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Abstract. We are witnessing the emergence of decentralized AI pipelines
wherein different organisations are involved in the different steps of the
pipeline. In this paper, we introduce a comprehensive framework for ver-
ifiable provenance for decentralized AI pipelines with support for con-
fidentiality concerns of the owners of data and model assets. Although
some of the past works address different aspects of provenance, verifi-
ability, and confidentiality, none of them address all the aspects under
one uniform framework. We present an efficient and scalable approach
for verifiable provenance for decentralized AI pipelines with support for
confidentiality based on zero-knowledge proofs (ZKPs). Our work is of
independent interest to the fields of verifiable computation (VC) and
verifiable model inference. We present methods for basic computation
primitives like read only memory access and operations on datasets that
are an order of magnitude better than the state of the art. In the case of
verifiable model inference, we again improve the state of the art for de-
cision tree inference by an order of magnitude. We present an extensive
experimental evaluation of our system.

1 Introduction

In this paper we consider a decentralized AI pipeline with multiple independent
organizations wherein one set of organizations specialize in curating high qual-
ity datasets based on independent data sources, another set of organizations
specialise in training models from the curated datasets, and another set of orga-
nizations deploy the trained models and provide them as a service to the model
consumers. A typical decentralized AI pipeline is shown in Figure 1. The core
assets like datasets and models represent significant intellectual property for
their respective owners. Therefore, it is essential for the asset owners to ensure
the confidentiality of their assets beyond the intended usage. On the other hand,
since the model consumers are likely to use them for driving major decisions,
they would like to ensure auditability and integrity of the models by (i) verifying
the provenance and performance of the models on benchmark datasets 1 and (ii)
ensuring that the predictions from the deployed service match with that of the
verified model. In summary, decentralized AI pipelines need to provide end to
end provenance while ensuring the confidentiality of different assets.

1 provenance of the model training step is not considered in this paper
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Fig. 1: Typical Decentralized AI Pipeline.

Consider an example of deciding on mortgage applications using an AI ser-
vice. A data service provider, SP, provides high quality training and benchmark
datasets by curating historical mortgage data from reputationally trusted finan-
cial institutes. A specialized fintech company, FC, trains and deploys an AI model
as a service for the given task. Further, it makes a public claim on the model
performance on benchmark dataset. Note that establishing provenance of model
training carried out by FC is not addressed in this work. A financial institute,
CONS, wanting to use AI in mortgage approval process would want to indepen-
dently verify the claim made by FC before deciding to subscribe to the service. If
CONS is satisfied after the verification process, it might use the deployed service
to make decision on mortgage applications. At this time, CONS and individual
mortgage applicants should be able to independently verify that the predictions
from the deployed service match with that of the verified model. The reputa-
tionally trusted data owners and FC would like to protect the confidentiality of
their assets except from those actors who are entitled to access them. We would
like to highlight a special and important requirement of FC: to prevent model
reengineering attacks, the FC would like to ensure that the model verifier does
not get to learn the predictions of the models on individual instances during the
process of verification.

We present significant progress towards describing efficient and scalable ap-
proach to provide public verifiability for common operations in an AI pipeline,
while preserving confidentiality of involved data and model assets. In the paper
we have highlighted few primitive operations, but more operations on both data
and models can be added as state of the art improves. While it is difficult to
match the expressiveness of what is possible via plain-text computations, our
methods can nevertheless provide provenance over simpler pipelines.

1.1 Related Work

While there is no prior work that addresses all the aspects of verifiable distributed
AI pipeline as introduced in this paper, there are past works that address differ-
ent aspects of the overall requirements. The provenance requirement is addressed
in [19, 21], the model verification or certification requirement is addressed in [15,
22], and the verifiable inference from private model requirement is addressed in
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[28, 18, 11, 14, 23]. Our work is of independent interest to the field of Verifiable
Computation (VC) as it provides more efficient methods for useful computational
primitives like Read Only Memory (ROM) access and operations on datasets. We
briefly review and contrast the relevant literature with our work.

Provenance Models for AI: There has recently been considerable interest in
the provenance of AI assets. For instance, [19, 21] provide good motivation and
DLT based architecture for establishing provenance of AI assets. The provenance
is enabled by recording the cryptographic hash of each asset on the tamper-proof
ledger, and recording any operations on them as transactions. While this provides
auditability and lineage of an asset, its verification necessarily involves revealing
the assets, thereby violating the confidentiality requirements in our setting. We
build on the tools from verifiable computation to enable verifiability of assets and
operations on them while supporting all the stated confidentiality requirements.

Model Certification for AI: Training and testing AI models for fairness and
bias is an area of active research. Recently, efforts have been made to leverage
methods from secure multiparty computation (MPC) to enable fair training and
certification of AI models while ensuring privacy of sensitive data of the partici-
pants [15, 22]. These methods require a trusted party (e.g. a regulator) to certify
the claims on the models and therefore, do not support the public verifiability
requirement in our setting.

Verifiable Model Inference: The problem of verifying the predictions from
private AI models, with different privacy requirements, has been considered in
the literature. For instance, verifiable execution of neural networks has been
considered in [14, 18, 23, 27] and verification of predictions from decision trees has
been considered in [28]. These works cannot be extended for end to end pipeline
verification as they cannot handle verification of operations on datasets. In our
work, apart from providing verification for the entire AI pipeline, we improve
upon the work of [28] by making the verification of the decision tree inference
more scalable as described in Section 1.2.

Reusable Gadgets for VC: On the technical front, our work complements per-
sistent efforts such as [25, 16] to enable more computations efficiently in the VC
setting. The problem of efficiently supporting addressable memory inside VC cir-
cuits has received considerable attention [3, 5, 25, 16, 31] as many computations
are best expressed using the abstraction of memory. Methods in aforementioned
efforts support arbitrary zero knowledge Succinct Arguments of Knowledge (zk-
SNARKs). We provide a more efficient variant of prior methods, leveraging a
zkSNARK with commit and prove capability (see Section 3). However, this is
not a major hinderance as many efficient zkSNARKs can be modified to be
commit and prove with negligible overhead (see [8]). Our efficient abstractions
for read only memory (ROM) and datasets can be incorporated into zkSNARK
circuit compilers such as ZokRates [10], when suitably targeted for a commit
and prove backend. In particular, supporting datasets as first class primitives in
zkSNARK compilers will make them more attractive for privacy preserving data
science applications. Finally we mention that the work on Verifiable Outsourced
Databases (e.g. [29], [30]) is not directly applicable here as (i) current implemen-
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tations do not address data confidentiality and (ii) they do not support reusable
representation of datasets across computations.

1.2 Our Contributions

We present the first efficient and scalable system for decentralized AI pipelines
with support for confidentiality concerns of the asset owners (as described in
Table 2) and public verifiability. Our work represents major system level in-
novations in the areas of model certification ([15] - lacks public verifiability,
provenance), provenance architectures for AI artifacts ([19, 21] - lack privacy),
and confidentiality preserving model inference ([14, 23, 28] - lack provenance). A
number of technical contributions enable this system level novelty and they are
summarized as follows.

– Improved method for read-only memory access in arithmetic circuits with an
order of magnitude gain in efficiency over the existing methods (see Table 3
). The improved memory access protocol is crucially used in realizing efficient
circuits for data operations (inner-join) and decision tree inference.

– A method for consistent modeling of datasets in arithmetic circuits with
complete privacy. In addition, we design efficient circuits to prove common
operations on datasets. We make several optimizations over the basic ap-
proach of using zkSNARKs resulting in at least an order of magnitude gain
in efficiency (see Table 4). On commodity hardware, our implementation
scales well to prove operations on datasets with up to 1 million rows in a
few minutes. The verification takes few hundred milliseconds.

– We present an improved protocol for privacy preserving verifiable inference
from decision tree. Our method yields up to ten times smaller verification
circuits by avoiding expensive one-time hashing of the tree used in [28].
Further leveraging our method for read-only memory access, we also incur
fewer multiplication gates per prediction (see Section 5 for more details).
Comparative performance under different settings is summarized in Table 5.

– We implement our scheme using Adaptive-Pinocchio [24] to experimentally
evaluate the efficacy of our scheme. We report the results in Section 6. Our
scheme can also be instantiated with other CP-SNARKs.

Our implementation uses pre-processing zkSNARKs [20, 13, 5, 9] which pre-
process a circuit description to make subsequent proving and verification more
efficient. Our circuits can also be used with generic zkSNARKs such as those in
[2, 4, 7], suitably augmented with commit and prove capability.

2 Verifiable provenance in decentralized AI pipelines

A typical AI pipeline consists of different steps, such as accessing raw datasets
from multiple sources, performing aggregation and transformations in order to
curate training and testing datasets for the AI task on hand, developing the AI
model, and deploying it in production. We are interested in settings in which
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Operation
Complexity

(asymptotic)
Complexity
(concrete)

Prov. Time(s) Ver. Time(ms)

Aggregation O(N) 2.1 mil 37 400
Filter O(N) 0.7 mil 12 400
Order-By O(bN) 3.1 mil 50 400
Inner-Join O(bN) 6.5 mil 80 400

Table 1: Performance of our dataset operations. For concrete numbers we took
number of rows N = 100K and bit-width of elements b = 32.

the AI pipeline is decentralized, i.e, different steps of the pipeline are carried out
by different independent actors. We assume five different type of actors: data
owners(DO), data curators(DC), model owners(MO), model certifiers(MCERT), and
model consumers(MCONS). For brevity of exposition, we assume that the number
of data curators, model owners, model certifiers, and model consumers is just
one. However, all the concepts and results extend in a straight forward manner
to the general setting involving multiple entities of each type.

We assume that there is a task T for which the process of building an AI
pipeline is undertaken in a decentralized setting. The salient features of our
provenance and certification framework is summarized as follows.

There are m data owners DO1, DO2, . . . , DOm who share their respective raw
datasets D1, D2, . . . , Dm privately with the data curator DC and also make a
public commitment of the datasets. The data curator curates a dataset Db =
f(D1, D2, . . . , Dm) for the purpose of benchmarking the performance of an AI
model for the task T and makes a public commitment of Db. We assume the
model owner, MO, has a pre-trained AI model M and wants to offer it as a
service. MO makes a public commitment of the model. MO buys the benchmark
dataset Db from DC. MO wishes to convince potential consumers of the utility of
the model M by making performance claim accuracy = score(M,Db) when M
is used for getting predictions on the dataset Db. The model certifier, MCERT,
should be able to independently verify the provenance of all the steps and the
claimed performance of the model M . MCERT also ensures that the timestamp
of the public commitment of model M is earlier than the timestamp of public
commitment of Db to ensure that the model M cannot be overfitted to the
dataset Db. MCERT certifies the model M only after verifying the correctness of
the claim. The model consumer, MCONS, subscribes to the model M only upon
its successful certification. Suppose MCONS supplies a valid input data D′ to the
service provided by MO and gets a prediction Y ′. We require that MCONS should be
able to independently verify that the prediction Y ′ matches with the prediction
of the committed model M on the instance D′.

We observe that the outlined requirements ensure that the decentralized
AI pipeline is transparent. The key question we address in this paper is that of
providing such a transparency while satisfying the confidentiality requirements of
all the actors. We assume that none of the actors in the set up have any incentive
to collude with the others, but, can act maliciously. The privacy requirements
and security model of different actors is summarized in Table 2.
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Participant Confidentiality Requirement Security Model

DOs P1: Only DC can access their plain-
text data

S1: Trusted to provide the correct
data

DC P2: Only MO can access curated plain-
text data

S2: Not trusted with the correct
computation

MO

P3: No one can access the plaintext
model
P4: During the certification, MCERT

cannot get access to prediction of M
for any instance in the dataset Db

S3: Not trusted to make the right
performance claim or use the certi-
fied model for providing predictions

MCERT NA S4: Trusted to certify the model only
after end to end provenance is veri-
fied

MCONS P5: No one other than model owner
(optional) can access its data in clear

NA

Table 2: Summary of privacy requirements and trust assumptions in our setting.

We present a provenance framework which ensures trust in the AI pipeline by
proving each computation step using zero-knowledge proofs, thus meeting all the
confidentiality requirements captured in Table 2. Below, we present a concrete
example of an AI pipeline for establishing fairness of an AI model, where we
clearly highlight involvement of various actors.

2.1 Decentralized Model Fairness

Increasingly, AI models are required to be fair (i.e. non-discriminating) with
respect to protected attributes (e.g. Gender). There are several metrics which
are used to evaluate a model for fairness. For the sake of illustration, we choose
the popular metric called predictive parity, which requires a model to have similar
accuracy for different values of the protected attribute. In our specific example,
our goal is to show that for binary classification model M we have:

∣∣Pr[M(x) = y |Gender(x) = M]− Pr[M(x) = y |Gender(x) = F]
∣∣ ≤ ε

where (x, y) ∼ D for representative distribution D. We may estimate the above
metric emperically on a test data T consisting of samples {(xi, yi)}ni=1. For con-
creteness, let M be a decision tree model developed by model owner MO to be
used by financial institutions for approving home mortgage loan applications.
Let D1 and D2 be two private datasets consisting of loan applications, which
are owned by financial instituions DO1 and DO2 respectively. A data curator DC

curates the dataset T by concatenating (row-wise) datasets D1, D2 and further
generates datasets TM , TF consisting of applications with male and female ap-
plicants respectively. Finally the model owner MO obtains datsets TM and TF
and computes the accuracy of its model on the respective datasets. In Figure
2, the top left code block shows the operations executed by different actors in
the pipeline without verifiability. The remaining code blocks show operations
performed by actors in a verifiable pipeline. The asset owners publicly commit
their private assets (bottom left) and generate proofs to attest correctness of
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their operations on assets (top right). Finally, a verifier (e.g. auditor) uses pub-
lished commitments and proofs to establish the correctness of steps performed
by respective actors in the pipeline (bottom right).

Fig. 2: Example pipeline for certifying financial model for fairness.

3 Overview

This section provides overview of the technical challenges in instantiating our
solution. More detailed technical contributions appear in Sections 4 and 5.

3.1 Building Blocks

Cryptographic Primitives: We use zkSNARKs as the main cryptographic tool
to verify correctness of data operations and model inference while maintaining
confidentiality of the respective assets. A zkSNARK consists of a triple of algo-
rithms (G,P,V) where (i) G takes description of a computation as an arithmetic
circuit C and outputs public parameters pp ← G(1λ, C), (ii) P takes pp and a
satisfying instance (x,w) for C and outputs a proof π ← P(pp,x,w) while (iii)
V takes pp, statement x and a proof π and outputs b← V(pp,x, π). The proof π
reveals no knowledge of the witness w, while an accepting proof π implies that
prover knows a satisfying assignment (x,w) with overwhelming probability. A
commit and prove zkSNARK (CP-SNARK) allows proving knowledge of witness
w as before, where part of w additionally opens a public commitment c, i.e.
w = (u, z) and Open(c) = u. A CP-SNARK specifies a commitment scheme
Com and like a zkSNARK, it provides algorithms G,P and V for generating pub-
lic parameters, generating proofs and verifying proofs respectively. Additionally,
a CP-SNARK allows one to generate proofs over data committed using Com
with negligible overhead in proof generation and verification.
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Notation: We use the notation [n] to denote the set of natural numbers
{1, . . . , n}. We often use the array notation x[ i ] to denote the ith component of
the vector x, with 1 as the starting index. We will denote the concatenation of
vectors x and y as Jx,yK. All our arithmetic circuits, vectors and matrices are
over a finite field F of prime order.

Circuits for Dataset Operations: To use zkSNARKs, we express operations
on datasets as arithmetic circuits. At a high level, arithmetic circuits representing
data operations accept datasets as their inputs and outputs. Since establishing
provenance of an asset in an AI pipeline requires verifying operations over several
related assets, we require uniform representation of datasets across arithmetic
circuits, which would allow a dataset to be used as inputs/outputs in different
circuits. The second design constraint we enforce is that arithmetic circuits to
be universal, i.e, the same circuit can be used to verify operations on all datasets
within a known size bound. We need universal circuits for two primary reasons:
(i) the sizes of datasets are considered confidential and must not be inferable
from the circuits being used, and (ii) the circuits can be pre-processed to yield
efficient verification as it is a frequent operation in our applications.

Dataset Representation in Circuits: As we use the same circuit to represent
operations over datasets of varying sizes, we first describe a uniform representa-
tion of datasets which can be used within the arithmetic circuits. Let N denote
a known upper bound on the size of input/output datasets. We view a dataset
as a collection of its column vectors (of size at most N). We encode a vector of
size at most N as N + 1 size vector Js,XK where X = (X[1], . . . ,X[N ]) In this
encoding s denotes the size of the vector, X[1], . . . ,X[s] contain the s entries of
the vector, while X[i] for i > s are set to 02. Similarly, a dataset is encoded by
encoding each of its columns separately.

Dataset Commitment: Let Com be a vector commitment scheme associated
with a CP-SNARK CP. We additionally assume that Com is homomorphic. To
commit a vector x, we first compute its encoding x as a vector of size N +
1, and then compute c = Com(x, r) as its commitment. Here r denotes the
commitment randomness. To commit a dataset D with columns x1, . . . ,xM , we
commit each of its columns to obtain c = (c1, . . . , cM ), where ci = Com(xi)
as the commitment. Using our circuits with the CP-SNARK CP allows us to
efficiently prove operations over committed datasets.

3.2 Optimizations

We now highlight optimizations that are pivotal to the scalability of our system:

Mitigating Commitment Overhead: To prove statements over committed
values using general zkSNARKs, one generally needs to compute the commit-
ment as part of the arithmetic circuit expressing the computation. This intro-
duces substantial overhead, when the amount of data to be committed is large.

2 This introduces no ambiguity if 0 is legitimately part of the vector, as s specifies the
content of the vector
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To avoid this, we use a CP-SNARK and its associated commitment scheme.
We instantiate our system using Adaptive-Pinnochio [24], as the CP-SNARK.
Adaptive-Pinnochio augments the popular Pinnochio [20] zkSNARK with com-
mit and prove capability. The resulting scheme incurs ≤ 5% overhead in proof
generation time over Pinnochio, while verification continues to be efficient (≤
400ms) in practice. We expect similar savings with other CP-SNARK schemes,
and thus our constructs are agnostic to the choice of CP-SNARK.

Circuit Decomposition: For some operations, verification is more efficient
when decomposed as two or more circuits, than when encoded as a mono-
lithic circuit. Let C(x,u,w) be an arithmetic circuit which checks some prop-
erty on (x,u) where u additionally opens the commitment c. Our decompo-
sition takes the form C(x,u,w) ≡ C1(x,u,w0,w1) ∧ C2(x,u,w0,w2) where
w = (w0,w1,w2) denotes a suitable partition of witness wires. Using a CP-
SNARK we let the prover provide an additional commitment c0 for the witness
wires w0 which are common to both the sub-circuits. In our decompositions,
we let C1 encode relation that is easily verified by an arithmetic circuit and let
C2 encode the relation which has substantially cheaper probabilistic verification
circuit, i.e., there exists a circuit C̃2(α,x,u,w0,w2) which takes additional ran-
dom challenge α and has identical output to C2 with overwhelming probability
(over random choices of α). In our constructions, the latter circuit verifies either
the simultaneous permutation property or consistent memory access property
which we introduce below. These are inefficient to check deterministically using
arithmetic circuits but admit efficient probabilistic circuits.

3.3 Simultaneous Permutation

We say that tuples (u1, . . . ,uk) and (v1, . . . ,vk) of vectors in FN satisfy the
simultaneous permutation relation if there exists a permutation σ of [N ] such
that vi = σ(ui) for all i ∈ [k]. We now describe protocol to check the rela-
tion over committed vectors: i.e, given commitments cu1, . . . , cuk, cv1, . . . , cvk
the prover shows knowledge of vectors u1, . . . ,uk and v1, . . . ,vk corresponding
to the commitments which satisfy the relation. To achieve this, the verifier first
sends a challenge β1, . . . , βk and challenges the prover to show that β-linear
combinations of the vectors u =

∑k
i=1 βiui, v =

∑k
i=1 βivi, corresponding to

commitments cu =
∑k
i=1 βicui, cv =

∑k
i=1 βicvi are permutations of each other.

This is accomplished via a further challenge α ← F and subsequently chekcing∏N
i=1(α−u[ i ]) =

∏N
i=1(α−v[ i ]). We describe the formal protocol and its anal-

ysis in Appendix C.1. The last computation can be expressed in an arithmetic
circuit using O(N) multiplication gates which is concretely more efficient com-
pared to deterministic circuits for checking permutation relation using routing
networks [6, 26].

3.4 Consistent Memory Access

We define consistent memory access relation for a triple of vectors L,U and V
where L ∈ Fn and U ,V ∈ Fm for some integers m,n. We say that (L,U ,V )
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Circuit Complexity
Circuit Complexity

(m=n=10000)
Backend

Linear Scan 2mn 200 mill ZK
Routing Networks [6, 26] (m+ n)(3 log(m+ n) + 3 logm) 5.7 mill ZK
Buffet [25] m(21 + 2 logn+ 10 logm) 1.9 mill ZK
xJSNARK [16] m(2

√
n+ logn) 2.1 mill ZK

Our Work 5(m+ n) 0.1 mill CP

Table 3: Comparison of Circuit Complexity for different ROM approaches. ZK
and CP denote zkSNARK and CP-SNARK protocols. m and n denote number
of reads and memory size respectively.

satisy the relation if V [ i ] = L[U [i] ] for all i ∈ [m]. We think of L as read only
memory (ROM) which is accessed at locations given by U with V being the
corresponding values. We adapt the techniques in [3, 5, 25, 31] to take advantage
of CP-SNARKs in our construction. Next, we present a protocol to check the
relation given commitments to L,U and V . The verification proceeds as:

1. First m + n sized vectors u and v are computed as follows: For the vector
u we require u[ i ] = i for i ∈ [n] and u[ i + n ] = U [ i ] for i ∈ [m]. For the
vector v we require v[ i ] = L[ i ] for i ∈ [n] and v[ i + n ] = V [ i ] for i ∈ [m]
(see Figure 3).

2. The prover also supplies auxiliary vectors ũ and ṽ of size m+n, where ũ and
ṽ are purportedly obtained from u and v via the same permutation.

3. Finally, we ensure that the vector ũ is sorted and that the vector ṽ differs in
adjacent positions only if the same is true for those positions in vector ũ.

The constraints on the first n entries of vectors u and v in step (1) can be
thought of as “loading” constraints that load the entries of L against correspond-
ing address in memory, while constraints on the last m entries can be thought of
as “fetching” constraints that fetch the appropriate value against the specified
memory location. The steps (2) and (3) ensure that the value fetched for a given
location is same as the value loaded against it during the initial loading steps. We
decompose above checks across two circuits. The first arithmetic circuit CROM,m,n

ensures steps (1) and (3) while the second circuit checks that vectors ũ, ṽ are
obtained by applying the same permutation to vectors u,v respectively. The
circuit CROM,m,n can be realized using O(m+n) multiplication gates. Generally,
verifying that a vector such as ũ is sorted in step (3) incurs logarithmic overhead
due to the need for bit decomposition of each element. However, we can leverage
the fact that ũ is a (sorted) rearrangement of u, which includes all elements of [n]
by construction. Thus, monotonicity of ũ is established provided (i) ũ[n ] = 1,
(ii) ũ[m + n ] = n and ũ[ i + 1 ] − ũ[ i ] ∈ {0, 1} for all 1 ≤ i ≤ m + n − 1,
which together require O(m+ n) gates to verify. Finally, we invoke the protocol
for “Simultaneous Permutation” property in Section 3.3 to check compliance of
step (2). We illustrate the verification circuit and the decomposition in Figure
3. The formal protocol and analysis appears in Appendix C.2. Overall we incur
O(m+ n) gates, which is more efficient than encoding entire relation in one cir-
cuit. In that case one uses routing networks which incur O((m+ n) log(m+ n))
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Simultaneous

Permutation

u

v

ũ
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Fig. 3: Consistent Memory Access

gates and are concretely much more expensive. We can optimize further when
the same access pattern is used for accessing different ROMs as described below.

Multiplexed Memory Access For access pattern U ∈ Fm and ROMs Lj ∈ Fn
for j ∈ [k], we can show the correctness of lookup values Vj [ i ] = Lj [U [i] ],
i ∈ [M ], j ∈ [k] using just one instance of protocol discussed in this section.
To achieve this, the verifier sends a random challenge α1, . . . , αk to the prover.
The prover then shows that (L,U ,V ) satisfy correct memory access where L =
α1L1+ · · ·+αkLk and V = α1V1+ · · ·+αkVk for uniformly sampled α1, . . . , αk.
Note that due to the homomorphism of the commitment scheme, both the prover
and the verifier can compute the commitments for L,U and V .

3.5 Our Techniques in Perspective

Commit and prove functionality in conjunction with zero knowledge proofs has
been used in recent works addressing privacy in machine learning, most notably
in [18, 27, 28]. In [18] and [28], CP-SNARKs are used to “link” proofs of correct-
ness for different parts of the circuit (similar to Circuit Decomposition in our
setting) to prove inference from a private neural network and a decision tree re-
spectively. In [27], public commitments are linked to set of authenticated inputs
between a prover and a verifier in a two party protocol. Subsequently the prover
produces a ZK proof showing correctness of neural network inference over au-
thenticated inputs. In contrast, our usage of CP-SNARKs is more pervasive. We
first optimize key relations (simultaneous permutation, consistent memory ac-
cess) for CP-SNARKs and then design our dataset representation in a way that
allows us to represent operations on them in terms of aforementioned relations.

4 Privacy Preserving Dataset Operations

We now describe protocols for common dataset operations such as aggregation,
filter, order-by, inner-join etc. These operations serve to illustrate our key
techniques, which can be further applied to yeild protocols for much more com-
prehensive list of dataset operations. We use the fact that most of the opera-
tions distribute nicely as identical computations over different pairs of columns.
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Throughout this section,N denotes the upper bound on the sizes of input/output
datasets.

Aggregation: Aggregation operation takes two datasets as inputs and outputs
their row-wise concatenation. We first describe arithmetic circuit to verify the
concatenation of vectors. The circuit accepts three vectors in their uniform rep-
resentation as discussed in Section 3.1. Let x,y, z be three vectors of size at
most N represented as Js,XK, Jt,Y K and Jw,ZK respectively where X,Y ,Z are
vectors of size N . The verification involves ensuring that the first w entries of Z
contain the first s entries of X and the first t entries of Y . Figure 4 illustrates
the setting for s = 3, t = 4, w = 7 and N = 9. To aid the verification, the
prover provides N -length binary vectors ρs,ρt and ρw as auxiliary inputs. The
vector ρs is 1 in its first s entires, and 0 elsewhere. Similar relation is satisfied
by ρt and ρw. The correctness of aggregation now reduces to showing that there
is a permutation that simultaneously maps Jρs,ρtK to Jρw,0K and JX,Y K to
JZ,0K. Figure 4 also shows how the verification is decomposed: The first circuit
checks that (i) w = s + t, (ii) vectors ρs,ρt,ρt are correctly provided and (iii)
ensures u1 = Jρs,ρtK, v1 = JX,Y K, u2 = Jρw,0K and v2 = JZ,0K. The second
circuit checks the “simultaneous permutation” property on the pairs (u1,v1)
and (u2,v2). Both the circuits can be realized using O(N) multiplication gates.
Using a CP-SNARK we can verify the correctness of aggregation of vectors over
commitments.

We now leverage the above construction to verify aggregation operation
over datasets. Let Dx, Dy and Dz be datasets each with k columns given by
(xi)

k
i=1, (yi)

k
i=1 and (zi)

k
i=1 respectively. The reduction technique involves the

verifier sampling random α1, . . . , αk satisfying α1 + · · · + αk = 1. Next, we
use the above circuit construction with a CP-SNARK to prove that vectors
x =

∑k
i=1 αixi ,y =

∑k
i=1 αiyi and z =

∑k
i=1 αizi satisfy the concatenation

property. We give complete protocol and proof of the reduction in the Appendix
C.3.

Filter: Filter operation involves a dataset and a selection predicate as inputs
and subsequently outputs a dataset consisting of subset of rows satisfying the
predicate. We divide the computation in two parts (i) Applying selection predi-
cate to rows of the dataset to obtain a binary vector f which we call as selection
vector and (ii) Applying selection vector to the source dataset to obtain the tar-
get dataset. The latter computation can be verified with techniques similar to
those used in aggregation operation. For the first computation, we describe an
efficient circuit for predicates of the form ∧ki=1(xi == vi) where x1, . . . ,xk are
the columns of the dataset. Once again the verifier chooses random α1, . . . , αk
with

∑k
i=1 αi = 1 and challenges the prover to show that the selection vector f

satisfies f = (x == v) where x =
∑k
i=1 αixi and v =

∑k
i=1 αivi. The relation

f = (x == v) can be verified using a circuit with O(N) gates. Due to the homo-
morphism of the commitment scheme, the verifier can compute the commitment
for vector x given the commitments to columns of the dataset. For more general
range queries of the form ∧ki=1(`i < xi ≤ ri), we can compute selection vector
fi for each column, and then compute the final selection vector f = ∧ki=1fi.
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12 5 17 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
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Fig. 4: Circuit for verifying vector concatenation

Order By: Order-By relation involves permuting the rows of the dataset so that
a specified column is in sorted order. The verification can be naturally expressed
as columns of source and target dataset satisfying simultaneous permutation
relation, where additionally the specified column is sorted. We can check the
monotonicity of a column using a circuit with O(bN) gates where b is the bit-
width of the range of values in the column. We skip the details.
Inner-Join: Inner join operation concatenates pairs of rows of input datasets
which have identical value for the designated columns (joining columns). We
consider the inner-join operation under the restriction that the joining columns
have distinct values. As a first step, we order both the input datasets so that the
joining columns are sorted. We can use the verification protocol for order-by

operation to ensure correctness of this step. We therefore assume that joining
columns are sorted, and take distinct values. Let D1 and D2 be two datasets
which are joined on columns x and y to yield the dataset D. We write D as
juxtaposition of columns [D

′

1, z, D
′

2] where D
′

i denotes the columns coming from
Di while z denotes the column obtained as intersection of x and y. We first
design sub-circuit for private set intersection (PSI) to compute the size w of the
resulting dataset. We then let the prover provide auxiliary selection vectors f1
and f2 of size w. Finally, using the circuit for filter relation, we verify that
f1 applied to D1 yields dataset DL = [D

′

1, z] and f2 applied to D2 yields the
dataset DR = [D

′

2, z]. The overall circuit complexity is O(bN) where b is the
bit-width of the range of values in x and y with set-intersection computation
dominating the overall cost.

5 Privacy Preserving Model Inference: Decision Trees

In this section we present a zero knowledge protocol for verifiable inference from
decision trees (and random forests). Decision trees are popular models in ma-
chine learning due to their interpretability. A decision tree recursively partitions
the feature space (arranged as a tree), and finally assigns a label to each leaf
segment. The problem of proving correct inference from a decision tree was con-
sidered recently in [28], where authors present a privacy preserving method for
an adversary to commit to a decision tree and later prove inference from the tree
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on public test data. We present a new construction based on consistent memory
access, which improves upon the prior construction by reducing the number of
multiplication gates in the inference circuit. We also provide zero knowledge pro-
tocol for establishing the accuracy of a decision tree on test data. We consider
variants with test data being public or private. The latter scenario is helpful
while verifying performance of a private model on reputationally trusted private
dataset.

Decision Tree Representation: We parameterize a binary decision tree with
following parameters: the maximum number of nodes (N), the maximum length
of a decision path (h) and maximum number of features used as predictors (d).
We assume that the nodes in the decision tree have unique identifiers from the set
[N ], while features are identified using indices in set [d]. We naturally represent
a decision tree T as a lookup table with five columns, i.e, T = (V ,T ,L,R,C),
where each column vector is of size N . For a decision tree with t ≤ N nodes, we
encode as follows: For i ∈ [t]:

– V [ i ] denotes the identifier for the splitting feature for ith node.
– T [ i ] denotes the threshold value for the splitting feature for ith node.
– L[ i ] and R[ i ] denote the identifiers for the left and right child of ith node.

In case of a leaf node, this value is set to i itself.
– C[ i ] denotes the label associated with the ith node, when it is a leaf node.

For non-leaf nodes this may be set arbitrarily.

We commit to a decision tree, by committing to each of the vectors. We define
cmT = (cmV , cmT , cmL, cmR, cmC) as the commitment to T .

Decision Tree Inference: We model the test data D as n × d matrix, con-
sisting of n d-dimensional samples. Let D be the vector of size dn obtained by
flattening D in row major order. The algorithm below computes decision paths
pi = (pi[ 1 ], . . . ,pi[h ]) for each sample i ∈ [n]. The prediction vector q contains
class labels corresponding to leaf nodes pi[h ] for i ∈ [n].

1. For i = 1, . . . , n do:
– Set pi[ 1 ] = 1 : root is the first node on every decision path.
– For j = 1, . . . , h determine next node as follows:

(a) Compute splitting feature: fi[ j ] = V [pi[j] ].
(b) Compute threshold value: ti[ j ] = T [pi[j] ].
(c) Compute left and right child id: li[ j ] = L[pi[j] ], ri[ j ] = R[pi[j] ].
(d) Compute label: ci[ j ] = C[pi[j] ].
(e) Compute f̂i[ j ] = d ∗ i+ fi[ j ].
(f) Compute value of splitting feature: vi[ j ] = D[ i,fi[j] ] = D[ f̂i[j] ].
(g) Compute next node: pi[j + 1] = li[ j ] if vi[ j ] ≤ ti[ j ] and ri[ j ] otherwise.

– Compute label for the sample: q[ i ] = ci[h ].

Verification of the above algorithm involves verifying (i) hn memory accesses
on the tables of T in steps (a)-(d), which share the access pattern pi[ j ], (ii) veri-
fying hnmemory accesses onD (of size dn) in step (f) and (iii) hn comparisons as
part of step (g). Using the optimization in Section 3.4, the first verification incurs
O(N +hn) multiplication gates, while the second verification incurs O(dn+hn)
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multiplication gates. Using standard techniques, verification of (iii) can be made
using O(whn) multiplication gates, where w is the bit-width of feature values.
Thus, overall circuit complexity of our solution is O(N + n(d + h + wh)). We
compare our solution with the method for zero-knowledge decision tree (zkDT)
inference presented in [28]. Broadly, the method in [28] establishes the correct-
ness of inference as three checks:

– Consistency of input decision tree with public commitment: This involves
O(N) evaluations of the hash functionH used for commitment and thus incurs
c(H) · N multiplication gates. Here c(H) denotes the size of circuit required
to evaluate H.

– Consistency of feature vector with decision path: The verification of this step
leverages a “Multiset Check” ([28, Section 4.1]) which costs O(d log h) multi-
plication gates per sample.

– Correct evaluation of decision tree function: It involves h comparisons for
each sample, which incurs hw mutliplication gates, where w is the bit-width
of feature values.

Above steps result in an overall circuit complexity of c(H)N + n(3d log h+ hw)
for zkDT. Our solution improves upon the approach in [28] by reducing the cost
of the first two checks. Using a CP-SNARK, we avoid the cost of computing the
commitment within the verification circuit, while using our optimized protocols
for memory access allows us to accomplish the second check with an average cost
of O(h + d) gates per sample (O(dn + hn) overall), which compares favorably
with per sample cost of O(d log h) incurred by zkDT for h = Θ(d). The concrete
improvement obtained using our approach depends on which of the three checks
dominate the cost for specific parameter settings. We compare the cost of the
two approaches for some representative parameter settings in Table 5.

Decision Tree Accuracy: The above circuit for decision tree inference can be
easily modified to yield the circuit for proving accuracy of a decision tree on test
data. In this case, the prediction vector is kept private, and tallied against ground
truth to compute accuracy. Since our system also includes verifiability of model
performance (accuracy) on private benchmark datasets, we briefly describe the
modifications required to achieve the same. Let D be a private dataset with
columns (x1, . . . ,xd) with commitments to columns being public. Since, we can
no longer compute the flattened vector D as before, we cannot verify the lookup
vi[ j ] = D[ f̂i[j] ]. Instead we use polynomial interpolation to pre-process D. For
ith row D[i, ·] of the original data (a vector of size d), we interpolate a polynomial
pi of degree d−1 such that p(j) = D[i, j]. We obtain the pre-processed dataset D′

whose ith row consists of coefficients of pi. The data owner makes a commitment
to D′ instead of D. The lookup vi[ j ] = D′[i, j] = pi(j) now involves evaluating
a d−1 degree polynomial which incurs d multiplication gates. The overall circuit
complexity for accuracy over private datasets is therefore O(N+hn+hnw+hnd).
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No Optimization Partial Optimization Full Optimization

Aggregation 19.3 mil 1.6 mil 0.21 mil
Filter 12.5 mil 0.7 mil 0.07 mil
Inner-Join 22.1 mil 4.4 mil 0.65 mil

Table 4: Measuring the efficacy of our optimizations on 100K× 10 datasets.

Test Data Size
(n)

T1=(1000,50,20) T2=(10000,35,25)

Our Work zkDT [28] Our Work zkDT [28]

100 0.11 mil 3.1 mil 0.16 mil 30.1 mil
1000 1 mil 4.3 mil 1.2 mil 31 mil
10000 9.5 mil 16.5 mil 11.5 mil 41 mil

Table 5: Comparison of Circuit Complexity for decision tree inference.

6 Experimental Evaluation

In this section we report the concrete performance of our system primitives.
For our implementation, we used Adaptive Pinocchio [24] as the underlying
CPSNARK, which we implemented using the libsnark [17] library. We also
used the libsnark library for our circuit descriptions. Our experiments were
performed on Ubuntu Linux 18.04 cloud instances with 8 Intel Xeon 2.10 GHz
virtual cpus with 32GB of RAM. The experiments were run with finite field
arithmetic libraries and FFT libraries compiled to exploit multiple cores. We
often use circuit complexity (multiplication gates in the circuit) as the “envi-
ronment neutral” metric for comparing different approaches (the proving times
scale quasi-linearly with circuit complexity).

Performance of Dataset Operations: Table 1 contains summary of asymp-
totic as well as concrete efficiency of our dataset operations. All the operations
scale linearly with the number of rows (with marginal additive dependence on
the number of columns). The numbers for proof generation and verification were
generated for representative dataset size of 100K×10. While proof generation is
an expensive operation by general standards, it is practical enough for infrequent
usage. We also tabulate the efficacy of our optimizations in Table 4. For the un-
optimized case, we do not use CP-SNARKs and instead compute commitments
using circuit-friendly MiMC hash [1]. For partially optimized case, we use native
commitment scheme of CP-SNARK for commitments, but use monolithic cir-
cuits to encode the operations. To express permutations in monolithic circuits,
we use gadgets for routing networks [6, 26] available in [17]. The fully optimized
version delegates permutation checking and memory access check to probabilis-
tic circuits as discussed in Section 3.2. In the first case, hashing dominates the
circuit complexity resulting in 50-100 times larger circuits. Decomposing the cir-
cuits instead of monolithic circuits also results in an order of magnitude savings.

Performance of Decision Tree Inference: We use two decision trees T1 and
T2 to benchmark performance of our decision tree inference implementation. We
also use the same trees to compare our method with the one presented in [28]. We
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Test Data Size
(n)

T1=(1000,50,20) T2=(10000,35,25)

Prov.Time(s) Ver.Time(ms) Prov.Time(s) Ver.Time(ms)

100 1 400 1 400
1000 5 400 6 400
10000 170 400 200 400

Table 6: Concrete proving and verification time for decision tree inference.

synthetically generate the tree T1 with 1000 nodes, 50 features and depth as 20,
which roughly corresponds to the largest tree used in [28]. The tree T2 is trained
on a curated version of dataset [12] for Home Mortgage Approval. We identify 35
features from the dataset to train binary decision tree. We train T2 with 10000
nodes and depth 25. We verify the inference from the two trees for batch sizes
of 100 (small), 1000 (medium) and 10000 (large). Using our method to generate
proof of predictions takes from few seconds (on small data) to few minutes (on
large data), as seen in Table 6. The circuit complexity and the proving time
scale almost linearly for our method. We also compare the multiplication gates
incurred by arithmetic circuits in our method with that in [28] in Table 5. Our
efficiency is an order of magnitude better for smaller data sizes, as we do not
incur one time cost for hashing the tree. For larger batch sizes, our method
is still about 1.5-4× more efficient. As the batch sizes get large, comparisons
dominate the circuit complexity in both the approaches. We report the circuit
complexity for proving the accuracy for decision trees on private datasets and
public datasets. Table 7 shows that the overhead for proving accuracy on private
datasets ranges from 50− 80%.

Performance of Memory Access: We also independently benchmark the
performance of our memory abstraction technique and compare it to existing
methods in Table 3. Leveraging CP-SNARKs and probabilistic reductions we
essentially incur constant number of gates per access. We compare different ap-
proaches both in terms of asymptotic complexity and concrete complexity for
parameter settings representative of their usage in our work. Our concrete effi-
ciency is an order of magnitude better than the alternatives considered.

Test Data Size
(n)

T1=(1000,50,20) T2=(10000,35,25)

Public Private Public Private

100 0.11 mil 0.18 mil 0.16 mil 0.23 mil
1000 1 mil 1.75 mil 1.2 mil 1.8 mil
10000 9.5 mil 17.4 mil 11.5 mil 18 mil

Table 7: Circuit Complexity for decision tree accuracy for public and private
benchmark datasets.
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A Preliminaries

We briefly summarise some key cryptographic notions that we use throughout
the paper. For more details on the notions discussed below, we refer the reader
to [8, Section 2].

A.1 Commitment Scheme

Definition 1. A commitment scheme Com = (Setup,Commit,VerCommit) is a
tuple of algorithms with message space D, commitment space C and opening space
O which satisfies correctness, hiding and binding as described below:

– Setup(1λ)→ ck takes security parameter λ and outputs commitment key ck.
– Commit(ck, u) → (c, o) takes commitment key ck and u ∈ D and outputs

commitment c ∈ C and opening o ∈ O.
– VerCommit(ck, c, u, o)→ b takes commitment key ck, commitment c, message
u and opening o and outputs b ∈ {0, 1}.

Correctness: A valid commitment always verifies correctly, i.e for ck← Setup(1λ),
(c, o)← Commit(ck, u), with probability 1, we have VerCommit(ck, c, u, o) = 1.
Binding: It is infeasible for a polynomial time adversary to provide two openings
to the same commitment.
Hiding: Commitments to any two messages are indistinguishable.

A.2 Zero Knowledge Arguments

We define the notion of pre-processing zero-knowledge Succinct Arguments of
Knowledge (zkSNARKs).

Definition 2. A zkSNARK for a family of NP relations {Rλ}λ∈N is a tuple of
algorithms (G,P,V) where:

– G(1λ, R) → (pp, td) takes security parameter and the relation R ∈ Rλ and
outputs public parameters pp = (pk, vk) and a trapdoor td. In the above pk is
called the evaluation key and vk is called the verification key.

– P(pk,x,w)→ π takes the evaluation key, public input vector x, witness vector
w and outputs a proof π.

– V(vk,x, π)→ b takes the verification key, public input vector x, a proof π and
outputs b = 1 (accept) or b = 0 (reject).

A zkSNARK S = (G,P,V) satisfies the following properties:
Completeness: For all (R,x,w) such that R ∈ Rλ and R(x,w) = 1, the
following probability is 1.

Pr[π ← P(pk,x,w);V(vk,x, π) = 1]

Knowledge Soundness: Let RG denote a relation generator and Z denote a
(benign) auxiliary input generator. Then the zkSNARK S is called knowledge
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sound for (RG,Z) if for all efficient provers P ∗, there exists an extractor EP
∗

such that the following probability is negligible:

Pr




(R, auxR)← RG, pp← G(1λ, R)
Z ← Z(pp, R, auxR) V(pp,x, π)∧

(x, π)← P ∗(R, auxR, pp, Z) ¬R(x,w)

w ← EP
∗
(R, auxR, pp, Z)




Zero Knowledge: We say that S satisfies zero-knowledge for relation generator
RG if there exists simulator S = (S1, S2) such that the following hold:

– Key Indistinguishability: For all efficient adversaries A we have:

Pr
[

(R, auxR)← RG(1λ), pp← G(1λ, R) A(R, auxR, pp) = 1
]

≈ Pr

[
(R, auxR)← RG(1λ), A(R, auxR, pp) = 1
(pp, td)← S1(R, auxR)

]

– Proof Indistinguishability: For all efficient adversaries A and all R ∈ Rλ,
(x,w) such that R(x,w) = 1 we have:

Pr




(R, auxR)← RG(1λ),
pp← G(R, auxR), A(pp, auxR, π) = 1
π ← P(pp,x,w)




≈ Pr




(R, auxR)← RG(1λ),
(pp, td)← S1(R, auxR), A(pp, auxR, π) = 1
π ← S2(pp,x, td)




A.3 Commit and Prove SNARKs

Informally, a commit and prove SNARK (CP-SNARK) is a SNARK that can
prove knowledge of witness where part of the witness opens a commitment c. In
other words, a CP-SNARK for relation R allows one to prove knowledge of w =
(u, z) such that R(x,w) = 1 and c is a commitment for u. The commitments
can be used in several proofs to prove composite statements. We summarise the
formal notion of CP-SNARKs as defined in [8].

Definition 3 (CP-SNARK). Let Com be a commitment scheme with input
space D, opening space O and commitment space C. Let {Rλ}λ∈N be a family of
relations R over Dx×Du×Dw where Du splits as D1× · · · ×D` for some ` ≥ 1
such that Di ⊆ D for i = 1, . . . , `. A commit and prove zkSNARK (CP) for Com
and {Rλ}λ∈N is a zkSNARK for family of relations {RCom

λ }λ∈N where:

– every R ∈ RCom is represented by (ck, R) where ck ∈ Setup(1λ) and R ∈ Rλ.
– R is over the pairs (x,w) where x = (x, (cj)j∈[`]) ∈ Dx × C` is the statement

and w = ((uj)j∈[`], (oj)j∈[`], ω) ∈ D1× · · ·×D`×O`×Dω is the witness. The
relation R holds iff:

∧

j∈[`]

VerCommit(ck, cj , uj , oj) = 1 ∧R(x, (uj)j∈[`], ω) = 1
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Further, we say that CP is knowledge sound for relation generator RG and aux-
iliary input generator Z if it satisfies knowledge soundness (RGCom,Z) where
RGCom denotes the relation generator which samples (ck, R, aux) as RG(1λ) →
(R, aux) and Setup(1λ)→ ck.

We elaborate slightly on the intuition behind the above definition. Typically a
zkSNARK for relation R ⊆ Dx × Dω proves knowledge of w ∈ Dω for a given
statement x ∈ Dx such that R(x,w) = 1. With a CP-SNARK, we additionally
wish to prove that part of the witness w opens a commitment c, i.e w = (u, z)
where c is a commitment for u. Generalizing this further, we can decompose the
committed part of the witness u into ` slots, where witness corresponding to
each slot opens a specified commitment.

B Security Analysis

We describe our protocols as interactive protocols with (semi) honest verifiers.
One can obtain non-interactive arguments of knowledge (SNARKs) in the Ran-
dom Oracle model from them via Fiat-Shamir heuristic. We first define a secure
protocol for proving a relation R under commitments using the commitment
scheme Com. We will write a relation R as R(x,u,w) where x denotes the public
input (plain-text), u denotes the committed witness while w denotes the “free”
(uncommitted witness). The vector u purportedly opens a public commitment
c.

Definition 4 (Secure Protocol). A secure protocol for a relation R and
commitment scheme Com consists of tripe Π = (G,P,V) consisting of generator
algorithm G, a PPT prover P and a PPT verifier V which work as follows:

1. G(ck, R, 1λ) −→ pp: Given a commitment key ck ← Com.Setup(1λ) and R,
G outputs public parameters pp.

2. Given public parameters pp for relation R and a pair (x, c) consisting of
statement x and a public commitment c, P and V interact via an alter-
nating sequence of messages, at the end of which V outputs 0 (Reject) or
1 (Accept).

Further, a secure protocol Π satisfies completeness, soundness and zero-knowledge
which we define shortly.

Let Π(pp,x, c;u,w, 0) denote the output (0/1) of interaction between P
and V on common input (x, c) and P’s private inputs as u,w, o. Similarly, let
Π.Vw(x, c;u,w, o) denote V’s view in the interaction. We use ΠA(pp,x, c) to
denote the output of interaction between an adversarial prover A and V on
common input (x, c). Next, we define the security properties satisfied by a secure
protocol Π.
Completeness: We call Π to be complete if for all ck ∈ Com.Setup(1λ) and
(x,u,w) ∈ R we have:

Pr
[
pp← G(ck, R, 1λ), c = Com.Commit(ck,u, o), Π(x, c;u,w, o) = 1

]
= 1
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.
Soundness: We call Π to have soundness if for all PPT adversaries A, there
exists and efficient extractor E such that the following probability is negligible:

Pr

[
ck← Com.Setup(1λ), pp← G(ck, R, 1λ),
(x, c)← A(pp, z), (u,w, o)← EA(pp, z)

∣∣∣∣
ΠA(pp,x, c) = 1

∧¬R̃(x, c,u,w, o)

]

Here R̃(x, c,u,w, o) ≡ R(x,u,w) ∧ Com.VerCommit(ck, c,u, o).
Zero Knowledge: We say that Π is zero-knowledge if there exists efficient
simulator S = (S1,S2) such that for all ck ∈ Com.Setup(1λ), (x, c,u,w, o) such
that (x,u,w) ∈ R and c = Com.Commit(ck,u, o), the following are statistically
indistinguishable:

[
pp← G(ck, R) |

(
pp, Π.Vw(pp,x, c;u,w, o)

)]

≈
[
(pp, td)← S1(1λ, R) |

(
pp,S2(td, pp, ck,x, c)

)]

First, we exhibit a trivial secure protocol that can be obtained from a CP-
SNARK for a relation.

Lemma 1. Let CP = (G,P,V) be a CP-SNARK for relation R and commitment
scheme Com. Then Π = (G,P,V) as described below is a secure protocol for
relation R and commitment scheme Com.

– G(ck, R, 1λ) −→ pp where pp← G(ck, R, 1λ).
– On common input (x, c) and P’s input (u,w, o), P and V interact as follows:

1. P computes: π ← P(pp,x,u,w, o).
2. P → V: P sends π to V.
3. V outputs V(pp,x, c, π).

The proof of the above is trivial and follows directly from the properties of CP-
SNARK CP. We now formally define the probabilistic relation decomposition
and provide a secure protocol for decomposed relation in by gluing the secure
protocols for the constituent relations.

Definition 5 (Probabilistic Relation Decomposition). Let R(x,u,w) be
a relation. We say that relations (R1, R2) are a probabilistic decomposition of R
if there exists a canoical partitioning of w as w0||w1||w2 and a challenge space
C such that for α← C:

Pr [R1(x,u,w0,w1) ∧R2(α,x,u,w0,w2) = 1 |R(x,u,w) = 1] = 1

Pr [R1(x,u,w0,w1) ∧R2(α,x,u,w0,w2) = 1 |R(x,u,w) = 0] = negl

Lemma 2 (Glueing Lemma). Let (R1, R2) be a probabilistic relation decom-
position of the relation R and let Π1 and Π2 be secure protocols for (R1,Com)
and (R2,Com) respectively, where Com is a commitment scheme. Then the pro-
tocol Π = (G,P,V) as described below is a secure protocol for (R,Com).
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– G(ck, R, 1λ) −→ pp: The algorithm P invokes generator algorithms for the
consituent relations as pp1 ← Π1.G(ck, R1, 1

λ), pp2 ← Π2.G(ck, R2, 1
λ) and

returns pp = (pp1, pp2).
– On common input (x, c) and private prover inputs (u,w, o), P and V interact

as follows:
1. P computes: P partitions w as w0||w1||w2. Next P samples ow ← O

and computes cw = Com.Commit(ck,w0, ow).
2. P → V: P sends cw to V.
3. P and V execute the secure protocol Π1 with common input (x, (c, cw))

and prover’s (Π1.P) inputs as ((u,w0),w1, (o, ow)). Let b1 denote the
output of the protocol Π1.

4. V → P: V samples α← C and sends α to P.
5. P and V execute the secure protocol Π2 with common input ((α,x), (c, cw))

and prover’s (Π2.P) inputs as ((u,w0),w2, (o, ow)). Let b2 denote the
output of the protocol Π1.

6. V outputs b1 ∧ b2.

Proof. We skip the proof of completeness of protocol Π, as it is straightforward
to verify. To show soundness, let A be a PPT adversary such that ΠA(pp,x, c) =
1. Let cw be the first message (commitment) sent by A to V. From the protocol
description of Π, we have:

ΠA(pp,x, c) = Π1,A(pp1,x, (c, cw)) ∧Π2,A(pp2, (α,x), (c, cw))

. Thus A is also an adversary for secure protocols Π1 and Π2. Soundness of Π1

and Π2 implies existence of extractors E1 and E2 such that ((u,w0),w1, o) ←
EA1 (pp1, z) and ((u′,w′0,w2, (o

′, o′w))← EA2 (pp2, z). We define extractor E which
invokes the above extractors and outputs (u,w, o) for w = w0||w1||w2. With
overwhelming probability we have

R1(x,u,w0,w1) ∧ Com.VerCommit(ck, (c, cw), (u,w0), (o, ow))

R2(α,x,w′0,w2) ∧ Com.VerCommit(ck, (c, cw), (u′,w′0, (o
′, o′w))

By the binding property of Com, we also have u′ = u, w′0 = w0, o′ = o and
o′w = ow and Com.VerCommit(ck, (c, cw), (u,w0), (o, ow)) = 1 with overwhelming
probability. Finally, since R1(x,u,w0,w1) ∧ R2(α,x,u,w0,w2) = 1, we must
have R(x,u,w) = 1 for w = w0||w1||w2 with probability negligibly close to 1.
This proves that E extracts a valid witness with overwhelming proability.

We now show that Π is zero-knowledge. Let ck ← Com.Setup(1λ) and let
(x, c,u,w, o) be such that (x,u,w) ∈ R and c = Com.Commit(ck,u, o). We
show the existence of simulator S = (S1,S2) such that:

[
pp← G(ck, R) |

(
pp, Π.Vw(pp,x, c;u,w, o)

)]

≈
[
(pp, td)← S1(1λ, R) |

(
pp,S2(td, pp, ck,x, c)

)]

Let S̃ = (S̃1, S̃2) and Ŝ = (Ŝ1, Ŝ2) be the simulators for secure protocols Π1 and
Π2 respectively. The simulator S works as follows:
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– S1(1λ, R) −→ (pp′, td′): On input R and security parameter, S1 invokes sim-

ulators for R1, R2 to obtain (pp′1, td
′
1)← S̃1(1λ, R1), (pp′2, td

′
2)← Ŝ1(1λ, R2)

respectively. It sets pp′ = (pp′1, pp
′
2) and td′ = (td′1, td

′
2).

– S2 works as follows: It samples α ← C, õ ← Oλ and computes c̃w =
Com.Commit(ck,0, õ). Then it invokes simulators S̃2 and Ŝ2 as:

• V ′1 ← S̃2(td′1, pp
′
1,x, (c, c̃w)),

• V ′2 ← Ŝ2(td′2, pp
′
2, (α,x), (c, c̃w)).

– Finally it outputs (α, c̃w, V
′
1 , V

′
2).

The required indistinguishability follows via hybrids shown below. For ease
of notation let V1 denote Π1(pp1,x, (c, cw); (u,w0),w1, (o, ow)) and V2 denote
Π2(pp2, (α,x), (c, cw); (u,w0),w2, (o, ow)). Then we have:

〈pp, Π.Vw(pp,x, c;u,w, o)〉 (1)

= 〈pp1, pp2, α, cw, V1, V2〉 (2)

≈ 〈pp′1, pp2, α, cw, S̃2(td′1, pp
′
1,x, (c, cw)), V2〉 (3)

≈ 〈pp′1, pp′2, α, cw, S̃2(td′1, pp
′
1,x, (c, cw)), Ŝ2(td′2, pp

′
2, (α,x), (c, cw))〉 (4)

≈ 〈pp′1, pp′2, α, c̃w, V ′1 , V ′2〉 (5)

In the above the indistinguishability of (2) and (3) follows from the zero knowl-
edge property of Π1. Similarly zero knowledge of Π2 implies indistinguishability
of (3) and (4). Finally, the indistinguishability of (4) and (5) follows from the
hiding property of Com. This completes the proof.

C Secure Protocols

In this section, we give secure protocols for the different relations discussed in
this paper such as simultaneous permutation, consistent memory access, various
dataset operations and decision tree inference.

C.1 Simultaneous Permutation

For a fixed N , recall that k-tuples (u1, . . . ,uk) and (v1, . . . ,vk) of vectors in FN
satisfy simultaneous permutation relation if there exists a permutation σ of [N ]
such that σ(ui) = vi for all i ∈ [N ]. Let Rσ denote the relation over (α,u,v)

with α ∈ F and u,v ∈ FN such that
∏N
i=1(α − u[ i ]) =

∏N
i=1(α − v[ i ]). Let

Πσ denote the trivial secure protocol obtained from CP-SNARK for (Rσ,Com)
(using Lemma 1), where we also assume Com is homomorphic.

Lemma 3. The protocol Πperm = (G,P,V) in Figure 5 is a secure protocol for
simultaneous permutation relation and commitment scheme Com.

Proof. By standard rewinding technique, with overwhelming probability the ex-
tractor E , for an accepting adversarial prover A can extract vectors {ui,vi}ki=1

such that ui opens commitment cui and vi opens commitment cvi for all i ∈ [k].
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This is accomplished by running the subprotocol Πσ for k different linear com-
binations of commitments given by the challenge (β1, . . . , βk), and using the ex-
tractor for Πσ to obtain openings for respective linear combinations of vectors.
Since the challenges are linearly independent with overwhelming probability, we
can solve the system of equations to obtain openings for individual commitments
cui and cvi for all i ∈ [k]. By homomorphism of Com, the vectors u =

∑k
i=1 βiui

and v =
∑k
i=1 βivi open commitments cu and cv respectively. Again sound-

ness of Πσ implies with overwhelming probability (α,u,v) ∈ Rσ. Since α was
drawn uniformly at random, we conclude that there is a permutation π such
that π(u) = v with probability almost 1. Finally, since β1, . . . , βk were drawn

uniformly at random π(
∑k
i=1 βiui) =

∑k
i=1 βivi, with overwhelming probability

we must have π(ui) = vi for all i ∈ [k]. This shows the soundness of Πperm. We
skip the proof of zero-knowledge for Πperm as it follows from the same property
for Πσ.

G(1λ) −→ pp: Obtains pp as pp← Πσ.G(1λ, Rσ).
Inputs: On common input cu = (cui)

k
i=1, cv = (cvi)

k
i=1 and P’s inputs consisting

of {ui,vi, oi, ωi}ki=1, permutation π of [N ]; P and V interact as follows:

1. V → P: (α, β1, . . . , βk)← Fk+1.
2. P and V compute: cu =

∑k
i=1 βicui, cv =

∑k
i=1 βicvi.

3. P computes: u =
∑k
i=1 βiui, v =

∑k
i=1 βivi, o =

∑k
i=1 βioi, ω =

∑k
i=1 βiωi.

4. P and V execute the protocol Πσ with (α, cu, cv) as the common input and
(u,v, o, ω) as prover’s inputs. Let b be the output of the protocol Πσ.

5. V outputs b.

Fig. 5: Protocol Πperm for Simultaneous Permutation

C.2 Consistent Memory Access

in this section, we formalize the secure protocol for consistent memory access
relation discussed in Section 3.4.

Lemma 4. There exists a secure protocol Πcma for consistent memory access
relation defined in Section 3.4.

Proof. We consider the relation Rcma explained in Section 3.4 for consistent
memory access as:

Rcma(·, JL,U ,V K, Ju,v, ũ, ˜v,w1,w2K)

In the above, there are no public inputs, the committed witness consists of
L,U and V which denote the read only memory, access pattern and values
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respectively. The uncommitted witness consists of auxiliary inputs (u,v, ũ, ṽ)
and other witness w1 and w2 required to prove the relation. The description in
Section 3.4 partitions the above as:

CROM,m,n(·, JL,U ,V ,w0K,w1) ∧Rσ(·,w0,w2) (6)

where w0 = Ju,v, ũ, ṽK. The secure protocol ΠROM can be obtained using a CP-
SNARK for circuit CROM,m,n via Lemma 1. Invoking Glueing Lemma (Lemma
2) with ΠROM and protocol Πperm for simultaneous permutation relation, we
obtain the secure protocol Πcma.

C.3 Aggregation Operation

We now provide a secure protocol for showing correctness of aggregation opera-
tion on datasets as described in Section 4. In Section 4 we described a protocol
for checking correct concatenation of vectors under commitments, and then re-
duced the verification of dataset aggregation to that of verifying concatenation
of vectors (obtained via linear combination of columns of dataset). We also jus-
tify the aforementioned reduction. We assume Πconcat is a secure protocol for
checking concatenation of vectors, which we assume is desceribed by the rela-
tion Rconcat. The secure protocol Πagg = (G,P,V) for verifying aggregation of
datasets appears in Figure 6. Let Dx, Dy and Dz be datasets with columns given
by (xi)

k
i=1, (yi)

k
i=1 and (zi)

k
i=1 respectively. Similarly let (cxi)

k
i=1, (cyi)

k
i=1 and

(czi)
k
i=1 denote public commitments to the columns of Dx, Dy and Dz respec-

tively. As in Section 4, let N denote the upper bound on the sizes of datasets
and vectors.

G(1λ) −→ pp: Obtains pp as pp← Πconcat.G(1λ, Rconcat).
Inputs: On common input (cxi)

k
i=1, (cyi)

k
i=1 and (czi)

k
i=1 and P’s inputs consisting

of {xi,yi,zi, oi, ωi, δi}ki=1; P and V interact as follows:

1. V → P: (β1, . . . , βk)← Fk+1 satisfying
∑k
i=1 βi = 1.

2. P and V compute: cx =
∑k
i=1 βicxi, cy =

∑k
i=1 βicyi and cz =

∑k
i=1 βiczi.

3. P computes: x =
∑k
i=1 βixi, y =

∑k
i=1 βiyi, z =

∑k
i=1 βizi. Similarly it

also obtains o, ω and δ as β-linear combinations of {oi}ki=1, {ωi}ki=1, {δi}ki=1

respectively.
4. P and V execute the protocol Πconcat with (cx, cy, cz) as the common input and

(x,y,z, o, ω, δ) as prover’s inputs. Let b be the output of the protocol Πconcat.
5. V outputs b.

Fig. 6: Protocol Πagg for Dataset Aggregation

Lemma 5. The protocol Πagg in Figure 6 is a secure protocol for aggregation
relation on datasets and commitment scheme Com.
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Proof. The completeness and zero-knowledge properties of the protocol are proved
in a manner similar to earlier protocols. Here we prove the soundness of the
probabilistic reduction from aggregation relation on datasets to concatenation
relation on vectors, which implies soundness of the overall protocol. With over-
whelming probability, a successful adversary A knows vectors (xi)

k
i=1, (yi)

k
i=1

and (zi)
k
i=1 such that their respective β-linear combinations x,y and z satisfy the

concatenation relation. As in Section 4, we write xi = Jsi,XiK, yi = Jti,YiK and
zi = Jwi,ZiK for i ∈ [k]. Similarly, let x = Js,XK, y = Jt,Y K and z = Jw,ZK.
Note that we must have:

s =

k∑

i=1

βisi, t =

k∑

i=1

βiti, w =

k∑

i=1

βiwi

X =

k∑

i=1

βiXi, Y =

k∑

i=1

βiYi, Z =

k∑

i=1

βiZi

Now, from description in Section 4, the vectors x,y and z satisfy the con-
catenation relation if there exists a permutation of [2N ], which we denote by
permutation matrix Λ such that Λ · Jρs,ρtK = Jρw,0K, Λ · JX,Y K = JZ,0K
where vectors ρs,ρt and ρw are in {0, 1}N such that ρs is 1 in precisely the
first s positions, ρt is 1 in precisely the first t positions and ρw is 1 in precisely
the first w positions where further w = s + t. The relation thus also implicity
requires that s, t, w ∈ [N ]. We now claim that si = s, ti = t and wi = w for
all i ∈ [k]. Otherwise it is easily seen that s is distributed uniformly in F (and
likewise for t and w) for uniformly sampled β1, . . . , βk (subject to sum being
1), and thus s ∈ [N ] with negligible probability N/|F|. Similar reasoning also
implies that with overwhelming probability we have Λ · JXi,YiK = JZi,0K for all
i ∈ [k]. Combined with the fact that Λ · Jρs,ρtK = Jρw,0K, it implies that the
same permutation Λ maps the first s entries of column xi and first t entries of
column yi to the first w = s+ t entries of the column zi for all i ∈ [k]. Thus Dz

corresponds to aggregation of datasets Dx and Dy.

Protcols and Proofs for Other Operations: We have provided circuit de-
scriptions for other operations such as filter, order-by, inner-join and also
ML operations such as inference and accuracy from decision trees. These circuits
can be used with CP-SNARKs to yeild secure protocols for those operations us-
ing techniques similar to presented protocols (essentially using Lemmas 1 and
2), alongwith reduction technique when applicable.


