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Abstract. Homomorphic Encryption (HE) is a useful primitive for secure computation, but it is
not generally applicable when multiple parties are involved, as the authority is solely concentrated
in a single party, the secret key owner. To solve this issue, several variants of HE have emerged in
the context of multiparty setting, resulting in two major lines of work – Multi-Party HE (MPHE)
and Multi-Key HE (MKHE). In short, MPHEs tend to be more efficient, but all parties should be
specified at the beginning to collaboratively generate a public key, and the access structure is fixed
throughout the entire computation. On the other hand, MKHEs have relatively poor performance
but provide better flexibility in that a new party can generate its own key and join the computation
anytime.
In this work, we propose a new HE primitive, called Multi-Group HE (MGHE). Stated informally,
an MGHE scheme provides seamless integration between MPHE and MKHE, and has the best of
both worlds. In an MGHE scheme, a group of parties jointly generates a public key for efficient
single-key encryption and homomorphic operations similar to MPHE. However, it also supports
computation on encrypted data under different keys, in the MKHE manner. We formalize the
security and correctness notions for MGHE and discuss the relation with previous approaches.
We also present a concrete instantiation of MGHE from the BFV scheme and provide a proof-of-
concept implementation to demonstrate its performance. In particular, our MGHE construction has
a useful property that the key generation is simply done by aggregating individual keys without any
interaction between the parties, while all the existing MPHE constructions relied on multi-round
key-generation protocols. Finally, we describe a method to design a general multi-party computation
protocol from our MGHE scheme.
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1 Introduction

Homomorphic Encryption (HE) enables computation over encrypted data without decryption. It prevents
the leakage of private information while evaluating data within an untrusted environment. However, HE
requires a large resource even when it computes a simple arithmetic operation such as multiplication.
As a result, HE is particularly well-suited for implementation in cloud systems that can supply large
computing power for evaluation.

A typical HE only supports computations between data encrypted by the same key. Consequently,
when multiple data owners are involved, it relies on a trusted third party who possesses a key distributed
to each party for encryption. Still, this merely transfers the trust problem from the cloud service provider
to the new third party and thus does not provide an acceptable solution to this problem. To overcome this
challenge, extensive research has explored the use of distributed trust in designing HE schemes involving
multiple parties.

In the context of multiple parties, two important lines of HE schemes have emerged: Threshold HE
and Multi-Key HE (MKHE). In Threshold HE [5, 9, 36, 38, 35], multiple parties collaborate to generate a
joint public key, and encryption is performed under this joint key. Threshold HE has a t-out-of-n (t ≤ n)
access structure where any t parties can reconstruct the secret key to decrypt the ciphertext. Studies on
Threshold HE are again diverged into two different directions: the case where t < n and the case where



t = n. In our work, we focus on the case when t = n, which is referred as Multi-Party HE (MPHE).
Like any other Threhold HE schemes, MPHE is comparable to that of the single-key HE schemes since
encryption and homomorphic computation are performed in a similar manner with the joint key. However,
the set of participants should be determined beforehand and fixed in the preparation phase and no other
parties can join the computation in the middle. Moreover, the existing MPHE schemes are based on a
multi-round key generation protocol in which the involved parties should interact with each other.

On the other hand, MKHE [33, 22, 37, 39, 14, 15] features a distributed setup phase where each party
independently generates its own key pair, without requiring any information about other participants. The
encryption can be done by an individual key, and it allows to perform arithmetic operations on ciphertexts
that do not necessarily have to be encrypted under the same key. The main advantage of MKHE lies
in its flexibility: it is not necessary to pre-determine the list of participants or the computational task.
From the performance perspective, however, the size of ciphertexts increases with the number of involved
parties, and so does the complexity of homomorphic operations.

1.1 Our Contributions

Formalization of Multi-Group HE. We propose a novel variant of HE designed for multiple parties,
called Multi-Group HE (MGHE), and define its security notion. An MGHE scheme can be viewed as
a generalization of both MPHE and MKHE, which enjoys the best of both primitives. In MGHE, a
group of parties collaboratively generates a public key that is commonly used among the parties for
encryption. Hence, MGHE behaves like an MPHE scheme in a single group. Moreover, an MGHE scheme
has the capability to perform arbitrary computations on encrypted data, regardless of whether the input
ciphertexts are encrypted under the same group key or not, a crucial property of MKHE.

Construction of MGHE. We construct an MGHE scheme and provide a rigorous proof of its semantic
security. Our MGHE scheme regards an MPHE ciphertext as a single-key encryption under the joint
secret key so that ciphertexts corresponding to different group keys can be operated in a MKHE manner.
Consequently, our MGHE scheme has a hierarchical structure where a ciphertext is decryptable by the
joint secret keys of the associated groups, each of which is additively shared among the group members.
From the perspective of MPHE, it is also the first construction of the MPHE scheme with non-interactive
key aggregation where the joint encryption and evaluation keys are obtained from independently generated
individual keys by simply summing them.

Building Multi-Party Computation Protocol from MGHE. We build a round-optimal Multi-
Party Computation (MPC) protocol on top of our MGHE scheme, which is naturally derived from the
non-interactive key aggregation (setup). We show that the protocol is secure against semi-malicious
adversaries in the dishonest majority setting, relying on the semantic security of MGHE.

Experimental results. We implement our MGHE scheme based on both BFV and CKKS and provide
a basic benchmark compared to the previous MPHE and MKHE works.1

1.2 Technical Overview

At the heart of our construction lies a non-interactive key generation algorithm. This allows the joint key
of a group to be constructed non-interactively from independently generated keys of the group members.
The key generation follows a hybrid construction between MPHE (the encryption key aspects) and MKHE
(the relinearization mechanisms).

We assume that each party is identified as a unique index i and let I be a group of parties. The
homomorphic property of LWE makes the summation of public and secret key pairs be a valid key
pair. To be precise, an MPHE scheme behaves like a single-key HE scheme where the joint secret key
s =

∑
i∈I [s]i is additively shared among the members of I. We make the Common Random String (CRS)

assumption to construct a joint public (encryption) key: given a random polynomial a ∈ Rq, each party
i ∈ I generates [b]i = a · [s]i + [e]i (mod q) for some error [e]i, then the joint public key is obtained as

1 The source code is available at https://github.com/SNUCP/snu-mghe.
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Fig. 1. A schematic presenting the overall structure of MGHE schemes. Each boxed group of participants acts
as an MPHE scheme. The secret keys and ciphertext equations for each group and the entire set of participants
(including between groups) are described above.

b =
∑
i∈I [b]i ≈ a ·s (mod q). However, it is more challenging to generate a joint evaluation key, especially

a relinearization key, because the relinearization key is usually supposed to be an ‘encryption’ of s2 which
has quadratic structure with respect to the individual secrets [s]i. In the previous constructions [5, 36],
the key generation procedure involves a multi-round protocol among the parties: (1) parties publish
individual encryption keys to build a joint encryption key, then (2) use it to generate ‘encryptions’ of
[s]i · s and broadcast them to construct a joint evaluation key.

To reduce the multiple rounds of the protocol, we propose a new key generation algorithm which is
nearly linear with respect to the secret key. This property enables the non-interactive key generation
in that each party independently generates and broadcasts its public key [pk]i once, which adds up
to the joint public (encryption and evaluation) key pk =

∑
i∈I [pk]i corresponding to the joint secret

s =
∑
i∈I [s]i.

To construct our MGHE scheme, we apply this key generation protocol to support homomorphic com-
putation between ciphertexts under different keys. For example, if we perform homomorphic computation
on MPHE ciphertexts ctj under the joint secret keys sj =

∑
i∈Ij [s]i of groups Ij for 1 ≤ j ≤ k, then it

outputs a ‘multi-group’ ciphertext under the secret (s1, . . . , sk). In particular, the joint public keys of the
involved groups themselves are used in the relinearization process of multi-group ciphertexts so that no
further interaction is required among the parties. The technical details of our MGHE constructions are
described in Section 4.

Thus, our MGHE scheme behaves as if it is an MKHE scheme in which each key is jointly generated
by a group of parties (akin to MPHE). This makes MGHE an ideal generalization of both these HE
variants and the hierarchical key structure allows an MGHE scheme to take advantage of strengths of
both MPHE and MKHE.

1.3 Related Work

We first remark that the terminology for HE-like primitive has not been agreed upon yet in the literature.
We use the terms ‘MPHE’ and ‘MKHE’ to classify the related works.

Asharov et al. [5] designed the first MPHE scheme from BGV [11]. Mouchet et al. [36] proposed a
simplified construction from BFV [10, 24] and presented some experimental results. Park [38] recently
modified the key generation protocol to reduce the interaction and also suggested a conversion between
MPHE and MKHE. To the best of our knowledge, all known MPHE schemes require a multi-round
protocol among the parties to generate a shared key pair.

3



On the other hand, there have been several attempts to construct an MKHE scheme by generalizing
single-key HE schemes. López-Alt et al. [33] designed the first MKHE from NTRU [29], and [22, 37, 39]
studied multi-key variants of GSW [26]. Then, Brakerski and Perlman [12] presented an LWE-based
MKHE [12], followed by Chen et al. [14] who presented a multi-key variant of TFHE [20]. Other works [17,
15] studied MKHE schemes from batched HEs such as BGV [11], BFV [10, 24] and CKKS [19]. Our MGHE
construction is inspired by [15], but we make an additional CRS assumption to obtain the linearity
property. Recently, Ananth et al. [4] proposed a general methodology to design an MKHE scheme in the
plain model. The construction is done by combining an oblivious transfer protocol and MKHE schemes
with limited functionality or trusted setup.

We remark that some MKHE schemes can be converted into MGHE: if the key generation algorithm
of an MKHE scheme has the homomorphic property, then we can simply operate on the public keys of
multiple parties to build a shared key for the group. For example, multi-key GSW schemes [22, 37, 39]
hold the condition since GSW does not require an evaluation key for multiplication.

Aloufi et al. [3] combined MPHE and MKHE to perform computation on ciphertexts under two
different keys: a joint key of model owners and the other of a client. It can be viewed as a special case of
MGHE in which there are two groups consisting of model owners and a client. However, its key generation
procedure also involves an interactive protocol to obtain an evaluation key.

Boneh et al. [9] suggested the notion of threshold FHE that has t-out-of-n access structure protocol
by splitting the secret key into shares. Its key generation is based on a Shamir secret sharing scheme
where each party receives a share of the secret key. Badrinarayanan et al. [6] also presented a threshold
FHE scheme but in the distributed setting.

2 Background

2.1 Notation

We assume all logarithms are in base two unless otherwise indicated. Vectors are denoted in bold, e.g. a,
and matrices in upper-case bold, e.g. A. We denote the inner product of two vectors u, v as 〈u,v〉. For
a finite set S, U(S) denotes the uniform distribution over S.

Let N be a power of two. We denote by R = Z[X]/(XN + 1) the ring of integers of the (2N)-th
cyclotomic field and Rq = Zq[X]/(XN + 1) the residue ring of R modulo an integer q. An element of
R (or Rq) is uniquely represented as a polynomial of degree less than N with coefficients in Z (or Zq).
We identify a =

∑
0≤i<N ai ·Xi ∈ R with the vector of its coefficients (a0, . . . , aN−1) ∈ ZN . For σ > 0,

we denote by Dσ a distribution over R which samples N coefficients independently from the discrete
Gaussian distribution of variance σ2 and χ as a key distribution. For a, b ∈ Rq, we informally write a ≈ b
(mod q) if b = a+ e (mod q) for some small e ∈ R.

2.2 Ring Learning with Errors

Given the parameters (N, q, χ, σ), consider the samples of the form bi = s ·ai+ei (mod q) for polynomial
number of i’s where ai ← U(Rq) and ei ← Dσ for a fixed s← χ. The Ring Learning with Errors (RLWE)
assumption states that the RLWE samples (bi, ai)’s are computationally indistinguishable from uniformly
random elements of U(R2

q).

2.3 Gadget Decomposition and External Product

A function function h : Rq → Rd is called a gadget decomposition if there exists a gadget vector g = (gi) ∈
Zdq such that a = 〈h(a),g〉 (mod q) for all a ∈ Rq. Typical examples are bit decomposition [10, 11], digit
decomposition [20], and Residue Number System (RNS) based decompositions [7, 28]. Our implementation
is based on an RNS-friendly decomposition for efficiency.

For µ ∈ R, we call U = (u0,u1) ∈ Rd×2q a gadget encryption of µ under a secret s if u0+s·u1 = µ·g+e
(mod q) for some e sampled from an error distribution. Chillotti et al. [20] formalized external product
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operation between RLWE and RGSW ciphertexts. We adopt and generalize this concept as follows: for
c ∈ Rq and v ∈ Rdq , the external product is defined as c � v := 〈h(c),v〉 (mod q). We also write

c � U = (c � u0, c � u1) for U = (u0,u1) ∈ Rd×2q . We note that if U is a gadget encryption of µ such
that u0 + s · u1 = µ · g + e (mod q) for some e, then the external product (c0, c1)← c� U satisfies that
c0 + c1 · s = c� (u0 + s · u1) = c · µ+ 〈h(c), e〉 (mod q) .

The gadget decomposition technique is widely used in HE schemes to reduce the noise growth of
homomorphic operations. In addition, it is often combined with the special modulus technique [25].
Although the special modulus technique is applied to the external product in our implementation, we do
not describe it in the main body of this paper for simplicity.

3 Formalizing Multi-Group Homomorphic Encryption

The ordinary HE schemes support computation on ciphertexts, but the same key should be used for
encryption. This major constraint raises the key management problem and makes it difficult to apply
the HE technology to a variety of applications. For the last few years, substantial research has been
undertaken to solve the issue by distribute the authority of HE system. Currently, there are two main
approaches to extend the functionality of HE to the multi-party setting: Threshold HE (ThHE) and
Multi-Key HE (MKHE).

First, Threshold HE (e.g. [5, 9, 36, 38, 34]) is similar to HE, except the fact that the secret key is
shared among several parties. That is, n parties execute a key generation protocol to construct a common
public key while the corresponding secret key is shared between the parties with a t-out-of-n threshold
access structure. In particular, most studies are dedicated to the case of t = n, which we call Multi-party
HE (MPHE), while there have been limited results for t < n. In practice, ThHE (or MPHE) schemes
are derived from single-key HEs by replacing their key-generation algorithms with distributed protocols,
while the evaluation procedures remain the same. To the best of our knowledge, all existing schemes
require interaction between the parties to build a relinearization key for multiplication. This approach
tends to be more efficient, but it is required to fix the parties at the setup phase which cannot change
during the entire operation.

Meanwhile, Multi-key HE (e.g. [33, 22, 37, 39, 14, 15]) is another variant of HE with different pros
and cons. In this primitive, each party can generate its own key and use it to encrypt data without any
interaction with other users. Moreover, it is possible to evaluate a circuit over ciphertexts under different
keys, which results in a multi-key ciphertext decryptable by the associated parties. The MKHE schemes
enjoy better flexibility and dynamism since it allows a new party to join the computation anytime. On
the other hand, they suffer from relatively poor performance where the space and time complexity grow
depending on the number of parties involved in the computation.

In this section, we propose a new variant of HE for multiple parties, called Multi-Group HE (MGHE),
which allows the seamless integration of MPHE and MKHE and has the best of both worlds.

3.1 Definition

An MGHE scheme consists of several algorithms and protocols below:

• Setup(1λ, 1d): Given the security parameter λ and the maximal level d, the setup algorithm generates
a public parameter set pp.
• KeyGen({Pi : i ∈ I}): A set of parties {Pi : i ∈ I} execute the key-generation protocol to jointly

generate a public key pk. Each party Pi also obtains a secret share [sk]i.
• Enc(pk;m): Given a public key pk and a message m, the encryption algorithm returns a ciphertext
ct.
• Eval({pk1, . . . , pkk;C, ct1, . . . , ctk): Given a circuit C, ciphertexts ct1, . . . , ctk and their associated

public keys pk1, . . . , pkk, the evaluation algorithm outputs a ciphertext ct.
• DistDec({Pi : i ∈ I}; ct). Given a ciphertext ct, the associated parties execute the distributed de-

cryption protocol and recover a message m.

5



First of all, the key-generation protocol can be conducted by a set of parties (which we call a group) to
build a public key and corresponding secret key shares. A group of parties {Pi : i ∈ I} will be represented
as an index set I. Unlike MPHE, it is not necessary to specify a group at the setup phase, but any
group of parties can execute the protocol at any time. In addition, each party may join several groups
and run the key-generation protocol with different parties. A data owner needs to pick a public key in
the encrypt algorithm so that the output ciphertext is collaboratively decryptable by the corresponding
group of parties. We require that an MGHE scheme is semantically secure in the semi-honest model. In
other words, the adversary learns no information about the message if at least one party in the group is
honest.

The evaluation algorithm of MGHE allows us to compute a circuit on encrypted messages, which are
not necessarily encrypted under the same key. To be precise, if we evaluate a circuit over ciphertexts
associated with groups I1, . . . , Ik, then the output ciphertext is no longer decryptable by a single group
but its decryption requires all parties in I := I1 ∪ · · · ∪ Ik to be involved in the distributed decryption
protocol.

In the security game, we assume that the key-generation protocol is executed honestly by the parties.
The correctness guarantees that the output of evaluation and decryption protocols in MGHE is same
as the result of the evaluation circuit with plain messages. The security of MGHE indicates that when
there is at least one honest party among sets of parties, an encryption for that party does not reveal any
information about the message.

Definition 1 (Security). Let I1, I2, . . . , Ik be sets of parties and let I = ∪1≤j≤kIj. Let A ⊆ I denote
the set of adversarial parties and H = I\A. An MGHE scheme is said to be secure if the advantage of A
in the following game is negligible for any PPT adversary A:

– The challenger generates a public parameter pp← Setup(1λ, 1d).
– The challenger executes the key generation protocol KeyGen(pp, Ij) for all 1 ≤ j ≤ k. The challenger

sends the public keys pk1, . . . , pkk and secret shares {[skj ]i : i ∈ A, 1 ≤ j ≤ k} of A to the adversary.
– The adversary chooses messages m0,m1 ∈M and picks an index j such that Ij * A, and sends them

to the challenger. The challenger samples a random bit b ∈ {0, 1} and sends Enc(pkj ;mb) back to the
adversary.

– The adversary A outputs a bit b′. The advantage is defined as
∣∣Pr[b = b′]− 1

2

∣∣.
Definition 2 (Correctness). Let pp← Setup(1λ, 1d). For 1 ≤ i ≤ k, let pki ← KeyGen(Ii) be a public
key generated by a set of parties {Pj : j ∈ Ii} and cti ← Enc(pki;mi) be an encryption of a message mi.
An MGHE scheme is said to be correct if for any circuit C :Mk →M whose depth is bounded by d, the
following holds with an overwhelming probability in λ:

DistDec

{Pi : i ∈
⋃

1≤i≤k

Ii
}

; Eval(pk1, . . . , pkk;C, ct1, . . . , ctk)

 = C(m1, . . . ,mk).

3.2 Relations with MPHE and MKHE

Let us explain how MGHE is related with other approaches, MPHE and MKHE. As mentioned before,
these primitives differ in various respects such as key structure and functionality. Recall that all parties
use the same public key for encryption and evaluation in the MPHE setting, while an MKHE scheme
allows each party to generate a key pair independently so that different keys can be involved in the
computation.

Our suggestion, the MGHE primitive, can be viewed as a generalization of both primitives. In other
words, MPHE and MKHE are special instantiations of MGHE with different group structures. First,
suppose that all parties join a single group in the MGHE setting. Then, they share the same key for
encryption and the whole evaluation is done within the group, similar to the case of MPHE. Conversely,
if each user forms a group alone, then the group key is solely generated and owned by a single party and
the evaluation across different parties are performed in the MKHE manner.
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Moreover, in these examples, our security definition of MGHE corresponds to the security definitions
of MPHE and MKHE. In the single-group case, there is only group to be chosen by the adversary, so the
security game is exactly the same as that of MPHE [32]. On the other hand, if every group consists of a
single party, then our security game for MGHE defines the ordinary semantic security for (MK)HE.

4 MGHE Construction

In this section, we present a concrete instantiation of MGHE from the BFV scheme. Recall that, in
the MGHE setting, we can perform computation over ciphertexts which are not necessarily encrypted
under the same key. In addition, our idea is easily applicable to design multi-group variants of other
HE schemes such as BGV [11] and CKKS [19]. In particular, we implement MGHE schemes from both
BFV and CKKS and present experimental results in Section 6. We also provide a formal description of
multi-group CKKS in Appendix A.1.

In Section 4.1 and 4.2, we outline the basic scheme consisting of setup, key generation, encryption,
and decryption of the MGHE scheme. In Section 4.3 and 4.4, we provide the algorithms of arithmetic
operations and automorphism of MGHE, respectively, with its correctness proof and we provide the
security analysis of MGHE in Section 4.5. We also mention about bootstrapping of the MGHE scheme
in Section 4.6.

4.1 Key Generation

In this section, we describe a key generation procedure of our MGHE scheme. Our scheme is based on
the CRS model, i.e., all parties have access to the same random string. A parameter set also includes the
RLWE dimensions, ciphertext modulus, the key distribution, as well as the error parameter. We firstly
explain the setup phase which is a stage to determine some parameters for further procedures with a
certain security level before introducing the key generation.

• Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the ciphertext modulus q, the key

distribution χ over R, and the error parameter σ. Choose a gadget decomposition h : Rq → Rd with a
gadget vector g ∈ Rdq . Sample random vectors a,u and k1, . . . ,kL from U(Rdq) where L is the number
of different automorphisms to be used in the evaluation process. Return the public parameter pp =
(N, t, q, χ, σ,g, h) and common random string crs = (a,u,k1, . . . ,kL). We write ∆ = bq/te.

Our scheme generates several CRSs in the setup phase, but this can be implemented efficiently using
a keyed pseudo-random function (PRF). This allows us to rely on the CRS assumption for a fixed-size
seed, regardless of the number of common random polynomials used for public and automorphism keys.

The key generation protocol consists of two steps. In the first individual key generation step, each
party Pi generates its own key pair ([sk]i, [pk]i), and broadcasts the public component [pk]i. In the next
step, a public key for a group of parties {Pi : i ∈ I} can be obtained by simply aggregating individual
public keys [pk]i from the group members Pi. We stress that an individual key pair can be done locally
by a single party without knowing any information about other parties, and the key aggregation can be
done by a public cloud without further interaction with the parties. We note that a public key includes
not only an encryption key but also a relinearization key for multiplication and several automorphism
keys for homomorphic rotation.

• IndKeyGen(Pi; {ψ`}1≤`≤L): Each party Pi generates individual secret and public keys as follows:

– Sample [s]i ← χ and set the secret key as [sk]i = si.
– Sample [r]i ← χ and [e0]i, [e1]i, [e2]i ← Dd

σ, and compute

[b]i = −[s]i · a + [e0]i (mod q),

[d]i = −[r]i · a + [s]i · g + [e1]i (mod q),

[v]i = −[s]i · u− [r]i · g + [e2]i (mod q).
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– For given automorphisms ψ1, . . . , ψL, sample [e′`]i ← Dd
σ and compute

[h`]i = −[s]i · k + ψ`([s]i) · g + [e′`]i (mod q)

for 1 ≤ ` ≤ L. Set the public key as [pk]i = ([b]i, [d]i, [v]i, [h1]i, . . . , [hL]i).

• JointKeyGen({[pk]i : i ∈ I}): Let I be the index set for a group of parties. Given the collection of public

keys [pk]i with i ∈ I, compute the public key as pk =
∑
i∈I [pk]i, i.e., pk = (b,d,v,h1, . . . ,hL) ∈ Rd×4q

where

b =
∑
i∈I

[b]i, d =
∑
i∈I

[d]i, v =
∑
i∈I

[v]i, and h` =
∑
i∈I

[h`]i (mod q)

for 1 ≤ ` ≤ L. Specifically, we denote the encryption key as ek = (b[0],a[0]), the relinearization key as
rlk = (b,d,v), and the automorphism keys as ak` = h`.

Each component of the public key [pk]i forms a gadget encryption with a CRS under the secrets [s]i
or [r]i. We call s =

∑
i∈I [s]i the (implicitly defined) secret key for the group I. The individual secrets

[s]i can be viewed as additive shares of s. Furthermore, the public key [pk]i is nearly linear with respect
to [s]i and [r]i so that the joint public key pk = (b,d,v,h`)1≤`≤L satisfies the same properties as the
individual keys:

b ≈ −s · a (mod q), d ≈ −r · a + s · g (mod q)

v ≈ −s · u− r · g (mod q), h` ≈ −s · k` + ψ`(s) · g (mod q)

Non-interactive Key Aggregation. In the construction of existing MPHE, the main challenge is to
generate the relinearization key for a group of parties. To be precise, the relinearization key of BFV is a
key-switching key from s2 to s, or equivalently, a gadget encryption of s2 under s. However, the secret
key is additively shared among the parties in the multi-party setting, so it is not easy to generate the
relinearization key in a distributed manner due to its quadratic structure. Therefore, the existing MPHE
schemes [5, 36, 38] had a common limitation in that they rely on a multi-round key generation protocol
requiring interaction between the parties.

For instance, the public key generation of [38] consists of two steps: all parties broadcast individual
encryption keys [b]i ≈ a · [s]i (mod q) to build a joint encryption key b =

∑
i∈I [b]i first, then use it to

generate a gadget encryption of [s]i · s and aggregate them to build a gadget encryption of s2.
In this work, we solve the issue by introducing a novel key-generation algorithm such that the pub-

lic key is nearly linear with the corresponding secret key. In other words, our relinearization key has a
completely different structure where the summation of [pk]i for i ∈ I becomes a valid public key cor-
responding to the secret

∑
i∈I [sk]i. Our key-generation algorithm is inspired from the idea of Chen et

al. [15] introducing the second secret [r]i to reconstruct the relinearization key structure. Although the
prior method is not nearly linear so cannot be directly used in the MPHE construction, we achieve the
desired property by making an additional CRS assumption.

Consequently, our MGHE scheme allows each party to independently generate an individual public
key once even without any information about other parties, and the public key for a group can be built on
the server by simply adding individual public keys. This ‘non-interactive’ nature of key aggregation offers
several advantages, including performance and flexibility. For instance, if a party Pi belongs to several
groups, it suffices to generate a single individual public key [pk]i and reuse it across all groups, instead
of joining the key-general protocol repeatedly once for each group. More discussions on this feature will
be given in Section 5.1.

4.2 Encryption and Decryption

As explained above, the encryption key ek = (b[0],a[0]) satisfies b[0] + a[0] · s ≈ 0 (mod q), so it can be
viewed as an RLWE instance with secret s. Therefore, we use the same BFV encryption and decryption
algorithms in our scheme as follows.
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• Enc(ek;m): Given a message m ∈ Rp and the joint encryption key ek, sample w ← χ and e0, e1 ← Dσ.
Return the ciphertext ct = w · ek + (∆ ·m+ e0, e1) (mod q).

Suppose that a message m is encrypted using a public key generated by a group of parties {Pi : i ∈ I}.
Then, the output ciphertext ct = (c0, c1) ← Enc(ek,m) satisfies that c0 + c1s ≈ ∆m (mod q) where
s =

∑
i∈I [s]i is the secret key for the group I. Therefore, it is required to store the information

In our MGHE scheme, it is As we discussed in Section 3.1, an MGHE ciphertext holds the references to
the associated public keys. In our scheme, each ciphertext stores an ordered set of the involved groups. For
example, a fresh ciphertext encrypted by a joint public key pk =

∑
i∈I [pk]i is linked to the set containing a

single element I. More generally, a multi-group encryption of m corresponding an ordered set of k groups
{I1, . . . , Ik} is an (k+ 1) tuple ct = (c0, c1, . . . , ck) ∈ Rk+1

q satisfying c0 + c1 · s1 + · · ·+ ck · sk = ∆ ·m+ e
(mod q) for some error e where sj =

∑
i∈Ij [s]i is the joint secret key of Ij for 1 ≤ j ≤ k.

Finally, we present a basic (ideal) decryption algorithm and a distributed decryption protocol. For
given a ciphertext ct = (c0, . . . , ck) which is linked to k groups I1, . . . , Ik, the basic algorithm takes as
input the joint secret keys si of the associated groups Ii and recovers the plaintext message while the
distributed decryption protocol let the parties in

⋃
1≤j≤k Ij perform the same computation securely in

a distributed manner. As we mentioned before, we describe how to set concrete σ′ for the distributed
decryption decryption in Section 5.2.

• Dec(sk1, . . . , skk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint secret keys skj = sj for 1 ≤ j ≤ k,

return m =
⌊
(t/q) · (c0 +

∑
1≤j≤k cj · sj)

⌉
(mod t).

• DistDec({[sk]i : i ∈ ∪1≤j≤kIj}, σ′; ct): Let ct = (c0, . . . , ck) be a multi-group ciphertext corresponding

to an ordered set of groups (I1, . . . , Ik). The distributed decryption protocol consists of the following
procedures:

– Partial decryption: Let I = ∪1≤j≤kIj . Each party i ∈ I samples [e′]i ← Dσ′ , then broadcasts

[µ]i =
(∑

1≤j≤k, i∈Ij cj

)
· [s]i + [e′]i (mod q).

– Merge: Compute m =
⌊
(t/q) ·

(
c0 +

∑
i∈I [µ]i

)⌉
(mod t).

4.3 Arithmetic Operations

Homomorphic operations include a pre-processing step that aligns the components of input ciphertexts as
follows. For given two multi-group ciphertexts, we consider the corresponding ordered sets and compute
their union, say {I1, . . . , Ik}. Then, we extend the input ciphertexts by padding some zeros and rearranging
their components so that both ciphertexts are decryptable with respect to the same secret sk = (s1, . . . , sk)
where sj is the joint secret of group Ij , 1 ≤ j ≤ k. We assume that this pre-processing is always performed
on the input ciphertext and the output ciphertext is linked to the union {I1, . . . , Ik} of ordered sets even
if it is not explicitly mentioned in the algorithm description.

• Add(ct, ct
′
): Given two ciphertexts ct and ct

′
, return the ciphertext ctadd = ct + ct

′
(mod q).

• Mult(rlk1, . . . , rlkk; ct, ct
′
): Given two multi-group ciphertexts ct = (c0, . . . , ck), ct

′
= (c′0, . . . , c

′
k) and k

joint relinearization keys rlk1, . . . , rlkk, compute ctmul = (ci,j)0≤i,j≤k where ci,j =
⌊
(t/q) · cic′j

⌉
(mod q)

for 0 ≤ i, j ≤ k. Return the ciphertext ctrelin ← Relin(rlk1, . . . , rlkk; ctmul) where Relin(·) is the relin-
earization procedure described in Alg. 1.

We remark that the relinearization algorithm can be shared between our MGHE scheme and the
previous MKHE scheme [15] as they have the same ciphertext structure. Our relinearization algorithm
is an improvement of the previous method which reduces the number of external products by almost a
factor of 2. More formally, the prior algorithm computes lines 8-11 of Alg. 1 by repeating the following
computation iteratively over 1 ≤ i, j ≤ k:

(c∗0, c
∗
i )← (c∗0, c

∗
i ) + (ci,j � bj) � (vi,u) (mod q).
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Algorithm 1 Relinearization procedure of MGHE

Input: ctmul = (ci,j)0≤i,j≤k, rlkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.
Output: ctrelin = (c∗j )0≤j≤k ∈ Rk+1

q .

1: c∗0 ← c0,0
2: for 1 ≤ j ≤ k do
3: c∗j ← c0,j + cj,0 (mod q)
4: end for
5: for 1 ≤ j ≤ k do
6: c∗j ← c∗j +

∑
1≤i≤k ci,j � di (mod q)

7: end for
8: for 1 ≤ i ≤ k do
9: c′′i ←

∑
1≤j≤k ci,j � bj

10: (c∗0, c
∗
i )← (c∗0, c

∗
i ) + c′′i � (vi,u) (mod q)

11: end for

We observe that
∑

1≤j≤k ci,j � bj is pre-computable and reusable for the relinearization of multiple

ciphertext components. This idea consequently reduces the number of external products down to 2k2+2k
in total, compared to the former method which requires 4k2 external products.

We provide a high-level sketch of the correctness proof. We refer the reader to the Appendix B for
details about the noise analysis.

Correctness of homomorphic multiplication. Suppose that ct and ct
′

are encryptions of m and
m′ under secret sk = (s1, . . . , sk), respectively, and let ctmul = (ci,j)0≤i,j≤k =

⌊
(t/q) · ct⊗ ct

′⌉
(mod q).

Then, it satisfies following relation:
〈
ctmul, (1, sk)⊗ (1, sk)

〉
≈ ∆ ·mm′ (mod q). We claim that if ctrelin ←

Relin({rlkj}1≤j≤k; ctmul), then the output ciphertext ctrelin = (c∗0, . . . , c
∗
k) satisfies c∗0 +

∑
1≤j≤k c

∗
j · sj ≈∑

0≤i,j≤k ci,j · sisj and thereby is a valid encryption of mm′.
First, we have

c∗0 +
∑

1≤j≤k

c∗j · sj = c0,0 +
∑

1≤j≤k

(c0,j + cj,0) · sj +
∑

1≤i,j≤k

(ci,j � di) · sj +
∑

1≤i≤k

c′′i � (vi + si · u)

where c′′i =
∑

1≤j≤k ci,j � bj from the definition of Alg. 1.
We also consider the properties sj ·di ≈ −risi·a+sisj ·g ≈ ri·bj+sisj ·g (mod q) and vi+si·u ≈ −ri·g

(mod q) of the joint public keys and deduce the following equations:∑
1≤i,j≤k

(ci,j � di) · sj ≈
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i,j≤k

ci,j · sisj (mod q),

∑
1≤i≤k

c′′i � (vi + si · u) ≈ −
∑

1≤i≤k

ri · c′′i = −
∑

1≤i,j≤k

ri · (ci,j � bj) (mod q).

Putting them all together, we obtain

c∗0 +
∑

1≤j≤k

c∗j · sj ≈ c0,0 +
∑

1≤j≤k

(c0,i + ci,0) · sj +
∑

1≤i,j≤k

ci,j · sisj =
∑

0≤i,j≤k

ci,j · sisj (mod q)

which completes the correctness proof of the relinearization algorithm.

Asymptotically faster multiplication. Recent research [30] has enhanced the multiplication of BFV
and CKKS in MKHE to achieve a linear time complexity. They leverage a newly proposed concept called
homomorphic gadget decomposition, which satisfies

〈
g−1(a)� g−1(b),g

〉
= ab (mod q) for a, b ∈ Rq,

to replace the term g−1(ci,j) with g−1(ci) � g−1(c′j). As our MGHE is a natural extension of MKHE,
we can directly adopt their algorithm to both BFV and CKKS. Notably, their multiplication in BFV

entails additional (homomorphic) gadget decomposition g̃−1 : Rq̃ → Rd̃ on q̃ := q2 with a gadget vector
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Algorithm 2 Multiplication procedure of MGHE with homomorphic gadget decomposition

Input: ct = (ci)0≤i≤k, ct
′

= (c′i)0≤i≤k, rlkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.
Output: ctrelin = (c∗j )0≤j≤k ∈ Rk+1

q .

1: c∗0 ← b(t/q) · c0c′0e (mod q)
2: for 1 ≤ j ≤ k do
3: c∗j ←

⌊
(t/q) · c0c′j + cjc

′
0

⌉
(mod q)

4: end for
5: z←

∑
1≤i≤k g̃−1(ci)� di (mod q)

6: w←
∑

1≤j≤k g̃−1(c′j)� bj (mod q)
7: for 1 ≤ j ≤ k do
8: c∗j ← c∗j + c′j�̃z (mod q)
9: end for

10: for 1 ≤ i ≤ k do
11: (c∗0, c

∗
i )← (c∗0, c

∗
i ) + (ci�̃w) � (vi,u) (mod q)

12: end for

g−1 ∈ Rd̃q̃ and the corresponding external product c�̃v =
〈
g̃−1(c),v

〉
(mod q̃). We briefly describe our

updated algorithm below and refer the reader to [30] for further details. Compared to the [15], it achieves
an asymptotically optimal complexity that grows linearly with the number of parties while previous study
has quadratic complexity depending on it. However, since a new multiplication method of [30] increases
a noise growth, it requires a larger special modulus to solve the issue regarding the noise growth.

• Mult(rlk1, . . . , rlkk; ct, ct
′
): Given two multi-group ciphertexts ct = (c0, . . . , ck), ct

′
= (c′0, . . . , c

′
k) and k

joint relinearization keys rlk1, . . . , rlkk, run Alg. 2 and return the ciphertext ctrelin = (c∗0, . . . , c
∗
k).

4.4 Automorphism

The packing technique of the BFV scheme enables us to encode multiple values in a finite field into a
single plaintext polynomial for better efficiency [11]. The (un)packing algorithm has a similar algebraic
structure with the canonical embedding map over the cyclotomic field K = Q[X]/(XN + 1), and the
automorphisms in the Galois group Gal(K/Q) provide special functionality on the plaintext slots such as
rotation.

We present a multi-group variant of homomorphic automorphism such that the joint automorphism
key is generated non-interactively. Given a multi-group ciphertext ct = (c0, . . . , ck) linked to k groups
I1, . . . , Ik, the joint automorphism key of Ij is used to perform the key-switching procedure of the j-th
entry ψ(cj) during the homomorphic evaluation of ψ` ∈ Gal(K/Q). For simplicity, we will describe the
case with one automorphism for simplicity in the following sections.

• Auto(ak1, . . . , akk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and the joint automorphism keys akj =

hj for 1 ≤ j ≤ k, compute and return the ciphertext ctaut = (c′0, c
′
1, . . . , c

′
k) where c′0 = ψ(c0) +∑

1≤j≤k(ψ(cj) � hj) (mod q) and c′j = ψ(cj) � k (mod q) for 1 ≤ j ≤ k.

Correctness of homomorphic automorphism. We show below the correctness of multi-group homo-
morphic automorphism algorithm:

c′0 +
∑

1≤j≤k

c′j · sj = ψ`(c0) +
∑

1≤j≤k

ψ`(cj) � (hj + sj · k)

≈ ψ`(c0) +
∑

1≤j≤k

ψ`(cj) · ψ`(sj) = ψ`(c0 +
∑

1≤j≤k

cj · sj) (mod q)

where ct = (c0, . . . , ck) and ctaut = (c′0, . . . , c
′
k)← Auto(h1, . . . ,hk; ct).
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4.5 Security

In this section, we show that our MGHE scheme achieves a semantic security that we defined in Section 3.1
under the RLWE assumption.

Lemma 1 (Security of MGHE). The MGHE scheme described above is semantically secure under the
RLWE assumption with parameter (n, q, χ, σ).

Proof. Let Ii be sets such that I = ∪0≤i≤kIi and H = I\A for any set A ( I. We define some hybrid
games as follows:

– Game 0: This is a real world execution of the security game defined in Definition 1.
– Game 1: It is similar to Game 0, but the challenger samples [pk]i uniformly at random from Rd×4q

for i ∈ H.
– Game 2: It is similar to Game 1, but the challenger encrypts 0 instead of mb.

Let [pk]i = ([b]i, [d]i, [v]i, [h]i) be the public key of party i ∈ H. Since ([b]i,a) and ([v]i,u) follow
the RLWE distribution of secret [s]i, a pair ([b]i, [v]i) is indistinguishable from a uniform distribution
over Rd×2q . In addition, ([d]i,a) follows the RLWE distribution of secret [r]i, [d]i is also indistinguishable

from a uniform distribution over Rdq . Meanwhile, ([d]i,a) and ([v]i,u) can be viewed as a ‘chain’ of two
gadget encryptions of [s]i and −[r]i under secrets [r]i and [s]i, respectively. Here we make an additional
circular security assumption which guarantees that our scheme remains secure even if [d]i, [v]i, and [h]i
are public. On the other hand, [h]i is an gadget encryption of ψ([s]i) under [s]i with a random vector k.
Therefore, Game 0 and Game 1 are computationally indistinguishable.

In both Game 1 and Game 2, the adversary sends a group index j to the challenger in the security
game. The encryption key b[0] used in these games is given by b[0] =

∑
i∈Ij∩A[b]i[0] +

∑
i∈Ij∩H [b]i[0].

Since Ij ∩ H is non-empty and each [b]i is uniformly sampled from Rdq for all i ∈ H, b[0] is computa-
tionally indistinguishable from a uniform random variable over Rq. Thus, under the RLWE assumption,
the encryptions of 0 and mb in both games are also computationally indistinguishable. Therefore, the
difference in advantage between these two games is negligible.

According to the aforementioned reasons, we can conclude that the advantage of the adversary in
Game 0 is negligible. Since Game 0 is a real world-execution game with the MGHE scheme, our
MGHE scheme achieves semantic security against semi-malicious corruptions. ut

4.6 Bootstrapping

For a fixed parameter set, the BFV and CKKS schemes can support the evaluation of circuits with a
limited depth due to the reduction of ciphertext modulus or the noise growth induced from homomorphic
operations. Bootstrapping is a method to refresh a ciphertext and recover its computational capability.
From the technical point of view, bootstrapping is done by homomorphically evaluating the decryption
circuit of HE. The known bootstrapping methods of BFV or CKKS (e.g. [16, 18, 13]) follow a similar
workflow that includes arithmetic operations and linear transformations, which can be represented using
basic arithmetics and homomorphic automorphisms. As these basic operations are also supported in our
MGHE schemes, the bootstrapping procedure can be performed in a similar manner.

5 Constructing MPC from MGHE

The MGHE sheme, being a generalization of both the MKHE and MPHE primitives, can serve as a
drop-in replacement for these primitives in any application built with them. As a result, MGHE can be
effectively utilized in general 2-round MPC computation [37], outsourced computation applications [36],
and distributed machine learning setups [23]. Additionally, it can be employed as a building block in
MPC protocols that require varying number of parties [21].
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Fig. 2. MPC protocol using MGHE and previous work [36]. In [36], cpk and rlk represent the common public key
for encryption and evaluation key, respectively. In our MGHE scheme, these keys can be obtained from the joint
public key jpk directly.

5.1 Overview

MPHE and MKHE are both viable options for building an MPC protocol [33, 36, 37], but each has
limitations that restrict their usefulness in certain applications. For example, MPHE-based MPC protocols
require parties to communicate with each other to generate a shared key. On the other hand, MKHE
schemes are more time and space intensive than MPHE because ciphertexts expand as they interact
with other ciphertexts under different keys. Thus, an MGHE scheme that integrates the strengths of
both these schemes can be used to construct round-efficient MPC protocols. In Figure 2, we describe a
high-level structure of an MPC computation in three phases. Here, we assume three entities consisting of
key owners, data owners, and a cloud server.

– [Phase I] Setup: In the first step of the protocol, key owners generate their key pairs and broadcast
the public keys. We can treat this step as an offline phase since these procedures have to be run only
once and each party is able to produce a key pair independently. When Phase I is ended, a joint public
key is built publicly by summing up the individual public keys without any interaction between the
parties.

– [Phase II] Encryption: After encrypting inputs with the joint encryption key, the ciphertexts are
provided to the server which may be an external entity such as a cloud service provider. In general,
semi-honest cloud service providers or parties themselves in MPC may play the role of computing
party. When Phase II is ended, the circuit is evaluated using the homomorphic properties of the
encryption scheme and thus does not require any interaction.

– [Phase III] Decryption: When the evaluation is over, we use an interactive protocol known as
distributed decryption to securely decrypt the result without revealing the secret key of each party.
In the protocol, each party partially decrypts the ciphertext using its own secret key with noise
smudging technique [5], and the output message is obtained by adding all of the partially decrypted
results.

Implication of Non-interactive Key Aggregation. Recall that all prior MPHE yields multi-round
key generation in Phase I due to the quadratic structure of the evaluation key with respect to the
individual secret keys. In the MPC protocol derived from the previous MPHE, each party broadcasts
twice for the key generation: (1) individual encryption key to generate the joint encryption key and
(2) individual evaluation key, which is constructed using the joint encryption key, to generate the joint
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evaluation key. In other words, it requires an interaction between parties for key aggregation during the
setup. In our scheme, the novel refactoring of the evaluation key enables the parties to broadcast their keys
only once. Each party broadcasts the individual public key, which implicitly contains the shares of the
evaluation key. Then, the joint public key is generated publicly to be used for encryption and evaluation.
By sharing the individual key pair in the first round itself, each party does not require interaction with
other parties in the rest of the process (and can be offline until the decryption process). Thus our setup
phase is non-interactive in the sense of Non-Interactive MPC [8, 27] that each party independently and
asynchronously broadcasts a single message.

The advantages of this non-interactivity are even more pronounced when a key owner belongs to
multiple groups. For example, in the MPC protocol with interactive setup, a key owner must join several
key generation protocols to generate joint public keys corresponding to the groups containing the party.
Moreover, all parties in the group have to participate simultaneously since the key generation requires
communications between the parties. However, with the non-interactive key aggregation, the server or
the parties can generate joint public keys after each party broadcasts its own public key without any
interaction with other parties. Therefore, we can achieve better efficiency since there is no need to par-
ticipate in the key generation protocol multiple times and each party can broadcast its own key at any
time before generating the joint public key.

5.2 MPC Protocol Secure Against Semi-Malicious Corruptions

We provide a concrete MPC protocol in Figure 3 for a polynomial-time deterministic circuit C. The
correctness of the protocol follows from the correctness of the MGHE construction. In this section, we
prove the protocol’s security against a semi-malicious adversary which the definition is referred from [5].
Note that a semi-malicious adversary follows the honest protocol specification with arbitrary values for
their random coins [5, 37, 33].

To prove the security of the MPC protocol from MGHE, we begin by demonstrating the simulation
security [31] of the distributed decryption process in MGHE.

For a circuit C, let us denote by BC an error bound of a ciphertext obtained by evaluating the circuit
C over fresh ciphertexts. Given BC , we can guarantee the correctness and simulation security of the
distributed decryption if σ′ is exponentially larger than the bound BC .

Lemma 2 (Correctness of Distributed Decryption). Let n be the number of parties in I = ∪1≤j≤kIj
and Bσ′ be bound of the samples from Dσ′ with non-negligible probability. If q ≥ 2nt(BC +Bσ′), then the
distributed decryption procedure DistDec satisfy correctness.

Proof. Given the partial decryptions [µ]i of parties i ∈ I, we have

c0 +
∑
i∈I

µi = c0 +
∑
i∈I

 ∑
1≤j≤k,i∈Ij

cj

 · [s]i +
∑
i∈I

[e′]i

= ∆ ·m+ e+ e′

where e is bounded by nBC and e′ =
∑
i∈I [e

′]i is bounded by nBσ′ . Since q ≥ 2nt(BC + Bσ′), we have
|e+ e′| ≤ q/2t, which ensures the correctness. ut

Below, we show that the simulation security of the distributed decryption and the MPC protocol. We
consider a scenario where n− 1 out of n parties are corrupted.

Lemma 3 (Security of Distributed Decryption). If σ′ > 0 is a real number such that the samples
from Dσ′ are larger than 2λBC without negligible probability, then the distributed decryption procedure
DistDec achieves statistical simulation security against any static semi-malicious adversary corrupting
exactly n− 1 parties.
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Setup: A public parameter pp is generated by Setup(1λ). All parties share the same parameter set.

Input: A circuit C : ML → M where L is the number of inputs. The inputs x1, x2, . . . , xL are held
among the parties.

The Protocol

Phase I: Let I be the set of parties. Each party i ∈ I generates a key pair ([sk]i, [pk]i)← IndKeyGen(i)
and an automorphism key [ak]i ← IndAutKeyGen([sk]i), then broadcasts ([pk]i, [ak]i).

Phase II:

– Now anybody can compute the joint public and automorphism keys of an arbitrary group. We suppose
that the joint keys of k groups I1, I2, . . . , Ik ⊆ I are generated as follows:

pkj ← JointKeyGen({[pk]i : i ∈ Ij}),
akj ← JointAutKeyGen({[ak]i : i ∈ Ij}).

We denote by ekj the encryption key of Ij .
– For each 1 ≤ ` ≤ L, the party with input x` encrypts it using a joint public key pkj for some

1 ≤ j ≤ k and broadcasts the ciphertexts ct` ← Enc(ekj ;x`).

Phase III:

– The circuit C is evaluated as following:

ct← Eval({pkj}1≤j≤k, {akj}1≤j≤k;C, ct1, . . . , ctL).

– Finally, the parties concurrently take part in the distributed decryption protocol with the error
parameter σ′ to deduce the output m:

m← DistDec(I, σ′; ct)

Output: Return the decrypted message m.

Fig. 3. πC : MPC protocol for a circuit C using MGHE
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Proof. Let a party h be the only honest party. We construct a simulator S against the adversary A which
has an access to the inputs and secret keys of all parties except h and receives the output message m
from the ideal functionality. For given evaluated ciphertext ct = (c0, . . . , cL), the simulator computes and
publishes the simulated partial decryption [µ]′h of the honest party h using a smudging error [e′]smh ← Dσ′ :

[µ]′h = ∆ ·m+ [e′]smh −
∑
i 6=h

γi − c0 (1)

where γi =
(∑

1≤j≤k,i∈Ij cj

)
· [s]i (mod q) for i 6= h.

Then, the partial decryption of h is generated from the partial decryptions of corrupted parties and
the output message as ∆·m+[e′]smh −

∑
i 6=h γi−c0. On the other hand, the real partial decryption also can

be written as ∆ ·m+ e+ [e′]smh −
∑
i6=h γi− c0 where e is the noise in the ciphertext ct. By the smudging

lemma [5], the distributions of [e′]smh and e + [e′]smh are statistically indistinguishable. It concludes that
the simulated partial decryption and the real partial decryption are statistically indistinguishable. ut

Theorem 1 (Security of MPC protocol). Given a poly-time computable deterministic circuit C with
L inputs, the protocol πC described in Figure 3 UC-realizes the circuit C against any static semi-malicious
adversary corrupting exactly n− 1 parties.

Proof. Let a party h be the only honest party. We construct a simulator S against the adversary A as
follows.

The Simulator. In Phase I, the simulator samples the public key of h from uniform distribution over
Rd×4q instead of IndKeyGen(h). The simulator also plays Phase II honestly on behalf of the honest party,
but encrypts 0 instead of the real input from h, if any. As the simulator has access to the inputs and
secret keys of all parties except h from the witness tape, the simulator can evaluate the circuit C on
ciphertexts ct1, . . . , ctL and obtain the resulting ciphertext ct. In addition, it also receives the output
message m from the ideal functionality. In Phase III, the simulator computes the partial decryption for
the party h as same as the simulator introduced in the security proof of Lemma 3.

Now, we define some hybrid games and prove the computational indistinguishability between the real
and ideal worlds.

– The game REAL(π,A,Z): An execution of the protocol π in the real world with environment Z and
semi-malicious adversary A.

– The game HYB1
(π,A,Z): This is the same as REAL(π,A,Z) except the output of partial decrpytion of

h. In Phase III, it publishes the simulated partial decryption which is computed via (1).
– The game HYB2

(π,A,Z): This is similar to HYB1
(π,A,Z), but in Phase II the party h encrypts 0 instead

of the real input if any.
– The game IDEAL(F,S,Z): It executes the MPC protocol with the simulator S. The difference from

HYB2
(π,A,Z) is that the public key of h is sampled from a uniform distribution over Rd×4q instead of

the individual key generation algorithm IndKeyGen(h) in Phase I.

From the above games, we consider the following claims.

Claim 1. REAL(π,A,Z) and HYB1
(π,A,Z) are statistically indistinguishable.

Proof. According to the description of the simulator, the partial decryption of h in the game HYB1
(π,A,Z)

is generated from the partial decryptions of corrupted parties and the output message as ∆ ·m+ [e′]smh −∑
i 6=h γi − c0, while the real partial decryption also can be written as ∆ ·m + e + [e′]h −

∑
i 6=h γi − c0

where e is the noise in the ciphertext ct. By Lemma 3, the distributions of [e′]smh and e + [e′]h are
statistically indistinguishable. This indicates that REAL(π,A,Z) and HYB1

(π,A,Z) are also statistically
indistinguishable.

Claim 2. HYB1
(π,A,Z), HYB

2
(π,A,Z), and IDEAL(F,S,Z) are computationally indistinguishable.
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Proof. The differences in three games correspond to the differences in Game 0, Game 1, and Game 2 of
Lemma 1. In detail, the difference between HYB1

(π,A,Z) and HYB2
(π,A,Z) is that the party h encrypts the

real input in HYB1
(π,A,Z) while it encrypts 0 in the game HYB2

(π,A,Z), if any. Furthermore, the difference

between HYB2
(π,A,Z) and IDEAL(F,S,Z) is in the public key pkh. In HYB2

(π,A,Z), pkh is a valid public key

generated by h while it is sampled from a uniform distribution over Rd×4q in the game IDEAL(F,S,Z).

Thus, by Lemma 1, the three games HYB1
(π,A,Z), HYB

2
(π,A,Z), and IDEAL(F,S,Z) are computationally

indistinguishable.

According to the claims, we conclude that the MPC protocol πC is secure in the semi-malicious model
against n− 1 corrupted parties. ut

To handle the arbitrary number of corruptions, we can establish security proof by constructing the
extended protocol as outlined in [37]. In addition, we can transform our MPC protocol, which is secure
against semi-malicious attackers, into a protocol that offers security against malicious corruptions without
introducing any additional rounds. This transformation can be achieved by leveraging non-interactive
zero-knowledge proofs, as described in [5].

6 Experimental Results

We implemented our MGHE scheme based on BFV and CKKS. The source code is written in GO
programming language and is built on Lattigo [1] version 2.3.0. We conducted experiments on a system
equipped with Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz and 64GB RAM. In our implementation,
the key distribution χ samples the coefficients from the ternary set −1, 0, 1 with equal probabilities of
0.25 for −1 and 1, and a probability of 0.5 for 0. The error parameter is set to σ = 3.2.

Table 1 shows the execution time of multiplication of our MGHE scheme. The experiment was con-
ducted using two different parameter sets: (N, dlog pqe) = (214, 438) and (215, 880) where p is a special
modulus. Both parameter sets ensure a security level of at least 128 bits [2]. Ours shows the performance of
Alg. 1 where a minor optimization is introduced and Ours+ shows that of multiplication algorithm which
applies the technique of [30]. As our MGHE supports computation on groups of parties, we measured the
performance varying the number of groups.

According to Table 1, the number of parties in groups does not affect the execution time in both
BFV and CKKS. It is because the size of ciphertext does not expand even if there are many parties
in the group. On the other hand, the execution time depends on the dimension of the base ring and
the number of groups participating in the evaluation. As the dimension of the plaintext increases, the
ciphertext modulus increases and eventually affects the execution time of arithmetic operations. Moreover,
according to Section 4.3, relinearization (or automorphism) requires more external products when there
are more groups involved in the evaluation. Therefore, the execution time increases with the number of
groups.

We also present the performance of the MKHE scheme [15] and MPHE scheme [36] for comparison.
Since MKHE and MPHE are instances of MGHE where each group consists of a single party and single
group, respectively, the MKHE scheme and MPHE scheme have its results in Table 1 only when n = k
and k = 1, respectively. Upon comparing the performance of MKHE and our method, the table shows
that our multiplication algorithm exhibits slightly faster operation times than previous MKHE. This is
due to our approach, as explained in Section 4.3, where we reduce the number of external products during
the relinearization. Moreover, in the case of a large number of groups, it is even faster than our method
when we apply the recent technique introduced in [30]. We also remark that although MPHE shows
better performance than other methods, it requires interactions among the parties before the evaluation
to generate the joint public key.

A Construction of MGHE with CKKS

The CKKS supports approximate arithmetic operations for complex numbers. The BFV and CKKS
have similar structure, we can easily extend MGHE scheme of the CKKS. The difference is that it adds
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N n k

Mult + Relin

BFV CKKS

Ours Ours+ [15] [36] Ours Ours+ [15] [36]

214

1 1 78.7 118.4 84.1 32.6 51.6 72.9 51.2 17.7

2
1 77.9 120.4 - 33.4 50.8 75.3 - 17.1

2 173.4 224.4 196.2 - 122.8 133.4 139.7 -

4

1 80.1 121.6 - 32.9 51.6 76.9 - 17.4

2 175.3 224.1 - - 124.5 133.6 - -

4 476.4 420.8 589.7 - 335.8 250.5 450.7 -

8

1 78.4 118.9 - 33.3 50.8 77.2 - 17.2

2 178.1 223.5 - - 123.6 135.1 - -

4 461.4 422.7 - - 337.1 249.4 - -

8 1473.0 811.7 2014.2 - 1081.9 495.9 1600.7 -

215

1 1 595.9 1036.8 605.5 202.0 414.2 642.5 404.1 165.7

2
1 593.1 1019.4 - 201.5 412.9 640.7 - 170.8

2 1308.3 1929.8 1477.9 - 1014.9 1094.3 1089.7 -

4

1 599.2 1024.4 - 204.2 413.7 643.1 - 164.6

2 1324.9 1945.7 - - 1008.4 1100.6 - -

4 3556.5 4006.8 4582.9 - 2844.5 2177.3 3553.1 -

8

1 593.2 1033.9 - 202.7 413.3 645.5 - 168.7

2 1319.8 1987.1 - - 1011.4 1103.5 - -

4 3515.2 3954.5 - - 2825.1 2147.2 - -

8 10681.1 6871.5 15257.5 - 9008.9 4449.3 13052.8 -

Table 1. Performance of our MGHE schemes, the MKHE scheme by Chen et al. [15], and the MPHE scheme by
Mouchet et al. [36]: execution times to operate homomorphic multiplication (Mult + Relin), taken in milliseconds
(ms). N denotes the dimension of base ring, n and k denote the number of the associated parties and groups
(keys), respectively, to the ciphertext. Ours+ refers to our MGHE scheme combined with the technique of [30].

an error into the plaintext itself and additionally supports the rescaling algorithm to control the size
of ciphertext. The ciphertext has a level and it decreases whenever rescaling is performed. To proceed
arithmetics between two ciphertexts, they should have same level and it requires bootstrapping when
level is low in order to continue evaluation. We are going to provide MGHE scheme without interactive
key generation. In this description, we skip setup, key generation, and joint key generation phase since
they are same as BFV. Galois automorphism is also not included since it has same procedure with the
BFV. We assume the ciphertext modulus q =

∏L
i=1 pi for some integers pi and denote ql =

∏l
i=1 pi.

A.1 MGHE with CKKS

• MG− CKKS.Enc(ek;m): For a joint encryption key ek and a message m, return ct← MP− CKKS.Enc(ek;m).

• MG− CKKS.Add(ct, ct
′
): If two given ciphertexts ct and ct

′
has same level, return the ciphertext ctadd =

ct + ct
′

(mod q). If not, modify ciphertexts to have same level before the computation.

• MG− CKKS.Mult({rlkj}1≤j≤k; ct, ct
′
): Set ct and ct′ have same level. Let ct = (ci)0≤i≤k and ct

′
=

(c′i)0≤i≤k be two multi-group ciphertexts and {rlkj}1≤j≤k the collection of the joint relinearization keys
of groups Ij for 1 ≤ j ≤ k. Compute ctmul = (ci,j)0≤i,j≤k where ci,j = cic

′
j (mod q) for 0 ≤ i, j ≤ k. Re-

turn the ciphertext MG− CKKS.Relin({rlkj}1≤j≤k; ctmul) where MG− CKKS.Relin(·) is the relinearization
procedure described in Alg. 1.
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• MG− CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rk+1
ql

at level l, compute c′i =
⌊
p−1l · ci

⌉
for 1 ≤ i ≤ k, and return ct

′
= (c′0, c

′
1, . . . , c

′
k) ∈ Rk+1

ql−1 which is at level l − 1.

• MG− CKKS.Dec({skj}1≤j≤k; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint secret keys skj = sj for

1 ≤ j ≤ k, return m = 〈ct, sk〉 = (c0 +
∑

1≤j≤k ci · sj) (mod t).

• MG− CKKS.DistDec({[skj ]i}1≤j≤k,i∈Ij , σ′; ct): Let ct = (c0, . . . , ck) be a multi-group ciphertext corre-

sponding to the set of groups {I1, . . . , Ik} and [sk]i = [s]i be the secret of party i ∈ Ij .

– Partial decryption: For 1 ≤ j ≤ k, each party i ∈ Ij samples [e′j ]i ← Dσ′ , then computes and publishes
[µj ]i = cj · [s]i + [e′j ]i (mod q).

– Merge: Compute m = (c0 +
∑

1≤j≤k
∑
i∈Ij [µj ]i) (mod t).

B Noise analysis

Before estimating a noise growth, we specify some distributions for sampling randomness or errors. Let
the key distribution χ be the distribution where each coefficient is sampled from the set {0,±1} with
probability 0.25 for each of −1 and 1 and with probability 0.5 for 0. Set the error distribution ψ be the
discrete Gaussian distribution of variance σ2. We also assume that the coefficients of the polynomials
are independent zero-mean random variables with the same variances. We denote by Var(a) = Var(ai)
the variance of coefficients for random variable a =

∑
i ai ·Xi over the ring R. Then the variance of the

product c = a · b of two polynomials with degree n can be represented as Var(c) = n · Var(a) · Var(b)
if a and b are independent. Similarly, we define variance for a vector a ∈ Rd of random variables as
Var(a) = 1

d

∑d
i=1 Var(a[i]). We also assume that each ciphertext behaves as if it is a uniform random

variable over Rk+1
q . We analyze the noise growth of k-group case, each comprising Ni parties for 1 ≤ i ≤ k.

B.1 Encryption

Recall that the encryption ct = (c0, c1) ∈ R2
q of m ∈ Rp is ct = t · ek + (∆ ·m + e0, e1) (mod q) where

t← χ and e0, e1 ← Dσ. For ek = (b[0],a[0]) ∈ R2
q , we remark that b[0] + a[0] · s =

∑
i∈I [e0]i[0] and each

[e0]i[0] is sampled from Dσ. Then, it satisfies that c0 + c1 · s = ∆ ·m+ t(b[0] + a[0] · s) + (e0 + e1 · s) =
∆ ·m+ (t

∑
i∈I [e0]i[0] + e0 + e1 · s) (mod q). The encryption noise eenc = t

∑
i∈I [e0]i[0] + e0 + e1 · s has

the variance of Venc = σ2 · (n|I|2 + 1 + n
2 ) ≈ nσ2(|I|+1)

2 .
The CKKS scheme has the same encryption error as the BFV scheme. The only difference is that

there is no scaling factor ∆ in the result of decryption.

B.2 Relinearization

In Alg. 1 of Section 4.3, it satisfies that∑
1≤i≤k

c′′i � (vi + si · u) = −
∑

1≤i≤k

ri · c′′i +
∑

1≤i≤k

c′′i � ei,2

= −
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i≤k

c′′i � ei,2 (mod q)

and ∑
1≤i,j≤k

(ci,j � di) · sj

=
∑

1≤i,j≤k

ri · (ci,j � (bj − ej,0)) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

sj · (ci,j � ei,1)

=
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

e′i,j (mod q)
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where e′i,j = ci,j � (sj · ei,1 − ri · ej,0).

We denote by Vg = Var(g−1(a)) where a is a uniform random variable over Rq. Then, the variance of
relinearization error erelin =

∑
1≤i≤k c

′′
i � ei,2 +

∑
1≤i,j≤k e

′
i,j is obtained as follows:

Vrelin = ndVgσ
2
∑

1≤i≤k

N2
i + 2n2dVgσ

2k2
∑

1≤i≤k

N2
i ≈ 2n2dVgσ

2k
∑

1≤i≤k

N2
i

In our implementation, we use RNS-friendly decomposition Rq =
∏
iRpi such that pi’s have the same

bit-size. Here, we have Vg = 1
12d

∑d
i=1 p

2
i for d = dlog q/ log pie.

B.3 Multiplication

We again consider k-group case, each comprising Ni parties for 1 ≤ i ≤ k. Let ct1 and ct2 be the
input ciphertexts of messages m1 and m2 respectively. Each ciphertext cti satisfies that

〈
cti, sk

〉
=

q·Ii+∆·mi+ei for Ii = b 1q
〈
cti, sk

〉
e and some ei. Here, we have the variance Var(Ii) ≈ 1

12 (1+ 1
2kn) ≈ 1

24kn

since 1
q · cti behaves as an uniform random variable over 1

q ·R
k+1
q .

The result of tensor product satisfies that
〈
ct1 ⊗ ct2, sk⊗ sk

〉
=
〈
ct1, sk

〉
·
〈
ct2, sk

〉
= ∆2 ·m1m2 + q ·

(I1e2+I2e1)+∆·(m1e2+m2e1)+e1e2 (mod q·∆) and for ctmul =
⌊
p
q · ct1 ⊗ ct2

⌉
, we have

〈
ctmul, sk⊗ sk

〉
=

∆ ·m1m2 +p ·(I1e2 +I2e1)+(m1e2 +m2e1)+∆−1 ·e1e2 +erd where erd =
〈
p
q · ct1 ⊗ ct2 − ctmul, sk⊗ sk

〉
.

That is, the multiplication error is obtained by emul = p·(I1e2+I2e1)+(m1e2+m2e1)+∆−1·e1e2+erd. From
the above equation, the first term p · (I1e2 + I2e1) dominates the whole multiplication error. Therefore,
we have the variance of multiplication error by

Vmul ≈ np2 · (Var(I1)Var(e2) + Var(I2)Var(e1)) ≈ 1

24
kn2p2(Var(e1) + Var(e2)).

While the relinearization error has a fixed size depending on the parameters, the multiplication error
increases by a certain ratio as the computation proceeds. Therefore, the total noise is eventually dominated
by the multiplication error unless (Var(e1) + Var(e2)) is very small (e.g. fresh ciphertext).
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