
Secure Sampling of Constant Weight Words – Application
to BIKE

Nicolas Sendrier

Inria
nicolas.sendrier@inria.fr

Abstract. The pseudorandom sampling of constant weight words, as it is currently imple-
mented in cryptographic schemes like BIKE or HQC, is prone to the leakage of information
on the seed being used for the pseudorandom number generation. This creates a vulnera-
bility when the semantic security conversion requires a deterministic re-encryption. This
observation was first made in [HLS21] about HQC and a timing attack was presented
to recover the secret key. As suggested in [HLS21] a similar attack applies to BIKE and
instances of such an attack were presented in an earlier version of this work [Sen21] and
independently in [GHJ+22].
The timing attack stems from the variation of the amount of pseudorandom data to draw
and process for sampling uniformly a constant weight word. We give here the exact dis-
tribution of this amount for BIKE. This will allow us to estimate precisely the cost of the
natural countermeasure which consists in drawing always the same (large enough) amount
of randomness for the sampler to terminate with probability overwhelmingly close to one.
The main contribution of this work is to suggest a new approach for fixing the issue.
It is first remarked that, contrary to what is done currently, the sampling of constant
weight words doesn’t need to produce a uniformly distributed output. If the distribution
is close to uniform in the appropriate metric, the impact on security is negligible. Also, a
new variant of the Fisher-Yates shuffle is proposed which is (1) very well suited for secure
implementations against timing and cache attacks, and (2) produces constant weight words
with a distribution close enough to uniform.

Keywords: Constant weight words, BIKE, constant-time implementation

1 Introduction

In a recent work [HLS21], a timing attack on an implementation of HQC [AMAB+21]
is described. This attack exploits the fact that the timing for sampling constant weight
words (CWW) depends on the seed used to initialized the pseudorandom generator. In
conjunction, the Fujisaki-Okamoto transformation, which is used to provide semantic
security, uses secret data for this seed. This can be used to mount a successful key
recovery attack on HQC. As suggested in [HLS21], the same vulnerability applies to
BIKE as shown independently in [Sen21] then in [GHJ+22].

Prior Art. The process used in BIKE for the pseudorandom sampling of CWW features
a timing variation similar to the one observed in [HLS21] for HQC. If key reuse is allowed,
it is possible to recover either a message or the secret key. Such attacks are suggested in
[Sen21,GHJ+22]. In [GHJ+22], the attack is fully implemented and is successful against

2 Nicolas Sendrier

known implementations of BIKE. The standard countermeasure consists in modifying
the sampling to make sure it runs in constant time. In particular the pseudorandom data
to generate must be fixed to an amount large enough to fulfill the sampler’s need with
overwhelming probability. This will result in a significant overhead for the CWW sampler
of BIKE.

Contributions.

– We first give the exact distribution of the amount of pseudorandom data needed for
sampling one CWW in BIKE. This will allow us to measure precisely the cost of the
standard countermeasure.

– The main contribution of this paper consists in exploring a new possibility. Part
of the difficulty of the sampling comes from the fact that uniform distribution is
believed to be a requirement for the IND-CCA security proof. We will show it is not
the case, and sampling constant weight words with a distribution close enough to
uniform (in a metric that we will specify) has no impact on security. We will exhibit
a new variant of the Fisher-Yates shuffle which is particularly well suited to secure
implementation. This new variant can be implemented with a predetermined sequence
of operations and memory access, making it oblivious to its internal randomness.
It samples constant weight words from uniformly distributed random bits with a
distribution that is provably close enough to uniform to have a negligible impact on
security.

Organization of the Paper. In §2 we recall how the constant weight word (CWW) sampler
of BIKE works, how it can be attacked, and what would be the overhead of standard
countermeasures. In §3 we present a variant for the Fisher-Yates shuffle, which is well
suited to secure implementation of CWW sampling. Finally, in §4 we prove that BIKE’s
IND-CCA security does not decrease significantly if constant weight words are sampled
non uniformly, but close enough to uniform. In addition, it is shown that the Fisher-Yates
variant of §3 can be implemented securely as BIKE’s CWW sampler with a distribution
close enough to uniform.

2 Sampling Constant Weight Words in BIKE

In its current specification, BIKE uses (essentially) Algorithm 1 to sample a table of t
distinct indices in {0, 1, . . . , n − 1}. Further treatment to change that into a constant
weight word (sorting or producing a binary word or just keeping a table of indices) is not
considered here. In practice, the state-of-the-art implementation of BIKE [DGK] uses
a constant-time routine which sets the bits corresponding to the selected positions in a
binary word of length n. The function rand(n, prng) produces a random integer uniformly
distributed in {0, 1, . . . , n − 1} from uniformly distributed integers in {0, 1, . . . , 2B − 1}
produced by randbits(B, prng). The pseudorandom number generator prng is initialized
with seed. In BIKE, mask = 2u − 1 where u is the smallest integer such that n ≤ 2u,
and B = 32. Those quantities are hard-coded for each given parameter set. In BIKE

Secure Sampling of Constant Weight Words – Application to BIKE 3

Algorithm 1 Current BIKE Constant Weight Word Sampling
Input: n, t, seed
Output: t distinct elements of {0, . . . , n− 1}
1: prng← prng_init(seed)
2: i← 0
3: while i < t do
4: j ← rand(n, prng)
5: if j 6∈ {pos[`], 0 ≤ ` < i} then
6: pos[i]← j
7: i← i+ 1

8: return pos[0], . . . , pos[t− 1]

rand(n, prng) :

1: repeat
2: x← randbits(B, prng)
3: x← x & mask

4: until x < n
5: return x

specification, it was first suggested to use AES in counter mode then SHAKE 256 as
prng. Whatever is used for prng, it is assumed that randbits(B, prng) is constant-time
for a given B and behaves as a random oracle producing uniformly distributed bits. The
situation is very similar to what is observed in [HLS21], and, as for HQC, the sampling
process has a variable running time for two reasons:

1. In rand(), the index x is rejected with a probability that can reach 50%. For BIKE
parameters the rejection probability varies from 25% to 38%. The number of iterations
is a random number, not upper bounded, but ranging in practice from 1 to a few units.

2. In the main algorithm, any duplicate position is rejected (instruction 5) and causes
an additional execution of the while loop.

Overall, the timing for the constant weight word sampling will depend on the total
number of calls to randbits() which will vary with seed.

2.1 BIKE Specification

The specification of BIKE is given in Table 1. The parameters are the block length r
(the code length is n = 2r), the row weight w, the error weight t (with w ≈ t ≈

√
n),

and the message size `. In addition, a mapping decoder : R ×Hw → R2 ∪ {⊥} must
be defined such that decoder(e0h0 + e1h1, h0, h1) = (e0, e1) with high probability when
(e0, e1) ∈ Et and (h0, h1) ∈ Hw are drawn uniformly at random.

2.2 Timing Attacks on BIKE

The attack of [HLS21] on HQC can be adapted to BIKE, as briefly mentioned in the
conclusion of [HLS21]. The exact mechanism differs slightly, but the principle is the same.
It was first sketched in a preliminary version of this work [Sen21], then, independently,
described and implemented in [GHJ+22]. Below we describe it as in [Sen21].

The attacks presented here do not apply to the ephemeral key setting but only to
scenarii where secret keys are reused. The adversary is allowed to make multiple request,
with the same secret key, to a decapsulation oracle. The attacks were not implemented
nor fully analyzed, the purpose of this paper is to state that the vulnerabilities presented
in [HLS21] affect BIKE to some extend, and to propose countermeasures.

4 Nicolas Sendrier

Notation
F2: Binary finite field
R: Cyclic polynomial ring F2[X]/(Xr − 1), equivalent to Fr

2

Hw: Private key space {(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
Et: Error space {(e0, e1) ∈ R2 | |e0|+ |e1| = t}
M: Message space {0, 1}`
K: Session key space {0, 1}`
H: Constant weight word (CWW) sampler H :M→ Et
L: Hash function L : R2 →M
K: Key derivation function K :M×R×M→ K
⊥: Decoding failure
|g|: Hamming weight of a binary polynomial g ∈ R
u

$←U : Variable u is sampled uniformly at random from the set U
u D←U : Variable u is sampled from the set U according to distribution D
KeyGen : () 7→ (h0, h1, σ), h

Output: (h0, h1, σ) ∈ Hw ×M, h ∈ R
1: (h0, h1)

$←Hw

2: h← h1h
−1
0

3: σ $←M

Encaps : h 7→ K, c

Input: h ∈ R
Output: K ∈ K, c ∈ R×M
1: m $←M
2: (e0, e1)← H(m)
3: c← (e0 + e1h,m⊕ L(e0, e1))
4: K ← K(m, c)

Decaps : (h0, h1, σ), c 7→ K

Input: ((h0, h1), σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M
Output: K ∈ K
1: e′ ← decoder(c0h0, h0, h1) . e′ ∈ R2 ∪ {⊥}
2: m′ ← c1 ⊕ L(e′) . with the convention ⊥ = (0, 0)
3: if e′ = H(m′) then K ← K(m′, c) else K ← K(σ, c)

Table 1: The BIKE Key Encapsulation Mechanism

In BIKE, a call to Decaps on a ciphertext (c0, c1) will issue a call to H(m′) (using the
notation in BIKE specification, Table 1), where m′ = c1⊕L(e′) and e′ is the result of the
decoding of c0. The call to H(m′) will sample a constant weight word, with Algorithm 1,
using m′ as seed.

The adversary first seeks a message m̃ ∈ {0, 1}` such that the call H(m̃) produces a
remarkable timing. Typically such that the number of calls to randbits() is very high,
so that any call to H(m̃) can be detected from the timing. Because of the random oracle
assumption, this can only be done by brute force. We assume that the adversary was
able to perform this task and knows such a message m̃.

In the next step the adversary produces a fake encapsulation (c0, c1) with c1 = m̃⊕
L(⊥) and any choice of c0 (it could be c0 = e0 + he1 for some chosen error e = (e0, e1)
or anything else). This encapsulation is submitted to Decaps and the timing of the
execution of H() is measured. From the timing, the adversary can distinguish the case of
a decoding failure, where H(c1 ⊕ L(⊥)) = H(m̃) is called, from the case of a successful
decoding, where H(c1 ⊕ L(e)) is called.

Secure Sampling of Constant Weight Words – Application to BIKE 5

Note that this decapsulation almost certainly fails, but the adversary can nevertheless
measure the execution time. Several attacks are possible from there:

1. A message recovery attack. The adversary wants to decode some c0 = e0 + e1h for
an unknown error (e0, e1). Several small modifications of c0 are submitted and by
observing which decoding fail and which succeed, the adversary gains information on
(e0, e1). This leads to a variant of the reaction attack [KI00].

2. A key recovery attack. The adversary can mount a GJS-like attack by choosing (e0, e1)
with a specific distance spectrum (see [GJS16] for details).

2.3 Countermeasures

Those attacks both use the timing of H() to guess whether or not the decoder failed.
Being able to do that enables the various forms of reaction attacks mentioned above.
To thwart this attack, it is required that H() runs in time independent of its input, in
particular it must always generate the same amount of randomness.

Using a Constant Amount of Randomness. Since the running time variation comes
in a large part from the number N of calls to randbits(), the solution would be to
estimate the distribution of N when seed varies, choose a value N0 such that only a
negligible proportion of the calls to H() require more than N0 calls to randbits(), and
finally implement the sampler so that it makes exactly N0 calls to randbits(). This
would lead to a relatively high computational overhead because the rejection probability
is high and so is the standard deviation of N . An alternative is to use rand() with a
modulo, as in HQC (Table 2). It has a smaller rejection rate, in the order of 10−6 if
B = 32 and 10−3 if B = 24, and leads to a smaller overhead.

rand(n, prng) :

1: repeat
2: x← randbits(B, prng)
3: until x < b2B/ncn
4: return x mod n

Table 2: Uniform Sampling in {0, ..., n− 1} with Lower Rejection Rate

The following proposition gives the generating function of the distribution of the
number of calls to randbits() for sampling one constant weight word:

Proposition 1. Let N be the random variable for the number of randbits() calls in
Algorithm 1. We have the following series identity

S(X) =
∞∑
`=1

Pr[N = `]X` =
t−1∏
i=0

(n− i)(1− π)X

n− ((n− i)π + i)X

where π is the probability to reject a call to randbits() in rand().

A proof is given in appendix.

6 Nicolas Sendrier

Overhead for Constant-Time Implementation. The generating function of Proposition 1
provides an efficient and convenient way1 to estimate the probabilities Pr[N = `]. In
Table 3 we give, for BIKE parameters, the overheads corresponding to the two variants
of rand() (π is the rejection probability in both situations with B = 32), the value of N0

is chosen such that the probability to make more than N0 calls to randbits() is smaller
than 2−λ, where λ is the security parameter (respectively 128, 192, and 256 for the three
rows Table 3). An execution of Algorithm 1 with no rejection at all would require t calls
to randbits(), thus the overhead is N0 − t and the relative overhead is (N0 − t)/t. The

rand() with mask rand() with mod

n t λ π N0 − t N0−t
t

π N0 − t N0−t
t

24 646 134 128 0.248 193 144% 1.7 10−6 26 19%
49 318 199 192 0.247 289 145% 5.1 10−6 37 19%
81 194 264 256 0.381 600 227% 1.1 10−5 48 18%

Table 3: Overheads for a Constant-Time Implementation of Algorithm 1 (B = 32)

countermeasures proposed in [HLS21] and in [GHJ+22] are essentially of the same nature
and lead to similar overheads.

Note that the cost for sampling constant weight words is far from dominant, and
compared to the full cost of Encaps or Decaps, this overhead would have a very limited
impact on the global efficiency. Still, the patched version of Algorithm 1 would be prob-
abilistic, and moreover the access to the table pos[] would still depend on the instance,
making it vulnerable to cache attacks and requiring a careful implementation, possibly
involving another overhead, e.g. [GHJ+22].

Cost for Producing a Distinguishable Message. Proposition 1 can also help to determine
what could be the cost for producing the distinguishable message m̃ in the attack. For
instance, for the first set of parameters, with Algorithm 1, the average number of calls to
randbits() is N̄ = 178 while obtaining a message m̃ such that N = 237 (33% overhead)
would require about 264 calls to H(). If rand() is as in HQC (Table 2), most of the time
there is no additional call to randbits(), and one message out of 264 will be such that
N = t + 15 (11% overhead). Other parameter sets give numbers of similar magnitude.
Whether or not this is enough to make the timing difference measurable, and thus the
attack effective, will depend on the adversary’s capabilities, but, nevertheless, the threat
is significant enough to justify the need for a constant-time sampling.

Relaxing the Uniformity Condition. There is another possible approach. To comply
with the IND-CCA security reduction given in the BIKE specification document, it is
required that constant weight words are produced with a uniform distribution. However,
we show later in this paper, in §4.2, that if instead the distribution is only close to
uniform, the impact on security is negligible. Meanwhile, we show in §3 that a variant
1 Using a suitable computer algebra system, e.g. Maple

Secure Sampling of Constant Weight Words – Application to BIKE 7

of the Fisher-Yates algorithm which is suitable for constant-time implementation can be
devised to produce constant weight words with a distribution close enough to uniform.

3 Towards Constant-Time Variants of the Fisher-Yates Shuffle

An advantage of the Fisher-Yates algorithm is that it doesn’t need to reject duplicate
indices. This cancels one source of running time variation. The other source of variation,
the rejection sampling for uniform random integers, is still there. But we will see that
removing this rejection creates a bias whose impact on security is negligible.

Using the Fisher-Yates shuffle for cryptographic implementations has sometimes been
discarded because of its data-dependent memory access. We give here a variant with a
fixed memory access pattern. Moreover, because the space complexity is proportional to
t rather than n, this variant is well adapted to the sampling of words of fixed weight t
much smaller than the block length n.

3.1 Fisher-Yates Shuffle

In its usual form, the Fisher-Yates algorithm inputs, n and t, are equal and a uniformly
distributed random permutation of n elements is returned. In the version given in Algo-

Algorithm 2 Fisher-Yates Algorithm
Input: n, t
Output: t distinct elements of {0, . . . , n− 1}
1: pos← [0, 1, . . . , n− 1]
2: for i = 0 to t− 1 do
3: `

$←{i, . . . , n− 1}
4: swap pos[i] and pos[`]

5: return pos[0], . . . , pos[t− 1]

Abstract version
. (i `) the transposition of i and `

1: σ ← id . identity permutation
2: for i = 0 to t− 1 do
3: `

$←{i, . . . , n− 1}
4: σ ← σ ◦ (i `)
5: return σ(0), . . . , σ(t− 1)

rithm 2 (left-hand side), it returns a sequence of t distinct elements of {0, . . . , n−1} also
with a uniform distribution. The algorithm is ill-suited to the case where t is small com-
pared to n and to secure implementation in the context of cryptographic implementation,
mostly because of the of need to make data-dependent access in a large table.

Mathematical Abstraction. The right-hand side of Algorithm 2 is a mathematical
abstraction of the algorithm, step by step equivalent, where the representation of the
permutation is not specified. It is easy to check that at any point of the algorithm
pos = [σ(0), . . . , σ(n−1)]. If we denote si the random number drawn at the i-th iteration
(instruction 3 of Algorithm 2), the Fisher-Yates algorithm draws t random transpositions
µi = (i si) with i ≤ si < n and returns the images of 0, 1, . . . , t− 1 by the permutation

σ = µ0 ◦ µ1 ◦ · · · ◦ µt−1 (where µi = (i si))

8 Nicolas Sendrier

obtained as the product of those t transpositions. In fact, to obtain the t indices pos[i] =
σ(i), 0 ≤ i < t, there is no need for a table of size n nor for data-dependent access to
memory. Note that µj(i) = i if j > i, so to compute σ(i) we may ignore the transpositions
µj for j > i. At the end of execution, we have for all i, 0 ≤ i < t,

pos[i] = σ(i) = µ0 ◦ · · · ◦ µi−1 ◦ µi(i) = µ0 ◦ · · · ◦ µi−1(si).

Which leads to the variant proposed in the next section.

3.2 A Variant of Fisher-Yates Shuffle

The variant described in Algorithm 3 will iterate on the randomly sampled transposi-
tions (µi)0≤i<t to update the images pos[j], 0 ≤ j < t of 0, . . . , t − 1. Note that the

Algorithm 3 Fisher-Yates Algorithm – Variant
Input: n, t
Output: t distinct elements of {0, . . . , n− 1}
1: for i = t− 1 downto 0 do
2: pos[i]

$←{i, . . . , n− 1}
3: for j = i+ 1 to t− 1 do
4: pos[j]← (pos[j] = pos[i]) ? i : pos[j]

5: return pos[0], . . . , pos[t− 1]

transpositions need to be applied in reverse order, µt−1 first and µ0 last. At the i-th
iteration, Algorithm 3 applies the transposition µi to update the relevant entries of table
pos[]. At the end of the i-th iteration we have pos[j] = σi(j) for all j, i ≤ j < t, where
σi = µi ◦ · · · ◦ µt−1.

Secure Implementation. A key feature of Algorithm 3 is that the pattern of access to the
table pos[] is independent of the data, which allows implementations that easily reach
immunity to timing and cache attacks. On the other hand, the complexity is quadratic
(in t), but in practice, as far as secure implementation is concerned, it is also the case of
Algorithm 1 because of the collision check (instruction 5), and of Algorithm 2 because
a secure implementation of the swap (instruction 4) will require an overhead of at least
the same magnitude.

4 Alternative Implementation for BIKE

The above variants of Fisher-Yates, Algorithms 2 and 3, return the same object if they
use the same randomness (the randomness is in reverse order in Algorithm 3, because
the loop order is reversed). They generate a random permutation σ as a product of t
transpositions, and they return the sequence of integers σ(0), σ(1), . . . , σ(t − 1) in this
order. When t = n, the output is a permutation. To sample uniformly a (binary) constant
weight word, one uses the t returned values as the indices of the non-zero positions of a

Secure Sampling of Constant Weight Words – Application to BIKE 9

word of length n. Those indices could be returned in any order and still produce the same
word. This allows yet another variant given in Algorithm 4, which enjoys a marginally
simpler memory writing pattern.

Algorithm 4 Constant Weight Word Sampling
Input: n, t
Output: t distinct elements of {0, . . . , n− 1}
1: for i = t− 1 downto 0 do
2: pos[i] $←{i, . . . , n− 1}
3: for j = i+ 1 to t− 1 do
4: pos[i]← (pos[i] = pos[j]) ? i : pos[i]

5: return pos[0], . . . , pos[t− 1]

Proposition 2. If they use the same randomness (instruction 2), Algorithm 3 and Al-
gorithm 4 return the same list of integers up to the order.

Proof. We assume that in both algorithms the initial values drawn for pos[i] are identical,
we will denote si this integer, note that si ≥ i. Let us prove by induction that, in both
algorithms, at the end of every main loop (instructions 1-4) the sets {pos[j], i ≤ j < t}
are identical. It is true for i = t− 1, the set is the singleton {st−1}. At the i-th iteration
(remember i goes backwards), the element si comes into play. The following holds for
both algorithms:

– if si 6∈ {pos[j], i < j < t} then {pos[j], i ≤ j < t} = {pos[j], i < j < t} ∪ {si},
– if si ∈ {pos[j], i < j < t} then {pos[j], i ≤ j < t} = {pos[j], i < j < t} ∪ {i}.

At the end of the i-th iteration, the sets {pos[j], i ≤ j < t} are thus identical in both
algorithms. When the induction reaches i = 0, we get the statement. �

In fact, Algorithm 4 does not return all sequences of t distinct positions uniformly. For
instance, sequences with pos[t− 1] < t− 1 are never obtained. In particular Algorithm 4
cannot be used with t = n to sample permutations uniformly. However, it produces
subsets of {0, . . . , n−1} of cardinality t, and thus binary words of length n and Hamming
weight t, uniformly.

4.1 Relaxing the Distribution

Finally, we suggest to replace Algorithm 1, the CWW sampler of BIKE, by Algorithm 5.
In this algorithm, which derives from Algorithm 4, the random integers at the beginning
of each loop are sampled with a bias. However, it can easily be implemented with a
protection against timing and cache attacks. An additional step is required to produce
the words in their final form, e.g. transform a list of t indices into a binary word of
Hamming weight t. This step also needs to be protected, as for instance in the available
state-of-the-art implementations [DGK] of BIKE.

10 Nicolas Sendrier

Algorithm 5 Constant Weight Word Sampling – Alternative for BIKE
Input: n, t, seed
Output: t distinct elements of {0, . . . , n− 1}
1: prng← prng_init(seed)
2: for i = t− 1 downto 0 do
3: `← i+ rand(n− i, prng)
4: pos[i]← (` ∈ {pos[j], i < j < t}) ? i : `

5: return pos[0], . . . , pos[t− 1]

rand(n, prng) :

1: x← randbits(B, prng)
2: return x mod n

Proposition 3. Let D be the distribution over Et = {e ∈ Fn2 | |e| = t} stemming from
Algorithm 5, when x ← randbits(B, prng) behaves as a random oracle which yields
uniformly distributed integers, 0 ≤ x < 2B. For any integer B > 0, we have

t−1∏
i=0

(
1− ri

2B

)
= τmin ≤

Pr
[
e | e D←Et

]
Pr
[
e | e $←Et

] ≤ τmax =
t−1∏
i=0

(
1 +

(n− i)− ri
2B

)
, (1)

where ri = 2B mod (n− i) for all i, 0 ≤ i < t.

Proof. Let si denote the random integer, i ≤ si < n, obtained at the i-th iteration
of Algorithms 2, 3, 4, and 5. There are

∏t−1
i=0(n − i) different sequences (si)0≤i<t which

constitute the randomness of those algorithms. Each randomness sequence produces each
possible output sequence of Algorithms 2 and 3 exactly once. Thus, each subset of t
elements of {0, . . . , n − 1} is obtained exactly t! times in Algorithms 2 and 3, as well
as in Algorithm 4 because of Proposition 2. With the same randomness Algorithm 5 is
identical to Algorithm 4, thus each individual element e ∈ Et is obtained as an output of
Algorithm 5 for exactly t! distinct randomness sequences s = (si)0≤i<t. We denote S(e)
the set of those t! sequences. We have

Pr
[
e | e D←Et

]
=
∑
s∈S(e)

Pr [s | si ← i+ rand(n− i, prng), 0 ≤ i < t] (2)

=
∑
s∈S(e)

t−1∏
i=0

Pr [si | si ← i+ rand(n− i, prng)] (3)

Where (3) derives from (2) because prng is modelled as a random oracle and so the si are
independent from one another. Now, for all i, 0 ≤ i < t, we denote ri = 2B mod (n− i).
The call rand(n− i, prng) will return biased integers, as the values < ri are slightly more
likely than those ≥ ri. We have

Pr [si | si ← i+ rand(n− i, prng)] =

{
1
n−i

(
1 + (n−i)−ri

2B

)
if i ≤ si < i+ ri

1
n−i

(
1− ri

2B

)
if i+ ri ≤ si < n

(4)

and thus from (4) and (3), and because |S(e)| = t!, for all e ∈ Et we have

t! ·
t−1∏
i=0

1

n− i

(
1− ri

2B

)
≤ Pr

[
e | e D←Et

]
≤ t! ·

t−1∏
i=0

1

n− i

(
1 +

(n− i)− ri
2B

)
.

Secure Sampling of Constant Weight Words – Application to BIKE 11

Finally, for the uniform distribution over Et, we have

Pr
[
e | e $←Et

]
=

1(
n
t

) = t! ·
t−1∏
i=0

1

n− i

and we easily conclude the proof. �

Remark that the same result holds if rand is replaced in Algorithm 5 by rand∗ as in
Table 4. If 2B = qn + r then rand(n, prng) and rand∗(n, prng) both produce r values

rand∗(n, prng) :

1: x← randbits(B, prng)
2: return bxn/2Bc

Table 4: Sampling in {0, ..., n− 1} with Multiplication [Lem19]

with probability (q+ 1)/2B and the other n− r with probability q/2B. The values which
are favored are different, but this does not affect the proof of Proposition 3.

For BIKE parameters, the ratios τmin and τmax are very close to 1 (see Table 5). As

B = 32
n t τmin τmax

24 646 134 0.99962 1.00038
49 319 199 0.9989 1.0011
81 194 264 0.9975 1.0025

B = 24
n t τmin τmax

24 646 134 0.91 1.11
49 319 199 0.76 1.37
81 194 264 0.51 1.85

Table 5: Bias Between the Uniform Distribution and the Output of Algorithm 5

shown next, this is close enough to the uniform distribution to have a negligible impact
on security.

4.2 Security Reduction

This section relates to the IND-CCA proof of BIKE, available in [AAB+21, §C] and
deriving from [HHK17]. We give below a sketch of why the security is not reduced when
the output distribution D of H() is close to uniform instead of uniform. More details are
given in §B. The security proof of BIKE cares about the distribution of the error patterns
on two occasions: (1) for the computational hardness of decoding, and (2) for the so-called
correctness error, that is the decoding failure rate. In both cases the corresponding terms
in the reduction (see [AAB+21, Theorem 3,§C.3] and [HHK17, Theorem 3.2 and 3.4])
are averaged over all error patterns e ∈ Et. Now, for any real-valued random variable
V : Et → R, we have∑

e∈Et

Pr
[
e | e D←Et

]
V (e) ≤ τmax ·

∑
e∈Et

Pr
[
e | e $←Et

]
V (e). (5)

12 Nicolas Sendrier

It follows that the two terms mentioned above, and thus the advantage of any adversary
when the distribution of the error e ∈ Et changes from uniform to D, cannot increase by
a factor larger than τmax, as defined in (1). And, from Table 5, this factor τmax is small
enough to ignore its impact on security.

Note that using a biased internal distribution in a cryptosystem can have a stronger
impact on security than what we observe here. The security proof must be checked, as we
do in §B, and if the adversarial model allows multiple access to the biased distribution,
more stringent arguments and more accurate metrics may be required. This is the case
for instance in lattice-based crypto with the use of Rényi divergence [BLL+15,Pre17].

5 Conclusion

There exists a vulnerability stemming from variable time sampling of constant weight
words (CWW) in HQC [HLS21] and in BIKE [Sen21,GHJ+22]. We analyze precisely
this timing variation and deduce the minimal implementation overhead for the CWW
sampler of BIKE.

We have proposed another approach to avoid the timing attacks targeting BIKE’s
CWW sampling. It is based on the Fisher-Yates shuffle and is original in two respects.
First, and contrary to common belief about Fisher-Yates shuffle, our variant is very well
suited for implementations secure against timing and cache attacks. Second, we allow
our sampler to produce its output with a non uniform distribution, but close enough to
uniform to provably have no effective impact on the global security of the BIKE scheme.

Our new proposed algorithm for constant weight word sampling does not have a
significantly higher algorithmic complexity and, though its output is not uniform, it does
not reduce the IND-CCA security of BIKE. We believe that for secure implementations,
it offers an advantageous trade-off.

Finally, note that it is possible to sample a word of length n and constant weight word t
by sampling a permutation, and permutations can be sampled in constant time by sorting
an array of n random numbers, see [WSN18] for instance. This is not advantageous when
the weight t = O(

√
n) as the cost of sorting will always exceed the cost t2 of the sampler

proposed here.

References

AAB+21. Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Rafael
Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, and Gilles Zémor.
BIKE. Round 3 Submission to the NIST Post-Quantum Cryptography Call, v. 4.2, Septem-
ber 2021.

AMAB+21. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and
Jurjen Bos. Optimized implementation of HQC, June 2021. https://pqc-hqc.org/
download.php?file=hqc-optimized-implementation_2021-06-06.zip.

BLL+15. Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved
security proofs in lattice-based cryptography: Using the Rényi divergence rather than the

https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip

Secure Sampling of Constant Weight Words – Application to BIKE 13

statistical distance. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
volume 9452 of LNCS, pages 3–24. Springer, 2015.

DGK. Nir Drucker, Shay Gueron, and Dusan Kostic. Optimized constant-time implementation of
BIKE. https://github.com/awslabs/bike-kem.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO,
volume 1666, pages 537–554. Springer, 1999.

GHJ+22. Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson, and
Robin Leander Schröder. Don’t reject this: Key-recovery timing attacks due to rejection-
sampling in HQC and BIKE. Cryptology ePrint Archive, Report 2021/1485, version 3,
January 2022. https://ia.cr/2021/1485.

GJS16. Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on MDPC with
CCA security using decoding errors. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016, volume 10031 of LNCS, pages 789–815, 2016.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Theory of Cryptography Conference, pages 341–371. Springer,
2017.

HLS21. Clemens Hlauschek, Norman Lahr, and Robin Leander Schröder. On the timing leak-
age of the deterministic re-encryption in HQC KEM. Cryptology ePrint Archive, Report
2021/1485, version 2, November 2021. https://eprint.iacr.org/2021/1485/20211121:
100918.

KI00. Kazukuni Kobara and Hideki Imai. Countermeasure against reaction attacks (in japanese).
In The 2000 Symposium on Cryptography and Information Security : A12, January 2000.

Lem19. Daniel Lemire. Fast random integer generation in an interval. ACM Trans. Model. Comput.
Simul., 29(1):3:1–3:12, 2019.

Pre17. Thomas Prest. Sharper bounds in lattice-based cryptography using the Rényi divergence. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, volume 10624 of LNCS,
pages 347–374. Springer, 2017.

Sen21. Nicolas Sendrier. Secure sampling of constant-weight words – application to bike.
Cryptology ePrint Archive, Report 2021/1631, version 1, December 2021. https://
eprint.iacr.org/2021/1631/20211217:142141.

WSN18. Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter cryptosystem
using binary Goppa codes. In Tanja Lange and Rainer Steinwandt, editors, PQCrypto,
volume 10786 of LNCS, pages 77–98. Springer, 2018.

A Proof of Proposition 1

Let’s consider a Bernoulli trial of probability 1−p, and let N be the random variable for
the index of the first success. The following generating function gives the distribution of
N

Sp(X) =
∞∑
`=1

Pr [N = `]X` =
∞∑
`=1

p`−1(1− p)X` =
(1− p)X
1− pX

.

The i-th loop of Algorithm 1 is a Bernoulli trial of probability 1− pi with pi = i/n.
The successive iterations are independent, thus the distribution of number of calls to
rand() is given by the series

S′(X) =

t−1∏
i=0

Spi(X) =

t−1∏
i=0

(n− i)X
n− iX

.

https://github.com/awslabs/bike-kem
https://ia.cr/2021/1485
https://eprint.iacr.org/2021/1485/20211121:100918
https://eprint.iacr.org/2021/1485/20211121:100918
https://eprint.iacr.org/2021/1631/20211217:142141
https://eprint.iacr.org/2021/1631/20211217:142141

14 Nicolas Sendrier

The number of calls to randbits() in one call of rand() is itself a Bernoulli trial of
probability 1−π and thus the generating series for the total number of calls to randbits()
is

S(X) = S′(Sπ(X)) =
t−1∏
i=0

(n− i)(1− π)X

n− ((n− i)π + i)X
.

B More on the Security Reduction

We consider an instance of BIKE’s KEM where the Constant Weight Word (CWW)
sampler H() produces elements of Et with a non uniform distribution D. We denote

τmax = max
e∈Et

Pr
[
e | e D←Et

]
Pr
[
e | e $←Et

] .
Modifying the distribution of the CWW sampling from uniform to D close to uniform will
not affect significantly the computational hardness of decoding nor the decoding failure
rate. However the IND-CCA security model is more involved, in particular by allowing
multiple call to the CWW sampler. We revisit below the IND-CCA proof of BIKE to
check that the impact of this biased distribution on the IND-CCA security is indeed
negligible.

In order to achieve IND-CCA security, BIKE follows the KEM 6⊥ transformation of
[HHK17] which derives itself from the Fujisaki-Okamoto transformation [FO99]. The
initial public encryption PKE0 is transformed into PKE then PKE1 and finally into the
KEM of Table 1. The final step of the proof in the HHK framework relates the security
of the KEM to the security of PKE1 with [HHK17, Theorem 3.4] which states that for all
IND-CCA adversary B against the KEM, there exists an OW-PCA adversary B′ against
PKE1 running in about the same time such that

AdvIND-CCA
KEM6⊥ (B) ≤ qK

|M|
+ AdvOW-PCA

PKE1
(B′)

where qK is the number of calls to the key derivation function (viewed as a random
oracle). This inequality holds regardless of the CWW sampler H(). No change here. The
security of PKE1 relates to the security of PKE with [HHK17, Theorem 3.2] which states
that for all IND-PCA adversary B′ against PKE1, there exists an IND-CPA adversary A
against PKE running in about the same time such that

AdvOW-PCA
PKE1

(B′) ≤ qH · δ +
2 · qH + 1

|M|
+ 3 · AdvIND-CPA

PKE (A)

where qH is the number of calls to the CWW sampler (viewed as a random oracle) made
by the adversary. From [AAB+21, Lemma 1,§C.1.2], there exists an OW-CPA adversary
A′ against PKE0 running in about the same time as A such that

AdvIND-CPA
PKE (A) ≤ 1

2
· AdvOW-CPA

PKE0
(A′).

Secure Sampling of Constant Weight Words – Application to BIKE 15

PKE0 :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt0 Input: h ∈ R, (e0, e1) ∈ Et
Output: s ∈ R
s← e0 + e1h

Decrypt0 Input: (h0, h1) ∈ Hw, s ∈ R
Output: e ∈ Et ∪ {⊥}
e← decoder(sh0, h0, h1)

PKE :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)

$←Et ; c← (e0 + e1h,m⊕ L(e0, e1))

Decrypt Input: (h0, h1) ∈ Hw, (c0, c1)
Output: m ∈M∪ {⊥}
e← decoder(sh0, h0, h1)
if e = ⊥ then m← ⊥ else m← c1 ⊕ L(e)

PKE1 :

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt1 Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)← H(m) ; c← (e0 + e1h,m⊕ L(e0, e1))

Decrypt1 Input: (h0, h1) ∈ Hw, c ∈ R×M, h ∈ R
Output: m ∈M∪ {⊥}
m← Decrypt((h0, h1), c)
if m 6= ⊥ and c 6= Encrypt1(h,m) then m← ⊥

Table 6: BIKE Encryption: PKE is randomized from PKE0 and PKE1 is derandomized from PKE

So finally, we have

AdvOW-PCA
PKE1

(B′) ≤ qH · δ +
2 · qH + 1

|M|
+

3

2
· AdvOW-CPA

PKE0
(A′) (6)

The proof must be re-engineered from there.

1. The first term qH · δ of the right-hand side of (6) relates to the correctness δ. It is
an upper bound for the probability that at least one of the error pattern sampled by
H() will produce a decoding failure. The value of δ must be such that

Pr[(e0, e1) 6= decoder(e0h0 + e1h1, h0, h1) |(h0, h1) $←Hw, (e0, e1) D←Et] ≤ δ,

that is the DFR (Decoding Failure Rate) when e is sampled according to D (rather
than uniformly) in Et. It follows from (5) that, compared to the proof for the original
scheme, the DFR, that is the left-hand side of the above inequality, increases by a
factor at most τmax.

2. The second term appears in the proof of [HHK17, Theorem 3.2] in relation with
the probability of the event that H() is called with a specific input. The output
distribution of H() is irrelevant to bound this term which is thus unchanged.

16 Nicolas Sendrier

Game G3 (OW-CPA) Game GD3 (OW-CPAD)
1: (h0, h1)

$←Hw

2: h← h1h
−1
0

3: (e∗0, e
∗
1)

$←Et
4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return qcsd(e, h, s∗)

1: (h0, h1)
$←Hw

2: h← h1h
−1
0

3: (e∗0, e
∗
1)

D←Et
4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return qcsd(e, h, s∗)

(qcsd(e, h, s) is true if and only if e = (e0, e1) ∈ Et and e0 + e1h = s)
Table 7: OW-CPA Security Game for PKE0 With or Without Biased Error Sampling

3. The final term must be modified because the advantage must be defined according
to a slightly different game in which the error (e∗0, e

∗
1) is no longer drawn uniformly

in Et, but according to D. Using the notation of Table 7, the OW-CPA advantage

AdvOW-CPA
PKE0

(A′) = Pr
[
qcsd(e, h, s∗) | (h0, h1) $←Hw, (e∗0, e∗1)

$←Et
]

must be replaced by

AdvOW-CPAD
PKE0

(A′) = Pr
[
qcsd(e, h, s∗) | (h0, h1) $←Hw, (e∗0, e∗1)

D←Et
]
.

And from (5) the above quantities cannot differ by more than a factor τmax.

So finally, for any adversary against BIKE’s KEM, its advantage in the IND-CCA game
cannot increase by more than a factor τmax when we replace the uniform CWW sampler
by a biased one. To state things crudely, because τmax is a constant close to 1, any
adversary able to break the scheme with a biased CWW sampler would be able to break
the original scheme with about the same computational effort.

	Secure Sampling of Constant Weight Words – Application to BIKE

