DKG protocol uses recoverable set of shares protocol (refer Figure 4) to
perform secret sharing. The threshold setup protocol (refer Figure 5) is also ex-
ecuted at the start of the execution. At the end of the recoverable set of shares,
each honest party Pi outputs a (possibly different) set of at least n − t par-
ties (AcceptListi) which they observe to have correctly shared their secret along
with an ack-cert for AcceptListi (AC(AcceptListi)). The ack-cert for AcceptListi
serves an external validity function to the MVBA protocol i.e., if there is an
AC(AcceptListi) for AcceptListi, then ex-validation(AcceptListi) = true. Note that
both AcceptListi and AC(AcceptListi) are linear sized. Each honest party Pi then
invokes MVBA protocol with (AcceptListi, AC(AcceptListi)) as input. At the end
of MVBA protocol, each honest party outputs a common set AcceptListk. The
final secret key and public key is then computed using secret shares shared by
parties h such that AcceptListk[h] = 2 using the reconstruction protocol in Fig-
ure 1.

Latency and communication complexity. The recoverable set of shares pro-
tocol has a round complexity of 10 rounds and O((κ+w)n3) communication. The
threshold setup protocol incurs a communication of O((κ+w)n3) and 15 rounds;
but is executed in parallel and completes before the OLE protocol is invoked in
the MVBA protocol. Thus, it does not increase overall round complexity of the
protocol. The MVBA protocol incurs expected 4 epochs (with each epoch being
9 rounds) and O((κ + w)n3) communication where the size of input is O(κn).
The reconstruction phase requires O(κn2) communication and a single round.
Thus, the protocol incurs O((κ+w)n3) communication and expected 47 rounds.
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9.2 DKG with worst-case O(κn3) communication and O(t) rounds

While the above protocol terminates in expected 4 epochs in the best case, it has
probabilistic termination and may require a linear number of epochs in the worst
case with a communication of O(κn4). As an alternate solution, we present a
DKG protocol with guaranteed termination in t+1 epochs with O(κn3) commu-
nication in the worst case. The protocol is presented in Figure 9. In the protocol,
honest parties execute the recoverable set of shares protocol and each honest
party Pi outputs a (possibly different) set of at least n− t parties (AcceptListi)
which they observe to have correctly shared their secret along with an ack-cert
for AcceptListi (AC(AcceptListi)). The tuple (AcceptListi, AC(AcceptListi)) is in-
put into a leader-based Byzantine fault tolerant state machine replication (BFT
SMR) protocol of RandPiper [10] to agree on a common set. We present a brief
overview of the BFT SMR.

1. Deal. Each party Pi invokes recoverable set of shares protocol (refer Figure 4).
Each party Pi output a set AcceptListi with an ack-cert for AcceptListi.

2. BFT SMR. Each party Pi participates in BFT SMR [10] with input AcceptListi
and AC(AcceptListi). The BFT SMR protocol is executed in round-robin manner
with first t+ 1 leaders. Let AcceptListk be the first committed value of all honest
parties.

3. Generating keys. Let xi =
∑

j∈AcceptListk|AcceptListk[j]=2 sji and

x′
i =

∑
j∈AcceptListk|AcceptListk[j]=2 s

′
ji be the sum of secret shares

in AcceptListk. Compute C⟨g⟩(xi), C⟨g,h⟩(xi, x
′
i)) and π≡Comi =

NIZKPK≡Com(xi, x
′
i, g, h, C⟨g⟩(xi), C⟨g,h⟩(xi, x

′
i).

- Multicast (C⟨g⟩(xi), π≡Comi) to all parties.
- Verify the received (C⟨g⟩(xi), π≡Comj) as shown in Equation (3).
- Upon receiving t+ 1 valid C⟨g⟩(xi), interpolate them to obtain y = gx. Set y
as the public key and xi as the private key.

Fig. 9: DKG with worst-case O(κn3) communication and t+ 1 epochs

BFT SMR of RandPiper [10]. The BFT SMR protocol of RandPiper [10] is
a communication efficient rotating-leader SMR protocol with O(κn2) communi-
cation per epoch even for O(n)-sized input. The BFT SMR protocol has optimal
resilience i.e., tolerates t < n/2 Byzantine faults. The leaders are rotated in each
epoch; in their protocol, an epoch is a duration of 7 rounds. When the leader
of an epoch is honest, all honest parties commit the proposed value in the same
epoch, whereas, when the leader of the epoch is Byzantine, some honest parties
may require linear number of epochs to commit the proposed value. The BFT
SMR utilizes the “block-chaining” paradigm i.e., each proposal is represented in
the form of a block which explicitly extends a block B proposed earlier by includ-
ing hash of previous block B. In this paradigm, when a block B is committed,
all its ancestors are also committed. We refer the readers to the RandPiper [10]
for more details.
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In this DKG protocol, we execute the BFT SMR protocol for t+1 epochs. In
each epoch, the epoch leader is expected to propose its (AcceptList,AC(AcceptList)).
If the epoch leader is honest, all honest parties commit the proposed set in the
same epoch; otherwise honest parties may require linear number of epochs when
the leader is Byzantine to commit the proposed value or commit no value at
all if the Byzantine leader does not propose. Since the BFT SMR protocol is
executed for t+1 epochs, there will be at least one honest leader; thus all honest
parties commit at least one set. Honest parties output the first committed set
and perform reconstruction using this set to generate the final secret key and
public key.
Latency and communication complexity. The recoverable set of shares pro-
tocol incurs a latency of 10 rounds and O(κn3) communication. The BFT SMR
protocol incurs O(κn2) communication per epoch; O(κn3) communication for
t + 1 epochs. The length of each epoch is 7 rounds. The reconstruction phase
requires O(κn2) communication and a single round . Thus, the protocol incurs
O(κn3) communication in the worst-case and 11 + 7 ∗ (t+ 1) rounds.
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Supplementary Material

J Extended Preliminaries

J.1 Linear erasure and error correcting codes.

– ENC. Given inputsm1, . . . ,mt+1, an encoding function ENC computes (s1, . . . , sn) =
ENC(m1, . . . ,mt+1), where (s1, . . . , sn) are code words of length n. A combi-
nation of any t + 1 elements of n code words uniquely determines the input
message and the remaining of the code word.

– DEC. The function DEC computes (m1, . . . ,mt+1) = DEC(s1, ..., sn), and is
capable of tolerating up to c errors and d erasures in code words (s1, . . . , sn),
if and only if t ≥ 2c+ d.

J.2 Cryptographic accumulators.

Formally, given a parameter k, and a setD of n values d1, . . . , dn, an accumulator
has the following components:

– Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k

and an accumulation threshold n (an upper bound on the number of values
that can be accumulated securely), returns an accumulator key ak. The ac-
cumulator key ak is part of the q-SDH setup and therefore is public to all
parties.

– Eval(ak,D): This algorithm takes an accumulator key ak and a set D of values
to be accumulated, returns an accumulation value z for the value set D.

– CreateWit(ak, z, di,D): This algorithm takes an accumulator key ak, an accu-
mulation value z for D and a value di, returns ⊥ if di ̸∈ D, and a witness wi

if di ∈ D.
– Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumu-

lation value z for D, a witness wi and a value di, returns true if wi is the
witness for di ∈ D, and false otherwise.

In this work, we use bilinear accumulator from Nyugen [50] which satisfies
the following property:

Lemma 1 (Collision-free accumulator [50]). The bilinear accumulator is
collision-free. That is, for any set of size n and a probabilistic polynomial-time
adversary A, the following function is negligible in κ:

Pr


ak ← Gen(1κ, n),

({d1, . . . , dn}, d′, w′)←
A(1κ, n, ak),

z ← Eval(ak, {d1, . . . , dn})

∣∣∣∣∣∣∣∣
(d′ ̸∈ {d1, ..., dn})∧

(Verify(ak, z, w′, d′) = 1)
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J.3 Non-interactive threshold signature scheme

The threshold signature scheme of Cachin et al. [15] consists of following inter-
faces:

– The randomized key generation algorithm KeyGenTS that takes a security
parameter κ as input and outputs a tuple (sk1, . . . , skn) of secret keys, a
tuple (pk1, . . . , pkn) and a common public key pk.

– The deterministic signing algorithm SignTS that takes as input ski and a
message m and outputs a signature σi on m.

– The deterministic share verification algorithm ShareVerifyTS that takes as
input public key pki, a signature share σi and tuple (i,m). It outputs a bit
b ∈ {0, 1} indicating whether σi is a valid signature share on m under secret
key ski.

– The deterministic combining CombineTS takes as input a tuple of public keys
(pk1, . . . , pkn), a message m, and a list of t+1 pairs (i, σi). It outputs either
a signature σ on m or ⊥, if (i, σi) contains ill-formed signature shares.

– The deterministic verification algorithm VerifyTS takes as input a signature
σ, a message m and a common public key pk. It outputs a bit b ∈ {0, 1}
indicating whether σ is a valid signature on m.

The threshold signature scheme satisfies robustness (i.e., it is computation-
ally infeasible for an adversary to produce t+1 valid signature shares such that
the output of the share combining algorithm is not a valid signature) and un-
forgeability (i.e., it is computationally infeasible for the adversary to output a
valid signature on a message m given t signature shares on m).

J.4 Construction of NIZKPK≡Com.

NIZKPK≡Com is generated as follows:
- Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .
- Compute hash c = H≡Com(g, h, C⟨g⟩(s), C⟨g,h⟩(s, r), t1, t2), where H≡Com : G6 →
Zp is a random oracle hash function.

- Let u1 = v1 − c · s and u2 = v2 − c · r.
- Send the proof π≡Com = (c, u1, u2) along with C⟨g⟩(s) and C⟨g,h⟩(s, r).
The verifier checks this proof (given π≡Com, g, h, C⟨g⟩(s), C⟨g,h⟩(s, r)) as follows:
- Let t′1 = gu1C⟨g⟩(s)c and t′2 = hu2(

C⟨g,h⟩(s,r)

C⟨g⟩(s)
)c.

- Accept the proof as valid if c = H≡Com(g, h, C⟨g⟩(s), C⟨g,h⟩(s, r), t′1, t′2).

K Analysis of Secure DKG

We rely on the following Lemma of [51].

Lemma 2 ( [51]). Under the discrete-log assumption, Pedersen’s VSS satisfies
the following properties in the presence of a polynomially bounded adversary that
corrupts up to t parties.
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(i) If the dealer is not disqualified during the sharing phase, then all honest
parties hold secret shares that interpolates to unique polynomial of degree t.
In particular, any t+ 1 of these shares suffice to reconstruct the secret σ.

(ii) The protocol produces information (i.e., commitments Ck and secret shares
σi) that can be used at reconstruction time to test for the correctness of
each secret share; thus, reconstruction is possible, even in the presence of
malicious parties, from any subset of shares containing at least t+ 1 correct
secret shares.

(iii) The view of the adversary is independent of the value of the secret σ, and
therefore the secrecy of σ is unconditional.

Note that Lemma 2 also holds when using evaluations instead of coefficients
as discussed in Section 9. The coding check (see Equation (2)) ensures that the
shared commitments to evaluations are indeed a t degree polynomial except with
1/p probability in Zp. Since p is sufficiently large (poly(κ)), the probability of
the check failing is negligible in the security parameter.

Fact 6 If a dealer Pi receives a vote-certificate, all honest parties must have
received their corresponding secret shares sij, s

′
ij.

Proof. Suppose a dealer Pi receives a vote-certificate i.e, t+1 vote messages. At
least one of the votemessages is sent by an honest party (say Pj). An honest party
Pj sends a vote message only when it receives no blame messages or receives up
to t blame messages and dealer Pi sent secret shares sik, s

′
ik for every ⟨blame, i⟩k

message it forwarded.
If party Pj received no blame messages, all honest parties must have re-

ceived their corresponding secret shares sij , s
′
ij ; otherwise honest parties would

have sent blame messages. On the other hand, if party Pj received f ≤ t blame
messages, n− t− f honest parties must have received their corresponding secret
shares; otherwise, these honest parties would have sent blamemessages and party
Pj would have received more than f blame messages. Since party Pj forwards
secret shares sik, s

′
ik to party Pk for every ⟨blame, i⟩k message it received, all

honest parties must have received corresponding secret shares.

Theorem 7. Under discrete-log assumption and random oracle, the protocol in
Figure 1 is a secure protocol for distributed key generation in dlog-based cryp-
tosystem tolerating t < n/2 Byzantine faults.

Proof. We first prove correctness of the protocol. Observe that all honest parties
build the same set of non-disqualified parties QUAL in Step 6. This is true because
the commitment to the shared polynomials and vote-certificates are posted on
the broadcast channel and broadcast channel ensures all honest parties output
a common value.

Note that if a party Pj ∈ QUAL, it must have posted its commitment and
vote-certificate on the broadcast channel. By Theorem 6, all honest parties have
received secret shares shared by party Pj . This implies party Pj is not disqualified
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Let B be the set of parties controlled by the adversary, and G be the set of honest
parties (run by the simulator S). Without of loss of generality, let B = [P1, Pt′ ] and
G = [Pt′+1, Pn], where t

′ ≤ t. Let Y ∈ G be the input public key and H≡Com : G6 → Zp

is a random oracle hash table for NIZKPK≡Com.

1. Perform Step 1 through Step 6 on the behalf of the uncorrupted parties
Pt′+1, . . . , Pn exactly as secure DKG protocol (refer Figure 1) until set QUAL is
finalized. At the end of Step 6, the following holds:
- Set QUAL is well-defined with at least one honest party in it.
- The adversary’s view consists of polynomials fi(y), f ′

i(y) for Pi ∈ B, the
secret shares sij , s

′
ij for Pi ∈ QUAL ∩ G, Pj ∈ B, and the commitments Ci for

Pi ∈ QUAL.
- S knows all fi(y) and f ′

i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of
those.

2. Perform the following computations for each i ∈ {t+ 1, . . . , n} before Step 6 (refer
Figure 1).

(a) Compute xj for party Pj ∈ B. Similarly, compute xj for party Pj ∈ [Pt′+1, Pt].
Interpolate in the exponent (0, Y ) and (j, gxj ) for j ∈ [1, t] to compute
C⟨g⟩(x∗

i ) = gx
∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random chal-
lenges ci ∈ Zp and responses ui,1, ui,2 ∈ Zp, computing the commit-

ments ti,1 = (gx
∗
i )cigui,1 and ti,2 =

C⟨g,h⟩(xi,x
′
i)

ci

C⟨g⟩(x
∗
i )

hui,2 and include en-

try ⟨(g, h, C⟨g⟩(x∗
i ), C⟨g,h⟩(xi, x

′
i), ti,1, ti,2), ci⟩ in the hash table H≡Com so that

π≡Com = (ci, ui,1, ui,2).

3. In the end, x =
∑

Pi∈QUAL si such that Y = gx.

Fig. 10: Simulator for Secure DKG
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during the sharing phase. By part (i) of Lemma 2, all honest parties hold correct
secret shares and any t + 1 of these secret shares suffices to reconstruct the
secret sj . This is true for all parties Pj ∈ QUAL. Since, the secret key x is sum
of individual secret sj contributed by Pj ∈ QUAL and each secret sj can be
reconstructed using Lagrange interpolation via a combination of t + 1 secret
shares provided by honest parties, the secret key x can be reconstructed via
t + 1 shares provided by honest parties. This proves property C1 of a secure
DKG protocol.

By part (ii) of Lemma 2, there exists information (i.e., commitments) that
can be used to verify correctness of each secret share. Observe that each honest
party Pj sends gxj and NIZKPK≡Com proof π≡Comj at the end of sharing phase.
Each party Pi can verify correctness of C⟨g⟩(xj) by checking Equation (3). A
valid NIZKPK≡Com proof π≡Comj proves in zero knowledge that party Pj knows
xj and x′

j thus proving the correctness of gxj . By using t + 1 valid gxj , honest
parties can compute the same gx via Lagrange interpolation in the exponent
which is the public key. This proves property C2 of a secure DKG protocol.

Observe that the secret key x is the sum of secrets shared by parties in
QUAL which contains at least one honest party and honest parties select their
secret uniformly at random. This suffices to prove property C3 of a secure DKG
protocol.

We now prove secrecy. Our proof of secrecy is based on the proof of secrecy in
earlier works [33,39]. We provide a simulator S for our secure DKG protocol in
Figure 10. Without loss of generality, we assume the adversary A compromises
parties P1, . . . , Pt′ , where t′ ≤ t, denoted by set B. The rest of the parties
Pt′+1, . . . , Pn, denoted by set G are controlled by the simulator.

Informally, the simulator S with input Y runs as follows. S will run on
the behalf of the honest parties G Step 1 until Step 6 following exactly the
instructions. At this point, the set QUAL is well-defined and S knows all fi(y)
and f ′

i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of those. Observe that
the view of adversary A that interacts with S is identical to the view of A that
interacts with honest parties in a regular run of the protocol. In particular, A
sees the following distribution of data:

- Polynomials fi(y), f
′
i(y) for Pi ∈ B

- Values fi(j), f
′
i(j) for i ∈ G, j ∈ B and values Ci for Pi ∈ QUAL

S will then change the secret shared by one honest party (say Pn) to “hit” the
desired public key Y such that the above data distribution observed byA remains
identical. For parties Pi ∈ (G \ {Pn}), the input polynomial fi(y) and f ′

i(y)
remains identical. Thus, their data distribution remains identical. For party Pn,
the input polynomial is modified such that gf

∗
n(0) = gs

∗
n = Y∏

Pj∈QUAL\{Pn} gsi
and

f∗
n(j) = snj for j ∈ [1, t]. Define f ′∗(y) such that f∗

n(y)+λf ′∗
n (y) = fn(y)+λf ′

n(y),
where λ = logg(h). Observe that for these polynomials, the evaluations and
commitments seen by parties in B is identical to the real run of the protocol.

Simulator S will then compute gxj for party Pj ∈ [P1, Pt] and interpolate in
the exponent (0, Y ) and (j, gxj ) for j ∈ [1, t] to compute C⟨g⟩(x∗

i ) = gx
∗
i and the
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corresponding NIZKPK≡Com and publish these values. Observe that these values
pass the verification in the real run of protocol.

It remains to be shown that polynomials f∗
i (y) and f ′∗

i (y) belong to the
right distribution. For QUAL \ (G \ {Pn}), this is trivially true as they are defined
identically to fi(y) and f ′

i(y) which were chosen uniformly at random. For f∗
n,

the polynomial evaluates to random values fn(j) at j ∈ [1, t] and evaluates
to logg(s

∗
n) required to hit Y . Finally, f ′∗

n (y) is defined as f∗
n(y) + λf ′∗

n (y) =

fn(y) + λf ′
n(y), and since f ′

n(y) is chosen to be random, so is f
′∗
n (y).

L Analysis of Gradecast

Lemma 3. Suppose party Pj is the designated sender. If an honest party invokes
Deliver in round r for a value m sent by party Pj and no honest party has detected
a party Pj equivocation by round r+ 1, then all honest parties will receive value
m by round r + 2.

Proof. Suppose an honest party Pi invokes Deliver at round r for a value m sent
by party Pj . Party Pi must have sent valid code words and witness ⟨codeword,
mtype, sk, wk, ze, e⟩i computed from value m to every party Pk ∀k ∈ [n] at round
r. The code words and witness arrive at all honest parties by round r + 1.

Since no honest party has detected a party Pj equivocation by round r+1, it
must be that either honest parties will forward their code word ⟨codeword,mtype,
sk, wk, ze, e⟩ when they receive the code words sent by party Pi or they already
sent the corresponding code word when they either invoked Deliver for value
m or received the code word from some other party. In any case, all honest
parties will forward their code word corresponding to value m by round r + 1.
Thus, all honest parties will have received t+ 1 valid code words for a common
accumulation value ze by round r + 2 sufficient to decode value m.

Theorem 8. The protocol in Figure 3 is a gradecast protocol satisfying Defini-
tion 2.

Proof. Suppose party Pj is the designated sender with its input value v.
We first consider the case when an honest party Pi outputs value v with a

grade gi = 2. Honest party Pi must have invoked Deliver for value v by round 2
and did not detect a party Pj equivocation by round 4. This implies no honest
party detected a party Pj equivocation by round 3. By Lemma 3, all honest
parties receive value v by round 4. In addition, since party Pi invoked Deliver for
value v by round 2, all honest parties receive a code word for value v by round
3. Thus, value v is the first value received by all honest parties. Since v ̸= ⊥, all
honest parties will output value v with a grade ≥ 1.

Next, we consider the case when the designated sender is honest. Since, the
sender is honest, it sends its input value v to all honest parties such that all
honest parties receive value v in round 2. Thus, all honest parties invoke Deliver
to propagate value v in round 2. Moreover, the honest sender does not equivocate.
Thus, all honest parties output value v with a grade of 2 in round 4.
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The case where each honest party outputs a value with a grade ∈ {0, 1, 2} is
trivial by design.

Lemma 4 (Communication Complexity). Let ℓ be the size of the input,
κ be the size of accumulator, and w be the size of witness. The communication
complexity of the protocol in Figure 3 is O(nℓ+ (κ+ w)n2).

Proof. At the start of the protocol, the sender multicasts its value of size ℓ to all
party Pj ∀j ∈ [n] along with κ sized accumulator. This step incurs O(nℓ+ κn).
Invoking Deliver on an object of size ℓ incurs O(nℓ+(κ+w)n2), since each party
multicasts a code word of size O(ℓ/n), a witness of size w and an accumulator
of size κ. Thus, the overall communication complexity is O(nℓ+ (κ+ w)n2).

M Analysis of Recoverable Set of Shares

Lemma 5. If an honest party sends vote for a commitment comm, then (i)
all honest parties receive comm, (ii) all honest parties receive their valid secret
shares corresponding to commitment comm.

Proof. Suppose an honest party Pi sends a vote for commitment commk :=
⟨propose,VSS.C⃗k, zpk⟩k at round 5. Party Pi must have received up to t blame
messages for party Pk. This implies at least one honest party Pj received valid se-
cret shares sk,j , s

′
k,j and commitment commk and invoked Deliver(propose, commk, zpk,−)

at round 2. Moreover, party Pi did not detect party Pk equivocation by round
5. This implies no honest party detected party Pk equivocation by round 3.
By Lemma 3, all honest parties receive the commitment commk by round 4.
This proves part (i) of the Lemma.

For part (ii), party Pi can send vote message on two occasions: (a) when it
does not detect a ⟨blame, k⟩ by round 3 and party k equivocation by round 5,
and (b) when party k sent valid secret shares for every ⟨blame, k⟩ message it
forwarded and does not detect any party k equivocation by round 5.

In case (a), party Pi did not detect a party k equivocation by round 5 and
⟨blame, k⟩ by round 3. Observe that all honest parties must have received valid
secret shares corresponding to the commitment commk; otherwise party Pi must
have received ⟨blame, k⟩ by round 3 (since honest parties send ⟨blame, k⟩ if no
valid secret shares are received at round 2). Thus, all honest parties receive valid
secret shares corresponding to commitment commk.

In case (b), party Pi receives valid secret shares from party Pk for every
⟨blame, k⟩ (up to t blame) messages it forwarded and detected no party k equiv-
ocation by round 5. Observe that party Pi received f ≤ t ⟨blame, k⟩ messages
and received valid secret shares for every ⟨blame, k⟩ message it forwarded. This
implies at least n − t − f honest parties have received valid shares for com-
mitment commk from party Pk; otherwise, party Pi would have received more
than f ⟨blame, k⟩ message by round 3. Since, party Pi forwards f received secret
shares corresponding to f received ⟨blame, k⟩, all honest parties receive valid
secret shares corresponding to commitment commk.
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Lemma 6. If an honest party sends an ack for a grade list AcceptListj, then
all honest parties have valid secret shares corresponding to commh for all h such
that AcceptListj [h] = 2.

Proof. Suppose an honest party Pi sends an ack for a grade list AcceptListj .
Then, it must be that if AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n].
Party Pi sets AcceptListi[h] ≥ 1 when it receives a vote certificate C(commh). If
there is a vote certificate C(commh) for value commh, then at least one honest
party (say party Pk) must have voted for commh. By Lemma 5 part (ii), all
honest parties have valid secret shares corresponding to commitment commh.
Thus, all honest parties have valid secret shares corresponding to commh for all
h such that AcceptListj [h] = 2.

Lemma 7 (Liveness). Each honest party Pi will receive an ack-cert for its
grade list AcceptListi.

Proof. Consider an honest party Pi. Party Pi will send valid commitment VSS.C⃗i

and secret shares sij , s
′
ij to party Pj ∀j ∈ [n] in round 1. All honest parties will

receive their valid secret shares sij , s
′
ij and commitment commi in round 2. Thus,

no honest party will send ⟨blame, i⟩ for party Pi.
Observe that up to t Byzantine parties can always send ⟨blame, i⟩. Honest

parties wait until round 3 to collect blame messages for any party. Honest parties
forward ⟨blame, i⟩ to party Pi which party Pi receives by round 4. Party Pi

forwards valid secret shares to party Pj for every ⟨blame, i⟩ message it received
from party Pj which party Pj receives by round 5. Thus, party Pj will send vote
for party Pi which party Pi receives by round 6. This implies party Pi collects
t+ 1 distinct vote messages by round 6.

Party Pi invokes weak gradecast to propagate C(commi) which completes
by round 9. Due to the properties of weak gradecast, for an honest party Pi,
all honest parties set AcceptList[i] to 2. Thus, for any honest party Pj , all
honest parties set AcceptList[j] to 2. This implies all honest parties will have
|{h |AcceptListj [h] = 2}| ≥ n− t.

Next, we consider the case when an honest party sets AcceptListi[l] = 2
for a Byzantine party Pl and receive C(comml). Due to the properties of weak
gradecast, all honest parties receive C(comml) and set AcceptList[l] ≥ 1. Thus,
for every AcceptListi[h] = 2 then AcceptList[h] ≥ 1 for all honest parties.

Party Pi multicasts its AcceptListi in round 9. Since, AcceptListi satisfies
both the conditions |{h |AcceptListi[h] = 2}| ≥ n− t and AcceptListi[h] = 2 then
AcceptList[h] ≥ 1, all honest parties will send ack for AcceptListi proposed by
party Pi and party Pi will receive ack-cert for AcceptListi the end of round 10.

Theorem 9. The protocol in Figure 4 is a recoverable set of shares protocol
satisfying Definition 5.

Proof. Straight forward from Lemma 5, Lemma 6 and Lemma 7

Lemma 8 (Communication Complexity). Let ℓ be the size of commitment
comm, κ be the size of secret share and accumulator, and w be the size of witness.
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The communication complexity of the protocol is O(n2ℓ + (κ + w)n3) bits per
epoch.

Proof. At the start of the protocol, each party Pi multicasts commi of size ℓ
to all party Pj ∀j ∈ [n] and sends secret share si,j to party Pj ∀j ∈ [n]. This
step incurs O(n2ℓ + κn3). In the Forward step, parties invoke Deliver for the
first commj from party Pj for j ∈ [n]. Invoking Deliver on an object of size ℓ
incurs O(nℓ+(κ+w)n2), since each party multicasts a code word of size O(ℓ/n),
a witness of size w and an accumulator of size κ. Thus, invoking Deliver on n
commitments incurs O(n2ℓ+ (κ+ w)n3).

In the Blame step, honest parties may blame up to t Byzantine parties if
they do not receive valid secret shares. Multicast of t blame from each party
incursO(κtn2) communication. In addition, t Byzantine parties always can blame
honest parties. Honest parties forward up to t ⟨blame, j⟩ messages to party Pj .
This incurs O(κtn2) communication.

In the Private open step each party can send up to t secret shares to all
other parties. This incurs O(κtn2) for all parties. In the Vote cert step, each
party multicasts O(n)-sized vote-cert to all other parties which incurs O(κn3) in
communication. Invoking Deliver on an O(n)-sized certificate incurs O(n2+(κ+
w)n2). For n certificate, this step incurs O(n3 + (κ+ w)n3).

In the Propose grade step, each party multicast their grade list of size O(n).
Multicast of O(n)-sized grade list by n parties incurs O(n3) communication.
Thus, the total communication complexity is O(n2ℓ+ (κ+ w)n3) bits.

N Analysis of OLE protocol

Our coin generation protocol is similar to the threshold coin-tossing scheme
of [15]. In Cachin et al. [15], the coin value is a single bit computed from the
threshold signature using H ′′ : G → {0, 1}. In our scheme, the coin value is a
κ bit string computed from the threshold signature using a κ bit hash function
H ′ : G → {0, 1}κ which is also secure [14]. We rely on the following Lemma
of [15].

Lemma 9 ( [15]). In the random oracle model, the coin-tossing scheme of
Cachin et al. [15] is secure i.e., satisfies robustness and unpredictability under
CDH assumption.

Theorem 10. In the random oracle model and under CDH assumption, the
protocol in Figure 6 is an oblivious leader election protocol with fairness at least
1
2 .

Proof. We first show termination i.e., honest party Pi will obtain a threshold sig-
nature σj (and coin value for party Pj) if local-dkg-gradei[j] = 2. This is because
all honest parties will have local-dkg-grade[j] ≥ 1 and a common local-dkg[j] due
to weak gradecast properties. Thus, each honest party Pk will send their signa-
ture share σj,k i.e., a set of t+1 valid signature shares will be available sufficient
to obtain threshold signature σj (and coin value H ′(σj)).
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By Lemma 9 the threshold signature generation protocol satisfies robustness
and unpredictability. Thus, the coin value generated from threshold signature is
robust and unpredictable.

Observe that each party Pi signs a distinct message (i.e, (j, sid)) for each part
Pj . Thus, the threshold signature σj for each party Pj is unique and random
even if two or more parties have the same local DKG instance; hence each party
Pj will be assigned random coin value (H ′(σj)). Since, the coin value assigned
to a party is random, the coin value assigned to an honest party will be a global
maximum with probability at least n−t

n . The probability that coin values of
any two parties can be maximum is bounded by 1

2κ . Thus, all honest parties
select the coin value corresponding to a common honest leader with probability
n−t
n −

1
2κ ≥

1
2 when κ = 2 log n.

O Analysis of MVBA

Lemma 10. If an honest party sets lock to 1 with a value v in epoch e, then all
honest parties adopt value v in epoch e.

Proof. Suppose an honest party Pi sets locki to 1 in epoch e. Party Pi must
have received value v from a set Q of at least t + 1 parties such that |Svi | > t.
By the properties of weak gradecast, all other honest parties receive value v
corresponding to parties in Q with a grade ≥ 1 (i.e., all other honest parties
have grade[j] ≥ 1 ∀j ∈ Q) and |S̃v| > t for all other honest parties and all
honest parties adopt value v in the Update step.

Once all honest parties adopt value v in the Update step, they invoke weak-
gradecast to propagate value v at the end of the Update step. Since, honest
parties do not equivocate and send value v in a timely manner, all honest parties
output value v such that grade[j] to 2. Thus, |S̃vi | > t and |Svi | > t in the
Update2 step. Since, |Svi | > t, no honest party will adopt value vℓ selected from
the proposal election protocol. Thus, all honest parties adopt value v in epoch
e.

Lemma 11. If all honest parties start an epoch e with same input v, then all
honest parties decide value v and terminate by the end of epoch e+ 1.

Proof. Suppose all honest parties start an epoch e with the same input v. All
honest parties invoke weak-gradecast with value v in the Propose step. By the
properties of weak gradecast, for an honest dealer, all honest parties output a
grade of 2. Thus, all honest parties will set grade[j] = 2 for all other honest
parties. Thus, for value v, all honest parties have |Svi | > t and |S̃vi | > t If
lock = ⊥, honest parties set lock to 1.

Similarly, all honest parties invoke weak-gradecast with value v in the Up-
date2 step. By similar argument, all honest parties will set grade[j] = 2 for all
other honest parties i.e., |Svi | > t and |S̃vi | > t for all honest parties at the of
Update 2 step. Moreover, no honest party will adopt the value output from the
proposal election protocol.
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Honest parties with lock = 0, output v and terminate in epoch e. All the
remaining honest parties with lock = 1, set lock = 0 and advances to epoch
e + 1. In the next epoch, all the remaining honest parties have lock = 1 and
will not update its value and stick to value v. At the end of epoch e + 1, they
set their lock lock = 0, output value v and terminate. Thus, all honest parties
output v and terminate by the end of epoch e+ 1.

Theorem 11. The protocol in Figure 7 solves MVBA.

Proof. We first consider external validity i.e., if an honest party decides a value
v, then ex-validation(v) = true. Observe that an honest party Pi decides a value
v only when its sets locki = true. An honest party sets locki = true only when it
observes |Svi | > t. Thus, at least one honest party Pj must have sent value v in
Propose step. Honest party Pj sends value v either when its input at the start
of the protocol execution is v in which case ex-validation(v) = true, or when its
updates its value vj to v at the end of an epoch. In the latter case, party Pj

checks if ex-validation(v) = true.

Next, we consider agreement. Consider an epoch e and let Pℓ be the common
leader in epoch e elected via OLE protocol. There are two cases to consider.

Case I. locki = 1 for at least one honest party Pi with a value v in epoch e.
By Lemma 10, all honest party adopt value v in epoch e and enter epoch e+ 1
with same value v. By Lemma 11, all honest parties output value v and terminate
by epoch e+ 2.

Case II. locki = ⊥ for all honest parties in epoch e. If leader Pℓ is honest, leader
Pℓ sends the same value vℓ to all parties. If |Svi | ≤ t for all honest parties, then
all honest parties adopt the value vℓ in epoch e. By Lemma 11, all honest parties
output value vℓ and terminate in epoch e+ 2.

If |Svi | > t for at least one honest party Pi in the Update2 step, by the
properties of weak-gradecast, |S̃v| > t for all honest parties. Thus, all honest
parties including leader Pℓ adopt value v in the Update2 step. If the leader Pℓ

is honest, it sends the same value v to all parties. Honest parties with |Svi | ≤ t
adopt value vℓ which is the same value adopted by party Pi with |Svi | > t. Thus,
all honest parties have value v at the end of epoch e. By Lemma 11, all honest
parties output value v and terminate by epoch e+ 2.

Lemma 12 (Communication Complexity). Let ℓ be the size of input v
for each party, κ be the size of accumulator and w be the size of witness. The
communication complexity of the protocol is O(n2ℓ+ (κ+ w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi invokes weak gradecast with
O(ℓ)-sized proposal. By Lemma 4, this step incurs O(n2ℓ + (κ + w)n3). Simi-
larly, in the Update2 step, each party invokes weak gradecast with O(ℓ)-sized
proposal. By Lemma 4, this step also incurs O(n2ℓ+ (κ+ w)n3). The proposal
election protocol has a communication complexity of O(κn3). Thus, the total
communication complexity of the protocol is O(n2ℓ+(κ+w)n3) bits per epoch.
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P A Lower Bound on the Communication Complexity of
Weak Gradecast

In this section, we show a quadratic communication lower bound for the weak
gradecast protocol. The proof of this lower bound is a trivial extension of the
communication lower bound for Byzantine broadcast by Dolev and Reischuk [22].

Lemma 13. There does not exist a protocol for weak gradecast tolerating t
Byzantine parties with a communication complexity of at most t2/4 messages.

Proof. Suppose for the sake of contradiction, there exists such a protocol. Con-
sider the parties being partitioned into the following two sets: A: a set of ⌈t/2⌉
parties, and B: all remaining parties which includes the designated sender r.

We consider two executions W1 and W2 where the third property of weak
gradecast (i.e., if an honest party outputs a value v with a grade of 2, all other
honest parties output value v with a grade ≥ 1) is violated in the W2. In the first
execution (W1), all parties in A are Byzantine. Parties in A do not communicate
with each other. Towards B, parties in A execute honestly except they ignore the
first ⌈t/2⌉ messages from parties in B. The designated sender r ∈ A sends value
v to all parties. Since, the maximum faults in W1 is ⌈t/2⌉ and the designated
sender is honest, all honest parties decide value v with a grade of 2.

Since the communication complexity of the protocol is at most t2/4, there
must exist a party (say s) in A that receives at most t/2 messages from parties
in B; otherwise the communication complexity will be more than t2/4. Let Bs

be the set of all parties that send messages to party s in W1.
In the second execution (W2), all parties in A \ {s} are Byzantine and all

parties in Bs are Byzantine which includes the designated sender r. The total
number of Byzantine parties is (⌈t/2⌉−1)+⌈t/2⌉ ≤ t which is within allowed fault
threshold t. The designated sender r sends value v. The parties in Bs execute
the protocol in the same way as in W1 except they do not send any messages to
party s. Parties in A\{s} execute the protocol in the same way as in W1. Party
s in W1 behave as an honest party which did not receive the first ⌈t/2⌉ messages
which is similar to party s in W2 which receives no messages. Thus, parties in
B \Bs cannot distinguish W1 and W2. Thus, they decide value v with a grade
of 2. Since, party s does not receive any messages in W2, it does not decide v
with a grade of ≥ 1. This violates the third property of weak gradecast where
if an honest party outputs a value v with a grade of 2, then all honest parties
need to output a value v with a grade ≥ 1. A contradiction.

Theorem 12. Let CC(ℓ) be the communication complexity of weak gradecast for
ℓ bit input. Then CC(ℓ) = Ω(nℓ+ n2)

Proof. Since each party must learn ℓ bit input, the protocol needs Ω(nℓ) bits
(The argument follows from [30]). From Lemma 13, weak gradecast requires
Ω(n2) even for a single bit input. Thus, CC(ℓ) = Ω(nℓ+ n2) for ℓ bit input.
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