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Abstract. The security of code based constructions is usually assessed
by Information Set Decoding (ISD) algorithms. In the quantum setting,
amplitude amplification yields an asymptotic square root gain over the
classical analogue. However, it is still unclear whether a real quantum
circuit could yield actual improvements or suffer an enormous overhead
due to its implementation. This leads to different considerations of these
quantum attacks in the security analysis of code based proposals. In this
work we clarify this doubt by giving the first quantum circuit design of
the fully-fledged ISD procedure, an implementation in the quantum sim-
ulation library Qibo as well as precise estimates of its complexities. We
show that against common belief, Prange’s ISD algorithm can be imple-
mented rather efficiently on a quantum computer, namely with only a
logarithmic overhead in circuit depth compared to a classical implemen-
tation.
As another major contribution, we leverage the idea of classical co-
processors to design hybrid classical-quantum trade-offs, that allow to
tailor the necessary qubits to any available amount, while still provid-
ing quantum speedups. Interestingly, when constraining the width of the
circuit instead of its depth we are able to overcome previous optimality
results on constraint quantum search.

Keywords: ISD, decoding, quantum circuit, classical-quantum trade-offs

1 Introduction

The growing threat to modern widespread cryptography posed by the advancing
development of quantum computers has led to a focus on other hardness as-
sumptions. One of the leading and most promising proposals for post quantum

? This work was conducted while the author was affiliated with Technology Innovation
Institute.



2

cryptography is code based cryptography. It has a long history of withstand-
ing classical as well as quantum attacks and is considered to rely on one of the
most well understood hardness assumptions. The list of the four KEM finalists
of the ongoing NIST standardization process for post quantum cryptography [1]
includes one code based proposal (McEliece [14]) and two more can be found on
the alternate candidate list (BIKE [2] and HQC [30]) .

At the heart of all these code based constructions lies the binary decoding or
syndrome decoding problem. This problem asks to find a low Hamming weight

solution e ∈ Fn2 to the equation He = s, where H ∈ F(n−k)×n
2 is a random binary

matrix and s ∈ Fn−k2 a binary vector.

The best known strategy to solve this problem is based on Information Set
Decoding (ISD) [32], a technique introduced by Prange in 1962. Since then, there
has been a series of works improving on his original algorithm [5,11,15,28,29,35],
mostly by leveraging additional memory, exploiting some meet-in-the-middle
strategies.

In the quantum setting Bernstein showed how to speed up Prange’s algo-
rithm by an amplitude amplification routine [6], which results in an asymptotic
square root gain over the classical running time. The translation of advanced ISD
algorithm to the quantum setting [25,26] yields so far only small asymptotic im-
provements. Further these algorithms rely on the existence of an exponential
amount of quantum RAM, which is considered very unrealistic even for mid
term quantum developments. Due to this fact, all code based NIST submissions
exclude these algorithms when conducting their security analysis. Moreover, the
McEliece submission states that ”Known quantum attacks multiply the secu-
rity level of both ISD and AES by an asymptotic factor 0.5 + o(1), but a closer
look shows that the application of Grover’s method to ISD suffers much more
overhead in the inner loop” [14].

So far it was unclear if such a statement is well-founded and how much
overhead a quantum implementation of the procedure by Prange would really
cause. In this work, we carefully design every part of Prange’s algorithm as a
quantum circuit, analyze its complexities and show how to incorporate the pieces
in a fully-fledged quantum ISD procedure.

In our design we put a special focus on the necessary amount of qubits. Note
that several prior works also focus on qubit reduction in the few qubits or poly-
nomial memory setting [3,7,9,18,23], in which the quantum algorithm is limited
to the use of a polynomial amount of qubits only. Prange’s algorithm falls into
this regime by default, since asymptotically it only uses a polynomial amount
of memory. Nevertheless, it is especially this need for memory which limits its
applicability, as all code based constructions involve parity-check matrices con-
sisting of millions of bits. Hence, we investigate different optimizations of our
initial design with regards to the amount of qubits. Furthermore, we extend
the few qubits setting by developing hybrid algorithms that enable us to reduce
the already polynomial demand of qubits to any available amount while still
providing a quantum speedup.



An Optimized Implementation of Quantum ISD 3

In this context we leverage the idea of classical co-processors resulting in
hybrid trade-off algorithms between classical-time and quantum memory (and
time). The idea of such co-processors has mostly been used to parallelize quan-
tum circuits or instantiate circuits under depth constraints, e.g. when analyzing
the quantum security of schemes under the MAXDEPTH constraint specified by
NIST [2, 9, 10, 24]. Under depth constraints, Zalka [38] showed that the opti-
mal way to perform a quantum search is by partitioning the search space in
small enough sets such that the resulting circuit only targeting one set at a time
does not exceed the maximum depth. Then the search has to be applied for ev-
ery set of the partition. However, this optimality result only holds under depth
constraints, when instead imposing constraints on the width of the circuit, our
trade-offs yield more efficient strategies.

Our Contribution. As a first contribution we design and analyze the full circuit
performing the quantum version of Prange’s algorithm. We give precise estimates
for the circuit depth and width in the quantum circuit model. Our design shows
that, against common belief, Prange’s algorithm can be implemented rather
efficiently on a quantum computer, namely with only a logarithmic overhead in
the depth. Through further optimizations, our width optimized circuit only needs

(n−k)k bits to store and operate on the input matrix H ∈ F(n−k)×n
2 and roughly

n−k ancillas. Additionally, we provide functional implementations of our circuits
in the quantum simulation library Qibo [16,17], which is accessible on github [33].
We also explore different optimizations regarding the circuit depth, including a
quantum version of the Lee-Brickell improvement [27] and an adaptation of our
circuits to benefit from quasi-cyclic structures in the BIKE / HQC case.

Our second major contribution is the design of hybrid quantum-classical
trade-offs that address the practical limitation on the amount of qubits. In par-
ticular, these trade-offs enable quantum speedups for any available amount of
qubits. We study the behavior of our trade-offs for various different choices of
code parameters. Besides the coding-theoretic motivated settings of full and half
distance decoding, this includes also the parameter choices made by the NIST
PQC candidates McEliece, BIKE and HQC. Our trade-offs perform best on the
BIKE and HQC schemes, which is a result of a combination of a very low error
weight and a comparably low code rate used by these schemes.

Fig. 1 shows the behavior of our trade-off achieving the best results under
limited width. Here, we measure the performance of the trade-offs in form of
a qubit-reduction factor δ and a speedup t(δ). In comparison to an entirely
quantum based computation, performed using a specific amount of qubits and
taking time T

1
2 , the trade-off reduces the amount of qubits by a factor of δ,

while maintaining a time complexity of T t(δ). For instance in the BIKE and
HQC setting we can reduce the amount of qubits to only 1% (δ = 0.01) of an
entire quantum based computation and still achieve a speedup of roughly 0.87
compared to a classical computation.

The rest of this work is structured as follows. In Section 2 we set up the
necessary notation, give a precise definition of the problem under consideration
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Fig. 1: Comparison of the achieved speedups of our trade-offs t(δ) (y-axis) plotted
as a function of the qubit-reduction factor δ (x-axis).

and elaborate on the quantum model used for our analysis. In the subsequent
Section 3 we present the original algorithm by Prange. In Section 4 we model
every step of Prange’s algorithm as a quantum circuit and show how to make use
of an amplitude amplification step. Finally, in Section 5 we give improvements
for our initial design, including a quantization of the Lee-Brickell improvement
as well as our hybrid classical-quantum trade-offs.

2 Preliminaries

For two integers a, b ∈ N with a ≤ b let [a, b] := {a, a+1, . . . , b}. Further we write
conveniently [b] := [1, b]. Let H be an m × n matrix and I ⊆ [n], we write HI

to denote the projection of H onto the columns indexed by I. We use the same
notation for vectors, so for a vector v of length n, then vI := (vi1 , vi2 , . . . , vi|I|),
where ij ∈ I. For a binary vector w we define wt(w) := |{i ∈ [n] | wi = 1}| as the
Hamming weight of w. For two reals c, d ∈ R we let Jc, dK := {x ∈ R | c ≤ x ≤ d}
be the (including) interval of all reals between c and d.

We use standard Landau notation for complexity statements, where Õ-notation
suppresses polylogarithmic factors, meaning Õ

(
f(x)

)
= O

(
f(x) logi f(x)

)
for

any constant i. Besides standard binomial coefficients, for a set S, we let
(
S
k

)
denote the set containing all size-k subsets of S. All logarithms are binary if
not stated otherwise. We define H(x) := −x log(x)− (1−x) log(1− x) to be the
binary entropy function and make use of the well-known approximationÇ

n

k

å
= Θ̃

(
2nH( kn )

)
, (1)

which can be derived from Stirling’s formula.
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Decoding and linear codes. A binary linear [n, k]5 or [n, k, d] code C is a k di-
mensional subspace of Fn2 and minimum distance d, which is defined as the
minimum Hamming weight of the elements of C. We call n the code length and
R := k

n the code rate of C. The code C can be defined via the kernel of a matrix

H ∈ F(n−k)×n
2 , so that C := {c ∈ Fn2 | HcT = 0}, where H is called a parity-

check matrix. Note that for ease of exposition, we treat all vectors as column
vectors so that we can omit vector transpositions.

A given point x = c + e that differs from a codeword by an error e can
be uniquely decoded to c as long as wt(e) ≤

⌊
d−1

2

⌋
. This setting, in which the

error weight is bounded by half of the minimum distance, is also known as half
distance decoding. Another well-studied case upper bounds the error weight by
the full minimum distance d and is hence known as full distance decoding. As the
running time of decoding algorithms is solely increasing in the error weight, in
those settings, we study the complexity for the case of equality to the respective
upper bounds. Also in those cases we assume d to meet the Gilbert-Varshamov
bound [19,37] for random binary linear codes, which gives d ≈ H−1(1−R)n.

Note that the definition of the code via its parity-check matrix allows to treat
the decoding procedure independently of the specific codeword by considering
the syndrome s of a given faulty codeword x, where s := Hx = H(c + e) = He.

Now, if one is able to recover e from H and s, the codeword can be recovered
from x as c = x + e. This leads to the definition of the syndrome decoding
problem.

Definition 1 (Syndrome Decoding Problem). Let C be a linear [n, k] code

with parity-check matrix H ∈ F(n−k)×n
2 and constant rate k

n . For s ∈ Fn−k2 and
ω ∈ [n], the syndrome decoding problem SDn,k,ω asks to find a vector e ∈ Fn2
of weight wt(e) = ω satisfying He = s. We call any such e a solution while we
refer to (H, s, ω) as an instance of the syndrome decoding problem.

Quantum Circuits. Our algorithms are built in the quantum circuit model, where
we assume a certain familiarity of the reader (for an introduction see [31]).
The circuits are presented using general multi-qubit gates for simplicity, but
we analyze their depth and complexity using their decomposition into basic
implementable gates. Particularly, the decomposition of multi-controlled NOT
gates into Toffoli gates is the main factor affecting depth and gate count.

A multi-controlled NOT gate with n controls can be decomposed using O(n)
regular Toffoli gates [4]. If n−2 ancilliary qubits are available the procedure can
be implemented in logarithmic depth. Note that we use the term circuit depth
and time complexity interchangeably when analyzing our quantum circuits.

3 Prange’s Information Set Decoding

Let us introduce the original ISD algorithm by Prange [32]. Given an instance
(H, s, ω) of the SDn,k,ω Prange’s algorithm starts by choosing a random set

5 Note that we also use this notation to indicate the set of integers between n and k,
but the concrete meaning will be clear from the context.
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Algorithm 1 Prange

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k2 , weight ω ∈ [n]

Ensure: error vector e with wt(e) = ω satisfying He = s
1: repeat
2: choose random permutation matrix P ∈ Fn×n2 and set HI ← (HP )[n−k]
3: solve linear system HIe1 = s for e1

4: until wt(e1) = ω
5: return P (e1, 0

k)

I ⊆ [n] of size n− k and then solves the corresponding linear system

HIe1 = s (2)

for e1.6 Note that the solution e1 of the above linear system with weight ω′ :=
wt(e1) can always be naively extended to a vector ẽ of length n and weight ω′

satisfying H ẽ = s.
For the construction of ẽ one simply sets the coordinates corresponding to

the disregarded columns of H to zero. Hence, if ω′ = ω the vector ẽ forms a
solution to the syndrome decoding problem. The algorithm now chooses random
subsets I until ω′ = ω holds.

Let us briefly analyze when Algorithm 1 succeeds in finding the solution.
Assuming a unique solution e, the algorithm is successful whenever e projected
to the coordinates given by I is a solution to the linear system in Eq. (2),
hence if e1 = eI . This happens whenever eI covers the full weight of e, in
which case I or more precisely [n] \ I is called an information set. Transferred
to Algorithm 1 this applies whenever, for the permutation chosen in line 2, it
holds that P−1e = (e1, 0

k) for e1 ∈ Fn−k2 . The probability that the permutation
distributes the weight in such a way is

q := Pr
[
P−1e = (e1, 0

k)
]

=

(
n−k
ω

)(
n
ω

) . (3)

Hence, the expected number of tries until we draw a suitable permutation P
becomes q−1 and the expected time complexity is T = q−1 · TG, where TG
describes the cost for solving the linear system and performing the weight check.

Remark 1. Note that in the case of S existent solutions the time complexity to
retrieve a single solution with Prange’s algorithm becomes T

S .

4 A first design of a quantum ISD circuit

In this section we give an initial design for the quantum version of Prange’s ISD
algorithm. Our design is composed of the following three main building blocks:

6 Note that in Algorithm 1 we model HI as the first n− k columns of HP , where P
is a random permutation matrix.
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1) The creation of the uniform superposition over all size-k subsets of [n] (cor-
responding to the selection of information sets in line 2 of Algorithm 1).

2) The Gaussian elimination step to derive the error related to a given infor-
mation set (line 3 of Algorithm 1).

3) A quantum search for an information set yielding an error of the desired
weight (substituting the repeat loop in line 1 of Algorithm 1).

Next, we give independent descriptions of our circuit designs for the different
steps after which we discuss how to incorporate them in a quantum search.
We provide implementations of all described circuits in the quantum simulation
library Qibo with the source code accompanying this work.

4.1 Superposition over size-k subsets

We represent a size-k subset S ⊂ [n] via a binary vector b of length n with
exactly k bits set to one, where i ∈ S iff bi = 1. Let Bn,k denote the set of all
such binary vectors. Our circuit builds the uniform superposition over Bn,k in
a bit by bit fashion. Grover and Rudolph in [20] follow a similar approach of
dividing the probability space into smaller parts to provide a feasibility argument
for creating quantum states following a broad class of probability distributions.
However, they leave it open how to create these quantum states for concrete
distributions.

Our design relies on the observation that the fraction of vectors from Bn,k
starting with a zero or a one respectively is known a priori and independent of
subsequent bits. Therefore note that Bn,k splits into

|Bn,k| =
Ç
n

k

å
= |Bn−1,k|︸ ︷︷ ︸

elements starting with zero

+ |Bn−1,k−1|︸ ︷︷ ︸
elements starting with one

. (4)

Hence, we start by rotating the first qubit such that we measure a zero with

probability a :=
|Bn−1,k|
|Bn,k| =

(n−1
k )

(nk)
and respectively a one with probability b :=

|Bn−1,k−1|
|Bn,k| =

(n−1
k−1)
(nk)

, i.e.,

|0〉 7→ √a |0〉+
√
b |1〉 .

For the second bit we proceed similar. In the case of the first qubit being zero
the remaining combinations split analogously to Eq. (4) in |Bn−1,k| = |Bn−2,k|+
|Bn−2,k−1|, otherwise we find |Bn−1,k−1| = |Bn−2,k−1|+ |Bn−2,k−2|. This allows
us to rotate the second bit accordingly (this time depending on the first qubit)
such that

√
a |00〉+

√
b |10〉 7→√a

Ç 
|Bn−2,k|
|Bn−1,k|

|00〉+

 
|Bn−2,k−1|
|Bn−1,k|

|01〉
å

+
√
b

Ç 
|Bn−2,k−1|
|Bn−1,k−1|

|10〉+

 
|Bn−2,k−2|
|Bn−1,k−1|

|11〉
å
.
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Algorithm 2 Generate Uniform Superposition over Bn,k
Require: n, k ∈ N with k ≤ n, n qubits bi and dlog(k + 1)e ancilla qubits (to store c)
Ensure: Uniform superposition over Bn,k, represented by the bi’s

c← k
for i = 0 to n− 1 do

for j = k down to 1 do
if c = j then

Rotate bi such that 1 is measured with probability
|Bn−i−1,j−1|
|Bn−i,j |

if bi = 1 then
c← c− 1

return b

We now proceed analogously for the remaining bits, where each bit depends on
the state of its successors. A crucial observation is that for a general position
i, the fraction of elements having the i-th bit equal to zero or one does not
depend on the exact pattern of the previous i− 1 bits, but only on their weight.
Therefore, consider a general state where the first i−1 qubits have already been
processed and their weight is equal to j. Then all combinations for the remaining
n− (i−1) bits are given by Bn−(i−1),k−j . Again the number of elements starting
with a zero (or one respectively), can be derived, analogously to Eq. (4), as

|Bn−(i−1),k−j | = |Bn−i,k−j |︸ ︷︷ ︸
elements starting with zero

+ |Bn−i,k−j−1|︸ ︷︷ ︸
elements starting with one

.

Now, by keeping track of the weight via some auxilliary qubits we can perform
the needed rotations for every bit controlled on these ancillas. Algorithm 2 gives
a description in pseudocode on how to construct the circuit.

As in general there are k possibilities for the weight of the succeeding bits and
we need to process a total of n bits, our circuit design achieves a depth of O(n·k).
To keep track of the weight c of processed bits we use dlog(k + 1)e ancillas to
store the binary representation of c. The binary additions enlarge the circuit
depth by a factor of O(log k). The execution of the rotation gates controlled by
the ancillary register c involves multi-controlled gates with log k controls, whose
decomposition contributes with an additional O(log log k) factor, if we allow
for further log k ancillary qubits. In total this yields a circuit depth of Dsup =
O(nk log k log log k) using n + 2dlog(k + 1)e qubits to create the superposition
over Bn,k.

In Fig. 2 we give an example of our circuit for the case of n = 5 and k = 2.

4.2 Quantum Gaussian Elimination

Classical Gaussian elimination splits in the transformation to reduced row ech-
elon form and finally the matrix diagonalization or solving step via back sub-
stitution. The first step performs a pivot search to enforce a non-zero diagonal
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A =

b[0] Ry • •

b[1] Ry Ry • •

b[2] Ry Ry • •

b[3] Ry • •

b[4] • •

c[0] • • • • • • • • • •

c[1] X • • • • •

Fig. 2: Quantum circuit generating uniform superposition over B5,2.

Algorithm 3 Solve Linear System

Require: matrix A ∈ Fn×n2 , target vector t ∈ Fn2 and n(n+ 1) qubits
Ensure: x ∈ Fn2 with Ax = t
1: Initialize qubits with augmented matrix A← (A | t)
2: for i = 1 to n− 1 do
3: for j = i+ 1 to n do . pivot search
4: if ∀i≤k<jaki = 0 then
5: add row j to row i starting from column i+ 1

6: for j = i+ 1 to n do . row reduce
7: if aji = 1 then
8: add row i to row j starting from column i+ 1

9: for i = n down to 2 do . back substitution
10: for j = i− 1 down to 1 do
11: if aji = 1 then
12: add row i to row j only on the last column: aj(n+1) ← aj(n+1) + ai(n+1)

13: return x = (a1(n+1), . . . , an(n+1))

entry and eliminates entries below the diagonal, while the latter eliminates en-
tries above the diagonal. By performing all operations on the augmented matrix,
containing the target vector as a last column, the solution to the system can be
obtained from the last column of the final matrix.

Our Gaussian elimination circuit mostly resembles this classical procedure
but modeled only with quantum gates. To save on depth and width we per-
form row additions during the transformation to reduced row echelon form only
on columns succeeding the current column. Similarly, during the back substitu-
tion step row additions are only performed on the actual solution register. The
pseudocode to generate our quantum circuit is given in Algorithm 3.

Our circuit needs no additional qubits besides the description of the linear
system and achieves a depth analogous to the classical counterpart of O(n3) but
involving multi-controlled gates. Our decomposition strategy for these multi-
controls introduced by the pivot search (compare to line 4 in Algorithm 3) costs
an additional factor of O(log n) in depth and an additional amount of n − 2
qubits, resulting in a total depth of Dgauss = O(n3 log n) and a width of Wgauss =
n2 + n− 2.
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Algorithm 4 Combined Circuit

Require: matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k2 , n+(n+1)(n−k)+ dlog(n− k)e

qubits
Ensure: Uniform superposition over weight of all e1 with HIe1 = s for I ∈

(
[n]
n−k

)
1: Initialize qubits with (H | s)
2: Generate uniform superposition over Bn,n−k on qubits (b1, . . . , bn)
3: for i = 1 to n do . swap HI to the front
4: if bi = 1 then
5: for j = i− 1 down to 1 do
6: swap column j and j + 1

7: Apply Gaussian elimination circuit (Algorithm 3)
8: return c← weight of last column

4.3 Designing a combined circuit

Next, we show how to combine both previously introduced building blocks to
create a circuit which generates the uniform superposition over the solutions to
the linear systems HIe1 = s, for I ∈

(
[n]
k

)
.

Our combined circuit works in-place by first swapping the columns corre-
sponding to the selected subset to the front of the matrix. Then we apply the
Gaussian Elimination circuit to the first n− k columns.

Circuit Description. First we generate the uniform superposition over Bn,n−k,
which determines the current selection of columns belonging to HI . Next we
swap all columns belonging to HI to the front of the matrix (controlled on the
chosen subset). Now, we implement the previously described Gaussian elimina-
tion circuit on the first n − k columns of H. Since the final goal is to find a
low weight solution it follows an accumulation of the weight of the solution in a
separate register, later used by the amplitude amplification procedure. In Algo-
rithm 4 we give a pseudocode description for the combined circuit generation.
Fig. 3 illustrates the different operators needed in order to execute the combined
circuit.

Circuit Complexity. In total the amount of qubits necessary for our initial design
can be summarized as

Wcombined = n︸︷︷︸
Permutation

+ (n− k) · (n+ 1)︸ ︷︷ ︸
Matrix

+n− k − 2︸ ︷︷ ︸
Auxiliary

= (n− k + 1)(n+ 2)− 4.

Note that all subroutines use the same auxilliary qubits as we ensure they return
to the zero state after each procedure.

The depth of our circuit is dominated by the circuit that swaps the columns
belonging to HI to the beginning of H as well as the Gaussian elimination and
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b

A

Solve

b

c

Accs

Init

s

h

h

h

h

Fig. 3: Different parts detailed in Algorithm 4 as quantum operators. A repre-
sents the creation of superposition, Init initializes the registers with (H | s),
Solve solves the linear system, Acc accumulates the weight of the solution.

summarizes as

Dcombined = O
(
n(n− k)2 log(n− k)︸ ︷︷ ︸

Gaussian

+n(n− k) log(n− k) log log(n− k)︸ ︷︷ ︸
Permutation

+ n2(n− k)︸ ︷︷ ︸
Swaps

)
= O(n3 log n)

(5)

4.4 Amplitude Amplification

Amplitude amplification was introduced as a generalization of Grover’s algorithm
[21] in [12, 22] and analogously allows to obtain a square-root advantage over a
classical search. More precisely, given a quantum operation A, that creates a
quantum state with non-zero overlap with a target state of amplitude a, one
can amplify the probability of measuring the desired state to Θ(1) using O(1/a)
iterations of operator A, whereas classical sampling would require O(1/a2). The
amplitude amplification operator is defined as

Q = −AS0A†St, (6)

where S0 and St are operators that flip the sign of the initial state and target
state respectively. The Q operator, when applied to the quantum state A |0〉 am-
plifies the probability of measuring the quantum state targeted by St. Applying
the operator dπ/(4a)e times then results in measuring one of the target states
with probability close to 1.

In our case A is the operator that creates the uniform superposition over all
size-(n−k) subsets. The oracle St is comprised of the Gaussian elimination circuit
and an ancilla initialized in the |−〉 state to flip the sign of the states with target
Hamming weight. Eventually, the inverse of the Gaussian elimination circuit is
applied in order to clean up the ancillary register. The shape of St is detailed in
Fig. 4.

Summarizing, we can find a solution to the syndrome decoding problem af-
ter O(

√
q−1) applications of operator Q, where q is the proportion of suitable

subsets yielding a solution among all size-(n− k) subsets defined in Eq. (3).
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St =

|−〉
b

Solve Solve†

b

c

Acc

•
Acc†s

Init Init†

s

h

h

h

h

Fig. 4: Oracle designed to change the sign of all states with target Hamming
weight after solving the linear system.

The expected time complexity, becomes O(
√
q−1TQ), where TQ is the cost of

performing the quantum operator Q. Note that TQ = O(Dcombined) is dominated
by the cost of the combined circuit given in Eq. (5). Hence, the depth of the full
quantum ISD procedure can be summarized as

Dfull = O(
√
q−1Dcombined). (7)

The amplitude amplification procedure only requires a single additional qubit
for the sign flip, hence the number of qubits is equal to Wfull = Wcombined + 1.

Remark 2. Note that similar to Remark 1, in the case of S existent solutions the
proportion of subsets yielding a solution increases to S · q. Hence O(

√
(Sq)−1)

applications of the operator Q suffice to find any one of these solutions.

5 Optimizing the quantum circuit

In this section we introduce further optimizations of our initial design. First we
show how to extend our circuit by the ISD improvement made by Lee-Brickell [27]
and how to exploit the cyclicity in case of BIKE and HQC. Then, we show how,
in the case of Prange, a preprocessing of the matrix to systematic form and a
clever adaptation of our combined circuit allows us to save (n−k)2 input qubits
without any increase in depth.

5.1 Quantum Lee-Brickell

Lee and Brickell [27] observed that allowing for a small weight p outside of
the selected subset of columns can yield a polynomial runtime improvement.
Therefore they aim for a permutation P , that distributes the weight on P−1e =
(e1, e2) ∈ Fn−k2 × Fk2 such that

wt(e1) = ω − p and wt(e2) = p. (8)

Again by Gaussian elimination (here modelled via the multiplication by the
matrix Q) one transforms the identity HP (e1, e2) = s into

QHP (e1, e2) = (In−kH2)(e1, e2) = Qs.
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The algorithm then enumerates in each iteration all possible candidates for e2

of weight p and checks for every such candidate x if

wt(e1) = wt(Qs +H2x) = ω − p,

and if so outputs the solution e = P (e1,x). Note that the probability for the
permutation satisfying Eq. (8) improves to

qLB =

(
n−k
ω−p
)(
k
p

)(
n
ω

) . (9)

On the downside in each iteration now the Gaussian elimination as well as the
enumeration of all candidates must be performed which results in a total classical
running time of

T = (qLB)−1 ·
Ç
TG +

Ç
k

p

åå
,

which is optimal for a p satisfying TG ≈
(
k
p

)
, which implies constant p and hence

a polynomial speedup.

Circuit Adaptation. Note that the Lee-Brickell improvement requires knowledge
of H2, which corresponds to the last k columns of H after the Gaussian elim-
ination. Hence, we need to extend all row additions of Algorithm 3 to be also
applied to these columns.7 Note that this does not affect the running time in
O-notation.

Now, after the Gaussian elimination (compare to Algorithm 4) we add a
circuit that for each selection of p columns of H2, adds those to the last column.
After the addition we check if the weight of the last column is equal to ω−p and
if so set the control bit of the amplitude amplification procedure to one. After
that, we reverse the addition by adding those columns again. The total depth of
this enumeration circuit is O(p

(
k
p

)
).

The circuit depth of the Lee-Brickell quantum algorithm can be summarized
similar to before in the case of Prange as

DLB = O
Ç»

(qLB)−1

Ç
n3 log n+ p

Ç
k

p

ååå
.

In terms of width, the Lee-Brickell circuit has the same performance as our initial
Prange design, namely

WLB = Wfull = (n− k + 1)(n+ 2)− 3.

The source code accompanying this work also provides an implementation of
this improvement in Qibo [33].

7 Precisely, the row additions of the back substitution step (line 13 of Algorithm 3)
now need to be applied on the last k+1 columns rather than only on the last column.
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Fig. 5: Problem shape for input matrix in systematic form.

5.2 The case of BIKE and HQC – exploiting the cyclicity

BIKE and HQC use double-circulant codes of rate 1
2 , i.e., n = 2k. For those

codes, a given syndrome decoding instance (H, s, ω) allows to obtain k differ-
ent instances (H, si, ω)8, where the solution to any one of these instances leads
directly to a solution to the original instance. Sendrier has shown [34] that in
the case enumeration based ISD, this setting allows for a classical-speedup of√
k, known as Decoding-One-Out-of-Many. However, we observe that in the case

of Prange these k instances also allow for a quantum-speedup of O(
√
k) (corre-

sponding to a classical speedup of order k). Therefore instead of performing the
Gaussian elimination on the matrix (H | s) it is performed on (H | s1 | · · · | sk).
Now, whenever one of the last k columns after the Gaussian elimination ad-
mits weight ω we set the sign-flip bit of the amplitude amplification procedure.
Note that this change does not effect the depth of the circuit in O-notation. It
increases the cost for a row addition from O(n) to O(n + k) = O(n) and the
weight-accumulation has to be performed k times instead of once, which is still
surpassed by the cost of the Gaussian elimination. On the upside there exist a
total of k solutions to these k instances, which according to Remark 2 results in
a speedup of

√
k of the quantum search. In terms of width we need (n−k)(k−1)

more qubits to represent all si.
This strategy is also compatible with the Lee-Brickell improvement from the

previous Section 5.1. Therefore we need to extend the enumeration part to all si
increasing the cost of that step by a factor of k to O(kp(n−k)

(
k
p

)
). We summarize

the width and depth of this combination in Table 2 at the end of Section 6.

5.3 Saving quadratically many qubits for free

In the following we apply a Gaussian elimination to the first n−k columns of H
resulting in a problem shape as shown in Fig. 5, also known as systematic form.9

We now describe how to adapt our circuit to only require the matrix H ′ as well
as the corresponding syndrome as an input, reducing the amount of qubits by
(n− k)2.

In a classical setting, preprocessing the matrix to systematic form allows to
reduce the number of operations needed for subsequent Gaussian eliminations [8].

8 All defined on the same parity-check matrix H and with the same error-weight ω.
9 If the first n− k columns do not form a matrix of full rank we permute the columns

accordingly.
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Fig. 6: Procedure to perform quantum version of Prange without first n − k
columns as input. Colored framed parts indicate columns belonging to the cur-
rent selected subset.

This holds as long as there is a non-empty intersection between the new subset
of columns and the first n− k columns, which already form the identity matrix.

Inspired by the classical time complexity improvement, we implement for
columns from the identity part that belong to the selected subset only a corre-
sponding row-swap. After the necessary row-swaps are performed, all columns of
H ′ belonging to the corresponding subset are swapped to the back. Subsequently
we perform the Gaussian elimination only on the last columns of H ′ that belong
to the current selection. This procedure is depicted in Fig. 6, which shows the
state of the matrix after all three operations have been performed for the chosen
subset. Note that the first n− k columns only serve an illustrative purpose and
are not part of the input.

Circuit Adaptation . In the following we assume the input matrix to be in sys-
tematic form. Now, whenever the selected subset includes any column hj for
j ≤ n− k of H, a single row swap is sufficient to obtain the desired unit vector
for this column. This implies that all operations resulting from column hj of H,
where j ≤ n − k, being part of the selected subset as column i are fully deter-
mined by j and i. The necessary operations can, hence, be embedded into the
circuit directly without the need of the first n−k columns as an input. However,
this design requires to implement the procedure for every combination of j and
i, which are O(n2) possibilities. Furthermore, each swap comes at a cost of O(n).

Now, it follows the part of the circuit swapping all columns of H ′ belonging
to the respective subset to the back. During these swaps we craft an ancillary
state x =

∣∣0k−r1r〉, where r is the number of selected columns from H ′. This
state allows us to perform the Gaussian elimination only on the last r columns
of H ′ (by controlling all operations that depend on column j of H ′ on bit xj).
Since we do not know a priori how many columns that might be, we start the
Gaussian elimination, contrary to the description before, from the back, where
it always starts with the last column.
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In total, our modified circuit then needs an amount of qubits equal to

Wimproved = n︸︷︷︸
Permutation

+ (n− k) · (k + 1)︸ ︷︷ ︸
Matrix

+ k + n− k − 2︸ ︷︷ ︸
Auxiliary

+ 1︸︷︷︸
Sign−flip

= (n− k + 2)(k + 3)− 7, (10)

since we save the identity part, but need an additional k ancillas for representing
x. The depth is still dominated by the Gaussian elimination on the last (possibly)
n − k columns and, hence, stays as in the inital design in Eq. (7). We again
provide an implementation of this design with the source code belonging to this
work. A pseudocode description of the adapted combined circuit can be found
in Appendix I.

6 Classical-time quantum-memory trade-offs

Despite our optimization, the quadratic amount of qubits required for the rep-
resentation of the input matrix is still the limiting factor with respect to real
quantum implementations.

We overcome this issue by introducing hybrid trade-offs between classical-
time and quantum-memory for our ISD circuit, allowing for an adaptive scaling
of the algorithm to the available amount of qubits. Our trade-offs divide in
a classical and quantum computation part, where a decrease of the amount of
qubits comes at the cost of an increased classical running time. Since this increase
in running time is of exponential nature we neglect the polynomial factors of the
implementation by switching to Õ-notation. Our trade-offs allow for a smooth
interpolation between purely classical computations at a running time of

TC := Õ
Ç (

n
ω

)(
n−k
ω

)å , (11)

(compare to the analysis in Section 3) and a purely quantum based computation
taking time

√
TC, as given in Eq. (7). We interpolate between both complexities

using a qubit reduction factor δ, where a fully classical computation corresponds
to δ = 0 and an entirely quantum based execution implies δ = 1. For each trade-
off we then state the running time for a given reduction factor δ as t(δ) ∈ J0.5, 1K,
meaning that a reduction of the amount of qubits by a factor of δ implies a total

running time of (TC)
t(δ)

.
We start at first with a quite straightforward trade-off, which already achieves

a better than linear dependence between δ and t(δ). This first trade-off also
achieves good results for concrete medium sized parameters. After that, we
present a second trade-off which asymptotically outperforms the first one. How-
ever, for concrete parameters in medium scale both trade-offs remain superior to
each other for certain values of δ. Finally, we show how to combine both trade-
offs to obtain an improved version. For large reduction factors, meaning close to
one, this combination obtains the minimum of both previous trade-offs while for
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(1− α)n αn

Fig. 7: Parity-check matrix where αn zero positions of e are guessed. Striped
region of e indicates parts containing weight, crosshatched columns of H ′ do not
affect s. Framed parts are used as input to the quantum algorithm.

small reduction factors, which are most important when aiming at near future
realizations, an improved running time is achieved in most settings.

We also provide an implementation of our classical co-processor in Sage that
invoke the quantum circuit (implemented in the quantum simulation library
Qibo) on the respective instances.

6.1 A hybrid version of Prange

Our first trade-off is a hybrid version of Prange’s original algorithm. In his orig-
inal algorithm k zero positions of e are guessed and then the linear system
corresponding to the non-zero positions is solved in polynomial time. In our
hybrid version the classical part consists in guessing αn ≤ k zero coordinates
of e, which allows to shorten the code and, hence, reduce the problem to an
[(1− α)n, k − αn] code, while the error weight remains unchanged (compare to
Fig. 7). This reduced instance is then solved with our previously constructed
quantum circuit. Should the quantum computation not result in an actual solu-
tion, the initial guess of zero coordinates was incorrect and we proceed with a
new guess.

Algorithm 5 gives a pseudocode description of our hybrid Prange variant.

Algorithm 5 Hybrid-Prange

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k2 , weight ω ∈ [n],

qubit reduction factor δ ∈ J0, 1K
Ensure: error vector e with wt(e) = ω satisfying He = s
1: α := (1− δ) k

n

2: repeat
3: choose random permutation matrix P ∈ Fn×n2 and set H̃ ← HP

4: solve instance (H̃[(1−α)n], s, ω) via quantum algorithm returning e1 ∈ F(1−α)n
2

5: e← P (e1, 0
αn)

6: until He = s
7: return e
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Theorem 1 (Hybrid Prange). Let n ∈ N, ω = τn and k = Rn for τ,R ∈
J0, 1K and let TC be as defined in Eq. (11). Then for any qubit reduction factor δ ∈
J0, 1K Algorithm 5 solves the SDn,k,ω problem in time (TC)t(δ) using δ(1−R)Rn2

qubits for the matrix representation, where

t(δ) = 1−
1
2

Ä
(1− α)H

(
τ

1−α
)
− (1−R)H

(
τ

1−R
)ä

H(τ)− (1−R)H
(

τ
1−R

) ,

for α = (1− δ)R.

Proof. Assume that the permutation P distributes the error such that

P−1e = (e1, 0
αn), (12)

for α as defined in Algorithm 5. Then it follows, that e1 is a solution to syndrome
decoding instance ((HP )[(1−α)n], s, ω). By the correctness of our quantum circuit
the solution e1 is returned in line 4 and finally e = P (e1, 0

αn) is recovered.

Next let us analyze the running time of the algorithm. The probability of a
random permutation distributing the error weight as given in Eq. (12) is

qC := Pr
[
P−1e = (e1, 0

αn)
]

=

(
(1−α)n

ω

)(
n
ω

) .

Hence, we expect that after q−1
C random permutations one of them induces the

desired weight-distribution. The asymptotic time complexity for the execution
of the quantum circuit to solve the corresponding SD(1−α)n,(R−α)n,ω problem
can be derived from Eq. (7) as

TQ = Õ

ÑÃ (
(1−α)n

ω

)(
(1−R)n

ω

)
é
.

Since for each classically chosen permutation we need to execute our quantum
circuit the total running time becomes

T = q−1
C · TQ = Õ

Ñ (
n
ω

)»(
(1−α)n

ω

)(
(1−R)n

ω

)
é
.

Now let us determine t(δ) := log T
log TC

. First observe that T = TC

TQ
, which can

be rewritten as

log TC − log TQ = log T

⇔ 1− log TQ

log TC
=

log T

log TC
=: t(δ).
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An approximation of TQ and TC via the approximation for binomial coefficients
given in Eq. (1) together with ω := τn and k := Rn then yields

t(δ) = 1−
1
2

Ä
(1− α)H

(
τ

1−α
)
− (1−R)H

(
τ

1−R
)ä

H(τ)− (1−R)H
(

τ
1−R

) ,

as claimed. Note that the input matrix of an [(1− α)n, (R− α)n]-code requires
(1 − R)(R − α)n2 qubits for the matrix representation (compare to Eq. (10)).
Hence, by setting α = (1− δ)R we obtain a qubit reduction by

(1−R)(R− α)n2

(1−R)Rn2
=
R− (1− δ)R

R
= δ. �

Note that in the case of a sublinear error-weight, which is e.g. the case for
the McEliece, BIKE and HQC crypto systems, TC can be expressed as

TC = Õ
Ç (

n
ω

)(
(1−R)n

ω

)å = Õ
(
(1−R)−ω

)
, (13)

as shown in [36].
This allows us to simplify the statement of Theorem 1 in the following corol-

lary.

Corollary 1 (Hybrid Prange for sublinear error weight). Let all param-
eters be as in Theorem 1. For τ = o(1), we have

t(δ) =
1

2
·
Å

1 +
log(1− (1− δ)R)

log(1−R)

ã
.

Proof. First we approximate TQ similar to TC in Eq. (13) as

TQ = Õ

ÑÃ (
(1−α)n

ω

)(
(1−R)n

ω

)
é

= Õ
ÇÅ

1− α
1−R

ãω
2

å
.

Now we can derive the statement of the corollary as

t(δ) = 1− log TQ

log TC
= 1−

ω
2 (log(1− α)− log(1−R))

−ω log(1−R)

=
1

2
·
Å

1 +
log(1− (1− δ)R)

log(1−R)

ã
. �

Fig. 8 visualizes the relation between the qubit-reduction factor and the
speedup for different choices of the code- and error-rate. We compare the full dis-
tance decoding setting with worst-case rate R = 0.5 and, hence, τ = H−1(R) ≈
0.11 and the half distance case with τ = H−1(R)

2 to the code parameters of the
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Fig. 8: Time exponent (y-axis) achieved by Theorem 1 plotted as a function of
the qubit-reduction factor δ (x-axis).

McEliece scheme, which are R = 0.8 and τ = o(1), and the parameters of the
BIKE and HQC schemes, which are specified as R = 0.5 and τ = o(1). Addi-
tionally, we give comparisons to higher code- and error-rates. It can be observed
that the best results are obtained for high rates, where the code-rate is the more
significant factor, which lies in favour to mounting an attack against codes using
McEliece parameters. Note that especially for a rate close to 0.5 the trade-off
is very insensitive to changes in the error-rate, such that the behaviour for the
settings of full and half distance as well as BIKE and HQC are almost identical,
hence, we only included the full distance case for the sake of clarity.

To give a concrete example, our Hybrid-Prange algorithm allows for a
reduction of the necessary qubits by 80% (corresponding to δ = 0.2), while still
achieving a speedup of t(δ) ≈ 0.82 in the McEliece setting.

6.2 Puncturing the code

While our Hybrid-Prange decreases the amount of necessary qubits by short-
ening the code, our second trade-off instead aims at puncturing the code. In a
nutshell we consider only (1 − β)n − k parity-check equations, rather than all
n− k, which is equivalent to omitting βn rows of the parity-check matrix. The
subsequently applied quantum circuit, hence, needs fewer qubits to represent
matrix and syndrome. The advantage over Hybrid-Prange partly comes form
the fact that each row saves n instead of only n − k bits. Also the generated
classical overhead is significantly smaller. This variant has similarities with the
Canteaut-Chabaud improvement [13]. Here only a certain amount of columns
(originally only one) of the identity part are exchanged in each iteration rather
than drawing a completely new permutation. In our case we fix βn columns
of the permutation classically and then search for the remaining n − k − βn
quantumly. In addition we introduce a different weight distribution on the fixed
columns, which does not yield improvements in a purely classical setting.

We again start with a parity-check matrix H in systematic form. Now con-
sider the projection of H onto its first n − k − βn rows, we call the resulting
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Fig. 9: Parity-check matrix where βn rows are omitted and e contains weight p
on βn coordinates. Framed parts are used as input to the quantum algorithm.

matrix H̃. Clearly, a solution e to the instance (H, s, ω) is still a solution to the
instance (H̃, s[n−k−βn], ω). Moreover, the matrix H̃ includes βn zero columns,
which can safely be removed (compare to Fig. 9). This results in a matrix

H̃ ′ = (In−k−βn | H ′) ∈ F(n−k−βn)×(1−β)n
2 corresponding to an [(1 − β)n, k]

code. Still, by removing the corresponding coordinates from e we obtain a solu-
tion e′ to the instance (H̃ ′, s[n−k−βn], ω− p), where p := wt(e[n−k−βn+1,n−k]) is
the weight of coordinates removed from e. Eventually, once e′ is recovered we
can obtain e in polynomial time by solving the respective linear system.

A crucial observation is that disregarding βn parity-check equations could
lead to the existence of multiple solutions to the reduced instance, i.e. multiple
e′ satisfying H̃ ′e′ = s[n−k−βn] but yielding an e with wt(e) > ω. We can control
this amount of solutions by shifting more weight onto the removed coordinates.
Also our algorithm compensates for multiple solutions by recovering all solu-
tions to the reduced instance by repeated executions of the quantum circuit. A
pseudocode description of this trade-off is given in Algorithm 6.

In the following theorem we first state the time complexity of Algorithm 6
in dependence on the qubit reduction factor δ. After this we derive the speedup
t(δ) in a separate corollary.

Theorem 2 (Punctured Hybrid). Let n ∈ N, ω ∈ [n] and k = Rn for
R ∈ J0, 1K. Then for any qubit reduction factor δ ∈ J0, 1K Algorithm 6 solves the
SDn,k,ω problem in expected time TPH using δ(1− R)Rn2 qubits for the matrix
representation, where

TPH = Õ

Ö (
n
ω

)√(
(1−β)n
ω−p

)(
(1−β−R)n

ω−p
)(
βn
p

) ·max

(
1,

√Ç
(1− β)n

ω − p

å
· 2−(1−β−R)n

)è
with β = (1− δ)(1−R) and p ∈ [min(ω, βn)].

Proof. Assume that the permutation distributes the error weight, such that for

P−1e = (e1, e2, e3) ∈ F(1−β−R)n
2 ×Fβn2 ×FRn2 it holds wt(e2) = p. Now consider



22

Algorithm 6 Punctured Hybrid

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k2 , weight ω ∈ [n],

qubit reduction factor δ ∈ J0, 1K
Ensure: error vector e with wt(e) = ω satisfying He = s
1: choose p accordingly

2: β := (1− δ)(1− k
n

), S :=
((1−β)nω−p )

2(1−β)n−k

3: repeat
4: choose random permutation matrix P ∈ Fn×n2 and set H̃ ← HP

5: transform H̃ to systematic form, H̃ =

Å
In−k−βn 0 H ′1

0 Iβn H
′
2

ã
with syndrome s̃

6: H̃ ′ ← (In−k−βn | H ′1), s′ ← s̃[(1−β)n−k]
7: for i = 1 to poly(n) · S do

8: solve instance (H̃ ′, s′, ω− p) via quantum algorithm returning e′ ∈ F(1−β)n
2

9: e′′ ← H ′2e
′
[n−k−βn+1,(1−β)n] + s̃[n−k−βn+1,n−k]

10: if wt(e′′) ≤ p then
11: e← P (e′[n−k−βn], e

′′, e′[n−k−βn+1,(1−β)n])
12: break
13: until He = s
14: return e

the permuted parity-check matrix in systematic form H̃ as given in line 5 of
Algorithm 6 with corresponding syndrome s̃. We obtain

H̃P−1e = (e1 +H ′1e3, e2 +H ′2e3) = s̃.

This implies that (e1, e3) is a solution to the syndrome decoding instance (H̃ ′, s′, ω−
p) with H̃ ′ = (I(1−β−R)n | H ′1) and s′ = s̃[(1−β−R)n]. The solution is then recov-
ered by the application of our quantum circuit in line 8. Note that in expectation
there exist

S :=

Ç
(1− β)n

ω − p

å
· 2−(1−β−R)n

solutions to our reduced instance. Since we apply our quantum circuit poly(n) ·S
times and in each execution a random solution is returned, a standard coupon
collector argument yields that we recover all S solutions with high probability.
Now, when e′ = (e1, e3) is returned by the quantum circuit, we recover e2 =
s̃[(1−β−R)n+1,(1−R)n] +H ′2e3 and eventually return e = P (e1, e2, e3).

Next let us consider the time complexity of the algorithm. Observe that the
probability, that wt(e2) = p for a random permutation holds is

qC := Pr [wt(e2) = p] =

(
(1−β)n
ω−p

)(
βn
p

)(
n
ω

) .

Hence, after q−1
C iterations we expect that there is at least one iteration where

wt(e2) = p. In each iteration we apply our quantum circuit Õ (S) times to solve
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the reduced instance (H̃ ′, s′, ω − p), corresponding to an [(1 − β)n, (1 − R)n]-
code. Since there exist S solutions the expected time to retrieve one of them at
random is

TQ = Õ

ÑÃ (
(1−β)n
ω−p

)
max(1, S) ·

(
(1−β−R)n

ω−p
)
é
,

according to Remark 2. The maximum follows since we know that there exists
at least one solution. In summary the running time becomes TPH = q−1

C · TQ ·
max(1, S), as stated in the theorem.

The required amount of qubits of the quantum circuit for solving the syn-
drome decoding problem related to an [(1 − β)n, (1 − R)n]-code are roughly
R(1 − β − R)n2 (compare to Eq. (10)). Thus, for β := (1 − δ)(1 − R) this
corresponds to a qubit reduction of

R(1− β −R)

R(1−R)
=

1−R− (1− δ)(1−R)

1−R = δ. �

Theorem 2 allows to easily determine the corresponding speedup, whose exact
formula we give in Corollary 2 in Appendix II.

In Fig. 10a we compare the behavior of our new trade-off to our previously
obtained Hybrid-Prange. Recall that the performance of Hybrid-Prange is
not very sensitive to changes in the weight. Thus, for settings with a rate of
R = 0.5 the dashed lines are almost on top of each other. The value p of our new
trade-off (Theorem 2) were optimized numerically. It can be observed, that our
second trade-off outperforms the first one for all parameters. We observe the best
behaviour for low coderates and small error weights, which correspond to the
case, where the solution is very unique. In these cases our Punctured-Hybrid
algorithm can disregard parity-check equations without introducing multiple so-
lutions to the reduced instance. Hence, still a single execution of the quantum
circuit suffices to recover the solution. Note that in the McEliece, BIKE and
HQC setting the error weight is sublinear, which is in favour of our new trade-
off. BIKE and HQC furthermore use a very small error weight of only O(

√
n)

and specify a rate of R = 0.5, which results in a very unique solution. Conse-
quently, in Fig. 10a it can be observed, that asymptotically for these settings
the second trade-off improves drastically on Hybrid-Prange.

Note that our formulation of the speedup for Punctured-Hybrid in con-
trast to Hybrid-Prange (see Corollary 1) still depends on the error-rate, not
exactly allowing for ω = o(n). Thus, to obtain the asymptotic plot we com-
pared the result of Corollary 1 to Theorem 2 for McEliece [6688, 5024, 128],
BIKE [81946, 40973, 264] and HQC [115274, 57637, 262], which are the suggested
parameters for 256-bit security from the corresponding NIST submission docu-
mentation [2, 14,30].

To quantify the result of our new trade-off take e.g. the case of McEliece and
a qubit reduction by 80% (δ = 0.2), as before. Here we improve to a speedup of
t(δ) ≈ 0.74, compared to 0.82 for Hybrid-Prange.
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Fig. 10: Comparison of time exponents of Hybrid-Prange and Punctured-
Hybrid (y-axis) plotted as a function of the qubit-reduction factor δ (x-axis).

However, for concrete medium sized parameters this asymptotic behaviour
is not necessarily obtained. In Fig. 10b we therefore show a comparison of both
trade-offs for concrete McEliece parameter sets. Here we furthermore used the
more accurate time complexity formula involving binomial coefficients rather
than its asymptotic approximation to compute the speedup t(δ). Note that the
discontinuity for our new trade-off in these cases is due to the limitation to
discrete choices of p. We find that for parameters up to n ≈ 2500 both trade-offs
remain superior to each other for certain reduction factors δ. For larger values of
n the Punctured-Hybrid algorithm becomes favourable for all δ. In the BIKE
and HQC settings the Punctured-Hybrid algorithm is favourable already for
small parameters corresponding to n = 1000.

6.3 Combining both trade-offs

Next we show how to combine both previous trade-offs to achieve an improved
version. Therefore we first reduce the code length and dimension, again by guess-
ing αn zero coordinates of e and removing the corresponding columns form H.
The remaining instance is then solved using our Punctured-Hybrid algorithm
(compare also to Fig. 11). If the initial guess was wrong, this procedure will not
finish. Thus, we introduce an abort of the execution after the expected amount
of iterations of Punctured-Hybrid on a correct guess.

The pseudocode of the procedure is given in Algorithm 7. Note that here we
use β and p as input parameters to Punctured-Hybrid, rather than to the
choice made in Algorithm 6 (Punctured-Hybrid).

Theorem 3 (Combined Hybrid). Let n ∈ N, ω ∈ [n] and k = Rn for
R ∈ J0, 1K. Then for any qubit reduction factor δ ∈ J0, 1K the SDn,k,ω problem
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e

s

In−k−βn H ′H

βn αn

β
n

0

p 0

Fig. 11: Input matrix in systematic form where βn parity-check equations are
omitted and αn zeros of e are known. The vector e is assumed to contain weight
p on βn coordinates. Framed parts are used as input to the quantum algorithm.

Algorithm 7 Combined-Hybrid

Require: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k2 , weight ω ∈ [n],

qubit reduction factor δ ∈ J0, 1K
Ensure: error vector e with wt(e) = ω satisfying He = s
1: choose α and p accordingly

2: β := (1− k
n

)
(

δ k
n

k
n
−α

)
, E :=

((1−α)n
ω )

((1−α−β)nω−p )(βnp )
3: repeat
4: choose random permutation matrix P ∈ Fn×n2 and set H̃ ← HP
5: e′ ← Punctured-Hybrid(H̃[(1−α)n], s, ω, δ,

β
1−α , p) . abort after E iterations

of the outer loop
6: e← P (e′, 0αn)
7: until He = s
8: return e

can be solved in expected time TCH using δ(1 − R)Rn2 qubits for the matrix
representation, where

TCH = Õ
( (

n
ω

)»(
(1−α−β)n

ω−p
)(

(1−β−R)n
ω−p

)(
βn
p

) ·max

(
1,

√Ç
(1− α− β)n

ω − p

å
· 2−(1−β−R)n

))

with α ∈ J0, RK, β = (1−R)
Ä
1− δR

R−α

ä
and p ∈ [min(ω, βn)].

Proof. The correctness follows from the correctness of Algorithm 5 and Algo-
rithm 6. Therefore observe that for a correct guess of αn zero positions of e, the
expected amount of permutations needed by Punctured-Hybrid to find the
solution is

E :=

(
(1−α)n

ω

)(
(1−α−β)n

ω−p
)(
βn
p

) .
Also note that Punctured-Hybrid is called on a code of length n′ = (1−α)n.
Hence setting β′ = β

1−α guarantees that β′n′ = βn parity equations are omitted.
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For the time complexity we have again with probability

qC := Pr
[
P−1e = (e1, 0

αn)
]

=

(
(1−α)n

ω

)(
n
ω

) ,

a correct guess for αn zero positions (compare to the proof of Theorem 1).
In each iteration of our combined algorithm we call the Punctured-Hybrid
algorithm. Inside this subroutine E iterations of the outer loop are executed,
each performing

S = Θ̃

(
max

(
1,

(
1−β−α
ω−p

)
2−(1−R−β)n

))
calls to the quantum circuit. This quantum circuit is applied to solve the syn-
drome decoding problem defined on an [(1−α−β)n, (R−α)n]-code with error-
weight ω − p (compare to Fig. 11), which takes time

TQ = Õ

ÑÃ (
(1−α−β)n

ω−p
)

S ·
(

(1−β−R)n
ω−p

)
é
.

Thus, eventually, the time complexity of the whole algorithm summarizes as
TCH = q−1

C · E · TQ · S, as claimed. Finally, note that for given β = (1 −
R)
Ä
1− δR

R−α

ä
we obtain a qubit reduction by

(R− α)(1−R− β)

R(1−R)
=

(R− α)(1−R)(1− (1− δR
R−α )

R(1−R)
= δ. �

Next we give a comparison of the trade-off behavior in different settings. On
the left in Fig. 12 we illustrate the asymptotic behaviors of the trade-offs, where
p and α for the combined trade-off were numerically optimized. It shows that
the combination of both trade-offs (dashed lines) for most parameters improves
on Punctured-Hybrid (solid line). Especially in the full distance decoding
setting an improvement for nearly all δ is achieved. This is due to the fact, that
the guessing of zero coordinates is an additional possibility to control the amount
of solutions to the reduced instance and therefore to optimize the complexity of
the Punctured-Hybrid subroutine. This is also the reason why we achieve
no (asymptotic) improvement in the BIKE and HQC settings, here the solution
is already so unique that the trade-off can not benefit from the new degree of
freedom.

But also in the McEliece setting we achieve notable improvements. If we again
consider a reduction-factor of δ = 0.2 the combination improves the speedup to
t(δ) ≈ 0.69 from 0.74 achieved by Punctured-Hybrid. Furthermore, when
focusing on near future realizations, i.e., the regime of small reduction factors, it
is for example possible with just one percent of the qubits (δ = 0.01) to achieve
a speedup of t(δ) ≈ 0.92.

On the right in Fig. 12 we show the relation between qubit reduction and
speedup for concrete McEliece parameters. Here we restrict ourselves to the
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Fig. 12: Comparison of time exponents (y-axis) plotted as a function of the qubit-
reduction factor δ (x-axis) for asymptotic (left, combined trade-off illustrated
dashed, Theorem 2 solid) and concrete McEliece parameters (right).

instance n = 2500 for the sake of clarity. But note that for all parameter sets at
least the minimum of both trade-offs is obtained with improvements especially
for low reduction factors. In the BIKE and HQC setting for small parameter sets
with n ≤ 3000 we achieve (small) improvements in the regime of δ ≤ 0.05.

6.4 Overview and Discussion

For convenience we state in Table 1 the parameters of the reduced instances
solved by the quantum circuits within each of our trade-offs. Table 2 then states
the necessary amount of qubits and the resulting depth of the circuits to solve
a respective instance with parameters (n, k, ω).

Quantum Instance Parameters
n′ k′ ω′

Hybrid-Prange (1− α)n (R− α)n ω
Punctured-Hybrid (1− β)n Rn ω − p
Combined-Hybrid (1− α− β)n (R− α)n ω − p

Table 1: Parameters of the reduced subinstance solved by the quantum circuit
called by the respective classical co-processor.

By plugging in the values from Table 1 into the formulas given in Table 2
one receives the quantum complexities of the respective classical co-processor.
Here we differentiate between optimization regarding the amount of qubits and
the circuit depth. The essential difference lies in the use of the Lee-Brickell
improvement in case of an optimization of the depth, while the width optimized
variant uses the qubit reduction technique from Section 5.3.
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The depth of our circuits is mainly dominated by the application of the
Gaussian elimination, where the additional log n factor results from the decom-
position of multi-controlled gates. Remember that q is the proportion of subsets
yielding a solution among all size-(n− k) subsets in the case of Prange, given in
Eq. (3), while qLB is the proportion of good subsets in the case of the Lee-Brickell
algorithm stated in Eq. (9).

W -Optimized D-Optimized D-Optimized (cyclic)

Qubit (n− k + 2)(k + 3)− 7 (n− k + 1) · (n+ 2)− 3 (n− k) · (n+ k + 2)− 1

Depth O
Ä
n3 logn√

q

ä
O
Å
n3 logn+p(kp)√

qLB

ã
O
Å
n
Ä
n2 logn+p(kp)

ä
√
k·qLB

ã
Table 2: Depth and required qubits of the quantum circuit to solve the SDn,k,ω.

Overall, we presented concrete depth and width optimized quantum circuits
for the fully-fledged ISD procedure. Our tradeoffs put a special focus on the
reduction of necessary qubits, targeting near-term realizations. Following this
thought, we also provide the necessary implementations of our circuits in the
simulation library Qibo making a transition to a real quantum computer as easy
as possible.

Although we placed a strong focus on the circuit width, we have shown that
ISD can also be implemented efficiently on a quantum computer from a depth
perspective. Thus, we cannot confirm the mentioned statement of the McEliece
submission regarding a higher overhead when applying a Grover search to ISD
rather than AES. However, we admit that a single application of AES has a
lower complexity than one iteration of an ISD algorithm, which lies in favor of the
quantum security of code-based schemes. Since NIST imposes a depth-limitation
on the used quantum circuits, the more depth is needed for the implementation
of one iteration, the less Grover iterations can be performed. We made a first
step in the direction of overcoming this issue by giving a quantized version of the
Lee-Brickell improvement and by exploiting the cyclicity in the BIKE / HQC
cases. Both approaches tackle the problem by reducing the number of necessary
Grover iterations. The second possibility is targeting a depth reduction of a single
iteration, which is dominated by performing the Gaussian elimination. We leave
it as an open problem to further study the concrete quantum circuit design of
advanced Gaussian elimination procedures, such as M4RI or Strassen.
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Appendix

I Width reduced circuit

Algorithm 8 shows the pseudocode for generating our width optimized circuit,
not requiring the idenity part of H as an input, described in Section 5.3.

Algorithm 8 Width-reduced Combined Circuit

Require: matrix H ′ ∈ F(n−k)×k
2 , syndrome s ∈ Fn−k2 , (k+1)(n−k)+n+dlog(n− k)e

qubits
Ensure: Uniform superposition over weight of all x with HIx = s for I ∈

(
[n]
n−k

)
where

H = (In−k | H ′)
1: Initialize qubits with (H ′ | s)
2: Generate uniform superposition over Bn,n−k on qubits (b1, . . . , bn)
3: c← n− k
4: for i = 1 to n− k do . row swaps depending on first n− k columns
5: for j = 1 to i− 1 do
6: if bi = 1 and c = n− k − j + 1 then swap row i and row j

7: if bi = 1 then c← c− 1

8: for i = n down to n− k + 1 do . swap selected columns of H ′ to the back
9: if bi = 1 then

10: c← c− 1
11: xi ← 1
12: for j = i to n− 1 do
13: swap column j and j + 1
14: swap xj and xj+1

15: Apply Gaussian elimination circuit starting with the last column, where each op-
eration depending on column j is controlled by xj (Algorithm 3)

16: return c← weight of last column

II Punctured Hybrid

In the following corollary we state the exact form of the speedup t(δ) for our
Punctured-Hybrid (Theorem 2).

Corollary 2 (Punctured Hybrid Speedup). Let n ∈ N, ω = τn and k = Rn
, p = ρn for τ,R, ρ ∈ J0, 1K and let TC be as defined in Eq. (11). Then for any
qubit reduction factor δ ∈ J0, 1K Algorithm 6 solves the SDn,k,ω problem in time
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(TC)t(δ) using δ(1−R)Rn2 qubits for the matrix representation, where

t(δ) =
H(τ)− βH

(
ρ
β

)
− 1−β

2 ·H
(
τ−ρ
1−β

)
− (1−β−R)

2 ·H
(

τ−ρ
1−β−R

)
+ max(0, σ)

H(τ)− (1−R)H
(

τ
1−R

)
for β = (1− δ)(1−R) and σ = (1− β)H

(
τ−ρ
1−β

)
− (1− β −R).

Proof. Recall that t(δ) = log TPH

log TC
, where TPH is the running time of Algorithm 6,

given in Theorem 2. Now the statement of the corollary follows immediately by
approximating the binomial coefficients in TPH and TC via Stirling’s formula (see
Eq. (1)). ut
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