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Abstract. Solving a system of m multivariate quadratic equations in
n variables over finite fields (the MQ problem) is one of the important
problems in the theory of computer science. The XL algorithm (XL for
short) is a major approach for solving the MQ problem with linearization
over a coefficient field. Furthermore, the hybrid approach with XL (h-
XL) is a variant of XL guessing some variables beforehand. In this paper,
we present a variant of h-XL, which we call the polynomial XL (PXL).
In PXL, the whole n variables are divided into k variables to be fixed
and the remaining n− k variables as “main variables”, and we generate
a Macaulay matrix with respect to the n− k main variables over a poly-
nomial ring of the k (sub-)variables. By eliminating some columns of the
Macaulay matrix over the polynomial ring before guessing k variables,
the amount of manipulations required for each guessed value can be re-
duced. Our complexity analysis of PXL gives a new theoretical bound,
and it indicates that PXL is efficient in theory on the random system
with n = m, which is the case of general multivariate signatures. For
example, on systems over F28 with n = m = 80, the numbers of manip-
ulations deduced from the theoretical bounds of the hybrid approaches
with XL and Wiedemann XL and PXL with optimal k are estimated as
2252, 2234, and 2220, respectively.

Keywords: MQ problem, MPKC, XL, hybrid approach, Macaulay ma-
trices

1 Introduction

In the field of computer science, the problem of solving a multivariate
polynomial system of degree ≥ 2 over a finite field (the MP problem) is
one of the most important problems, where “solve” means to find (at
least) one root of the system. The particular case where polynomials are
all quadratic is called the MQ problem, and both the MP and MQ prob-
lems are known to be NP-hard [17]. Moreover, the hardness of the MQ
problem is nowadays applied to constructing various cryptosystems (e.g.,
multivariate public key cryptosystems (MPKCs) such as Rainbow [11]
and GeMSS [7]). Therefore, the analysis even for the quadratic case is a



very important task both in theory and in practice, and thus we mainly
focus on solving the MQ problem in this paper.
A precise definition of the MQ problem is the following: Let n and m
be positive integers, and let q be a power of a rational prime p. Given
a system F = (f1, . . . , fm) of m quadratic polynomials f1, . . . , fm in
n variables x1, . . . , xn over a finite field Fq, the MQ problem requires
to find (a1, . . . , an) ∈ Fn

q such that fi(a1, . . . , an) = 0 for all 1 ≤ i ≤
m. Throughout the rest of this paper, we deal with only the case of
n ≤ m (overdetermined case). This is because algorithms solving the
overdetermined MQ problem can be easily applied to the case of n > m,
since, after n−m variables are randomly specified, the resulting system
will have a solution on average.
In the literature, there are various methods for solving the MQ problem
such as Gröbner basis method, Linearization, resultant-based method [9,
Chapter 3], and Wu’s method [26]. In particular, Gröbner basis method is
a generic method to solve the MQ problem. The most classical method
to compute Gröbner bases is Buchberger’s algorithm [6], and ones of
the currently most efficient algorithms are Faugère’s F4 and F5 algo-
rithms [13, 14]. Once a Gröbner basis for the input F is computed for
a given monomial order (typically a graded reverse lexicographic order
is chosen for practical efficiency) with the above algorithms, the FGLM
conversion [15] enables us to obtain its lexicographical Gröbner basis,
from which solutions can be easily derived [10, Chapter 3].
As a linearization-based algorithm, Courtois et al. [8] proposed the XL
algorithm at 2000, and this algorithm is an extension of Relinearization
algorithm [20]. The main idea of XL, which is already used in [22] by
Lazard in order to analyze Buchberger’s algorithm, is: Linearize the given
system by regarding each monomial as one variable, and then, similarly
to F4, use linear algebra to the coefficient matrix of the linearized sys-
tem. More concretely, we first construct a shift S of F , that is, the set of
polynomials of the form t · fi for all 1 ≤ i ≤ m with monomials t up to
given degree. By linearizing the system S, we then generate its coefficient
matrix (this matrix is nothing but a Macaulay matrix of S), and compute
its reduced row echelon form by the row reduction (Gaussian elimina-
tion). If the shift S is sufficiently large, then the number of independent
polynomials in S becomes close to the total number of monomials, and
hence a univariate equation would be obtained from the reduced form
of the Macaulay matrix. We then solve the obtained univariate equation
and repeat such processes with respect to the remaining variables. Note
that XL is considered to be a redundant variant of F4 algorithm (see [1,
2] for details). Furthermore, Yang et al. [29] analyzed a variant of the XL
algorithm called Wiedemann XL (WXL), which adopts Wiedemann’s al-
gorithm [24] instead of row reduction algorithms in the XL framework.
WXL provides another complexity estimate which is used to evaluate
the security of various MPKCs such as Rainbow [11].
One of the most effective improvements of XL is to apply the hybrid
approach [4, 28] (first proposed as FXL in [28] for XL, in which the “F”
stands for “fix”), which is proposed as an approach applying an MQ
solver such as F4, F5, or XL efficiently. This approach fixes the values
of k among n variables (say x1, . . . , xk), and then solves the remaining
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system in the n − k variables xk+1, . . . , xn using an MQ solver. These
processes are iterated until a solution is found. In the case of n ≈ m, the
hybrid approach may be effective, since the gain obtained by working on
systems with less variables may overcome the loss due to the exhaustive
search on the fixed variables. In this paper, we call the hybrid approach
with XL (resp. WXL) h-XL (resp. h-WXL).

Our contributions In this paper, we propose a new variant of the
XL algorithm, which we call polynomial XL (PXL), as an improvement
of h-XL. With notation same as in h-XL described above, the main
idea of our improvement is the following: Before fixing the values of
the variables x1, . . . , xk, we partly perform Gaussian elimination on a
Macaulay matrix over the polynomial ring Fq[x1, . . . , xk], with keeping
x1, . . . , xk as indeterminates. More specifically, for a given MQ system
F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]

m, we first regard each fi as a poly-
nomial in (Fq[x1, . . . , xk])[xk+1, . . . , xn], and construct a shift of F by
multiplying all fi’s by monomials in xk+1, . . . , xn (up to some degree).
We then generate the Macaulay matrix PM of the shift with respect
to a graded monomial order in xk+1, . . . , xn, where PM is a polynomial
matrix with entries in the polynomial ring Fq[x1, . . . , xk]. Here, due to
the gradedness of the monomial order, PM is almost upper-block trian-
gular, and all of its (nearly-)diagonal blocks are matrices with entries in
Fq, not in Fq[x1, . . . , xk]. Thus we can execute row operations on these
blocks efficiently, and as a result, we also obtain a partly-reduced matrix.
Since the size of the uneliminated part of this resulting matrix is much
smaller than that of the original one (e.g., in the case where n = m = 40
and k = 10, the sizes of the original matrix and the uneliminated part
are approximately 230 and 221, respectively.), the amount of manipula-
tions for each guessed value can be reduced compared with h-XL. As we
will see in Subsection 4.3 below, this enables us to solve the system with
smaller complexity for some parameters.

We also discuss the time and space complexities, and theoretically com-
pare them with those of h-XL and h-WXL. Comparing the time com-
plexities, we show that our PXL is the most efficient in theory for the
case of n ≈ m, see Table 1 and Figure 1 for details. For example, on the
system over F28 with n = m = 80, the numbers of manipulations in Fq

required for the execution of h-WXL and PXL are estimated as 2234 and
2220, respectively. On the other hand, in terms of the space complexity,
the proposed algorithm might be not well compared to h-WXL since the
sparsity of the Macaulay matrix is not maintained through an execution
of the proposed algorithm. Therefore, the relationship between PXL and
h-WXL can be seen as a trade-off between time and memory.

Organizations The rest of this paper is organized as follows: Section 2
reviews the XL algorithm and the hybrid approach. Section 3 is devoted
to describing the proposed algorithm PXL. We estimate the time com-
plexity, and theoretically compare it with those of h-XL and h-WXL in
Section 4, and Section 5 introduces experimental results obtained by our
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implementation of PXL. Finally, Section 6 is devoted to the conclusion,
where we summarize the key points and suggest possible future works.

2 Preliminaries

In this section, we recall the definition of the XL algorithm [8], and dis-
cuss its complexity. We also explain the hybrid approach, which combines
an exhaustive search with an MQ solver such as XL.

2.1 Notation and Macaulay matrices

We first fix the notations that are used in the rest of this section. Let
R[x] = R[x1, . . . , xn] denote the polynomial ring with n variables over
a commutative ring R with unity, and let Mon(R[x]) denote the set
of monomials in R[x], say Mon(R[x]) = {xα1

1 · · ·xαn
n : (α1, . . . , αn) ∈

(Z≥0)
n}. For each d ≥ 0, we also denote by Td (resp. T≤d) the set of all

monomials in R[x] of degree d (resp. ≤ d). For a subset F ⊂ R[x], the
ideal of R[x] generated by F is denoted by ⟨F ⟩R[x] or simply ⟨F ⟩. In par-
ticular, when F is a finite set {f1, . . . , fm}, we denote it by ⟨f1, . . . , fm⟩.
For finite subsets F ⊂ R[x] and T ⊂ Mon(R[x]), we set T ·F = {t ·f : t ∈
T, f ∈ F}, which is called the shift of F by T . For a polynomial f ∈ R[x]
and a monomial t ∈ Mon(R[x]), let coeff(f, t) denote the coefficient of t
in f .
Here, we recall the definition of Macaulay matrices. Let ≻ be a monomial
order on Mon(R[x]). Writing above F and T as F = {f1, . . . , fm} and
T = {t1, . . . , tℓ} with t1 ≻ · · · ≻ tℓ, we define the Macaulay matrix
Mac≻(F, T ) of F with respect to T as an (m × ℓ)-matrix over R whose
(i, j)-entry is the coefficient of tj in fi, say

Mac≻(F, T ) :=


t1 ··· tℓ

f1 coeff(f1, t1) · · · coeff(f1, tℓ)
...

...
...

fm coeff(fm, t1) · · · coeff(fm, tℓ)

.

When ≻ is clear from the context, we simply denote it by Mac(F, T ).
Conversely, for an (m × ℓ)-matrix A = (ai,j) over R and for T given
as above, let Mac−1

≻ (A, T ) (or Mac−1(A, T ) simply) denote a unique list
F ′ of polynomials in R[x] such that Mac≻(F

′, T ) = A, namely, we set
gi :=

∑ℓ
j=1 ai,jtj for 1 ≤ i ≤ m, and Mac−1

≻ (A, T ) := {g1, . . . , gm}.

Example 1. Consider the following three quadratic polynomials (over
R = Z) in two variables x1 and x2:

f1 = 5x2
1 + 6x1x2 + 4x1 + 5x2 + 3,

f2 = 4x2
1 + 5x1x2 + 3x2

2 + 6x1 + 2x2 + 2,

f3 = 2x2
1 + 4x1x2 + 2x2

2 + 6x1 + x2 + 2.

Putting F := (f1, f2, f3), we construct a Macaulay matrix of the shift
S := T1 · F = {xifj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3} of F by T1, where T1 is
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the set of monomials in x1 and x2 of degree one. We order elements of
S as follows: S = {x1f1, x1f2, x1f3, x2f1, x2f2, x2f3}. Let ≻glex be the
graded lex order on the monomials in x1 and x2 with x1 ≻ x2, that is,
xα1
1 xα2

2 ≻glex xβ1
1 xβ2

2 if |α1 + α2| > |β1 + β2|, or |α1 + α2| = |β1 + β2|
and xα1

1 xα2
2 is greater than xβ1

1 xβ2
2 with respect to the lexicographical

order with x1 ≻ x2. When we order elements of T≤3 (which is the set
of monomials in R[x] of degree ≤ 3) by ≻glex, the Macaulay matrix
Mac≻glex(S, T≤3) of S with respect to T≤3 is given as follows:

Mac≻glex(S, T≤3) =



x3
1 x2

1x2 x1x
2
2 x3

2 x2
1 x1x2 x2

2 x1 x2 1

x1f1 5 6 0 0 4 5 0 3 0 0
x1f2 4 5 3 0 6 2 0 2 0 0
x1f3 2 4 2 0 6 1 0 2 0 0
x2f1 0 5 6 0 0 4 5 0 3 0
x2f2 0 4 5 3 0 6 2 0 2 0
x2f3 0 2 4 2 0 6 1 0 2 0

.

In the XL algorithm in Subsection 2.2, the reduced row echelon form
of a Macaulay matrix of a shift of F is computed, with R a finite field
Fq. This corresponds to computing a basis G of the Fq-vector space
generated by the shift, and clearly the computed basis also generates
the ideal ⟨F ⟩Fq [x], i.e., ⟨G⟩Fq [x] = ⟨F ⟩Fq [x]. In general, G computed as
above is not necessarily a Gröbner basis of ⟨F ⟩Fq [x], but we will review
in Appendix A that for sufficiently large shifts, G becomes a Gröbner
basis.

2.2 XL algorithm

This subsection briefly reviews the XL algorithm (which stands for eX-
tended Linearizations), which is proposed in [8] by Courtois et al. to find
a solution to a system of multivariate polynomials over finite fields. We
write down the XL algorithm in Algorithm 1 below, where the notations
are the same as in the previous subsections. We also suppose that the
input system is zero-dimensional (see Proposition 2 for the definition).
Note also that the input polynomials are assumed to be all quadratic as
in the original paper [8], but in fact, their idea is applicable to a general
multivariate system of higher degree.

Algorithm 1 (XL, [8, Section 3, Definition 1])
Input: An MQ system F = (f1, . . . , fm) ⊂ Fq[x1, . . . , xn]

m, and a degree
bound D.

Output: A solution over Fq to fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m.
(1) Multiply: Computing all the products t·fi with t ∈ T≤D−2, construct

the shift I≤D := T≤D−2 · F of F by T≤D−2.
(2) Linearize: Make the Macaulay matrix A := Mac≻(I≤D, T≤D) with

respect to some elimination monomial order ≻ such that all the terms
containing one variable (say xn) are eliminated last. Compute the
reduced row echelon form B of A, and put G := Mac−1

≻ (B, T≤D).
A univariate polynomial g(xn) in xn of degree at most D is surely
contained in G when D is sufficiently large (see Subsection 2.3 or
Appendix A for details).
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(3) Solve: Compute the roots in Fq of g by e.g., combining square-free,
distinct-degree and equal-degree factorization algorithms such as [32],
[19] and [18] respectively.

(4) Repeat: Substitute a root into xn, simplify the equations of G, and
then find the values of the other variables.

Note that in the generation of Mac≻(I≤D, T≤D), one can sort elements
in I≤D arbitrarily. The condition of the degree bound D for the success
of XL is discussed in the next subsection.

2.3 Degree bounds for the success of XL

Algorithm 1 has an input parameter D called a degree bound, and it
is known that the algorithm surely finds a zero of ⟨F ⟩ for sufficiently
large D. This subsection reviews bounds on such D both in theory and
in practice.
A well-known (theoretical) upper bound is Dubé’s degree bound [12] given

by D(n, d) := 2
((
d2/2

)
+ d
)2n−1

, where d := max{deg(fi) : 1 ≤ i ≤ m}:
The reduced row echelon form of Mac(I≤D, T≤D) yields a Gröbner basis
of ⟨F ⟩ with respect to an elimination order, for any degree D larger than
or equal to the Dubé’s bound, see Corollary 1 in Appendix A. Hence, for
such a D one can obtain a root (in fact all roots) of F with Algorithm
1 (cf. Proposition 2 below). However, this bound is not practical and we
recall a practical bound given in [27] in the following.
We here review the estimation of this practical bound, considering the
rank of Mac(I≤D, T≤D) with some reasonable assumption. We may sup-
pose for Algorithm 1 to use an elimination order such that xD

n , xD−1
n , . . . ,

xn, 1 are listed at the end. It is straightforward that the last nonzero row
vector of the reduced row echelon form of Mac(I≤D, T≤D) yields a uni-
variate equation of xn if rank(Mac(I≤D, T≤D)) is larger than the number
of columns minus D + 1, i.e.,

rank(Mac(I≤D, T≤D)) ≥ |T≤D| −D. (2.1)

Thus it suffices to estimate the value of the minimal D satisfying (2.1).
For this, we estimate rank(Mac(I≤d, T≤d)) for d ≥ 2 as the dimension
of the Fq-linear space ⟨I≤d⟩Fq generated by the set I≤d. To obtain the
dimension of ⟨I≤d⟩Fq , we consider the linear dependency of multiples of
fi and monomials in x1, . . . , xn. Writing each fi as

fi(x) =
∑
k≤ℓ

a
(i)
k,ℓxkxℓ +

∑
k

b
(i)
k xk + c(i)

with a
(i)
k,ℓ, b

(i)
k , c(i) ∈ Fq for 1 ≤ k ≤ ℓ ≤ n, it follows from fifj = fjfi

that ∑
k≤ℓ

a
(i)
k,ℓ(xkxℓfj) +

∑
k

b
(i)
k (xkfj) + c(i)fj

=
∑
k≤ℓ

a
(j)
k,ℓ(xkxℓfi) +

∑
k

b
(j)
k (xkfi) + c(j)fi

(2.2)
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for each 1 ≤ i ≤ j ≤ m. The equality (2.2) means that a set of polynomi-
als {t·fℓ | t ∈ T≤2, ℓ ∈ {i, j}} is linearly dependent over Fq. Furthermore,
equations obtained by multiplying the both sides of (2.2) by monomials
in x1, . . . , xn indicate linear dependencies at degree larger than 2. As-
suming no other source of dependencies than the above, the dimension
of ⟨I≤d⟩Fq is determined as follows:

Proposition 1 ([27, Proposition 1]). For all d < min{q,Dreg}, if all
dependencies of I≤d result from the dependency of {t · fℓ | t ∈ T≤2, ℓ ∈
{i, j}}, then we have

|T≤d| − dimFq (⟨I≤d⟩Fq ) = coeff
(
(1− t)m−n−1 (1 + t)m , td

)
.

Here Dreg is given by

Dreg := min
{
d | coeff

(
(1− t)m−n−1 (1 + t)m , td

)
≤ 0
}
, (2.3)

and it is called the degree of regularity for XL.

It follows from Proposition 1 that the minimum D required for the suc-
cess of XL is given by

D = min
{
d | coeff

(
(1− t)m−n−1 (1 + t)m , td

)
≤ d
}
, (2.4)

in the case where q is sufficiently large. We call this degree D the solving
degree of XL. Note that if n and m are determined, then the solving
degree can be computed. One can easily confirm that the solving degree
tends to be much smaller than Dubé’s degree bound (e.g., the solving
degree of XL on systems with n = 10 and m = 11 is 11, whereas Dubé’s
degree bound on the same system is approximately 10309).

Remark 1. Ars et al. compared XL with Gröbner basis algorithms such
as F4 and F5 in [2], and obtained the same estimation as in (2.4) for
the minimal value of D for which XL succeeds, under some assumptions.
Specifically, they described XL as a redundant variant of F4, assuming
that the input system has only one solution over a finite field. They
also estimated the minimal value D as (2.4), by considering Matrices
appearing in the execution of (matrix-)F5 on the input system of XL:
While Proposition 1 assumes that all dependencies come from trivial
relations (2.2), they assumed that the input system is semi-regular. The
relationship between these two assumptions has not been clarified (as
long as we searched related references), but the same estimation (2.4)
can be obtained in both cases.

2.4 Complexity

In this subsection, we estimate the time complexity of (plain) XL to-
gether with that of its variant Wiedemann XL (WXL). Here WXL uses
Wiedemann’s algorithm [24] instead of Gaussian elimination in the XL
framework, which was first analyzed in [29]. Wiedemann’s algorithm gen-
erally solves sparse linear systems more efficiently than Gaussian elimi-
nation.
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Complexity of XL We first consider plain XL (Algorithm 1), where the
Linearize step is clearly dominant in terms of the time complexity. Re-
call from Subsection 2.2 that XL outputs a solution of the input system
for D equal to or larger than the solving degree given in (2.4), and thus
we may assume to take D to be this solving degree. In the Linearize
step, one uses linear algebra to obtain the reduced row echelon form of a
Macaulay matrix with m·

(
n+D−2
D−2

)
rows and

(
n+D
D

)
columns. However, in

fact, the cost of this step can be estimated as that of Gaussian elimina-
tion on a matrix with

(
n+D
D

)
rows and columns, assuming the following

practical assumption as in [23]: If we pick rows at random under the con-
straint that we have enough equations at each degree d ≤ D, then usually
we have a linearly independent set. From this assumption, by regarding
the complexity of Gaussian elimination as that of LU-decomposition, the
complexity of XL is roughly estimated as

O
((

n+D
D

)ω)
, (2.5)

where 2 ≤ ω < 3 is the constant in the complexity of matrix multiplica-
tion.

Complexity of WXL According to [11], the complexity of WXL is esti-
mated as

O
((

n
2

)
·
(
n+D
D

)2)
, (2.6)

where D is the solving degree of XL given in (2.4). (We remove the
constant part from the complexity in [11], since we focus on asymptotic
complexity.) WXL consumes less memory than the plain XL, since it
can deal with the Macaulay matrix as a sparse matrix, and its memory
consumption is estimated as O

((
n
2

)
·
(
n+D
D

))
, see [24].

2.5 Improving XL via hybrid approach

One of the most effective improvements of XL is to apply the hybrid
approach [4, 28], which is the best known technique for solving the MQ
problem. The hybrid approach combines an exhaustive search with an
MQ solver, and it was proposed in [4] (resp. [28]) for Gröbner basis algo-
rithms such as F4 and F5 (resp. XL). Specifically, given an MQ system
of m equations in n variables, the values for k (0 ≤ k ≤ n) variables
are randomly guessed and fixed before an MQ solver is applied to the
system in the remaining n− k variables; this is repeated until a solution
is obtained. The hybrid approach for XL presented in [28] is called FXL,
where “F” stands for “fix”, and it is constructed by adding the first and
last steps below into Algorithm 1:

Algorithm 2 (Hybrid approach with XL (h-XL))
Input: An MQ system F = (f1, . . . , fm) ⊂ Fq[x1, . . . , xn]

m, the number
k of guessed variables, and a degree bound D.

Output: A solution over Fq to fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m.

(1) Fix: Fix the values for the k variables x1, . . . , xk randomly.
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(2) Multiply: Construct the shift I≤D := T≤D−2 · F .

(3) Linearize: Compute the reduced row echelon form of Mac(I≤D, T≤D).

(4) Solve: Compute the root of a univariate polynomial obtained in Lin-
earize.

(5) Repeat: Find the values of the other variables.

(6) If there exists no solution, return to (1) Fix.

The complexities of the hybrid approaches using the plain XL and WXL
as MQ solvers are estimated as

O
(
qk ·

(
n−k+D

D

)ω)
, (2.7)

O
(
qk ·

(
n−k
2

)
·
(
n−k+D

D

)2)
, (2.8)

respectively, by using the estimations (2.5) and (2.6). Here D is the
solving degree of XL on systems of m equations in n − k variables. In
the use of the hybrid approach, the number k of guessed variables is
chosen such that the function inside brackets in (2.7) or (2.8) takes the
minimum value.

3 Main Algorithm

In this section, we propose a new variant of the XL algorithm solving the
MQ problem of m equations in n variables over Fq where n ≤ m. We first
discuss Macaulay matrices over polynomial rings, and second describe the
outline of our proposed algorithm “polynomial XL (PXL)”. After that,
the details of the most technical step will be described in Subsection 3.3,
and degree bounds for the success of PXL will be discussed in Subsec-
tion 3.4. Throughout this section, let F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]

m

be an MQ system of m polynomials in n variables x1, . . . , xn over Fq,
where q is a power of a prime.

3.1 Macaulay matrices over polynomial rings

In this subsection, we fix the notations that are used in the rest of this
section. In particular, we construct a Macaulay matrix over the polyno-
mial ring Fq[x1, . . . , xk] with respect to xk+1, . . . , xn for 1 ≤ k ≤ n, where
each entry belongs to Fq[x1, . . . , xk]. Namely, a Macaulay matrix whose
coefficient ring is Fq[x1, . . . , xk] will be constructed. Such a Macaulay
matrix, together with our construction, plays a key role in the main al-
gorithm in Subsection 3.2 below. Note that most of the notations given
below are similar to those defined in Subsection 2.1 for the case where
the coefficient ring is a general ring.

In the following, an integer k is fixed, unless otherwise noted. Similarly
to the hybrid approach reviewed in Subsection 2.5, the main algorithm
divides x1, . . . , xn into k variables x1, . . . , xk and the remaining n − k
variables, and then regards f1, . . . , fm as elements of the polynomail ring
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(Fq[x1, . . . , xk])[xk+1, . . . , xn]. As in Subsection 2.1, we define subsets Ta,
Ta;b, T≤a, Ia, Ia;b and I≤a of (Fq[x1, . . . , xk]) [xk+1, . . . , xn] as follows:

Ta :=

{
x
αk+1

k+1 · · ·xαn
n :

n∑
i=k+1

αi = a

}
,

Ta;b := Ta ∪ Ta+1 ∪ · · · ∪ Tb,

T≤a := T0;a

for b ≥ a ≥ 0, and

Ia :=

m∪
i=1

{t · fi : t ∈ Ta−2},

Ia;b := Ia ∪ Ia+1 ∪ · · · ∪ Ib,

I≤a := I2;a

for b ≥ a ≥ 2. In particular, I≤a is the shift of F by the set T≤a−2 of
monomials in xk+1, . . . , xn of degree ≤ a− 2.
Here, we construct a Macaulay matrix of the shift I≤D with respect to
T≤D for each D ≥ 2, as in the plain XL. For this, unlike the plain XL,
we use a graded monomial order (e.g., graded lexicographic order), which
is a monomial order first comparing the total degree of two monomials.
Furthermore, as for the order of elements in I≤D, we also use an order
that first compares the degree of two polynomials.
For simplicity of notation, we denote by PM the Macaulay matrix
Mac(I≤D, T≤D) constructed as above, and call it a Macaulay matrix
of F at degree D over Fq[x1, . . . , xk]. For two integers d1 and d2 (2 ≤
d1 ≤ D, 0 ≤ d2 ≤ D), we also denote by PM[Id1 , Td2 ] the submatrix
of PM whose rows (resp. columns) correspond to polynomials of Id1
(resp. monomials of Td2). Then, PM is clearly divided by submatrices
PM[Id1 , Td2 ] (2 ≤ d1 ≤ D, 0 ≤ d2 ≤ D).
Thanks to our choice of a monomial order together with the quadraticity
of F , the following lemma holds clearly:

Lemma 1. For an MQ system F and positive integers k ≤ n and D ≥ 2,
let PM be a Macaulay matrix of F at degree D over Fq[x1, . . . , xk]. Then,
for 2 ≤ d ≤ D, every PM[Id, Td′ ] with d′ /∈ {d, d − 1, d − 2} is a zero
matrix, and all elements of PM[Id, Td] belong to Fq.

Proof. The first statement comes from the fact that t · fi ∈ Id with t ∈
Td−2 includes only monomials with degree d, d−1, and d−2. Furthermore,
if the second one does not hold, then the degree of a given polynomial is
larger than 2. □

Due to this lemma, we can partly perform row reduction on PM, which
is a key operation of the proposed algorithm in the next subsection.

3.2 Outline of our algorithm PXL

This subsection describes the proposed algorithm polynomial XL (PXL).
As in the h-XL described in Subsection 2.5, PXL first sets the first k
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variables x1, . . . , xk as guessed variables, whereas the main difference
between our PXL and h-XL is the following: While h-XL performs row
reduction after substituting actual k values to x1, . . . , xk, PXL partly
performs Gaussian elimination before fixing k variables. These manipu-
lations are possible due to our construction of Macaulay matrices over
Fq[x1, . . . , xk] described in Lemma 1.

Here, we give the outline of PXL. The notations are same as those in
Subsection 3.1.

Algorithm 3 (Polynomial XL)

Input: An MQ system F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m, the number

k of guessed variables, and a degree bound D.

Output: A solution over Fq to fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m.

(1) Multiply: Compute the set I≤D of all the products t · fi with t ∈
T≤D−2.

(2) Linearize(1): Generate PM := Mac(I≤D, T≤D), which is the Macaulay
matrix of F at degree D over Fq[x1, . . . , xk], and partly perform
Gaussian elimination on it. (The details will be described in Sub-
section 3.3.)

(3) Fix: Fix the values for the k variables x1, . . . , xk in the resulting
matrix of step 2.

(4) Linearize(2): Compute the row echelon form of the resulting matrix
of step 3.

(5) Solve: If step 4 yields a univariate polynomial, compute its root.

(6) Repeat: Substitute the root, simplify the equations, and then repeat
the process to find the values of the other variables.

(7) If there exists no solution, return to (3) Fix.

Note that the definition of the resulting matrix of step 2 is given in the
following paragraph.

Let us here describe only the first two steps, since the last four steps
are executed similarly to h-XL. The Multiply step generates the shift
I≤D of F by T≤D−2, defined in Subsection 3.1, by regarding each poly-
nomial as that in (Fq[x1, . . . , xk])[xk+1, . . . , xn]. At the beginning of the
Linearize(1) step, PM is a polynomial matrix with entries in the poly-
nomial ring Fq[x1, . . . , xk], but by Lemma 1 it is almost upper-block
triangular, and all of its (nearly-)diagonal blocks are matrices with en-
tries in Fq. By utilizing this property, the Linearize(1) step repeats to
transform such a block into the row echelon form and to eliminate entries
of its upper blocks. After the Linearize(1) step, the resulting Macaulay

matrix is supposed to be the following form

(
I ∗
0 A

)
, by interchanging

rows (and columns). Here I is an identity matrix, and A is a matrix over
Fq[x1, . . . , xk]. Then, the last four steps deal with only the submatrix
composed of rows and columns including no leading coefficient of the
reduced part, which corresponds to A. This submatrix A is called the
resulting matrix of Linearize(1).

11



3.3 Details of Linearize(1) step

In this subsection, we describe the details of the Linearize(1) step in
the proposed algorithm, and show that it works well as row operations on
PM. We use the same notations as in Subsection 3.1. In the following, we
also denote by PM[Ia, Tb] the same part even after PM is transformed.
The Linearize(1) step is mainly performed on each PM[Id, T(d−2);d],
starting from d = D down to 2. Each iteration d consists of the following
three substeps:
(d)-1. Perform Gaussian elimination on PM[Id, Td].
(d)-2. Perform the same row operations as those of (d)-1 on the sub-

matrix PM[Id, T(d−2);(d−1)].
(d)-3. Using the leading coefficients of the resulting PM[Id, Td], elim-

inate the corresponding columns of PM. Here, a leading coeffi-
cient is the leftmost nonzero entry in each row of the row echelon
form of a matrix.

Here, we show that the Linearize(1) step described above works well
as row operations on PM. Note that for any 3 ≤ d ≤ D, the (d)-3 step
does not affect the submatrix PM[I≤(d−1), Td], since PM[I≤(d−1), Td]
is always a zero matrix by Lemma 1. This indicates that PM[Id, T≤D]
does not change from the original structure at the beginning of the (d)-1
step. Therefore, from Lemma 1, the manipulations in the (d)-1 and (d)-2
steps can be performed correctly and seen as row operations on PM.
Furthermore, the (d)-3 step can be also performed correctly, since the
leading coefficients of the resulting PM[Id, Td] belong to Fq. As a result,
we have that all the manipulations are practicable and regarded as row
operations on PM.
After the Linearize(1) step, all manipulations are performed on the
resulting matrix of Linearize(1) obtained by concatenating rows and
columns including no leading coefficient of the row echelon form PM[Id, Td]
with 2 ≤ d ≤ D.

3.4 Degree bounds for the success of PXL

This subsection estimates the minimum value D where PXL succeeds in
finding a solution, under the same assumption as in Proposition 1. We call
this minimum value D the solving degree of PXL. Specifically, we show
that the solving degree of PXL can be upper bounded by the degree of
regularity for XL on systems of m equations in n−k variables (cf. (2.3)).
Note that the success of PXL means the following: For some evaluation
of (x1, . . . , xk) to a = (a1, . . . , ak) ∈ Fk

q in the Fix step, the remaining
steps finds a solution (ak+1, . . . , an) ∈ Fn−k

q to the multivariate system in
xk+1, . . . , xn corresponding to the resulting matrix of the Linearize(1)
step, and then (a1, . . . , an) is exactly a solution to the original system.
To estimate the solving degree of PXL, we first discuss the rank of the
resulting matrix of Linearize(1). Recall from Subsection 3.2 that the
Linearize(1) step transforms the Macaulay matrix into a matrix of the

form

(
I ∗
0 A

)
, by interchanging rows (and columns). Here I is an identity

matrix, and A is a matrix over Fq[x1, . . . , xk]. The resulting matrix of the
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Linearize(1) step is A, and let α be the number of columns of A. For
a = (a1, . . . , ak) ∈ Fk

q , we denote by A(a) (resp. Mac(I≤D, T≤D)(a)) the
matrix obtained by substituting (a1, . . . , ak) to (x1, . . . , xk) in A (resp.
Mac(I≤D, T≤D)). Since an evaluation of x1, . . . , xk and elementary row
operations over Fq[x1, . . . , xk] (without multiplying rows by elements in
Fq[x1, . . . , xk] of degree ≥ 1) are commutative, we have the following:

Lemma 2. With notation as above, we have α− rank(A(a)) = |T≤D| −
rank(Mac(I≤D, T≤D)(a)).

Furthermore, we here assume the following to estimate the solving degree
of PXL

Expectation 1 For any (a1, . . . , ak) ∈ Fk
q , F (a1, . . . , ak, xk+1, . . . , xn)

satisfies the same assumption about dependencies of I≤d as in Proposi-
tion 1.

We here suppose that the Linearize(2) step is performed with an elimi-
nation order on monomials corresponding to column indices of the result-
ing matrix of Linearize(1), which include 1, xn, . . . , x

d′
n with d′ ≤ D.

Then, due to Lemma 2 and the above conjecture, the solving degree D′

of PXL is given as

D′ = min
{
D | coeff

(
(1− t)m−n−1 (1 + t)m , tD

)
≤ d′

}
,

similarly to the solving degree of XL (2.4). If we use the degree D′

obtained from the above equation, then the Linearize(2) step yields a

univariate equation composed of monomials 1, xn, . . . , x
d′
n . We then have

D′ ≤ Dreg

from (2.3), and thus the solving degree of PXL is upper bounded by Dreg

on systems of m equations in n− k variables. Indeed, we experimentally
confirmed that PXL finds a solution at Dreg. Note that Dreg is the same
as the degree obtained by the solving degree of XL in most cases.

Remark 2. If we assume that the zero-dimesional system F (x1, . . . , xn)
has only one solution (a1, . . . , an) over Fq as in [2], then we need not to
use elimination order in the Linearize(2) step. Indeed, in that case, the
ideal generated by F (a1, . . . , ak, xk+1, . . . , xn) has the reduced Gröbner
basis {xk+1−ak+1, . . . , xn−an} (resp. {1}) with respect to the graded or-
der deduced from that on Fq[x1, . . . , xn] for valid (resp. invalid) (a1, . . . , ak),
similarly to the discussion in [2, Section 4.2]. This implies that the re-
duced row echelon form of Mac(I≤D, T≤D)(a) yields the reduced Gröbner
basis if |T≤D|− rank(Mac(I≤D, T≤D)(a)) ≤ 1, where elements in T≤D are
ordered by the graded order as in the Linearize(1) step. Thus we can
expect that PXL finds the unique solution at Dreg.

Remark 3. As in the XL algorithm, in practice, PXL randomly chooses
approximately |T≤D| independent rows from the Macaulay matrix with
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|I≤D| rows, and executes the Linearize(1) step on the submatrix com-
posed of chosen row vectors. We then assume that the rank of the re-
sulting matrix of Linearize(1) is large enough to yield a univariate
equation, and this was experimentally confirmed.

Remark 4. We here briefly discuss the relationship between our algo-
rithm PXL and XFL [8, 27] proposed as a variant of h-XL. XFL is roughly
described as follows: First, the k variables to be fixed are chosen and gen-
erate a shift of the given system by all monomials in the remaining n−k
variables up to some degree D − 2. Second, construct a Macaulay ma-
trix (over Fq, but not over Fq[x1, . . . , xk]) of the shift with respect to
all monomials in the whole n variables up to the degree D, and then
eliminate only monomials of degree D including only the n−k variables.
Third, substitute actual values for the k variables, and execute XL for a
system in n− k variables obtained by the substitution.

The first step of XFL clearly coincides with the Multiply step of our
PXL. The main difference of XFL from PXL is the second step: The
second step of XFL eliminates monomials in the n−k variables of degree
D, and it corresponds to eliminating only PM[ID, TD] in the second
step of our PXL (in fact, PXL eliminates every block PM[Id, Td] with
2 ≤ d ≤ D). Therefore, PXL can be regarded as the extension of XFL,
and the size of the uneliminated part of the second step of XFL is larger
than that of PXL.

4 Complexity

In this section, we first estimate the size of the resulting matrix of Lin-
earize(1). After that, we estimate the time complexity of PXL and
compare it with those of h-XL and h-WXL. We take D to be the degree
of regularity for XL so that PXL can find a solution (as described in
Subsection 3.4).

4.1 Size of resulting matrix of Linearize(1)

Let α be the number of columns of the resulting matrix of Linearize(1).
In the following, we estimate the value of this α and show that it can be
quite smaller than the number of the columns of the original Macaulay
matrix PM. We also show that the resulting matrix of Linearize(1)
can be assumed to be an α× α matrix.

For each 2 ≤ d ≤ D, we define the set I∗d of polynomials by

I∗d := { the degree d part of a | a ∈ Id}.

If we denote by ⟨I∗d ⟩Fq the Fq-linear space generated by the set I∗d , then
the number of columns eliminated in the step (d)-1 of Linearize(1) on
PM[Id, Td] is equal to the rank of PM[Id, Td], that is dimFq (⟨I∗d ⟩Fq ).

14



Therefore, we have

α = |T≤D| −
D∑

d=2

dimFq (⟨I
∗
d ⟩Fq )

=

D∑
d=2

(
|Td| − dimFq (⟨I

∗
d ⟩Fq )

)
+ |T1|+ |T0|. (4.1)

Using the same assumption as in Proposition 1, the value of (4.1) can
be estimated as

D∑
d=0

max
{
coeff

(
(1− t)m−(n−k) (1 + t)m , td

)
, 0
}
. (4.2)

Note that this can be quite smaller than
(
n+D
D

)
, which is the number

of the columns of the whole Macaulay matrix PM. For example, when
n = m = 40 and k = 10, the solving degree D of PXL obtained by (2.3)
is 10, and then α and

(
n+D
D

)
are approximately 221 and 230, respectively.

Recall from Remark 3 that PXL randomly chooses approximately |T≤D|
independent rows from the Macaulay matrix. When Ĩd denotes the subset
of Id including polynomials corresponding to randomly chosen rows and
rd denotes the rank of PM[Ĩd, Td], suppose that Ĩd satisfies the following
equality

D∑
d=2

(
|Ĩd| − rd

)
≈ α. (4.3)

This can be realized by avoiding choosing too many rows from ID, and,
by doing so, the size of the resulting matrix of Linearize(1) is approx-
imately α× α.

4.2 Time complexity

In this subsection, we estimate the time complexity of PXL. Here, C(d)1

(resp. C(d)2, C(d)3) denotes the estimation of the sum of the number of
manipulations in Fq required for each (d)−1 (resp. (d)−2, (d)−3) in the
Linearize(1) step with 2 ≤ d ≤ D. Furthermore, Cfix and Cli2 denote
the estimation of the numbers of manipulations in Fq required for the fix
and Linearize(2) steps, respectively. These estimations are determined
from the number n of all variables, the number k of guessed variables,
the degree D of regularity for XL, and the size α of the resulting matrix
of Linearize(1). After obtaining each of these five estimations, we give
a practical estimation of total time complexity by (4.7) below.

Time Complexity of (d)-1 Recall that the (d)-1 step performs Gaussian
elimination on PM[Ĩd, Td], and its complexity is given as max{|Ĩd|, |Td|}ω
for each 2 ≤ d ≤ D. Since we have

∑D
d=2 ||Ĩd| − |Td|| ≤ α from (4.3), an

upper bound on the sum of the complexity estimation of the (d)-1 step
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for 2 ≤ d ≤ D is given by

D∑
d=2

max{|Ĩd|, |Td|}ω ≤

(
D∑

d=2

max{|Ĩd|, |Td|}

)ω

≤ (|T≤D|+ α)ω

≤ (2 · |T≤D|)ω = O
((

n−k+D
D

)ω)
,

and thus we set C(d)1 to be
(
n−k+D

D

)ω
.

Time Complexity of (d)-2 In each (d)-2 step, the complexity of ex-
ecuting the same row operations as those in (d)-1 step is estimated as
that of multiplying an |Ĩd| × |Ĩd| matrix over Fq to the matrix PM[Ĩd,
T(d−2);(d−1)]. Note that PM[Ĩd, T(d−2);(d−1)] is a sparse matrix from
the same discussion as in Subsection 3.3, where each row of it has at
most n − k + 1 non-zero entries. Thus, multiplying the two matrices
are done by O((n − k) · |Ĩd|2) additions and scalar multiplications in
Fq[x1, . . . , xk]. Since polynomials appearing in each addition or scalar
multiplication have degree ≤ 2, its cost is bounded by O

((
k+2
2

))
with

naive approach. Considering above together, each (d)-2 step has complex-

ity O
((

k+2
2

)
· (n− k) · |Ĩd|2

)
, and hence the total complexity of (d)-2 for

all 2 ≤ d ≤ D is given by

D∑
d=2

((
k+2
2

)
· (n− k) · |Ĩd|2

)
≤
(
k+2
2

)
· (n− k) · |Ĩ≤D|2

= O
(
k2 · (n− k) ·

(
n−k+D

D

)2)
,

and thus C(d)2 is set to be k2 · (n− k) ·
(
n−k+D

D

)2
.

Time Complexity of (d)-3 To estimate the time complexity of (d)-3
with 2 ≤ d ≤ D, we use the following lemma:

Lemma 3. At the time of executing the (d)-3 step with 2 ≤ d ≤ D − 1,
the degree of every element of PM[Ĩ(d+1);D, Td] is lower than or equal to
D − d.

Proof. By the induction, we prove that, at the time of the (d)-3 step,
the degree of every element of PM[Ĩ(d+1);D, Td] and PM[Ĩ(d+1);D, Td−1]
is lower than or equal to D − d and D − d+ 1, respectively. In the case
where d = D− 1, the above statement clearly holds. In the following, we
show that, if the statement holds when d = d′ with 3 ≤ d′ ≤ D − 1,
then it also holds when d = d′ − 1. Before executing the step (d′)-
3, PM[Ĩ(d′+1);D, Td′−2] is a zero matrix clearly. Then, the (d′)-3 step
adds row vectors, which are obtained by multiplying rows corresponding
to Ĩd′ by a polynomial with the degree D − d′, to rows correspond-
ing to Ĩ(d′+1);D. Here, the degree of each entry of PM[Ĩd′ , Td′−1] and

PM[Ĩd′ , Td′−2] are at most 1 and 2, respectively. Hence, through (d′)-
3, the degree of each entry of PM[Ĩ(d′+1);D, Td′−2] becomes at most

D− d′ +2 and that of PM[Ĩ(d′+1);D, Td′−1] remains at most D− d′ +1,
Therefore, the statement holds in the case where d = d′ − 1, as desired.
□
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Each (d)-3 step eliminates the corresponding columns using the leading
coefficients of PM[Ĩd, Td]. This complexity is estimated as that of multi-
plying the following two matrices: (A) The submatrix of PM[Ĩd′ , Td] (d+
1 ≤ d′ ≤ D) to be eliminated, and (B) The submatrix of PM[Ĩd, T(d−2);d]
consisting of columns with no leading coefficients and rows with leading
coefficients. If we suppose for the efficiency that each (d)-3 step only elim-
inates elements of rows including no leading coefficients in PM[Ĩd′ , Td′ ]
(d + 1 ≤ d′ ≤ D), then the sizes of these matrices (A) and (B) are
estimated as follows:
(A) The number of rows is at most α from the discussion in Subsec-

tion 4.1 and that of columns is equal to the rank rd of PM[Ĩd, Td].
(B) The number of rows is rd and that of columns is upper-bounded by

|T(d−2);d| = O (|Td|).
Considering these estimation for (A) and (B) together with Lemma 3,
the complexity of each (d)-3 step is given by that of multiplying an α×rd
matrix of elements in Fq[x1, . . . , xk] with degree ≤ D−d and an rd×|Td|
matrix of elements in Fq[x1, . . . , xk] with degree ≤ 2. Note that each
multiplication of an element in Fq[x1, . . . , xk] with degree ≤ D − d and

that with degree ≤ 2 can be done in O
((

k+2
2

)
·
(
k+D−d
D−d

))
with a naive

approach. Putting it all together, we estimate the complexity of the (d)-3
step as

O
((

k+D−d
D−d

)
·
(
k+2
2

)
· α · rd · |Td|

)
≤ O

((
k+D−d
D−d

)
·
(
k+2
2

)
· α ·

(
n−k+d−1

d

)2)
.

Note that the (D)-3 step can be omitted since PM[Ĩ≤(D−1), TD] is a
zero matrix. Consequently, the sum of the complexity of the (d)-3 step
for 2 ≤ d ≤ D − 1 is estimated by

D−1∑
d=2

((
k+D−d
D−d

)
·
(
k+2
2

)
· α ·

(
n−k+d−1

d

)2)

≤
(
k+2
2

)
· α ·

(
D−1∑
d=2

(
n−k+d−1

d

))
·

(
D−1∑
d=2

((
k+D−d

k

)
·
(
n−k+d−1
n−k−1

)))
≤ O

(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

))
,

and thus we set C(d)3 to be k2 · α ·
(
n−k+D

D

)
·
(
n+D
D

)
.

Time Complexity of Fix The size of the resulting matrix of Lin-
earize(1) is approximately α×α due to the discussion in Subsection 4.1,
and the degree of every element in the matrix is lower than or equal to
D from Lemma 3. Therefore, the time complexity of Fix is estimated as
that of substituting k values to x1, . . . , xk in α2 polynomials with degree
D in Fq[x1, . . . , xk]. When we use a naive approach, the complexity of
evaluation of a polynomial with degree d in n variables is estimated by(
n+d
d

)
. Therefore, Cfix is given by

Cfix = qk · α2 ·
(
k+D
D

)
, (4.4)

since the Fix step is iterated for any values of x1, . . . , xk.
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Table 1. Complexities approximated by power of 2 between PXL (4.7), h-XL (2.7),
and h-WXL (2.8), the optimal number k of guessed variables of PXL, the solving degree
D of PXL, and the estimated size α of the resulting matrix of Linearize(1) on the
MQ system with n = m = 20, 40, 60, and 80 over F28 (above) and over F31 (below)

F28 20 40 60 80

h-XL 275 2134 2194 2252

h-WXL 275 2129 2182 2234

PXL 262 2117 2169 2220

k 3 6 8 10

D 9 14 19 24

α 214 227 242 256

F31 20 40 60 80

h-XL 266 2119 2170 2221

h-WXL 265 2116 2162 2208

PXL 257 2105 2152 2197

k 5 8 11 13

D 7 12 16 21

α 211 224 237 251

Time Complexity of Linearize(2) The Linearize(2) step performs
Gaussian elimination on an α× α matrix over Fq, and thus we estimate
Cli2 by

Cli2 = qk · αω, (4.5)

considering qk times iterations.

Rough Estimations of Time Complexity Here, we present a
more compact formula for the time complexity of PXL. Comparing the
estimations C(d)2 and C(d)3, we can easily confirm that the value of C(d)3

is larger than that of C(d)2. Furthermore, comparing the estimations
C(d)1 and C(d)3, we experimentally confirmed that, for the case where
10 ≤ n ≤ 100, m = n, 1.5n, 2n, and k is the value minimizing the sum
of the above five estimations, the value of C(d)3 is always much larger
than that of C(d)1 (e.g., C(d)1 and C(d)3 on the case of n = m = 100 with
q = 28 is approximately 2210 and 2259, respectively). These facts indicate
that the complexity of the Linearize(1) step is dominated by C(d)3 for
the practical cases, and it is estimated as follows:

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

))
. (4.6)

By using this fact, the time complexity of PXL is roughly estimated by
C(d)3 + Cfix + Cli2, say

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

)
+ qk ·

(
α2 ·

(
k+D
D

)
+ αω)) . (4.7)
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Fig. 1. Comparison of complexities approximated by power of 2 between PXL (4.7),
h-XL (2.7), and h-WXL (2.8) on the MQ system with 10 ≤ m = n ≤ 100 over F28

(above) and over F31 (below)

4.3 Comparison

We compare the complexity of our PXL with those of h-XL and h-WXL,
with our motivation towards contribution of PXL to evaluating the se-
curity of MPKCs. Following the security estimation of [11], we choose
h-WXL among the XL family as a target for comparison. We also refer
the complexity of h-XL on which h-WXL is originally based (in fact, h-
XL is the most basic method in the framework of the hybrid approaches
with XL). Recall that the complexities of h-XL, h-WXL, and PXL are
estimated by (2.7), (2.8), and (4.7), respectively. Note that, for fixed n,
m, and q, each of the three approaches chooses the number k of guessed
variables so that its complexity estimation becomes the smallest value,
and thus the value of k depends on each approach. Furthermore, we here
use ω = 2.37 following [16]. As we will see below, PXL is theoretically
more efficient than h-XL and h-WXL in the case of n = m (this is the
case that hybrid approaches for the MQ problem works most efficiently).
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Table 1 and Figure 1 compare the bit complexities of PXL, h-XL, and
h-WXL on the MQ system of m equations in n variable with n = m
over F28 and F31. These orders of the finite fields are chosen following
the MQ challenge [30], and in particular, q = 28 = 256 is also suggested
as a parameter of [11]. Note also that we do not choose q = 2 since
exhaustive searches are known to be effective in this case. Furthermore,
Table 1 shows the bit complexities of the three approaches, the optimal
k of PXL minimizing the value of (4.7), the solving degree D of PXL
obtained from (2.3), and the estimated size α of the resulting matrix of
Linearize(1) obtained from (4.2) for the case where n = m is set to be
20, 40, 60 and 80. For example, in the case where q = 28 and n = m = 80,
the complexities of h-XL, h-WXL, and PXL are approximately estimated
as 2252, 2234, and 2220, respectively. As a result, we see that PXL has the
less complexity than those of h-XL and h-WXL in the case of n = m;
we expect that the similar results will be obtained in other finite fields
from the form of the complexity estimation (4.7).
On the other hand, we confirmed that PXL is not efficient in highly
overdetermined cases. This is because, in such overdetermined cases, k
is set to be a very small value for efficiency.

Remark 5 (Space Complexity). The space complexities of h-XL and h-

WXL are estimated by O
((

n−k+D
D

)2)
and O

((
n−k
2

)
·
(
n−k+D

D

))
, respec-

tively. The memory space consumed by our PXL is upper-bounded by

O
((

k+D
D

)
·
(
n−k+D

D

)2)
, since the degree of every element of the Macaulay

matrix and its transformed matrices in Linearize(1) is at mostD through
an execution of PXL from Lemma 3. These estimations cannot be directly
compared to each other, since the values of the following two parameters
depend on one’s choice of an algorithm: The solving degree D and the
number k of fixed values.
On the other hand, focusing on the sparsity/density of matrices, we
predict that PXL is not efficient compared with h-WXL in terms of
the space complexity for the following reason: Through the elimination
process of Macaulay matrices, WXL can deal with a Macaulay matrix as
a sparse matrix due to Wiedemann’s algorithm, whereas PXL holds some
dense submatrices. Considering this together with the time complexities
for practical parameters, we conclude that the relationship between PXL
and h-WXL would be a trade-off between time and memory.

5 Experimental Results

We implemented the proposed algorithm PXL in the Magma computer
algebra system (V2.26-10) [5], in order to examine that it behaves as
our complexity estimation provided in Section 4. (As it will be described
below, note that our current implementation is not optimized one, see
also Remark 6.) We also confirmed in our experiments that PXL outputs
a solution correctly at the solving degree of PXL given in Subsection 3.4.
First, we confirmed that the Linearize(1) step behaves as in (4.6). The
reason why we focus on the behavior of the Linearize(1) step is the
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Fig. 2. Comparison between the estimation of complexity by (4.6) and the execution
time of the Linearize(1) step on an MQ system with n = m over F24

following: In the estimation (4.7) of the total time complexity, only C(d)3

is specific to our estimation in theory, while the later parts Cfix and Cli2 for
the Fix and Linearize(2) steps just come from the known complexity
estimation. Figure 2 compares the execution time of the Linearize(1)
step and the bit complexity (4.6) on the system with n = m from n = 13
to n = 19 over F24 , and the number k of fixed variables is chosen so
as to minimize the value of (4.7). As a result, Figure 2 shows that the
execution time and our estimation (4.6) have almost the same behavior,
which indicates that the estimation (4.6) would be reliable.

On the other hand, our current Magma implementation of the Fix and
Linearize(2) steps does not show the similar behavior as our complexity
estimation, due to the use of unoptimized implementation. For example,
in the case of n = m = 16 with k = 5, Linearize(1), Fix, and Lin-
earize(2) took 10 min., 40 hr., and 30 min., respectively, whereas the
estimated numbers of manipulations of these three steps from (4.6), (4.4),
and (4.5) are 239, 244, and 239, respectively. We observe that this ineffi-
ciency of the latter two steps (in particular Fix with a lot of for-loops)
is due to the use of Magma’s interpreter language. Using compiler lan-
guages such as C instead could be a solution to resolve this problem, but
we must newly implement the arithmetic of matrices and polynomials
efficiently, which is not the topic of this paper. We leave such an efficient
implementation with compiler languages to future work.

Remark 6. We remark that here we do not compare the execution time
of our PXL with that of any other variant of XL, since the practical be-
havior deeply depends on how one implements the arithmetic of matrices
(and polynomials) efficiently, which is not the topic of this paper. For a
fair comparison, providing optimized implementations of several variants
including PXL is required, and it is a very important task for practical
cryptanalysis.
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6 Conclusion

We presented a new variant of XL, which is a major approach for solving
the MQ problem. Our proposed polynomial XL (PXL) eliminates the
linearized monomials in polynomial rings to solve the system efficiently,
and this paper estimates its complexities.
Given an MQ system of m equations in n variables, the proposed al-
gorithm first regards each polynomial in n variable as that in n − k
variables xk+1, . . . , xn, whose coefficients belong to the polynomial ring
Fq[x1, . . . , xk]. We then generate a Macaulay matrix over Fq[x1, . . . , xk],
and partly perform the row reduction (Gaussian elimination). Finally,
random values are substituted for the k variables, and the remaining
part of the (partly-reduced) Macaulay matrix is transformed into the
reduced row echelon form. Partly reducing the (polynomial) Macaulay
matrix is done mainly on submatrices over Fq (not over Fq[x1, . . . , xk])
with arithmetic of polynomials in Fq[x1, . . . , xk] of bounded degree, and
the remaining part has size much smaller than the original one. This
construction reduces the amount of manipulations for each guessed value
compared to h-XL. This paper also presents an asymptotic estimation
of the time complexity, which shows that the proposed algorithm solves
the system faster in theory for the case of n ≈ m than both h-XL and
h-WXL. On the other hand, PXL might be less efficient than h-WXL
with respect to the space complexity.
This paper discusses only the quadratic case, but, as in the plain XL,
the proposed algorithm can be also generalized to higher degree cases.
Therefore, one considerable future work is to analyze the complexity of
PXL on such higher degree systems. Furthermore, for a comparison of
the practical time-efficiencies of our PXL and other XL variants, it is
important to implement PXL (and the other variants) efficiently. In our
experiments, we implemented PXL over Magma, but this can be more
optimized by using an alternative (compiler) programming language, e.g.,
C. Therefore, to provide such an optimized code for PXL is a challenging
task.
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without reduction to zero (f5). In ISSAC 2002, pages 75–83. ACM,
2002.

15. J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient compu-
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A Correctness of the XL algorithm

The correctness of XL (Algorithm 1) means here the following: For suffi-
ciently large D, XL definitely finds one root of the input system F . This
correctness holds if F is zero-dimensional, and it can be proved by using
a fact that the set G of polynomials computed in Step (2) of Algorithm
1 is a Gröbner basis of ⟨F ⟩ for D larger than a certain degree bound
(a typical bound is Dubé’s one [12], see below). Although the proof of
this fact might be well-known (see e.g., [22]), let us write down it in this
appendix, for the reader’s convenience.
In the following, let K be a field, and let K[x] denote the polynomial ring
K[x1, . . . , xn] of n variables over K. As in Subsection 2.1, let Mon(K[x])
denote the set of all monomials in K[x] and, for f ∈ K[x], let supp(f)
denote the supporting set of f , that is, supp(f) := {t ∈ Mon(K[x]) :
coeff(f, t) ̸= 0}. For f ∈ K[x]∖ {0}, we denote by LT≻(f) and LM≻(f)
the leading term and the leading monomial of f with respect to ≻, re-
spectively. For a subset F ⊂ K[x], we set LT≻(F ) := {LT≻(f) : f ∈ F}
and LM≻(F ) := {LM≻(f) : f ∈ F}. For simplicity, we denote LT≻ as
LT and so on, if ≻ is clear from the context.
The following theorem provides a criterion for a reduced row echelon
form computed in XL (Algorithm 1) to yield a Gröbner basis of the
input system:

Theorem 1 ([25, Theorem 2.3.3]). Let ≻ be a monomial order on
Mon(K[x]), and F = {f1, . . . , fm} ⊂ K[x] a set of ordered polynomials.
Let H be a Gröbner basis of the ideal ⟨F ⟩ ⊂ K[x] with respect to ≻,
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and T a finite subset of Mon(K[x]) such that for all h ∈ H, there exist
q1, . . . , qm ∈ K[x] with h =

∑m
i=1 qifi and supp(qi) · {fi} ⊂ S := T · F

for all 1 ≤ i ≤ m. Put A := Mac≻(S, T ), and let B be its reduced row
echelon form. Then, G := Mac−1

≻ (B, T ) is a Gröbner basis of ⟨F ⟩ with
respect to ≻.

Proof. Put H = {h1, . . . , hℓ} with hi ∈ K[x] for 1 ≤ i ≤ ℓ. By our
assumption, for each 1 ≤ i ≤ ℓ, there exist qij ∈ K[x] with 1 ≤ j ≤ m
such that hi =

∑m
j=1 qijfj and supp(qij) · {fj} ⊂ S for all 1 ≤ j ≤ m.

Thus we have

ℓ∪
i=1

m∪
j=1

supp(qij) · {fj} =

ℓ∪
i=1

m∪
j=1

{t · fj : t ∈ supp(qij)} ⊂ S,

and hence

hi =

m∑
j=1

∑
t∈supp(qij)

coeff(qij , t) · t · fj ∈
∑
g∈S

K · g,

where
∑

g∈S K · g denotes the set of all K-linear combinations of finite
elements in S. Regarding the Macaulay matrix of {hi} with respect to T
as a row vector in K#T , we have that it belongs to the linear space gen-
erated by row vectors of Mac≻(S, T ). Thus, putting G = {g1, . . . , gℓ′},
we can write hi =

∑ℓ′

k=1 ai,kgk for some ai,k ∈ K. It follows from the
definition of a reduced row echelon form that LT≻(g) ̸= LT≻(g

′) for
g, g′ ∈ G with g ̸= g′. This implies that for each 1 ≤ i ≤ ℓ, there exists
k such that LT≻(hi) = ai,kLM≻(gk). Therefore LM≻(H) ⊂ LM≻(G),
by which we have ⟨LT≻(⟨F ⟩)⟩ = ⟨LT≻(H)⟩ ⊂ ⟨LT≻(G)⟩. From the
construction of G, we also have ⟨LT≻(G)⟩ ⊂ ⟨LT≻(⟨F ⟩)⟩, and thus
⟨LT≻(⟨F ⟩)⟩ = ⟨LT≻(G)⟩. □

Dubé [12] showed an upper bound on the maximal degree of the reduced
Gröbner basis of a homogeneous polynomial ideal. His bound depends
on the number of variables n and the maximal degree d of the initial
generators for the ideal, but not on any monomial order. In the following
theorem (without proof), we state Dubé’s bound:

Theorem 2 ([12, Theorem 8.2] or [3, Proposition 5.1]). Let ≻ be
an arbitrary monomial order on Mon(K[x]), and F ⊂ K[x] a finite set
of homogeneous polynomials. Put d := max{deg(f) : f ∈ F}. Then, we
have

max.GB.deg≻(F ) ≤ D(n− 1, d) := 2

(
d2

2
+ d

)2n−2

,

where max.GB.deg≻(F ) denotes the maximal degree of elements in the
reduced Gröbner basis of ⟨F ⟩ with respect to ≻.

The following corollary deduced from Theorem 2 provides a degree bound
of Gröbner bases for the in-homogeneous case, and consequently it follows
that XL (Algorithm 1) can compute a Gröbner basis of the input system:
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Corollary 1 (cf. [3, Corollary 5.4]). Let F = {f1, . . . , fm} ⊂ K[x]
be a finite set of (possibly in-homogeneous) polynomials, and put d :=
max{deg(f) : f ∈ F}. Then, for every monomial order ≻, there exists a
Gröbner basis H of ⟨F ⟩ with respect to ≻ such that:
– For every h ∈ H, there exist q1, . . . , qm ∈ K[x] with h =

∑m
i=1 qifi,

and

deg(qifi) ≤ D(n, d) := 2

(
d2

2
+ d

)2n−1

for all 1 ≤ i ≤ m.
Hence, for every D with D ≥ D(n, d), the set G of polynomials computed
in Step (2) of Algorithm 1 with the input (F,D) is a Gröbner basis of
⟨F ⟩.

Proof. For each f ∈ K[x], we denote by fh its homogenization by an
extra variable y, that is,

fh(x1, . . . , xn, y) := ydeg(f)f(x1/y, . . . , xn/y) ∈ K[x, y],

and put Fh := {fh : f ∈ F} ⊂ K[x, y]. Applying Theorem 2 to the ideal
⟨Fh⟩, we have

max.GB.deg≻(F
h) ≤ D(n, d) = 2

(
d2

2
+ d

)2n−1

.

It is well-known (e.g., [3, Corollary 3.5] or [31, Proposition 9]) that, for
the reduced Gröbner basis G for ⟨Fh⟩ with respect to a suitable extension
of ≻, the set

G|y=1 := {g(x1, . . . , xn, 1) : g ∈ G}
is a Gröbner basis for the original ideal ⟨F ⟩. For every g ∈ G, there exist
qg,i ∈ K[x, y] with 1 ≤ i ≤ m such that g =

∑m
i=1 qg,if

h
i . Since g and

fh
1 , . . . , f

h
m are all homogeneous, we may suppose that qg,1, . . . qg,m are

also homogeneous, and

deg(qg,if
h
i ) ≤ deg(g) ≤ D(n, d).

for any 1 ≤ i ≤ m. Here we set H := G|y=1, and let h be an arbitrary
element in H. Writing h = g|y=1 for some g ∈ G, we then have

h = g|y=1 =

m∑
i=1

(qg,i)|y=1fi,

with
deg((qg,i)|y=1fi) ≤ deg(qg,if

h
i ) ≤ D(n, d).

Thus, the assertion holds by putting qi := qg,i. □

We finally prove the correctness of XL (Algorithm 1) with Corollary 1:

Proposition 2 (Correctness of the XL algorithm). Let K be a
finite field, and F be a finite subset of K[x1, . . . , xn]. If the ideal ⟨F ⟩
is zero-dimensional, i.e., V (F ) = {(a1, . . . , an) ∈ K

n
: f(a1, . . . , an) =

0 (∀f ∈ F )} is finite, then the XL algorithm (Algorithm 1) with inputs
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F and D finds a partial solution an ∈ V (⟨F ⟩ ∩K[xn]) to F for every D
with D ≥ D(n, d), where d := max{deg(f) : f ∈ F}. Moreover, if one
uses a lexicographical order where xn is the lowest among x1, . . . , xn,
then the XL algorithm (Algorithm 1) can compute a solution (in fact all
solutions) over K to F (if exists).

Proof. By Corollary 1, the set G of polynomials computed in Step (2)
of Algorithm 1 is a Gröbner basis G with respect to the elimination
monomial order which one adopts. Since ⟨F ⟩ is zero-dimensional, it is
known (e.g., [10, Chapter III, Section 1, Exercise 5]) that G contains a
univariate polynomial g(xn) in K[xn]∖ {0}, and thus a partial solution
an ∈ V (⟨F ⟩ ∩ K[xn]) to F can be obtained by factoring g(xn). If the
order is lexicographical, then it follows from e.g., [21, Lemma 2.3.2] that
all solutions over K to F are computed by substituting each root of g to
polynomials in G∖ {g}. □
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