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Abstract

In December 2020, David Oranchak, Jarl Van Eycke, and Sam
Blake solved a 51-year old mystery: the Zodiac cipher of 340 symbols.
Blake [1] explains their solution. The correctness of their solution has
not been seriously doubted, and here we give a further argument in
its favor: the unicity distance of the cipher’s system is at most 152.

1 Introduction
In 1968 and 1969, a serial murderer killed five people in the San Francisco Bay
area. He bragged about his feats in several letters to local Police Departments
and newspapers. Some of them were encrypted, one with 408 and another
one with 340 symbols. They are now called Zodiac-408 and Zodiac-340,
respectively. Some other coded texts are too short to allow deciphering.
More murders and other messages have been connected to Zodiac, but these
are not confirmed. In spite of the many clues he provided, the criminal has
never been identified.

Zodiac-408 uses a homophonic substitution and was solved within a week
by teacher Donald Harden and his wife Bettye. But Zodiac-340, mailed on
a postcard on 8 November 1969, remained a major challenge to codebreak-
ers. Klaus Schmeh’s blogpost [11] features it as the second-most important
unsolved cryptogram, after the Voynich manuscript.
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Figure 1: Zodiac-340 ciphertext.1

1https://commons.wikimedia.org/w/index.php?curid=75983993, last accessed 30

2



Many people from all stations of life were attracted by this challenge,
which is stated in an attractively concise form. Edgar Allan Poe [9], famous
poet and also dabbling in cryptography, wrote in 1830: It may well be doubted
whether human ingenuity can construct an enigma of the kind which human
ingenuity may not, by proper application, resolve. Indeed, several solutions
have been proposed, but none of them convinced the majority of experts.
Do we need the sophisticated math and massive computing power of modern
cryptology?

Yes, we do. American software engineer David Oranchak started in March
2013 the website http://zodiackiller.net which organized the efforts on
Zodiac-340 in a systematic way, both human ingenuity and computing power,
observations by interested people and software projects. This crowd-thinking
and crowd-computing project bore fruit on 11 December 2020 when Oran-
chak, together with Australian mathematician Sam Blake and Belgian pro-
grammer Jarl Van Eycke, announced a break of the cryptogram. Their three
talks [7, 1, 15] formed the highly applauded key note address at the His-
toCrypt conference in 2021. The present paper now calls Oranchak, Van
Eycke, and Blake together the Zodiac breakers.

The correctness of their solution has not been seriously challenged and
was publicly confirmed by the FBI. The present work shows that also Shan-
non’s theory of unicity distance in deciphering supports the solution.

The ciphertext is shown in Figure 1 and the plaintext reads as follows:
I HOPE YOU ARE HAVING LOTS OF FAN IN TRYING TO CATCH
ME THAT WASNT ME ON THE TV SHOW WHICH BRINGO UP A
POINT ABOUT ME I AM NOT AFRAID OF THE GAS CHAMBER
BECAASE IT WILL SEND ME TO PARADLCE ALL THE SOOHER
BECAUSE E NOW HAVE ENOUGH SLAVES TO WORV FOR
ME WHERE EVERYONE ELSE HAS NOTHING WHEN THEY
REACH PARADICE SO THEY ARE AFRAID OF DEATH I AM
NOT AFRAID BECAUSE I VNOW THAT MY NEW LIFE IS LIFE
WILL BE AN EASY ONE IN PARADICE DEATH
Blanks have been inserted appropriately, but no other changes were made.

In particular, obvious original typos have not been corrected. California used
gas chambers at that time to execute the capital punishment.

September 2021.
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2 Unicity distance
Among the many solutions of Zodiac-340 that were proposed, which one is
a “better” one, or “the correct” one? People will hold different opinions, in
particular, the solvers about their own solution.

But there is a scientific answer to this question, based on Shannon’s theory
of unicity distance. It requires the description of a system of encryption
using a secret key, and the specific key used in this instance. Then it yields a
certain value, the unicity distance, so that any decipherment of a text which
is longer than this value is highly likely to be unique and, within this theory,
is accepted as correct.

The goal of this text is to provide such a system for Zodiac-340 and to
analyze it. The conclusion is that the solution given above is correct. To
the author’s knowledge, no such system has been put forth for any other
proposed solution.

The American mathematician, electrical engineer and cryptographer Claude
Elwood Shannon (1916-2001) laid the information-theoretic foundations of
communication and cryptography in two papers [12, 13]. He defined notions
of information entropy and information content on probability spaces. Of
interest to us is his notion of the unicity distance d:

d =
I(key)

log2(len)−H(lang) . (2.1)

This applies to the deciphering of a text of len many bits, encoded in a
block cipher system with keys of information content I(key) bits, where the
cleartext comes from a language with entropy H(lang) and log2 is the (bi-
nary) logarithm in base 2. Shannon’s famous theorem asserts that when
the ciphertext has more than d symbols, then the decipherment is expected
to be unique. We now view the Zodiac system as a method for encrypting
340-letter messages of the type that the killer sent.

As a side remark, Shannon’s information-theoretic approach remains valid
today and we employ it here. However, it is now largely replaced by a
complexity-theoretic approach, since the fundamental paper of Diffie & Hell-
man [2] that founded modern cryptology. In particular, it allows the ex-
change of secret keys over public channels, which is impossible information-
theoretically.

The Zodiac solvers have discovered a method by which the cryptogram
might have been derived. Formalizing their findings provides a system to
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which we may apply Shannon’s approach mutatis mutandis. To this end, we
study the various contributions to the key space in Sections 3 through 7, then
the language entropy in Sections 8 and 9, and derive an upper bound on the
unicity distance in Section 8. Finally, we add some remarks on alternatives
to the present approach.

Reichmann [10] also argues for the correctness of the solution, mentioning
“unicity distance”.

3 Homophonic substitutions
The entropy of random choices plays a central role in Shannon’s theory. Its
simplest version refers to a finite probability space A whose elements a are
equipped with a nonnegative probability pa of occurring. A condition is that∑

a∈A pa = 1. Then the entropy is

H = −
∑
a∈A

pa log2(pa). (3.1)

The minus sign is required because log2(pa) is never positive.
This measure is appropriate in some cases, for example, for a uniformly

random choice of keys among S possibilities. Then pa = 1/S for all keys a,
each summand in (3.1) is equal to 1/S ·log2(1/S) = − log2(S)/S. There are S
summands, and taking into account the minus sign, we obtain H = log2(S).

Zodiac-408 uses a homophonic substitution, and so does Zodiac-340. An
example from 1463 of this classical tool in cryptography is shown in von zur
Gathen [3], Figure D.2. Here it is used for encoding 26 letters of English in
63 symbols of Zodiac’s invention. Its choice contributes a large part to the
keys’ security.

In general, we have two finite sets (alphabets) X of m plaintext letters
(or words) and Y of n ciphertext symbols and associate to each plaintext
letter some ciphertext symbols, also maybe none. Mathematically, it is not
in general a function from X to Y , but a function f : Y → X. This f
corresponds to the decryption step, whose result is assumed to be unique.

The number of all such functions f is mn. Thus the key space for these
homophonic substitutions consists of exactly 2663 elements, and the informa-
tion content of a key chosen uniformly at random is

I(subs) = log2(26
63) ≈ 296.13. (3.2)
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4 Sectioned plaintext
The cryptogram consists of 20 rows, each with 17 symbols. In the course
of their work, the Zodiac breakers suspected (correctly) that the plaintext
might have been divided into several sections. They tried 1 to 3 horizontal
sections, each consisting of contiguous horizontal rows among the 20 rows in
the ciphertext, and similarly for vertical sections of the 17 columns.

If the horizontal sections contain r1, r2, r3 contiguous rows, with nonneg-
ative values ri and r1+r2+r3 = 20, then these numbers form an composition
of 20 into at most 3 parts. The number of compositions of an integer m into
exactly i parts is

(
m−1
i−1

)
, and so the number of possibilities for horizontal and

vertical sections is

(
∑
1≤i≤3

(
19

i− 1

)
) · (

∑
1≤i≤3

(
16

i− 1

)
) = 191 · 137 = 26 167. (4.1)

Thus the entropy contribution of sectioning is

I(sect) = log2(26 167) ≈ 14.68. (4.2)

5 Transpositions
Transpositions are a further classical tool in cryptography. Chapter F of
[3] shows examples from the 9th century on. In general, the plaintext is
presented as a string x0, x1, x2, . . . , xm−1 of m symbols and a transposition
length t is chosen. Starting with y0 = x0, every tth letter of x occurs in the
transposed text y:

(y0, y1, y2, . . . , ym−1) = (x0, xt, x2t, . . . , x(m−1)t),

where the indices of the x’s are taken modulo m. This works if m and t are
coprime, and then yj = xi with j ≡ it mod m. In the decryption step, the yj
are given and the same relation between i and j now reads, equivalently, as
i ≡ jt−1 mod m, where t−1 is the modular inverse of t modulo m. Implicitly,
this involves a wrap-around: after the last entry comes the first one. The
string is not a straight segment, but considered as a ring where the two ends
of the segment are glued together.

This is a purely syntactical operation on indices, which does not depend
on the values (or meanings) of the symbols. In contrast to homophonic
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substitutions, letter frequencies are unchanged, but digram frequencies may
differ substantially.

As an example with m = 9 · 17 = 153 and t = 19, the index sequences
start with

0 1 2 3 4 5 6 7 8 9 . . . for x,
0 19 38 57 76 95 114 133 152 171 ≡ 18 . . . for y,

so that the transposition of x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, . . . is

y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, . . .
= x0, x19, x38, x57, x76, x95, x114, x133, x152, x18, . . .

For the last entry, we note that −8 · 19 = −152 = −153 + 1 ≡ 1 mod 153
and therefore t−1 = 19−1 ≡ −8 ≡ 145 mod 153. Indeed, 18 ≡ 9 · 19 mod 153,
and conversely 9 ≡ 18 · 145 mod 153.

In the above, the plaintext is given as a string in a one-dimensional format.
The Zodiac cipher uses a two-dimensional variant of this, of which no other
example seems to be known. Figure 2, produced by Sam Blake, shows how
this is applied to the top 9 (of 20) rows. The numbering of rows is 0, 1, . . . , 8
and that of columns is 0, 1, . . . , 16 in the Zodiac text. The second entry above
says that y1 = x19 and can be seen in the yellow box in the second row and
third column. Similarly, y8 = x152 is visualized by the green-yellow 8 in the
lower right corner. That field bears the largest index for the x’s, namely 152.

Since the transposition length 19 is larger by 2 than the rectangle width
of 17, adding 19 corresponds to moving 2 steps to the right and 1 step down.
This 2-1-move or knight’s move is clearly visible in Figure 2.

So far, so good. What comes after the last entry? Of course, the first one.
So the rectangle turns into a donut, where the left and right sides as well
as top and bottom are glued together. Where does a knight’s move take us
from the lower right 8? Two to the right, into the position numbered with
9, and then 1 down, to the box with 145. But the Zodiac scheme actually
takes us to the 9.

This happens systematically. At the right-hand edge, a knight’s move
takes us 2 to the right, in the next row, and then 1 down. But the down step
is not taken, instead only a 2-0-move. This avoids leaving a row unused at
that point, and we call this procedure no unused rows.
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Figure 2: Numbered top 9 rows of Zodiac-340 transposed.

With this transposition, the first nine rows of the cryptogram decipher as
given on page 3. The whole text is split into three horizontal rectangles, all
of 17 columns and of 9, 9, and 2 rows, respectively. The middle and bottom
rectangles are shown in Figure 3, also by Sam Blake.

Figure 3: Middle and bottom sections of Zodiac-340 transposed.

The middle section looks pretty much like Figure 2, but with two modifica-
tions. The last six entries in the first row correspond to the cleartext LIFEIS
and do not participate in the 2-1-transposition. In the sixth row, the last
entry labelled 248 has been moved from its proper position in the fourth
column (which is now labelled 256) to the last column.
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The bottom section of two rows does not involve any transposition. Of
its nine words, three are spelled correctly (increasing numbers) and six are
written backwards (decreasing numbers). Reversing words does not create a
big problem for human or machine decipherers and thus does not contribute
much to security. We ignore it in the following except that we grant one bit
for “use word reversals” or not.

Irregularities in a stepping function can make a cipher substantially more
secure. As a principle, this was employed in the German cipher machines
Lorenz Schlüsselzusatz SZ-40 during the Second World War, and in the Swiss
version NEMA of the Enigma, built just after that war. In fact, the irreg-
ularities in the Zodiac-340 transposition posed a serious difficulty for the
breakers.

We now work with an arbitrary transposition length from 0 (no transpo-
sition) to 51 and the two-bit choice to use no unused rows and word reversals
or not. This gives 52 · 2 · 2 = 208 as the total number of possibilities and the
contribution to I(key):

I(trans) = log2(208) ≈ 7.70. (5.1)

6 Irregular substitutions
Some aspects of the Zodiac-340 cryptogram are not captured by the above
considerations on homophonic substitutions, sectioning, and transposition.
These are:

Misspellings. • Five words are misspelled: FAN, BRINGO, BECAASE,
SOOHER, E for FUN, BRINGS, BECAUSE, SOONER, I.

• The Zodiac-340 substitution has no ciphertext symbol for K (in
contrast to Zodiac-408), and the two occurrences of the letter K
are written as V: WORV, VNOW for WORK, KNOW.

• The incorrect PARADICE appears already in Zodiac-408, else-
where in the Zodiac corpus, and three times in Zodiac-340, once
even further contorted with a typo as PARADLCE.

Dummies. The text LIFEIS in the penultimate row of the cleartext is a
dummy, maybe serving to make the text fit exactly into its rectangular
array.
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Skip. In row 15 (sixth row of the middle section) a letter is moved from its
proper position in the fourth column to the last column in the same
row. This is the box labelled 248 in Figure 3.

All these can be described by allowing the following type of replacement
in the encryption. We augment fictitiously the 26-letter English alphabet by
one more, the empty space ⋆. This is not a blank, but an invisible character.
Thus BRINGO and BRIN⋆GO read exactly the same way. Replacing a letter
by ⋆ means removing that letter. Then all of the modifications listed above
can be described as picking a position in the plaintext and replacing the
character at that position by one of those 27 symbols. A skip corresponds
to two replacements, although these are special in that the deleted and the
inserted letter are the same. Another special case would be to not change
anything, emulated as replacing a letter by itself.

operation number replacements
misspelling 5 5

V for K 2 2
PARAD(I or L)CE 3 4

dummy 6 6
skips 2 4
total 21

Thus we have a total of 21 replacements in a 340-letter text, which comes
to about 6.18%. If we allow generously 25 replacements, then there are
R =

(
340
25

)
· 2725 possibilities, with a contribution to I(key) of

I(replace) = log2(R) ≈ 244.12. (6.1)

7 Key entropy and text length
We are now ready to determine the value of I(key) in (2.1). A key consists of
several parts, each of which is chosen uniformly at random and independently.
The rounded values are:

Homophonic substitution. I(subs) = log2(26
63) ≈ 296.13, by (3.2).

Sectioning. I(sect) = log2(26 167) ≈ 14.68. as given in (4.1).

Transpositions and word reversals. I(trans) = log2(208) ≈ 7.7, by (5.1).
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Replacements. I(replace) = log2(
(
340
25

)
· 2725) ≈ 244.12 by (6.1).

Total I(key) ≈ 562.62 by adding up the four contributions above.

In Shannon’s theory, ciphertext symbols are supposed to be uniformly
distributed, and we now assume this to be the case for the Zodiac cipher.
This is consistent with the fact that, before its solution, the possibility that it
might be gibberish has been seriously considered by many; see Oranchak [6].
Then the information content of a ciphertext of k symbols is k log2 63 ≈ 5.98 k
bits. For Zodiac-340, this comes to 340 · log2(63) ≈ 2032.28 bits, and in (2.1),
we have

log2(len) = log2(2032.28) ≈ 10.99 ≈ 11. (7.1)
In (2.1), the language entropy H(lang) does not refer to the ciphertext,

but to the plaintext of the cryptogram, and is not directly related to the
deciphering effort. We first have to determine the length of the plaintext.
One might be tempted to assume it as 340 letters, but that is not correct.

Any claimed solution that somehow substitutes and rearranges the cipher
symbols will be a single word of 340 letters and certainly not an English text.
It (almost) becomes one if we insert 90 blanks appropriately, as done on
page 3. Thus the plaintext consists of 430 characters in a 27-letter alphabet,
including the blank. In general, the average English word length is estimated
at 4.5 nonblank letters; see Shannon [14], Section 2. Thus an English text of
ℓ characters can be expected to reduce to k = ℓ(1− 1/4.5) letters when the
blanks are removed. In other words, a reduced text of k letters corresponds
to a regular text of ℓ = 9k/7 letters. And indeed, the fraction 9/7 ≈ 1.286
matches quite well our value of 430/340 ≈ 1.265. Thus we will take k·430/340
letters as the length of a plaintext encrypted by k symbols.

8 Language entropy
The only ingredient to (2.1) still missing is the language entropy H(lang).
For a complicated probability space, say, texts in a natural language such
as English, a naïve application of (3.1) fails to be the appropriate measure.
It only takes into account the frequency distribution on individual letters
and is called the monogram (or single-letter or 1-gram) entropy. It evaluates
to about 4.1, and one often sees such incorrect values in some parts of the
literature. Also other issues around this entropy are often not properly taken
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into account. In particular, sometimes the most frequent character in English
text is ignored: the blank ␣ .

The monogram entropy does not reflect the rich structure of English,
where individual words and phrases also occur repeatedly. A basic reason is
that the corpus of all English texts is not finite, and even fairly large but still
finite compilations do not yield a reliable result. Longer polygrams (often
called n-grams for some specific value of n) also have to be considered. For
any value of n and a given text (of finite length), the entropy En of n-grams
is calculated according to (3.1), and the conditional entropy of n-grams over
(n − 1)-grams is Fn = En − En−1. This Fn refers to the prediction of the
next letter, when the previous n− 1 ones are known.

According to Shannon [12], Section 7, the sequence of Fn for growing n
approximates the entropy, here of English, better and better. Unfortunately,
these values are hard to compute. Shannon [14], Section 6, calculates experi-
mentally bounds for the Fn, for example, 1.3 ≤ F6 ≤ 2.2. Goldreich et al. [5]
show that under standard complexity-theoretic assumption, arbitrarily good
approximations are infeasible to compute. Experiments with a corpus of two
billion characters in von zur Gathen & Loebenberger [4], Figure 3, illustrate
the practical issues: for monograms (n = 1) the value F1 is 3 to 4 times too
large, the Fn remain too large for n up to 4, they lie in Shannon’s interval
for 5 ≤ n ≤ 11, and are too low for larger n. The computation gets distorted
by “noise”, since those longer n-grams do not have enough “room” to display
their true frequencies.

Now we need to determine the plaintext entropy of the cryptogram’s
plaintext language. One can consider (at least) three “languages” to give
rise to the 430-letter plaintext:

• standard English,

• the language of the Zodiac-340 cryptogram, as given on page 3,

• the language of the Zodiac corpus.

For standard English, we may assume an entropy around 1.5, but see
the provisos mentioned above. The Zodiac-340 cryptogram has an entropy
around 1.8. This is calculated as for the Zodiac corpus in the next section
and we forego the details.

We now concentrate on the Zodiac corpus, consisting of 20 messages from
the Zodiac killer, which date from 31 July 1969 to 8 July 1974; see [8].

12



Most of them were sent in plaintext to Californian newspapers and police
departments, to a lawyer, and one scribbled on a victim’s car door. Also
included are the plaintexts of the Zodiac-408 and Zodiac-340 cryptograms
with blanks appropriately inserted. Some Zodiac cryptograms that are too
short to be deciphered and must be left out. There are also spurious messages
whose claim to be from Zodiac is disputed.

Plaintexts of the Zodiac cryptograms do not contain numerals or punc-
tuation marks and for this study, they were removed. The Zodiac corpus
then contains 14859 letters and blanks. Its entropy may be estimated to be
around 1.8; details are given in the next section.

However, this is much ado about nothing. Whichever approach from the
three listed above we take, the entropy comes out to be between 1.3 and 2.3,
and the unicity distance is only slightly sensitive to its exact value.

Shannon’s fundamental idea is that if the information content of the ci-
phertext is larger than that of keys and plaintext combined, then one can ex-
pect a unique deciphering solution. For a message of k symbols in the Zodiac
system, the plaintext length is k · 430/340 letters under the language distri-
bution and Shannon’s condition is that k log2(63) ≥ k · 430/340H(lang) +
I(key). Rearranging and using I(key) from Section 7 and H(lang) = 1.8,
this amounts to

k ≥ I(key)
log2 63− 430/340H(lang) ≈ 562.62

5.98− 1.8 · 430/340
≈ 152.03.

The unicity distance of the Zodiac-340 cipher is at most 152.

The actual length of 340 of the cryptogram is much larger than this.

9 Zodiac language entropy
Frequency calculations are an essential tool in cryptanalysis. In fact, the
observation that a guessed transposition of 19 increases substantially the
number of repeated digrams in the cryptogram was a vital step in the Zodiac
break. However, the following calculations are not related to cryptanalysis,
rather they concern frequencies in the 14825-character Zodiac plaintext cor-
pus. It uses the 26 letters of the English alphabet and the blank ␣. For n
up to 5, we list the five most frequent n-grams, their number of occurrences
and their rounded freqency in percent:
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␣ E T O I
2978, 20.08 1405, 9.47 1097, 7.39 950, 6.40 940, 6.33

E␣ ␣T TH HE T␣
615, 4.14 489, 3.29 410, 2.76 333, 2.24 327, 2.20
␣TH THE HE␣ ␣I␣ ING

346, 2.33 274, 1.84 188, 1.26 121, 0.81 116, 0.78
␣THE THE␣ ING␣ ␣TO␣ ␣OF␣

256, 1.72 182, 1.22 105, 0.70 78, 0.52 70, 0.47
␣THE␣ ␣YOU␣ N␣THE ␣HAVE HAVE␣

182, 1.22 49, 0.32 38, 0.25 36, 0.24 34, 0.22
We find the following entropies Ent(n) and conditional entropies condEnt(n) =

Ent(n)− Ent(n− 1), where we use Ent(0) = 0:
n : 1 2 3 4 5
Ent(n) 4.09 7.14 9.63 10.99 11.75
condEnt(n) 4.09 3.24 2.30 1.36 0.76

The noise discussed in Section 8 also distorts the pentagram conditional
entropy here, and may affect the tetragram conditional entropy. We now
take the mean of the tri- and tetragram conditional entropies as value, that
is

H(lang) = 1.8. (9.1)
Any such choice has an element of arbitrariness, as mentioned above.

Below we illustrate the (limited) effect of this choice by also calculating with
1.36 and 2.30 as values of H(lang).

These values are at the upper end of or beyond the bounds that Shannon
states. Spelling rules make reading easier by increasing redundancy and thus
reducing entropy. In fact, correcting 124 spelling mistakes in the Zodiac
corpus changes the polygram entropies slightly, most notably condEnt(3)
from 2.30 to 2.17. On the other hand, condEnt(4) increases slightly. This
may indicate noise already for these tetragrams.

10 Alternatives
The estimates in Section 7 are taken rather generously and some may over-
shoot the real values substantially. That is acceptable, since it makes the
final result on the unicity distance more reliable. We do not have the goal of
lowering the estimate of the unicity distance to a more realistic value.
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But if one wanted to, one might start with I(subs) in (3.2), an upper
bound on the information content in Zodiac’s homophonic substitution. Since
that is supposed to level out frequencies, the rarely used letters in the English
alphabet will have few (0 or 1) homophones and the frequent letters a higher
number. These constitute only a small fraction of what we allow as key space
for substitutions.

In a system for communicating secretly, a legitimate recipient in posses-
sion of the secret key can restore the plaintext correctly. This is not possible
in the presence of spelling mistakes. So in such a system, one would ignore
the option of making such errors, reducing the value of I(replace).

The language entropy is a fickle thing. For two values mentioned in
Section 9, namely 1.36 and 2.30, we obtain unicity distances of 132.2 and
183.4, respectively. This shows robustness of the main claim under modified
assumptions on the entropy.

11 Conclusion
The unicity distance for a ciphertext encrypted with a method as the Zodiac-
340 cryptogram is 152, under the assumptions stated above. The actual
length 340 is much larger than this value. Our findings show that the solution
is correct beyond doubt.

The method includes four steps:

• A randomly chosen homophonic substitution of 26 letters in 63 symbols,

• a split into up to 3 horizontal or vertical sections,

• a transposition by up to 51 places, in the one-dimensional or the 2-1-
dimensional sense,

• a certain number of arbitrary changes in individual letters, such as
spelling mistakes.

Is there a different solution of the cryptogram? That is, can one come up
with a well-specified system under which it could have been encrypted and
whose unicity distance is below 340 (or below 152)?

15



Acknowledgements
This text would not exist without the success of the Zodiac solvers. In
addition, they have contributed substantially with helpful discussions, hints,
and suggestions.

Many thanks also go to Daniel Panario for his help with the composi-
tion(s) of this paper.

References
[1] Sam Blake. https://www.youtube.com/watch?v=iuNyQ44JYxM, 2021.

[2] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transaction on Information Theory, IT-22(6):644–654, November
1976. DOI 10.1109/TIT.1976.1055638.

[3] Joachim von zur Gathen. CryptoSchool. Springer Verlag, Heidelberg,
2015. 888 pages.

[4] Joachim von zur Gathen and Daniel Loebenberger. Why
one cannot estimate the entropy of English by sam-
pling. Journal of Quantitative Linguistics, 2017. 30 pages.
https://doi.org/10.1080/09296174.2017.1341724.

[5] Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero
knowledge be made non-interactive? or On the relationship of SZK
and NISZK. In Springer Lecture Notes in Computer Science 1666,
pages 467–484, 1999.

[6] David Oranchak. Are the ciphers gibberish?, 2018.
http://www.zodiackillerciphers.com/?p=774.

[7] David Oranchak. https://www.youtube.com/watch?v=44rkCyU6ssE,
2021.

[8] David Oranchak. Zodiak killer letters, 2021.
https://github.com/doranchak/zodiac-killer-ciphers/tree/
master/docs/letters.

16



[9] Edgar Allan Poe. A few words on secret writing. Alexander’s Weekly
Messenger, Philadelphia PA, 25 March 1830.

[10] F. Reichmann. Why the transposition in the 340 solution
is inevitably correct. https://zodiackiller.net/community/
zodiac-cipher-mailings-discussion/why-the-transposition-in-
the-340-solution-is-inevitably-correct/.

[11] Klaus Schmeh. https://scienceblogs.de/klausis-krypto-kolumne/
the-top-50-unsolved-encrypted-messages/.

[12] C. E. Shannon. A mathematical theory of communication. Bell Sys-
tem Technical Journal, 27:379–423 and 623–656, 1948. Reprinted in
Claude E. Shannon and Warren Weaver, The Mathematical The-
ory Of Communication, University of Illinois Press, Urbana IL, 1949.

[13] C. E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28:656–715, 1949.

[14] C. E. Shannon. Prediction and entropy of printed English. Bell System
Technical Journal, 30:50–64, January 1951.

[15] Jarl Van Eycke, 2021. https://docs.google.com/presentation/d/
19PT51INr3ljh9KLOoxlcA29pjJ2i9QfsipueS8PM0/edit?usp=sharing.

17


