
Arguments of Knowledge via hidden order groups

Steve Thakur

Abstract

We study non-interactive arguments of knowledge (AoKs) for commitments in groups of
hidden order. We provide protocols whereby a Prover can demonstrate certain properties
of and relations between committed sets/multisets, with succinct proofs that are publicly
verifiable against the constant-sized commitments. In particular, we provide AoKs for the
disjointness of committed sets/multisets in cryptographic accumulators, with a view toward
applications to verifiably outsourcing data storage and sharded stateless blockchains.

Recent work ([DGS20]) suggests that the hidden order groups need to be substantially
larger in size that previously thought in order to ensure the desired security level. Thus,
in order to keep the communication complexity between the Prover and the the Verifier to
a minimum, we have designed the protocols so that the proofs entail a constant number of
group elements, independent of the number of the committed sets/multisets rather than just
independent of the sizes of these sets/multisets.

If the underlying group of hidden order is an appropriate imaginary quadratic class group
or a genus three Jacobian, the argument systems are transparent. Furthermore, since all
challenges are public coin, the protocols can be made non-interactive using the Fiat-Shamir
heuristic. We build on the techniques from [BBF19] and [Wes18].

1 Introduction

A commitment scheme is a fundamental cryptographic primitive which is the digital analog
of a sealed envelop. Committing to a message m is akin to putting m in the envelop. Opening
the commitment is like opening the envelop and revealing the content within. Commitments are
endowed with two basic properties. The hiding property entails that a commitment reveals no
information about the underlying message. The binding property ensures that one cannot alter
the message without altering the commitment. A cryptographic accumulator is a succinct binding
commitment to a set or a multiset. A Prover with access to the set/multiset can prove membership
or non-membership of an element with a proof verifiable against the succinct commitment held
by a Verifier.

Finite abelian groups of hidden order have seen a surging interest within cryptography in
the last few years. The adaptive root and strong RSA assumptions in such groups yield a
cryptographic accumulator which is universal and dynamic with batchable membership and
non-membership proofs ([BBF19]). One of the best known verifiable delay functions is that
constructed in ([Wes18]), which can be instantiated with any group of unknown order in which the
adaptive root assumption holds. Such groups also form the basis for the transparent polynomial
commitment constructed in ([BFS19]). This is a polynomial commitment with logarithmic sized
proofs and verification time and yields the first known transparent ZK-SNARK.

In this paper, we explore non-interactive arguments of knowledge in groups of hidden order.
We provide protocols whereby a Prover who stores data in the form of sets/multisets can prove
relationships between these sets/multisets with communication complexity independent of the size
of this data. These proofs can be publicly verified against the constant-sized commitments held

1

by the Verifier. Our primary goal is to provide protocols for proofs of disjointness of committed
sets/multisets in cryptographic accumulators. The primary use cases for these AoKs are potential
applications to sharded stateless blockchains and to verifiable outsourcing of data.

As was the case with previously studied arguments of knowledge in hidden order groups
([BBF19], [CFGNK20] etc.), the proofs consist of elements of the group G and λ-bit integers,
where λ is the security parameter. Recent work ([DGS20]) suggests that the hidden order groups
need to be substantially larger in size that previously thought, in order to ensure the desired
security level. Furthermore, the two known candidates for transparent hidden order groups
- imaginary quadratic class groups and genus three Jacobians - are not as well studied as RSA
groups when it comes to potential attacks against the adaptive root and strong-RSA assumptions.
Hence, it is conceivable that these groups might need to be even larger than presently believed.
Bearing this in mind and with a view toward keeping the communication complexity between the
Prover and the the Verifier to a minimum, we have designed the protocols so that the proofs consist
of a constant number of group elements, independent of the number of committed sets/multisets
involved, rather than just independent of the sizes of these sets/multisets.

1.1 Structure of the paper

In section 2, we go over some notations, background and a few lemmas we will need repeatedly
in the subsequent sections. In section 3, we provide protocols for aggregating the knowledge of
multiple discrete logarithms in hidden order groups. This is equivalent to AoKs for multiple
committed sets/multisets, the proofs for which can be publicly verified against the succinct
commitments.

In section 4, we provide protocols whereby a Prover holding the data can demonstrate the
pairwise disjointness of multiple data sets/multisets with proofs publicly verifiable against the
commitments. While a straightforward approach would entail proofs with O(n2) group elements
to prove pairwise disjointness of n committed sets/multisets, we provide protocols to do so with
O(1) group elements and n+ O(1) λ-bit integers.

In section 5, we discuss some applications such as verifiable outsourcing of data. The protocols
allow a client node to outsource data sets/multisets to an untrusted server node who can verifiably
demonstrate properties of and relations between these data sets/multisets with succinct proofs
that can be publicly verified against the commitments held by the client node. The section also
contains protocols whereby the server node can verifiably identify the committed multiset with
the highest/lowest frequency of a batch of elements. We also briefly discuss how our protocols for
arguments of disjointess might have applications to sharded stateless blockckhains instantiated
with hidden order groups.

We have put a few other protocols such as those demonstrating relations between the underlying
sets of committed multisets in the appendix. We also discuss a minor generalization of Wesolowski’s
proof of exponentiation in Appendix C. This helps reduce the Verifier’s work in some of our
protocols in Sections 3 and 4.

2 Preliminaries

We first state some definitions and notations used in this paper.

Notations: We denote the security parameter by λ and the set of all polynomial functions by
poly(λ). A function ε(λ) is said to be negligible - denoted ε(λ) ∈ negl(λ) - if it vanishes faster
than the reciprocal of any polynomial. An algorithm A is said to be a probabilistic polynomial

2

time (PPT) algorithm if it is modeled as a Turing machine that runs in time poly(λ). We denote
by y ← A(x) the process of running A on input x and assigning the output to y. For a set S,

#S or |S| denote its cardinality and x
$←− S denotes selecting x uniformly at random over S. For

a positive integer n, we write [n] := {0, 1, · · · , n− 1}. NextPrime(n) denotes the smallest prime
≥ n. For statements A, B we say that A implies B with overwhelming probability (denoted by

A
o.p.
=⇒ B) if

1− Pr
[
B
∣∣ A
]

= negl(λ).

HFS,λ denotes the hashing algorithm used by the Fiat-Shamir-heuristic. It generates λ-bit primes.

2.1 Candidates for hidden order groups

At the moment, there are only three known families of finite abelian groups of unknown order.
We briefly discuss them here.

1. RSA groups: For distinct 1536-bit primes p, q, define N := pq. The group (Z/NZ)∗ has
order φ(N) = (p − 1)(q − 1) which can only be computed by factorizing N . The strong-RSA
assumption is believed to hold in the RS group. However, the group does contain the element
−1 (mod N) of a known order 2. For the adaptive root assumption to hold, the group has to be

replaced by its quotient group (Z/NZ)∗/{±1} of order (p−1)(q−1)
2 .

The RSA groups suffer from the need for a trusted setup. In practice, this can be mitigated
by a one-time secure multi-party computation. At the moment, a 3300-bit RSA modulus yields
a security level of 128-bits.

2. Class groups: Computing the class group of a number field is a long-standing problem in
algorithmic number theory. Hence, class groups are natural candidates for hidden order groups.
At the moment, the only class groups that allow for efficient group operations are those of
imaginary quadratic fields.

For a square-free integer d > 0, the field Q(
√
−d) has a class group of size roughly

√
d. This

group is believed to fulfill the strong-RSA assumption. Furthermore, if d is a prime ≡ 3 (mod 4),
the 2-torsion group is trivial, which eliminates the possibility of known elements of order 2. Such
a group is believed to fulfill the strong-RSA, low order and {2}-fractional root assumptions unless
the integer d lies within a certain thin set of integers.

A 6656-bit discriminant d yields a security level of 128-bits at the moment. Unlike RSA
groups, class groups allow for a transparent (trustless) setup. The downside is that for the same
level of security, the group operations are roughly 10 times slower than modular multiplication.

3. Jacobians: Recently, the group of Fp-valued points of the Jacobian of a genus three hyperelliptic
curve over a prime field Fp has been proposed as a candidate ([DGS20]). While this idea needs
more scrutiny, it seems promising because of the transparent setup, the smaller key sizes and the
fact that the group operations are 28 times faster than those in class groups for the same level
of security.

For an irreducible polynomial f(X) ∈ Z[X] of degree 7 with Galois group S7 and a prime
p such that f(X) (mod p) is separable, the hyperelliptic curve C : Y 2 = f(X) over Fp yields a
Jacobian that is resistant to the known attacks. At the moment, such a genus three hyperelliptic
Jacobian over a prime field Fp of bit-size 1100 allows for a security level of 128-bits. This group
Jac(C)(Fp) is roughly of size p3.

Unfortunately, the adaptive root assumption fails in the group Jac(C)(Fp). However, the
group obtained by replacing it by an appropriate quotient group appears to satisfy the adaptive
root assumption and the weaker assumptions such as the fractional root and low order assumptions.

3

2.2 Argument Systems

An argument system for a relation R ⊆ X × W is a triple of randomized polynomial time
algorithms (PGen,P,V), where PGen takes an (implicit) security parameter λ and outputs a
common reference string (CRS) pp. If the setup algorithm uses only public randomness we say
that the setup is transparent and that the CRS is unstructured. The prover P takes as input a
statement x ∈ X, a witness w ∈W , and the CRS pp. The verifier V takes as input pp and x and
after interactions with P outputs 0 or 1. We denote the transcript between the prover and the
verifier by 〈V(pp, x),P(pp, x, w)〉 and write V(pp, x),P(pp, x, w)〉 = 1 to indicate that the verifier
accepted the transcript. If V uses only public randomness we say that the protocol is public coin.

We now define soundness and knowledge extraction for our protocols. The adversary is
modeled as two algorithms A0 and A1, where A0 outputs the instance x ∈ X after PGen is
run, and A1 runs the interactive protocol with the verifier using a state output by A0. In a
slight deviation from the soundness definition used in statistically sound proof systems, we do
not universally quantify over the instance x (i.e. we do not require security to hold for all input
instances x). This is due to the fact that in the computationally-sound setting the instance
itself may encode a trapdoor of the common reference string, which can enable the adversary to
fool a verifier. Requiring that an efficient adversary outputs the instance x prevents this. In our
soundness definition the adversary A1 succeeds if he can make the verifier accept when no witness
for x exists. For the stronger argument of knowledge definition we require that an extractor with
access to A1’s internal state can extract a valid witness whenever A1 is convincing. We model
this by enabling the extractor to rewind A1 and reinitialize the verifier’s randomness.

Definition 2.1. We say an argument system (PGen,P,V) for a relation R is complete if for
all (x,w) ∈ R,

Pr
[
〈V(pp, x) , P(pp, w)〉

)
= 1 : pp

$←− PGen(λ)
]

= 1.

Definition 2.2. We say an argument system (PGen,P,V) is sound if P cannot forge a fake
proof except with negligible probability.

Definition 2.3. We say a sound argument system is an argument of knowledge if for any
polynomial time adversary A, there exists an extractor E with access to A’s internal state that
can, with overwhelming probability, extract a valid witness whenever A is convincing.

Definition 2.4. An argument system is non-interactive if it consists of a single round of
interaction between P and V.

The Fiat-Shamir heuristic ([FS87]) can be used to transform interactive public coin argument
systems into non-interactive systems. Instead of the Verifier generating the challenges, this
function is performed by a public hashing algorithm agreed upon in advance.

2.3 Cryptographic assumptions

The cryptographic protocols make extensive use of groups of unknown order, i.e., groups for which
the order cannot be computed efficiently. Concretely, we require groups for which two hardness
assumptions hold. The Strong RSA Assumption ([BP97]) roughly states that it is hard to take
arbitrary roots of random elements. The much newer Adaptive Root Assumption ([Wes19]) is the
dual to the Strong RSA Assumption and states that it is hard to take random roots of arbitrary
group elements. Both of these assumptions are believed to hold in generic groups of hidden order
([Wes18], [BBF19], [DGS20]).

4

Assumption 2.1. We say that the adaptive root assumption holds for a group G if there is
no efficient probabilistic polynomial time (PPT) adversary (A0,A1) that succeeds in the following
task. A0 outputs an element w ∈ G and some state. Then a random prime ` is chosen and
A1(`, state) outputs w1/` ∈ G.

Assumption 2.2. For a set S of rational primes, we say G satisfies the S-strong RSA
assumption if given a random group element g ∈ G and a prime ` /∈ S, no PPT algorithm
A is able to compute (except with negligible probability) the `-th root of a chosen element w ∈ G.
When S = ∅, it is called the strong RSA assumption.

Assumption 2.3. We say G satisfies the low order assumption if no PPT algorithm can
generate (except with negligible probability) an element a ∈ G \ {1} and an integer n < 2poly(λ)

such that an = 1 ∈ G.

Assumption 2.4. For a set S of rational primes, we say G satisfies the S-fractional root
assumption if for a randomly generated element g ∈ G, no PPT algorithm can output h ∈ G and
d1, d2 ∈ Z such that

gd1 = hd2 ∧ gcd(d1, d2) = 1 ∧ d2 has a prime divisor outside S

except with negligible probability. When S = ∅, it is called the fractional root assumption.

Clearly, if S0 ⊆ S, the S0-fractional root assumption implies the S-fractional root assumption.
For instance, class groups of imaginary quadratic fields are believed to fulfill the {2}-fractional
root assumption although they do not fulfill the (stronger) fractional root assumption. This is
because there is a well-known algorithm to compute square roots in imaginary quadratic class
groups ([BS96]). The assumptions bear the following relations:

{Adaptive root assumption} =⇒ {Low order assumption} ,

{Low order assumption} ∧ {S-Strong-RSA assumption} =⇒ {S-Fractional root assumption}.

We refer the reader to the appendix of [BBF19] for further details.

Definition 2.5. For elements a, b ∈ G and a rational α ∈ Q, we say aα = b with respect to a
PPT algorithm A if A can generate integers d1, d2 ∈ Z such that:

- α = d1d2
−1

- ad1 = bd2

- |d1|, |d2| < 2poly(λ).

Note that if a PPT algorithmA generates an element a ∈ G and distinct rationals d1d2
−1, d3d4

−1,
(di ∈ Z) such that

ad1d2
−1

= ad3d4
−1

∈ G,
then ad1d4−d2d3 = 1 and d1d4 − d2d3 6= 0. So the low order assumption implies that A cannot
generate such a tuple (a, d1, d2, d3, d4) ∈ G×Z4, except with negligible probability. Furthermore,
by Shamir’s trick, aα = b is equivalent to A being able to generate an element a0 ∈ G and
co-prime integers d1, d2 such that

α = d1d2
−1 , ad2

0 = a , ad1
0 = b ,

2.3.1 Generic group models for hidden order groups

We will use the generic group model for groups of unknown order as defined by [DK02]
and [BBF19]. The group is parametrized by two integer public parameters A,B. The order of

5

the group is sampled uniformly from the interval [A,B]. The group G is defined by a random
injective function σ : Z|G| −→ {0, 1}n for some n >> log2(|G|). A generic group algorithm A is a
probabilistic algorithm. Let L be a list that is initialized with the encodings given to A as input.
The algorithm can query two generic group oracles:

• O1 samples a random r ∈ ZG and returns σ(r), which is appended to the list L of encodings.

• When L has size q, the second oracle O2(i, j,±) takes two indices i, j ∈ {1, · · · , q} and a sign
bit and returns σ(xi ± xj) which is appended to L.

2.4 Multiset notations and operations

We first recall/introduce a few basic definitions and notations concerning multisets. For a
multiset M, we denote by Set(M) the underlying set of M. For any element x, we denote by
mult(M, x) the multiplicity of x in M. Thus, M = {mult(M, x) × x : x ∈ Set(M)}. For
brevity, we write

Π(M) :=
∏

x∈Set(M)

xmult(M,x).

For two multisets M,N , we have the following operations:

- The sum M+N := {(mult(M, x) + mult(N , x))× x : x ∈ Set(M) ∪ Set(N)}
- The union M∪N := {max(mult(M, x),mult(N , x))× x : x ∈ Set(M) ∪ Set(N)}
- The intersection M∩N := {min(mult(M, x), mult(N , x))× x : x ∈ Set(M) ∪ Set(N)}
- The difference M\N := {min(mult(M, x)−mult(N , x), 0)× x : x ∈ Set(M) ∪ Set(N)}.
The function Π(·) clearly has the following properties:

- Π(M+N) = Π(M) ·Π(N)

- Π(M∪N) = lcm(Π(M),Π(M))

- Π(M∩N) = gcd(Π(M),Π(M))

- Π(M\N) = Π(M)/Π(M∩N)

Multiset Commitments: For a multiset M represented by λ-bit primes and a hidden order
group G, a G-commitment to a multiset M is a pair (g, h) ∈ G2 such that gΠ(M) = h. The
hardness of the discrete logarithm problem implies that this commitment is computationally
hiding in the sense that no PPT algorithm can compute M from the pair [g, h]. The low order
assumption implies that it is computationally binding in the sense that no PPT algorithm can
compute another multiset M′ with the same commitment.

2.5 Cryptographic Accumulators

A cryptographic accumulator [Bd94] is a primitive that produces a short binding commitment
to a set (or multiset) of elements together with short membership and/or non-membership proofs
for any element in the set. These proofs can be publicly verified against the commitment. Broadly,
there are three known types of accumulators at the moment:

- Merkle trees
- pairing-based (aka bilinear) accumulators
- accumulators based on groups of unknown order, which we study in this paper.

Let G be a group of hidden order and fix an element g ∈ G. Let M be a multiset of λ-bit
primes. For each x ∈ M, let mult(M, x) denote the multiplicity of x in M. The accumulated
digest or accumulated state of M is given by

6

Acc(M) := Com(g,M) = gΠ(M) ∈ G,

where
Π(M) :=

∏
x∈Set(M)

xmult(M,x).

Let M0 be a multiset contained in M, so that mult(M0, x) ≤ mult(M, x) ∀ x. The element

w(M0) := g

∏
x∈Set(M)

xmult(M\M0,x)

∈ G

is called the membership witness ofM0. Given this element, a Verifier can verify the membership
of M0 in M by verifying the equation

w(M0)Π(M0) ?
= Acc(D) ∈ G.

When the multiset M0 is large, this verification can be sped up using Wesolowki’s Proof of
Exponentiation (PoE) protocol ([Wes18]).

Shamir’s trick allows for aggregation of membership witnesses in accumulators based on
hidden order groups. This is not possible with Merkle trees, which is the primary reason
other families of accumulators have been explored as authentication data structures for stateless
blockchains. With bilinear accumulators, aggregation of membership witnesses has a linear
runtime complexity, which is impractical for most use cases. Thus, accumulators based on hidden
order groups have a major advantage in this regard.

These accumulators also allow for non-membership proofs ([LLX07]). In [BBF19], the authors
used a non-interactive argument of knowledge to compress batched non-membership proofs into
constant-sized proofs, i.e. independent of the number of elements involved. This yields the
first known Vector Commitment with constant-sized openings as well as constant-sized public
parameters.

Hashing the data to primes: The security of cryptographic accumulators and vector
commitments hinges on the assumption that for disjoint data sets D, E , the integers Π(D),Π(E)
are relatively prime. The easiest way to ensure this is to map the data elements to distinct λ-bit
primes. This is usually done by hashing the data to λ-bit integers and subjecting the output to
a probabilistic primality test such as the Miller-Rabin test. The prime number theorem states
that the number of primes less than n is O(n

log(n)) and hence, implies that the expected runtime

for finding a prime is O(λ).

Dirichlet’s theorem on primes in arithmetic progressions combined with the prime number
theorem implies that for relatively prime integers k, r and an integer n, the number of primes less
than n that are ≡ r (mod k) is roughly n

log(n)φ(k) . Thus, we can modify the hashing algorithm
so that for any element inserted into the accumulator, the prime reveals the position in which it
was inserted. We proceed as follows.

1. Fix a prime p of size λ
2 .

2. For a string inserted in position i, we map the string to the first prime of size λ which is
≡ i (mod p). This (pseudo-)prime is obtained by subjecting the integers {pk + i : k ∈ Z} to the
probabilistic Miller-Rabin test.

The number of such primes is roughly 2λ

λ(p−1) and hence, the expected runtime is O(λ).

7

2.6 Aggregating and disaggregating membership witnesses

Shamir’s trick: Given elements a1, a2, A ∈ G and integers d1, d2 such that ad1
1 = ad2

2 = A,
Shamir’s trick allows us to compute the lcm(d1, d2)-th root of A as follows.

1. Compute integers e1, e2 such that e1d1 + e2d2 = gcd(d1, d2)

2. Set a1,2 := ae21 a
e1
2 ∈ G.

Then
ad1d2

1,2 = Ad2e2+d1e1 = Agcd(d1,d2)

and hence,
a
lcm(d1,d2)
1,2 = A.

More generally, given elements a1, · · · , an such that

ad1
1 = · · · = adnn = A,

we can use Shamir’s trick repeatedly to compute an element a ∈ G such that alcm(d1,··· ,dn) = A.
The runtime for this algorithm is O

(
log(D) · log(log(D))

)
where D :=

∏n
i=1 di.

The most important special case is when A is the accumulated digest gΠ(M) for a set or
multiset M and w1, · · · , wn are membership witnesses for sets/multisets M1, · · · ,Mn ⊆ M.
Shamir’s trick allows us to compute a membership witness for the union

⋃n
i=1Mi.

The RootFactor Algorithm: Given elements a,A ∈ G and integers d1, · · · , dn, D such that

D =

n∏
i=1

di , a
D = A,

the RootFactor algorithm ([BBF19], [STY01]) allows us to compute elements a1, · · · , an ∈ G
such that

ad1
1 = · · · = adnn = A

in runtime O
(

log(D) · log(log(D))
)
. Näıvely, this would take runtime O(log2(D)), which would

be impractical for many applications.

2.7 Z(λ)-integers

Localization at a set of primes: For a set S of rational primes, we denote by ZS the localization

ZS :=
{
a ·
∏
p∈S

pep : a ∈ Z, ep ∈ Z, ep = 0 for all but finitely many p
}

of Z at all primes in S. This is a principal ideal domain whose prime ideals are those generated
by rational primes outside the set S. The group of units of ZS is given by

Z×S :=
{
±
∏
p∈S

pep : ep ∈ Z, ep = 0 for all but finitely many p
}
.

For an element α ∈ ZS , we may uniquely write α as

α = α1α2
−1 where α1, α2 ∈ Z , α2 > 0 , gcd(α1, α2) = 1.

Similarly, for two elements, α, β, we write

α = α1α2
−1 , β = β1β2

−1 , α1, β1 ∈ Z , α2, β2 ∈ Z ∩ Z×S
and define gcdS(α, β) := gcd(α1, β1). Thus, gcdS(α, β) is the unique non-negative integer that
has no prime divisors in S and generates the ideal ZSα+ ZSβ ⊆ ZS .

8

Note: The localization ZS is not to be confused with the non-archimedean completion of the
localization.

Definition 2.6. An integer is said to be λ-smooth is all of its prime divisors are ≤ 2λ−1. An
integer is said to be λ-rough is all of its prime divisors are > 2λ−1. We say a set/multiset M
of primes is λ-rough if the integer Π(M) is λ-rough.

Clearly, M being λ-rough is equivalent to each prime of M being larger than 2λ−1. The
properties of λ-smoothness and λ-roughness are clearly preserved under products, greatest common
divisors and least common multiples. Furthermore, any positive integer n is uniquely expressible
as a product nλ,snλ,r of a λ-smooth integer nλ,s ≥ 0 and a λ-rough integer nλ,r ≥ 0.

Definition 2.7. For a security parameter λ, we denote by Z(λ) the integral domain obtained by

localizing Z at all primes ≤ 2λ−1.

Thus,
Z(λ) =

{
αβ−1 : α, β ∈ Z, gcd(α, β) = 1, β is λ-smooth

}
.

Note that Z(λ) inherits the structure of a principal ideal domain. The group of units of Z(λ) is
given by

Z×(λ) :=
{
αβ−1 : α, β ∈ Z, gcd(α, β) = 1, α, β are λ-smooth

}
.

The prime ideals of Z(λ) are the principal ideals generated by rational primes larger than 2λ−1.

2.8 Some preliminary lemmas

We will need the next two lemmas repeatedly in the subsequent protocols. We briefly explain
the motivation for these lemmas here and provide further details in the next section. As before,
for a set S of rational primes, we denote by ZS the localization

ZS :=
{
a ·
∏
p∈S

pep : a ∈ Z, ep ∈ Z, ep = 0 for all but finitely many p
}

of Z at all primes in S. This is a principal ideal domain and, in particular, is integrally closed.

Consider a setting where a Verifier possesses commitments ai = adi to ZS-integers di where
a ∈ G is the common base and S is a set of rational primes. Suppose the Prover - who stores
these integers - needs to demonstrate that the di are integers rather than merely rationals. A
straightforward way to do this would be for the Prover to send the elements gdi along with proofs
that the discrete logarithm between g, gdi is the same as that between a, ai. The S-fractional
root assumption would then imply that the di are ZS-integers.

But such a proof would entail O(n) elements of G. Since the group elements are rather large,
we would prefer to send a proof that contains a constant number of group elements. To this
end, the Prover can instead demonstrate that for a randomly generated integer γ, the rational∑n

i=1 d
k
i γ

i is an element of ZS for some k ≥ nλ. The next two lemmas show that this implies
that all the di are elements of ZS , except with negligible probability.

Lemma 2.1. Let p be a prime and let f(X) be a monic univariate degree n polynomial in Z[X].
For a randomly generated integer γ, the probability that f(γ) ≡ 0 (mod pnλ) is negligible.

Proof. Let F be a splitting field of f(X), OF its ring of integers and let

f(X) =
n∏
i=1

(X − αi)

9

be the factorization of f(X) over F . Let p1, · · · , pg be the distinct primes of F lying over p. Since
the extension F/Q is Galois, we have

pOF =

g∏
i=1

pei =

g⋂
i=1

pei

where e ≥ 1 is the ramification degree and the Galois group Gal(F/Q) acts transitively on the
set {p1, · · · , pg}.

We note that for any integer k ≥ 1, pek1 ∩ Z = pkZ. The inclusion pkZ ⊆ pek1 ∩ Z is obvious.
For the reverse inclusion, let x ∈ pek1 ∩ Z. For any index i, there exists an automorphism
σi ∈ Gal(F/Q) such that σi(p1) = pi. So x = σ(x) ∈ pei . Hence, x ∈

⋂g
i=1 p

ek
i = pkZ. Thus,

pek1 ∩ Z = pkZ.

For any two integers x1, x2 ∈ Z, we have

x1 − x2 ∈ peλ1 ⇐⇒ x1 − x2 ∈ peλ1 ∩ Z = pλZ.

Hence, the set Sλ := {x+ peλ1 : x ∈ Z} ⊆ OF /peλ1 has cardinality pλ. Now, for any integer γ ∈ Z,

f(γ) ≡ 0 (mod pnλ)⇐⇒ f(γ) ≡ 0 (mod penλ1) (since penλ1 ∩ Z = pnλZ)

=⇒ γ ≡ αi (mod peλ1) for at least one index i (pigeonhole principle).

Since γ is randomly generated, γ (mod peλ1) is randomly and uniformly distributed over the set
Sλ. Hence,

Pr
[
f(γ) ≡ 0 (mod pnλ)

]
≤ n

pλ
= negl(λ),

which completes the proof.

Lemma 2.2. (i). For rationals d1, · · · , dn ∈ Q and a randomly generated λ-bit integer γ, if
n∑
i=1

diγ
i ∈ Z(λ), then with overwhelming probability, the tuple (d1, · · · , dn) ∈ Zn(λ).

(ii). Let k be any integer ≥ nλ. Let S be a set of rational primes and let ZS be the localization
of Z at all primes in S. For rationals d1, · · · , dn ∈ Q and a randomly generated λ-bit integer γ,

if
n∑
i=1

dki γ
i ∈ ZS , then with overwhelming probability, the tuple (d1, · · · , dn) ∈ ZnS .

Proof. (i). We show that if (d1, · · · , dn) /∈ Zn(λ), then with overwhelming probability,
n∑
i=1

dki γ
i /∈

Z(λ) for a randomly generated λ-bit integer γ. Let D be the least common denominator for
d1, · · · , dn and write

di =
ci
D
, ci ∈ Z (i = 1, · · · , n).

Suppose, by way of contradiction that (d1, · · · , dn) /∈ Zn(λ). Then there exists a rational prime p <

2λ−1 that dividesD but not all of the integers c1, · · · , cn. Now, the polynomial
∑n

i=1 ciX
i (mod p) ∈

Fp[X] has at most n distinct zeros in Fp and since γ is randomly and uniformly distributed modulo
p,

Pr
[
f(γ) ≡ 0 (mod p)

]
= negl(λ),

which completes the proof.

(ii). We show that if (d1, · · · , dn) /∈ ZnS , then with overwhelming probability,
∑n

i=1 d
k
i γ

i /∈ ZS
for a randomly generated λ-bit integer γ. Let D be the least common denominator for d1, · · · , dn
and write

10

di =
ci
D

(ci ∈ Z) for i = 1, · · · , n.

Suppose, by way of contradiction that (dk1, · · · , dkn) /∈ ZnS . Then there exists a rational prime
p /∈ S that divides D but not all of the integers c1, · · · , cn. Let I ⊆ {1, · · · , n} be the non-empty
subset of indices such that ci /∈ pZ or equivalently, cki /∈ pkZ. Then∑

i∈I
cki γ

i ≡ 0 (mod pk).

Now, the polynomial f(X) :=
∑
i∈I

ckiX
i ∈ Z[X] has degree ≤ n and none of its coefficients are

divisible by p. By lemma 2.1,

Pr
[
f(γ) ≡ 0 (mod pk)

]
= negl(λ).

Thus, with overwhelming probability, the rationals dki lie in ZS . Since the integral domain ZS is
integrally closed, this implies that the di lie in ZS .

In particular,

Pr
[
(d1, · · · , dn) /∈ Zn(λ)

∣∣∣ n∑
i=1

diγ
i ∈ Z

]
= negl(λ).

Similarly,

Pr
[
(d1, · · · , dn) /∈ Zn

∣∣∣ n∑
i=1

dki γ
i ∈ Z

]
= negl(λ) for any k ≥ nλ.

In a setting where we are dealing with accumulators and the accumulation of primes < 2λ−1

is disallowed, it suffices for the Prover to show that the rational
∑n

i=1 diγ
i is an element of ZS

for most applications. This places a much lower computational burden on the Prover. While we
haven’t used this for the protocols in the paper, we have explored this a bit further in appendix
D.

2.8.1 Representations of group elements

Lemma 2.3. (Element representation [Sho97]) Let G be a generic group and A a generic
algorithm that makes q1 queries to O1 and q2 queries to O2. Let {g1, · · · , gk} be the outputs of
O1. There is an efficient algorithm Ext that given as input the transcript of A’s interaction
with the generic group oracles, produces for every element u ∈ G that A outputs, a tuple
(α1, · · · , αm) ∈ Zm such that u =

∏m
i=1 g

αi
i and |αi| ≤ 2q2.

DLOG: Following the terminology of [BBF19], the event DLOG refers to a generic PPT algorithm A
generating random elements g1, · · · gn by making queries to the group oracle O1 and generating
integers x1, · · · , xn such that n∏

i=1

gxii = 1 ∈ G.

The adaptive root assumption implies that DLOG occurs with at most negligible probability.

Lemma 2.4. Let a, b be elements of a generic hidden order group G. Let A be a generic PPT
algorithm that succeeds at the following task:

1. The hashing algorithm HFS,λ generates a λ-bit prime `.

2. A generates an element Q ∈ G and an integer r ∈ [`] such that Q`ar = b.

Then there exists an extractor E that, if given as input the transcript of A’s interaction with the
group oracles, efficiently extracts integers d1, d2 bounded by 2poly(λ) such that

11

ad1 = bd2 ∧ d1 ≡ rd2 (mod `).

Proof. By the element representation lemma of [Sho97], for every element A obtains in response
to an O2 query, an extractor E succeeds with overwhelming probability at the task of expressing
that element as a linear combination

∏k
i=1 g

xi
i where the group elements {g1, · · · , gk} are the

responses to A’s queries to the oracle O1 and the xi are integers bounded by 2poly(λ). Let

a =

k∏
i=1

gαii , b =

k∏
i=1

gβii , (αi, βi ∈ Z , |αi|, |βi| < 2poly(λ))

Now, for a randomly generated λ-bit prime `, A is able to output (Q, r) ∈ G × [`] such that
Q`ar = b ∈ G. Hence, with probability 1− Pr[DLOG],

β1α1
−1 ≡ · · · ≡ βkαk−1 ≡ r (mod l).

Since the λ-bit prime ` was randomly generated, this implies that with overwhelming probability,

β1α1
−1 = · · · = βkαk

−1.

Thus, aβ1 = bα1 .

Lemma 2.5. Let a, b1, · · · , bn be elements of a generic hidden order group G. Let A be a generic
PPT algorithm that succeeds at the following task:

1. The hashing algorithm HFS,λ generates a λ-bit prime `.

2. A sends a tuple r = (r1, · · · , rn) ∈ [`]n.

3. The hashing algorithm HFS,λ generates a λ-bit challenge γ.

4. A generates an element Q ∈ G such that

Q`ar =
n∏
i=1

bγ
i

i where r :=
n∑
i=1

riγ
i (mod `).

Then there exists an extractor E that, if given as input the transcript of A’s interaction with the
group oracles, extracts rationals d1, · · · , dn ∈ Q such that the numerators/denominators of the di
are bounded by 2poly(λ) and

adi = bi ∧ di ≡ ri (mod `) ∀ i.

Proof. As before, the extractor E extracts integers αj (j = 1, · · · , k), βi,j (i = 1, · · · , n , j =
1, · · · , k) such that

a =

k∏
j=1

g
αj
j , bi =

k∏
j=1

g
βi,j
j , (αi, βi,j ∈ Z , |αi|, |βi,j | < 2poly(λ))

where {g1, · · · , gk} are the G-elements obtained from queries to the oracleO1. Now, in response to

a λ-bit challenge γ, A generates Q ∈ G such that Q`ar =
∏n
i=1 b

γi

i , where r :=
∑n

i=1 riγ
i (mod `).

By lemma 2.4, E can generate a rational d̃ = d̃1d̃
−1
2 (d̃1, d̃2 ∈ Z) with d̃1, d̃2 bounded by 2poly(λ)

and
k∏
j=1

g
d̃αj
j = ad̃ =

n∏
i=1

bγ
i

i =
k∏
j=1

g

n∑
i=1

βi,jγ
i

j ∈ G.

Since the event DLOG occurs with at most negligible probability, it follows that

12

d̃ =
n∑
i=1

(βi,jαj
−1)γi for j = 1, · · · , k.

Since γ is randomly generated, it follows that with overwhelming probability,

βi,1α
−1
1 = · · · = βi,kαn

−1 for i = 1, · · · , n.

Setting di := βi,1α
−1
1 yields adi = bi ∀ i.

Now, if
n∑
i=1

diγ
i 6≡ r (mod `), the extractor E could efficiently extract an `-th root of a, which

would violate the adaptive root assumption. Hence, with overwhelming probability,

n∑
i=1

diγ
i ≡ r ≡

n∑
i=1

riγ
i (mod `).

Since the λ-bit integer γ was randomly generated after the tuple (r1, · · · , rn) was sent, the
Schwartz-Zippel lemma implies that with overwhelming probability, di ≡ ri (mod `) ∀ i.

We will need the following basic fact repeatedly in the subsequent protocols to bridge the gap
between sound argument systems and arguments of knowledge.

Fact 2.1. Chinese remainder theorem (CRT): Let `1, · · · , `n be pairwise co-prime integers and
let r1, · · · , rn be arbitrary integers. Then there is a unique integer x such that 0 ≤ 2|x| <

∏n
i=1 `n

and x ≡ r1 (mod `i) ∀ i. Furthermore, there is a an efficient algorithm for computing x.

Consider an argument system where a Prover P claims knowledge of an integer d that satisfies
certain properties and is bounded by 2poly(λ). Suppose the proof of knowledge sent by P contains
the remainder r := d (mod `) for a λ-bit prime ` randomly generated by the Verifier or by a
Fiat-Shamir heuristic in a non-interactive system. An extractor E can query P for N accepting
transcripts for a sufficiently large integer N . If `1, · · · , `N are the λ-bit primes and ri := d (mod `i)
are the resulting remainders in the accepting transcripts, E can use the Chinese remainder theorem
to compute the unique integer d′ such that

d′ ≡ ri (mod `j) ∀ i , 2|d′| <
N∏
i=1

`i.

If N is large enough so that 2Nλ > |d|, then with overwhelming probability, d = d′. Thus,
assuming the integer d exists, E can extract it in expected polynomial runtime.

3 Arguments of Knowledge

In this section, we discuss succinct arguments of the knowledge of exponents in hidden order
groups and of relations between these exponents. This is equivalent to the knowledge of relations
between the committed sets or multisets. The proofs can be publicly verified against the succinct
commitments held by the Verifier.

3.1 Preliminaries

We briefly review the protocol PoKE (from [BBF19]) which we will need repeatedly in this paper.

Protocol 3.1. Proof of Knowledge of the Exponent (PoKE)

13

Parameters: G $←− GGen(λ), g ∈ G
Input: u,w ∈ G.

Claim: The Prover posseses an integer x such that ux = w.

1. The Prover P computes z := gx and sends z to the Verifier V.
2. The hashing algorithm HFS,λ generates a λ-bit prime `.
3. P computes the integers q, r such that x = q · `+ r, r ∈ [`].
4. P computes Q := uq, Q′ = gq and sends (Q,Q′, r) to V.
5. V accepts if and only if r ∈ [`], Q`ur = w, Q′`gr = z.

The protocol PoKE is an argument of knowledge for the relation

RPoKE :=
{(

(u,w) ∈ G); x ∈ Z
)

: w = ux ∈ G
}
.

The part where P computes gx and sends it to V before receiving the challenge ` is necessary for
the security of the protocol. Without this step, a malicious Prover could convince the Verifier
that x is an integer, which might not necessarily be the case.

Clearly, the relation RPoKE is transitive in the sense that for elements a1, a2, a3 ∈ G, if a prover
P possesses integers d1, d2 such that ad1

1 = a2 , a
d2
2 = a3, then he possesses the integer d1d2 which

fulfills the equation ad1d2
1 = a3. Henceforth, we denote the proof of knowledge of the discrete

logarithm between a, b ∈ G by PoKE[a, b].

The knowledge of exponents can easily be aggregated when they share a common base. Given
elements

a ∈ G , (b1, · · · , bn) ∈ Gn,

and a radomly generate integer γ, if the Prover possesses a rational d̃ such that ad̃ =
∏n
i=1 b

γi

i ,
then the Prover, with overwhelming probability, possesses rationals di such that adi = bi ∀ i. In
the special case where a = g, a randomly generated element of the group G, the fractional root
assumption implies that the di must be integers. In the more general case, we use lemma 2.2 to
show that the di are integers rather than merely rationals.

We now start out with a fairly simple protocol. We show how a Prover could probabilistically
demonstrate that two discrete logarithms are equal, with a constant-sized proof. In other words,
the protocol allows a Prover to show that two pairs [a1, b1], [a2, b2] of G-elements are commitments
to the same set/multiset. We provide an argument of knowledge for the following relation:

REqDLog[(a1, b1), (a2, b2)] =

((a1, b1), (a2, b2) ∈ G2

d ∈ Z :
(b1, b2) = (ad1, a

d
2)

The protocol hinges on the observation that for two integers d1, d2, if we have d1 ≡ d2 (mod `)
for a randomly generated λ-bit prime `, then with overwhelming probability, d1 = d2.

Protocol 3.2. Proof of equality of discrete logarithms (PoEqDLog) :

Parameters: G $←− GGen(λ), g ∈ G.

Input: a1, a2, b1, b2 ∈ G.

Claim: The Prover possesses an integer d such that ad1 = b1 and ad2 = b2.

1. The Prover P sends g̃ := gd to the Verifier V.
2. The hashing algorithm HFS,λ generates a λ-bit prime `.
3. P computes the integers q, r such that d = q · `+ r, r ∈ [`] and the group elements

14

Q1 := aq1, Q2 := aq2, qg := gq ∈ G

and sends (Q1, Q2, qg, r) ∈ G3 × [`] to V.
4. V verifies the equations

r ∈ [`], Q`1a
r
1

?
= b1, Q`2a

r
2

?
= b2, (qg)`gr

?
= g̃

and accepts if and only if all equations hold.

Thus, the proof consists of four G-elements and one λ-bit integer. In a setting where the base of
the commitment to a set/multiset needs to be changed, the Prover can verifiably send the new
commitment using this protocol. The Verifier does not need to access the data to verify that the
new commitment is the correct.

Proposition 3.3. The protocol EqDLog[(a1, b1), (a2, b2)] is an argument of knowledge for the
relation REqDLog in the generic group model.

Proof. An extractor E can simulate the extractors for the subprotocols PoKE[ai, bi] (i = 1, 2) to
extract integers d1, d2 such that ad1

1 = b1, ad2
2 = b2. The low order assumption implies that the

pair (d1, d2) is unique except with negligible probability.

Now, for an accepting transcript, the equations Qlia
r
i = bi imply that either di ≡ r (mod `)

or E can efficiently extract an `-th root of ai. Since the λ-bit prime was ` randomly generated,
the latter event would violate the adaptive root assumption. So, with overwhelming probability,
d1 ≡ r ≡ d2 (mod `). Since the λ-bit prime was randomly generated, this implies that with
overwhelming probability, d1 = d2.

We can also generalize the protocol EqDLog as follows. For a public polynomial f(X) ∈ Z[X], an
honest Prover can provide a constant-sized proof that he possesses integers d1, d2 such that

ad1
1 = b1 , a

d2
2 = b2 , f(d1) = d2.

We provide an argument of knowledge for the relation

RPolyDLog[(a1, b1), (a2, b2), f] =

(
(a1, b1), (a2, b2) ∈ G2, f ∈ Z[X]

)
;

(d1, d2) ∈ Z2) :

b1 = ad1
1

∧
b1 = ad1

1

∧
d2 = f(d1)

Protocol 3.4. Proof of Polynomial relation between discrete logarithms (PoPolyDLog) :

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a1, b1, a2, b2 ∈ G, a public polynomial f(X) ∈ Z[X].

Claim: The Prover possesses integers d1, d2 such that:

-ad1
1 = b1, a

d2
2 = b2

-f(d1) = d2

1. The Prover P computes g̃1 := gd1 , g̃2 = gd2 ∈ G and sends them to the Verifier V.
2. The hashing algorithm HFS,λ generates a λ-bit prime `.
3. P computes the integers q1, q2, r1, r2 such that

d1 = q1 · `+ r1 , d2 = q2 · `+ r2 , r1, r2 ∈ [`].

4. P computes the elements Q1 := aq11 , Q2 := aq22 , g1 := gq1 , g2 := gq2 ∈ G and sends them to
V along with the integer r1.

15

5. V verifies that r1 ∈ [`] and computes r2 := f(r1) (mod `).
6. V verifies the equations

Q`1a
r1
1

?
= b1

∧
Q`2a

r2
2

?
= b2

∧
(g1)`gr1

?
= g̃1

∧
(g2)`gr2

?
= g̃2

and accepts the validity of the claim if and only if all equations hold.

Thus, the proof consists of six elements of G and one λ-bit integer.

Proposition 3.5. The protocol PoPolyDLog is an argument of knowledge for the relation RPolyDLog

in the generic group model.

Proof. This is a special case of the protocol PoMultPolyDLog, which we provide a security proof
for in the next section.

If a Verifier holds commitments to two multisetsM, N , a Prover with access to these multisets
can use the protocol PoPolyDLog to show whether or not the underlying sets Set(M), Set(N)
coincide or if one is contained in the other. We have described these protocols in the appendix.
The proofs are constant-sized and are public verifiable against the commitments.

3.2 Aggregating the knowledge of multiple exponents

In this section, we discuss protocols for aggregating the proofs of knowledge of multiple
exponents and proofs of certain relations between these exponents. This amounts to demonstrating
relations between multiple sets/multisets through non-interactive proofs that can be publicly
verified against the commitments to these sets/multisets. The proofs consist of elements of the
hidden order G and λ-bit integers arising from the remainders of the exponents modulo the
prime challenges. Using lemma 2.2 and a few more techniques, we have designed the protocols so
that the number of G-elements is constant and hence, independent of the number of exponents
involved. The proof sizes are O(n) since they consist of O(n) λ-bit integers. However, in practice,
this is a lot more efficient in terms of the communication complexity than proofs with O(n) group
elements.

The first protocol in this section allows us demonstrate the knowledge of multiple integer
exponents when they share a common base. We call this protocol the Proof of Aggregated
Knowledge of the Exponents 1 or PoAggKE-1 for short. We provide an argument of knowledge
for the relation:

RAggKE-1[a, a] =

(a ∈ G , a = (a1, · · · , an) ∈ Gn);
(d1, · · · , dn) ∈ Zn) :
ai = adi ∀ i

In addition to the cryptographic assumptions for generic groups, the security of the protocol
hinges on the Schwartz-Zippel lemma, which we state here.

Lemma 3.6. (Schwartz-Zippel) : Let F be a field and let f ∈ F [X1, · · · , Xn] be a polynomial.
Let r1, · · · , rn be selected randomly and uniformly from a subset S ⊆ F . Then

Pr
[
f(r1, · · · , rn) = 0

]
≤ deg(f)

|S|
.

Protocol 3.7. Proof of aggregated knowledge of exponents 1 (PoAggKE-1):

Parameters: G $←− GGen(λ), g ∈ G.

16

Input: Elements a ∈ G, (b1, · · · , bn) ∈ Gn for some integer n ≥ 1.

Claim: The Prover possesses d := (d1, · · · , dn) ∈ Zn such that adi = bi for i = 1, · · · , n.

1. The hashing algorithm HFS,λ generates a λ-bit challenge γ.

2. The Prover P computes

p := NextPrime(nλ) , g̃ := g

n∑
i=1

dpi γ
i

∈ G

and sends g̃ to the Verifier V.

3. The hashing algorithm HFS,λ generates a λ-bit prime ` 6≡ 1 (mod p).

4. P computes the integers ri := di (mod `) and sends the tuple (r1, · · · , rn) ∈ [`]n to V.

5. P computes the integers q̃, r̃ such that

n∑
i=1

dpi γ
i = q̃ · `+ r̃, r̃ ∈ [`]

and sends qg := gq̃ ∈ G to V.

6. The hashing algorithm HFS,λ generates a λ-bit prime γ0.

7. P computes integers q0, r0 such that

n∑
i=1

diγ
i
0 = q0 · `+ r0 , r0 ∈ [`]

and sends Q0 := aq0 ∈ G to V.
8. V verifies that (r1, · · · , rn) ∈ [`]n and computes

b :=
n∏
i=1

bγ
i

i , b0 :=
n∏
i=1

b
γi0
i ∈ G , r̃ :=

n∑
i=1

rpi γ
i (mod `) , r0 :=

n∑
i=1

riγ
i
0 (mod `).

9. V verifies the equations
(Q0)`ar0

?
= b0 ∧ (qg)`gr̃

?
= g̃.

and accepts the validity of the claim if and only if both equations hold.

Thus, the proof consists of three G-elements and n λ-bit integers. In particular, the number of
G-elements is constant-sized and independent of the number of exponents. For the security of the
protocol, it is necessary that the challenge γ0 is generated after the remainders r1, · · · , rn have
been committed. In a non-interactive setting, this means the hashing algorithm that generates
γ0 takes the tuple r := (r1, · · · , rn) ∈ [`]n of remainders modulo ` as one of its inputs. Hence,
the remainders ri := di (mod `) must be honestly computed by the Prover in order to succeed at
the additional task of computing the element Q0 ∈ G such that (Q0)`ar0 = b0.

In the special case where a is randomly generated by the oracle, the subprotocol where the
Prover computes the element g̃ and sends it to the Verifier is redundant. So the proof would be
smaller and the Prover’s computational burden would be substantially lower in this special case.

When a ∈ G is not a randomly generated element, the most expensive part of the proof
generation is computing the element g̃. The effective runtime for this can be mitigated by the
Prover pre-computing the set

{g2i : 1 ≤ i ≤ N} ⊆ G

for some appropriately large integer N .

17

The Verifier’s work can be further reduced by the Prover sending succinct proofs of
(multi-)exponentiation for the equations

b :=
n∏
i=1

bγ
i

i , b0 :=
n∏
i=1

b
γi0
i ∈ G,

instead of the Verifier independently performing these computations. We have described this
minor generalization of Wesolowski’s protcol in Appendix C.

Theorem 3.8. The protocol PoAggKE− 1 is an argument of knowledge for the relation
RAggKE−1 in the generic group model.

Proof. The low order assumption implies that except with overwhelming probability, any PPT
algorithm can generate at most a unique tuple (x1, · · · , xn) ∈ Qn such that axi = bi. We
first show that the protocol is sound, i.e. if the Prover sends an accepting transcript, then with
overwhelming probability, he possesses integers di bounded by 2poly(λ) such that adi = bi ∀ i. We
then show how an extractor E could extract the integers di in expected polynomial runtime by
applying the Chinese remainder theorem to a sufficiently large number of accepting transcripts.

Since the equation Q`0a
r0 = b0 holds, lemma 2.5 implies that with overwhelming probability,

P can generate rationals d1, · · · , dn with numerators/denominators bounded by 2poly(λ) such that

adi = bi ,

n∑
i=1

diγ
i
0 ≡

n∑
i=1

riγ
i
0 (mod `),

where exponentiation to these rational powers is defined in Definition 2.5. Since the λ-bit
challenge γ0 is randomly generated after the tuple (r1, · · · , rn) ∈ [`]n has been sent by the Prover,
the Schwartz-Zippel lemma implies that with overwhelming probability, di ≡ ri (mod `) ∀ i.

Furthermore, since the λ-bit prime ` is randomly generated after the Prover sends g̃, the
g̃ = (qg)`gr̃ and lemma 2.4 imply that with overwhelming probability, P possesses a rational d̃
such that

g̃ = gd̃ , d̃ ≡ r̃ ≡
n∑
i=1

rpi γ
i ≡

n∑
i=1

dpi γ
i (mod `).

The fractional root assumption then implies that with overwhelming probability, d̃ ∈ Z. Since `
is randomly generated after g̃ has been sent,

d̃ ≡
n∑
i=1

dpi γ
i (mod `)

o.p.
=⇒ d̃ =

n∑
i=1

dpi γ
i.

Since p > nλ, lemma 2.2 now implies that with overwhelming probability, di ∈ Z ∀ i. This
completes the proof of the soundness of the protocol.

Let N be the (polynomially bounded) number of queries from A to the group oracles O1, O2.
With overwhelming probability, 2N ≥ max{2|di| : 1 ≤ i ≤ n}. An extractor E can extract the
tuple (d1, · · · , dn) ∈ Zn as follows.

E makes queries to A, keeping the γ fixed and sampling the ` randomly and uniformly from the
set of λ-bit primes. Let `1, · · · , `k denote the prime challenges in the first k accepting transcripts
and let rj ∈ [`j]

n denote the tuple of remainders modulo `j in the j-th accepting transcript. E
uses the Chinese remainder theorem to efficiently compute the unique tuple e = (e1, · · · , en) ∈ Zn
such that

e ≡ rj (mod `j) ∀ j , 2|ei| <
k∏
j=1

`j ∀ i.

18

After receiving a new accepting transcript and updating the tuple e, the extractor E checks
whether aei = ai for i = 1, · · · , n. If so, he halts the process. Otherwise, he queries for another
accepting transcript and continues to update e by applying the Chinese remainder theorem to
the updated list of accepting transcripts.

When the number of accepting transcripts is N + 1, we have

max{2|di| : 1 ≤ i ≤ n} < 2N+1 <

N+1∏
j=1

`j

except with negligible probability. Thus, with overwhelming probability, ei = di ∀ i at this point.
Thus, E extracts the di in expected polynomial runtime.

In the next protocol, we generalize the protocol PolyDLog to multiple discrete logarithms.
We provide an argument of knowledge for the relation:

RMultPolyDLog[a, (b1, · · · , bn), (f1, · · · , fk)] =

(a ∈ G, (b1, · · · , bn) ∈ Gn);
(f1, · · · , fk) ∈ Z[X1, · · · , Xn]k;
(d1, · · · , dn) ∈ Zn) :
bi = adi ∀ i

∧
fj(d1, · · · , dn) = 0 ∀ j

Protocol 3.9. Proof of multivariate polynomial relations between discrete logarithms
(PoMultPolyDLog) :

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a ∈ G, (b1, · · · , bn) ∈ Gn for some integer n ≥ 1; public n-variate polynomials
f1, · · · , fk ∈ Z[X1, · · · , Xn].

Claim: The Prover possesses integers d1, · · · , dn such that:

- adi = bi for i = 1, · · · , n.
- fj(d1, · · · , dn) = 0 for j = 1, · · · , k.

1. The hashing algorithm HFS,λ generates a λ-bit integer γ.

2. The Prover P computes

p := NextPrime(nλ) , g̃ := g

n∑
i=1

dpi γ
i

∈ G

and sends g̃ to the Verifier V.

3. The hashing algorithm HFS,λ generates a λ-bit prime ` 6≡ 1 (mod p).

4. P computes the integers ri := di (mod `) (i = 1, · · · , n) and the integers q̃, r̃ such that

n∑
i=1

dpi γ
i = q̃ · `+ r̃ , r̃ ∈ [`]

and sends (r1, · · · , rn) ∈ [`]n to V .

5. P computes qg := gq̃ ∈ G and sends qg to V.

6. The hashing algorithm HFS,λ generates a λ-bit prime γ0.

7. P computes the integers q0, r0 such that

19

n∑
i=1

diγ
i
0 = q0 · `+ r0 , r0 ∈ [`].

He computes Q0 := aq0 ∈ G and sends Q0 to V.

8. V verifies that (r1, · · · , rn) ∈ [`]n and computes

b :=

n∏
i=1

bγ
i

i , b0 :=

n∏
i=1

b
γi0
i ∈ G , r̃ :=

n∑
i=1

rpi γ
i (mod `) , r0 :=

n∑
i=1

riγ
i
0 (mod `).

9. V verifies the equations

(Q0)`ar0
?
= b0

∧
(qg)`gr̃

?
= g̃

∧ (k∧
j=1

fj(r1, · · · , rn)
?≡ 0 (mod `)

)
and accepts the validity of the claim if and only if all equations hold.

Thus, the proof consists of four G-elements and n λ-bit integers. We note that the additional
challenge γ0 is necessary for the security of the protocol. A malicious Prover Pmal could forge a
fake proof as follows.

1. Pmal computes integers r1, · · · , rn ∈ [`] such that

n∑
i=1

dpi γ
i ≡

n∑
i=1

rpi γ
i (mod `) ,

k∧
j=1

fj(r1, · · · , rn) ≡ 0 (mod `)

but di 6≡ ri (mod `) for some or all indices i. The malicious Prover can succeed in this task with
non-negligible probability.

2. Pmal then sends (r1, · · · , rn) to the Verifier.

3. The Verifier is thus tricked into believing that fj(d1, · · · , dn) = 0, which might not necessarily
be the case.

Now, in our protocol, γ0 is randomly generated by the Fiat-Shamir heuristic after the Prover
sends (r1, · · · , rn). In a non-interactive setting, this means the hashing algorithm that generates
the challenge γ0 takes the λ-bit integers (r1, · · · , rn) as one of its inputs. Hence,

Pr
[n∑
i=1

diγ
i
0 ≡

n∑
i=1

riγ
i
0 (mod `)

∣∣∣ di 6≡ ri (mod `) for some i
]

= negl(λ).

So the elements (r1, · · · , rn) must be honestly computed in order to succeed at the additional
task of computing the element Q̂0 such that

(Q̂0)`ar̂0 =

n∏
i=1

a
γi0
i

with non-negligible probability. A special case that we will need repeatedly in the subsequent
protocols is where f is the (n+ 1)-variate polynomial

f(X1, · · · , Xn, Xn+1) :=
(n∏
i=1

Xi

)
−Xn+1.

We will need this case for some of the subsequent protocols for demonstrating pairwise disjointness
of committed data sets/multisets.

As was the case with AggKE-1, in the special case where a = g, the subprotocol where the

20

Prover computes the element g̃ and sends it to the Verifier is redundant. So the proof would be
smaller and the Prover’s computational burden would be substantially lower in this special case.

Proposition 3.10. The protocol PoMultPolyDLog is an argument of knowledge for the relation
RMultPolyDLog in the generic group model.

Proof. The low order assumption implies that except with negligible probability, any PPT
algorithm can output at most a unique tuple (d1, · · · , dn) ∈ Qn such that adi = bi. We first
show that the protocol is sound, i.e. in case of an accepting transcript, the Prover possesses
integers di such that

adi = bi ∀ i
∧

fj(d1, · · · , dn) = 0 ∀ j

except with negligible probability. We then show that an extractor E can efficiently extract the
integers di from sufficiently many accepting transcripts in expected polynomial runtime, using
the Chinese remainder theorem.

Since the equation Q`0a
r0 =

∏n
i=1 b

γi0
i holds, lemma 2.5 implies that with overwhelming

probability, the Prover can generate rationals d1, · · · , dn with numerators and denominators
bounded by 2poly(λ) such that

adi = bi for i = 1, · · · , n
∧ n∑

i=1

diγ
i
0 ≡

n∑
i=1

riγ
i
0 (mod `).

Since the challenge γ0 is randomly generated after the Prover has sent (r1, · · · , rn), γ0 is randomly
and uniformly distributed modulo `. Hence, the Schwartz-Zippel lemma implies that with
overwhelming probability, di ≡ ri (mod `) for every index i. Now, since the λ-bit prime ` is
randomly generated,

Pr
[
fj(d1, · · · , dn) ≡ 0 (mod `)

∣∣∣ fj(d1, · · · , dn) 6= 0
]

= negl(λ).

Hence, a union bound over the fj show that if fj(d1, · · · , dn) ≡ 0 (mod `) ∀ j, then fj(d1, · · · , dn) =
0 ∀ j except with negligible probability.

It remains to argue that the rationals di are integers. In the protocol, the Verifier independently
computes

r̃ :=

n∑
i=1

rpi γ
i ∈ [`]

So, the equation g̃ = (qg)`gr̃ and lemma 2.4 imply that the Prover can generate a rational d̃ with
its numerator and denominator bounded by 2poly(λ) and such that

g̃ = gd̃ , d̃ ≡ r̃ ≡
n∑
i=1

rpi γ
i ≡

n∑
i=1

dpi γ
i (mod `).

If d̃ /∈ Z, the tuple (g, g̃, d̃) ∈ G2 × (Q \ Z) would violate the fractional root assumption. So d̃
is an integer, except with negligible probability. Since the λ-bit prime ` is randomly generated
after g̃ has been sent by the Prover, the congruence

d̃ ≡
n∑
i=1

dpi γ
i (mod `)

implies that with overwhelming probability, d̃ =
n∑
i=1

dpi γ
i. Hence,

n∑
i=1

dpi γ
i ∈ Z and lemma 2.2 then

implies that di ∈ Z ∀ i, except with negligible probability.

21

Let N be the (polynomially bounded) number of queries from A to the group oracles O1, O2.
With overwhelming probability, 2N ≥ max{2|di| : 1 ≤ i ≤ n}. An extractor E can extract the
tuple (d1, · · · , dn) ∈ Zn as follows.

E makes queries to A, keeping the γ fixed and sampling the ` randomly and uniformly from the
set of λ-bit primes. Let `1, · · · , `k denote the prime challenges in the first k accepting transcripts
and let rj ∈ [`j]

n denote the tuple of remainders modulo `j in the j-th accepting transcript. E
uses the Chinese remainder theorem to efficiently compute the unique tuple e = (e1, · · · , en) ∈ Zn
such that

e ≡ rj (mod `j) ∀ j , 2|ei| <
k∏
j=1

`j ∀ i.

After receiving a new accepting transcript and updating the tuple e, the extractor E checks
whether aei = ai for i = 1, · · · , n. If so, he halts the process. Otherwise, he queries for another
accepting transcript and continues to update e by applying the Chinese remainder theorem to
the updated set of accepting transcripts.

When the number of accepting transcripts is N + 1, we have

max{2|di| : 1 ≤ i ≤ n} < 2N+1 <

N+1∏
j=1

`j

except with negligible probability. Thus, with overwhelming probability, ei = di ∀ i at this point.
Thus, E extracts the di in expected polynomial runtime.

We now discuss a relation (and its argument of knowledge) that is a dual to the relation AggKE-1.
Instead of the multiple exponents having a common base, we consider the case where they
exponentiate to the same power. We provide an argument of knowledge for the following relation:

RAggKE-2[(a1, · · · , an), A] =

((a1, · · · , an) ∈ Gn, A ∈ G)
(d1, · · · , dn) ∈ Zn) :

A = adii ∀ i

The most important special case is when A ∈ G is the accumulated digest of a data set and

the ai are membership witnesses of subsets. In this case, the protocol allows a Prover to show
that he possesses certain data sets inserted in to the accumulator, the membership witnesses for
which are held by the Verifier.

Given elements a1, · · · , an, A ∈ G such that

A = ad1
1 = · · · = adnn

where the integers di are known to him, the Prover can efficiently compute D := lcm(d1, · · · , dn)
and using Shamir’s trick, an element a ∈ G such that aD = A in runtime O(n log(n)). Now,
the protocols PoAggKE-1[a, (a1, · · · , an)] and PoKE[a, A], when combined, would demonstrate

that the Prover possesses the integers d̂i, D such that ad̂i = ai, a
D = A and hence, can generate

the discrete logarithms Dd̂−1 between ai and A for every i. However, these protocols do not
prove that these discrete logarithms are, in fact, integers. To that end, the Prover needs to
demonstrate that the rationals Dd̂−1

i (i = 1, · · · , n) are integers. This can be addressed by the
Prover verifiably sending the element

g̃ := g

n∑
i=1

(Dd̂−1)nλγi

∈ G

22

for some randomly generated λ-bit integer γ. lemma 2.2 and the fractional root assumption then
imply that with overwhelming probability, the Dd−1

i are integers.

Protocol 3.11. Proof of aggregated knowledge of exponents 2 (PoAggKE-2):

Parameters: G $←− GGen(λ), g ∈ G
Input: (a1, · · · , an) ∈ Gn, A ∈ G.

Claim: The Prover posseses integers d1, · · · , dn such that adii = A.

1. The Prover P computes the integers

D := lcm(d1, · · · , dn) , d̂i := D · d−1
i (i = 1, · · · , n).

Using Shamir’s trick, he computes an element a ∈ G such that aD = A and sends a to the Verifier
V along with a non-interactive PoKE[a, A].

2. The hashing algorithm HFS,λ generates a λ-bit integer γ.

3. P computes

p := NextPrime(nλ) , g̃ := g

n∑
i=1

dpi γ
i

∈ G
and sends it to the Verifier V.

4. P generates a non-interactive proof for AggKE-1[a, (a1, · · · , an)] and sends it to V.

5. The hashing algorithm HFS,λ generates a λ-bit prime ` 6≡ 1 (mod p).

6. P computes R := D (mod `), qa := a(D−R)/` and sends (qa,R) ∈ G× [`] to V.

7. P computes the integers r̂i := d̂i (mod `) (i = 1, · · · , n) and sends (r̂1, · · · , r̂n) ∈ [`]n to V.

8. P computes the integers ri := di (mod `) (i = 1, · · · , n) and the integers q̃, r̃ such that

n∑
i=1

dpi γ
i = q̃ · `+ r̃ , r̃ ∈ [`]

and sends qg := gq̃ ∈ G to V.

9. The hashing algorithm HFS,λ generates a λ-bit prime γ0.

10. P computes the integers q̂0, r̂0 such that

n∑
i=1

d̂iγ
i = q̂0 · `+ r̂0 , r̂0 ∈ [`]

and sends Q̂0 := aq̂0 ∈ G to V.

11. V verifies that (r̂1, · · · , r̂n, R) ∈ [`]n+1 and computes

ri ≡ r̂−1
i R (mod `) (i = 1, · · · , n) , r̃ :=

n∑
i=1

rpi γ
i (mod `) , r̂0 :=

n∑
i=1

r̂iγ
i
0 (mod `).

12. V verifies the equations

(qa)`aR
?
= A

∧
(Q̂0)`ar̂0

?
=

n∏
i=1

a
γi0
i

∧
(qg)`gr̃

?
= g̃.

He accepts the validity of the claim if and only if all three equations hold and the proofs for
PoKE[a, A], AggKE-1[a, (a1, · · · , an)] are valid.

23

Thus, the proof consists of a constant number of G-elements and 2n + O(1) λ-bit integers.
We note that the additional challenge γ0 is necessary for the security of this protocol. The Prover

commits the integer
n∑
i=1

dpi γ
i by computing g̃ := g

n∑
i=1

dpi γ
i

and sending it to the Verifier before the

challenge ` is generated by the Fiat-Shamir heuristic. However, a malicious Prover Pmal could
forge a fake proof as follows:

1. Pmal chooses integers e1, · · · , en and sends g

n∑
i=1

eiγ
i

to the Verifier instead of g

n∑
i=1

dpi γ
i

2. Pmal chooses integers r1, · · · , rn ∈ [`] such that

n∑
i=1

(Dd−1
i)γi ≡

n∑
i=1

(Dr−1
i)γi (mod `) ,

n∑
i=1

eiγ
i ≡

n∑
i=1

riγ
i (mod `),

but di 6≡ ri (mod `) for some or all indices i. The Prover Pmal can do so with non-negligible
probability.

3. Thus, the Verifier is tricked into believing that
n∑
i=1

dpi γ
i is an integer, which might not

necessarily be the case. In fact, even if the Fiat-Shamir heuristic outputs the additional challenge
γ0 before the remainders (r1, · · · , rn, R) are committed, Pmal can forge a fake proof with non-negligible
probability.

To address this, γ0 is randomly generated by the Fiat-Shamir heuristic after the Prover sends
the tuple (r̂1, · · · , r̂n, R) ∈ [`]n+1. Hence, we have

Pr
[n∑
i=1

diγ
i
0 ≡

n∑
i=1

riγ
i
0 (mod `)

∣∣∣ di 6≡ ri (mod `) for some i
]

= negl(λ).

Hence, the elements (r1, · · · , rn) must be honestly computed in order to succeed at the additional
challenge of computing the element Q̂0 such that

Q̂`0a
r̂0 =

n∏
i=1

a
γi0
i

with non-negligible probability.

The most expensive part of the proof generation is computing the element g̃. The effective
runtime of this part could be reduced if the Prover pre-computes the set

{g2i : 1 ≤ i ≤ N}

for an appropriately large integer N . The Verifier’s work can be reduced by the Prover sending

a succinct proof of (multi-)exponentiation for the computation
∏n
i=1 a

γi0
i , instead of the Verifier

independently performing this computation.

Theorem 3.12. The protocol PoAggKE-2 is an argument of knowledge for the relation RAggKE−2
in the generic group model.

Proof. The low order assumption implies that except with negligible probability, any PPT
algorithm can output at most a unique tuple (d1, · · · , dn) ∈ Qn such that adii = A. We first
show that the protocol is sound, i.e. in case of an accepting transcript, the Prover possesses
integers di such that adii = A ∀ i except with negligible probability. We then show that an
extractor E can efficiently extract the integers di from sufficiently many accepting transcripts
using the Chinese remainder theorem, in expected polynomial runtime.

24

The subprotocol PoAggKE-1[a, (a1, · · · , an)] demonstrates that with overwhelming probability,
the Prover can generate integers d̂1, · · · , d̂n bounded by 2poly(λ) such that

ai = ad̂i (i = 1. · · · , n).

The low order assumption implies that the tuple (d̂1, · · · , d̂n) ∈ Qn is unique except with negligible
probability. Furthermore, since the equation

Q̂`0a
r̂0 =

n∏
i=1

a
γi0
i = a

n∑
i=1

d̂iγ
i
0

∈ G

holds, it follows that either n∑
i=1

r̂iγ
i
0 ≡

n∑
i=1

d̂iγ
i
0 (mod `)

or the Prover can efficiently extract an `-th root of a ∈ G. Since the λ-bit prime is randomly
generated after a ∈ G has been sent by the Prover, the latter event would violate the adaptive root

assumption. So, with overwhelming probability,
n∑
i=1

r̂iγ
i
0 ≡

n∑
i=1

d̂iγ
i
0 (mod `). Now, since the λ-bit

challenge γ0 is randomly generated after the Prover sends the tuple (r̂1, · · · , r̂n, R) ∈ [`]n+1, the
Schwartz-Zippel lemma implies that with overwhelming probability, r̂i ≡ d̂i (mod `) ∀ i, which
completes the proof of soundness.

The equation (qa)`aR = A and lemma 2.4 imply that with overwhelming probability, the Prover
possesses a rational D ≡ R (mod `) such that aD = A. Thus, with overwhelming probability, the

rationals Dd̂1
−1
, · · · , Dd̂−1

n satisfy

Dd̂i
−1
≡ Rr̂−1

i (mod `) for every i.

Now, aDi = aDd̂i = Ad̂i for every i. In the protocol, the Verifier independently computes the λ-bit
integers

ri := Rr̂−1
i ≡ Dd̂

−1
i (mod `) (i = 1, · · · , n) , r̃ :=

n∑
i=1

rpi γ
i ≡

n∑
i=1

(Dd̂−1
i)pγi (mod `).

Hence, the equation (qg)`gr̃ = g̃ and lemma 2.5 imply that with overwhelming probability, the

Prover possesses a rational d̃ such that g̃ = gd̃. If d̃ 6≡ r̃ (mod `), the Prover could efficiently
extract an `-th root of a ∈ G, thus violating the adaptive root assumption. Hence, with
overwhelming probability,

d̃ ≡ r̃ ≡
n∑
i=1

rpi γ
i ≡

n∑
i=1

(
Dd̂i

−1)p
γi (mod `).

Since the λ-bit prime ` is randomly generated after the element g̃ ∈ G has been sent by the
Prover, it follows that with overwhelming probability,

d̃ =
n∑
i=1

(
Dd̂i

−1)p
γi.

Now, if d̃ were not an integer, the tuple (g, g̃, d̃) would violate the fractional root assumption.
Thus, with overwhelming probability, d̃ is an integer and since p > nλ, lemma 2.2 then implies

that with overwhelming probability, the rationals Dd̂i
−1

are integers.

25

Now, an extractor E can simulate the extractors for PoAggKE-1[a, (a1, · · · , an)] and PoKE[a, A]
to extract integers ê1, · · · , ên, E such that aêi = ai (i = 1, · · · , n) and aE = A in expected
polynomial runtime. Setting ei := E · ê−1

i yields aeii = A. Since we showed that the protocol is
sound, the low order assumption implies that with overwhelming probability, the ei are integers.

4 Protocols for arguments of disjointness

The goal of this section is to provide protocols for demonstrating disjointness of multiple
data sets/multisets. The proofs can be publicly verified against the succinct commitments
to these multisets. To that end, we first describe a protocol whereby an honest Prover can
show that the GCD of two discrete logarithms equals a third discrete logarithm while keeping
the communication complexity constant. One obvious application is proving disjointness of
sets/multisets in accumulators instantiated with hidden order groups. We formulate an argument
of knowledge for the relation

RGCD[(a1, b1), (a2, b2), (a3, b3)] = {((ai, bi ∈ G); di ∈ Z) : bi = adii , gcd(d1, d2) = d3}.

We construct a protocol that has communication complexity independent of the elements ai, bi.
The protocol rests on the basic fact that

d3 = ±gcd(d1, d2) ⇐⇒ (d1 ≡ d2 ≡ 0 (mod d3))
∧ (

∃ (x1, x2) ∈ Z2 : d3 = x1d1 + x2d2

)
.

Protocol 4.1. Proof of the greatest common divisor (PoGCD):

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a1, a2, a3, b1, b2, b3 ∈ G.

Claim: The Prover possesses integers d1, d2, d3 such that:

- ad1
1 = b1, ad2

2 = b2, ad3
3 = b3

- gcd(d1, d2) = ±d3

1. The Prover P computes b1,2 := ad2
1 , b1,3 := ad3

1 ∈ G and sends them to the Verifier V. 2.
P generates non-interactive proofs for EqDLog[(a2, b2), (a1, b1,2)], EqDLog[(a3, b3), (a1, b1,3)] and
sends them to V.
3. P generates non-interactive proofs for PoKE[b1,3, b1] and PoKE[b1,3, b1,2] and sends them to V.
4. P uses the Euclidean algorithm to compute integers e1, e2 such that

e1d1 + e2d2 = d3 , |e1| < |d2| , |e2| < |d1|.

5. P computes
b̃1 := be11 , b̃1,2 := be21,2 ∈ G

and sends them to V along with non-interactive proofs for PoKE[b1, b̃1] and PoKE[b1,2, b̃1,2].

6. V verifies all of the proofs he receives in addition to the equation b̃1 · b̃1,2
?
= b1,3. He accepts

the validity of the claim if and only if all of these proofs are valid.

Theorem 4.2. The Protocol PoGCD is an argument of knowledge for the relation RGCD in the
generic group model.

Proof. Since we showed that PoEqDLog is an argument of knowledge for the relation REqDLog, we
may assume without loss of generality that - with notations as in the protocol PoGCD -

26

a1 = a2 = a3 , b1,2 = b2 , b1,3 = b3 , b̃2 = b̃1,2.

An extractor E can simulate the extractors for the subprotocols PoKE[a1, bi] (i = 1, 2, 3),
PoKE[bi, b̃i] (i = 1, 2) to extract integers d1, d2, d3, e1, e2 such that

adi1 = bi ∈ G (i = 1, 2, 3) , beii = b̃i ∈ G (i = 1, 2).

Since the PoKE extractors runs in expected polynomial runtime, the same holds for E . Now, the
equation b̃1 · b̃2 = b3 ∈ G and the low order assumption imply that with overwhelming probability,
d3 = d1e1 + d2e2 and hence, d3 is divisible gcd(d1, d2). On the other hand, the subprotocols
PoKE[b3, b1], PoKE[b3, b2] and the low order assumption imply that with overwhelming probability,
d3 divides both d1 and d2 and hence, divides gcd(d1, d2). This foces the equality gcd(d1, d2) =
d3.

An important special case is where gcd(d1, d2) = 1. In this case, Step 3 is redundant and hence,
the proof size is smaller. We call this special case the Protocol for Relatively Prime Discrete
Logarithms or RelPrimeDLog for short:

RRelPrimeDLog[(a1, b1), (a2, b2)] =
{

((ai, bi ∈ G); di ∈ Z) : bi = adii , gcd(d1, d2) = 1
}
.

Protocol 4.3. Proof of Relatively Prime Discrete Logarithms (PoRelPrimeDLog):

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a1, a2, b1, b2 ∈ G.

Claim: The Prover possesses integers d1, d2 such that:

- ad1
1 = b1, ad2

2 = b2
- gcd(d1, d2) = 1

1. The Prover P computes b1,2 := ad2
1 and sends it to the Verifier V along with a

non-interactive proof for EqDLog[(a2, b2), (a1, b1,2)].
2. P uses the Euclidean algorithm to compute integers e1, e2 such that e1d1 + e2d2 = 1.
3. P computes

b̃1 := be11 , b̃1,2 := be21,2 ∈ G

and sends them to V along with non-interactive proofs for PoKE[b1, b̃1] and PoKE[b1,2, b̃1,2].

4. V verifies the equation b̃1 · b̃1,2
?
= a1 ∈ G and the proofs for EqDLog[(a2, b2), (a1, b1,2)],

PoKE[b1, b̃1] and PoKE[b1,2, b̃1,2]. He accepts the validity of the claim if and only if all of these
proofs are valid.

Proposition 4.4. The Protocol PoRelPrimeDLog is an argument of knowledge for the relation
RRelPrimeDLog in the generic group model.

Proof. This is a special case of Proposition 4.2.

It is easy to see that the protocol PoGCD may be combined with the protcol PoMultPolyDLog
to provide an argument of knowledge for the relation

RLCM[(a1, b1), (a2, b2), (a3, b3)] = {((ai, bi ∈ G); di ∈ Z) : bi = adii , lcm(d1, d2) = d3}.

This argument of knowledge can demonstrate that for data sets/multisets D1,D2,D3, we have

D3 = D1 ∪ D2

27

by setting
di =

∏
d∈Di

x (i = 1, 2, 3).

4.1 Protocols for aggregated arguments of disjointness

We now use the protocols PoAggKE-1 and PoAggKE-2 and a few more techniques to generalize
the protocol PoRelPrimeDLog to multiple discrete logarithms. Consider a setting where we have
n accumulators Acc1, · · · ,Accn instantiated in the same group G and with the common genesis
state g ∈ G. Let Di denote the data inserted into Acci and let Ai denote the accumulated digest
of Acci. Thus,

Ai = Com(g,Di) = gΠ(Di).

Suppose a Prover needs to demonstrate to a Verifier (with access to the accumulated digests)
that the data sets/multisets Di are pairwise disjoint, while keeping the communication complexity
to a bare minimum. In particular, the Verifier should not need to access the data sets/multisets
Di which might be too large for the storage capacity of the verifying node. A straightforward way
would be to provide the

(
n
2

)
proofs of pairwise disjointness using the protocol PoRelPrimeDLog.

But this would entail O(n2) group elements and O(n2) λ-bit integers, which we would like
to avoid. Instead, we provide a protocol whereby the Prover can demonstrate the pairwise
disjointness with a constant number of G-elements and 2n+ O(1) λ-bit integers.

We call the next protocol the Aggregated Knowledge of Relatively Prime Exponents 1 or
AggRelPrimeDLog-1 for short. We provide an argument of knowledge for the relation:

RAggRelPrimeDLog-1[a, a] =

(a ∈ G, a := (a1, · · · , an) ∈ Gn);
(d1, · · · , dn) ∈ Zn) :
ai = adi ∀ i , gcd(di, dj) = 1) ∀ i 6= j

The protocol rests on the following elementary lemma.

Lemma 4.5. Let d1, · · · , dn be non-zero integers. Set

D :=

n∏
i=1

di , d̂i := Ddi
−1 (i = 1, · · · , n) , D̂ :=

n∑
i=1

d̂i.

Then
gcd(di, dj) = 1 ∀ i 6= j ⇐⇒ gcd(D, D̂) = 1.

Proof. First, suppose there exists a pair i, j such that gcd(di, dj) > 1. Then gcd(di, dj) divides

d̂k for every index k and in particular, gcd(di, dj) divides D̂. Hence, gcd(D, D̂) is divisible by
gcd(di, dj).

Conversely, suppose gcd(di, dj) = 1 ∀ i 6= j. Then for every index i, D̂ ≡ d̂i (mod di) and

hence, gcd(D̂, di) = gcd(d̂i, di) = 1. Thus, gcd(D, D̂) = 1.

Recall that given integers d1, · · · , dn and elements a,A ∈ G such that

aD = a

n∏
i=1

di
= A,

the RootFactor algorithm allows us to compute elements ai such that adii = A in runtime
O
(

log(D) · log(log(D))
)
, whereas the näıve approach would take runtime O(log2(D)). Thus, a

Prover can compute the element

28

Â :=
n∏
i=1

ai ∈ G

in runtime O
(

log(D)·log(log(D))
)

with the RootFactor algorithm followed by n group multiplications.

Protocol 4.6. Proof of Aggregated Knowledge of Relatively Prime Discrete Logarithms 1
(PoAggRelPrimeDLog-1) :

Parameters: G $←− GGen(λ), g ∈ G.

Input: Element a ∈ G, (a1, · · · , an) ∈ Gn.

Claim: The Prover possesses integers d1, · · · , dn such that:

- adi = ai for i = 1, · · · , n.

- gcd(di, dj) = 1 for every pair i 6= j.

1. The Prover P computes the integers D :=
∏n
i=1 di , D̂ :=

∑n
i=1(D · d−1

i).

2. P computes A := aD, Â := aD̂ ∈ G (the latter using the RootFactor algorithm) and sends
A, Â to the Verifier V.

3. P generates a non-interactive proof for MultPolyDLog[a, (a1, · · · , an, A, Â), (f, f̂)] where

f(X1, · · · , Xn+2) :=
(n∏
i=1

Xi

)
−Xn+1 , f̂(X1, · · · , Xn+2) :=

(n∑
i=1

∏
1≤j≤n
j 6=i

Xj

)
−Xn+2

and sends the proof to V.

4. P generates a non-interactive proof for RelPrimeDLog[(a,A), (a, Â)] and sends it to V.

5. V verifies the three proofs and accepts the validity of the claim if and only if all proofs are
valid.

Recall that the protocol PoMultPolyDLog[a, (a1, · · · , an, A, Â), (f, f̂)] contains
PoAggKE-1[a, (a1, · · · , an)] as a subprotocol. So the protocol PoAggRelPrimeDLog-1 demonstrates
that there exist n integers di such that adi = ai and the product

∏n
i=1 di is relative prime with

the integer given by the (n− 1)-th elementary symmetric function

n∑
i=1

∏
1≤j≤n
j 6=i

dj .

By lemma 4.5, this is equivalent to the integers di being pairwise co-prime. Thus, the proof
consists of a constant number of G-elements and 2n+ O(1) λ-bit integers.

In the special case where a is an element randomly generated by the oracle, the fractional
root assumption implies that it is infeasible to compute any roots of a. Hence, the subprotocol
of PoAggKE-1 or PoMultPolyDLog where the Prover computes the element

g̃ := g

n∑
i=1

dpi γ
i

∈ G

and sends it to the Verifier is redundant. So the proof would be a bit smaller and the Prover’s
computational burden would be substantially lower in this special case.

Theorem 4.7. The protocol PoAggRelPrimeDLog−1 is an argument of knowledge for the relation
RAggRelPrimeDLog−1 in the generic group model.

29

Proof. An extractor E can, with overwhelming probability, simulate the extractor for the
subprotocol PoMultPolyDLog to extract integers D, D̂, d1, · · · , dn such that

D =
n∏
i=1

di , D̂ =
n∑
i=1

D

di
, adi = ai ∀ i , aD = A , aD̂ = Â

in expected polynomial runtime. Furthermore, the subprotocol PoRelPrimeDLog[(a,A), (a, Â)]
implies that with overwhelming probability, gcd(D, D̂) = 1. Hence, by lemma 4.5, the integers
di are pairwise co-prime.

Given elements a1, a2 ∈ G, (b1, · · · , bm) ∈ Gm, (c1, · · · , cm) ∈ Gn and equations

ad1
1 = b1, · · · , adm1 = bm , ae12 = c1, · · · , aen2 = cn,

a Prover may provide a proof that he possesses the integers d1, · · · , dm, e1, · · · , en and that every
pair di, ej is relatively prime. Our primary use case is demonstrating the disjointness of two
families of accumulators. Clearly, the latter part is equivalent to the the integers d :=

∏m
i=1 di,

e :=
∏n
j=1 ej being relatively prime. Our approach is to first compute the elements B = ad1, C :=

ae2. We then use the protocol RelPrimeDLog to show that gcd(d, e) = 1.

We call the next protocol the Aggregated Knowledge of Relatively Prime Exponents 2 or
AggRelPrimeDLog-2 for short. We provide an argument of knowledge for the following relation:

RAggRelPrimeDLog-2[a1, a2, b, c] =

((a1, a2) ∈ G2,
b := (b1, · · · , bm) ∈ Gm , c := (c1, · · · , cn) ∈ Gn);
((d1, · · · , dm) ∈ Zm, (e1, · · · , en) ∈ Zn) :

(bi = adi1

∧
cj = a

ej
2

∧
gcd(di, ej) = 1) ∀ i, j

Protocol 4.8. Proof of Aggregated Knowledge of Relatively Prime Discrete Logarithms 2
(PoAggRelPrimeDLog-2) :

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a1, a2 ∈ G; Elements b = (b1, · · · , bm) ∈ Gm, c = (c1, · · · , cn) ∈ Gn.

Claim: The Prover possesses integers d1, · · · , dm, e1, · · · , en such that:

- adi1 = bi for i = 1, · · · ,m.

- a
ej
2 = cj for j = 1, · · · , n.

- gcd(di, ej) = 1 for every pair i, j.

1. The Prover P computes the integers d :=
∏m
i=1 dm , e :=

∏n
j=1 en.

2. P computes B := ad1, C := ae2 ∈ G and sends B,C to the Verifier V.

3. P generates a non-interactive proof for MultPolyDLog[a1, (b1, · · · , bm, B), f1] where

f1(X1, · · · , Xm+1) :=
(m∏
i=1

Xi

)
−Xm+1

and sends it to V.

4. P generates a non-interactive proof for MultPolyDLog[a2, (c1, · · · , cn, C), f2] where

f2(X1, · · · , Xn+1) :=
(n∏
j=1

Xj

)
−Xn+1

30

and sends it to V.

5. P generates a non-interactive proof for RelPrimeDLog[(a1, B), (a2, C)] and sends it to V.

6. V accepts the validity of the claim if and only if all three proofs are valid.

Thus, the proof consists of a constant number of G-elements and 2(m+n) + O(1) λ-bit integers.
We now prove the security of the protocol.

Proposition 4.9. The Protocol AggRelPrimeDLog-2 is an argument of knowledge for the relation
RAggRelPrimeDLog−2 in the generic group model.

Proof. An extractor E can simulate the extractors for the subprotocols

PoMultPolyDLog[a1, (b1, · · · , bm, B), f1]
∧

PoMultPolyDLog[a2, (c1, · · · , cn, C), f2]

to extract integers d1, · · · , dm, e1, · · · , en such that

adi1 = bi , a
ej
2 = cj , a

m∏
i=1

di

1 = B , a

n∏
j=1

ej

2 = C , 1 ≤ i ≤ m , 1 ≤ j ≤ n.

Furthermore, the subprotocol PoRelPrimeDLog[(a1, B), (a2, C)] and the low order assumption
imply that with overwhelming probability, gcd(

∏m
i=1 di ,

∏n
j=1 ej) = 1. This, in turn, implies

that gcd(di, ej) = 1 for every pair i, j.

4.2 Protocols for disjointness of sets/multisets in a single accumulator

We now discuss a dual to the protocol PoAggRelPrimeDLog-1. Consider a setting where we
have data sets/multisets D1, · · · ,Dn inserted into an accumulator. Let A denote the accumulated
digest, wi the witness for Di and di := Π(Di). Suppose a Prover needs to demonstrate that the
multisets Di are pairwise disjoint to a Verifier who has access to the witnesses w1, · · · , wn but
not the data multisets. A straightforward approach would be to provide a proof for the relation
RelPrimeDLog[(wi, A), (wj , A)] for each pair i, j. But such a proof would entail O(n2) G-elements
and O(n2) λ-bit integers, which is impractical for larger values of n.

Instead, we provide a protocol whereby the proof consists of a constant number of G-elements
and n λ-bit integers. The protocol rests on two simple observations. First, note that for integers
d1, · · · , dn,

gcd(di, dj) = 1 ∀ i 6= j ⇐⇒
n∏
i=1

di = lcm(d1, · · · , dn),

as can be easily proved by induction. Secondly, if an element w ∈ G can be expressed in the form

w =

n∏
i=1

wxii , (x1, · · · , xn) ∈ Zn,

then

wlcm(d1,··· ,dn) = Ak where k :=

n∑
i=1

xi
lcm(d1, · · · , dn)

di
.

Furthermore, the Prover can efficiently compute the integers

d :=
n∏
i=1

di = lcm(d1, · · · , dn) , d̂i :=
∏

1≤j≤n
j 6=i

dj (i = 1, · · · , n) , d̂ :=
n∑
i=1

d̂i.

31

Now, d is relatively prime to d̂ by lemma 4.5. Hence, the Prover can efficiently compute integers
e, ê such that

de+ d̂ê = 1 , Ae · (
n∏
i=1

wi)
ê = w.

In particular, since
∏n
i=1wi is publicly computable, the Prover can demonstrate - with constant

communication complexity - that w is expressible as a product
∏n
i=1w

xi
i where the xi are integers

known to him. If the Prover can also demonstrate that

w

n∏
i=1

di
= A,

(with a subprotocol virtually identical to MultPolyDLog), then this implies that lcm(d1, · · · , dn)
divides the product

∏n
i=1 di, which forces equality between these two integers. In what follows,

we provide an argument of knowledge for the relation

RAggRelPrimeDLog-3[(w1, · · · , wn), A] =

(A ∈ G, (w1, · · · , wn) ∈ Gn);
((d1, · · · , dn) ∈ Zn) :

wdii = A ∀ i
∧

gcd(di, dj) = 1 ∀ i, j : i 6= j

Protocol 4.10. Proof of Aggregated Knowledge of Relatively Prime Discrete Logarithms 3
(PoAggRelPrimeDLog-3):

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements (w1, · · · , wn) ∈ Gn , A ∈ G
Claim: The Prover possesses integers d1, · · · , dn such that:

- wdii = A for i = 1, · · · , n.

- gcd(di, dj) = 1 for every pair i 6= j.

1. The Prover P computes the integers

D :=

n∏
i=1

di , d̂i =
∏

1≤j≤n
j 6=i

dj (i = 1, · · · , n) , D̂ :=

n∑
i=1

d̂i.

2. Using Shamir’s trick, P computes an element w ∈ G such that wD = A and sends w to the
Verifier V.

3. P uses the Euclidean algorithm to compute integers e, ê such that

e ·D + ê · D̂ = gcd(D, D̂) = 1 , |e| < |D̂|, |ê| < |D|.

4. P computes the elements

Ã := Ae , W :=
(n∏
i=1

wi
)ê ∈ G

and sends Ã, W to V along with non-interactive proofs for PoKE[A, Ã] and PoKE[(
∏n
i=1wi), W].

5. The hashing algorithm HFS,λ generates a λ-bit prime γ.

6. P computes

p := NextPrime(nλ) , g̃ := g

n∑
i=1

dpi γ
i

∈ G

32

and sends g̃ to V.

7. The hashing algorithm HFS,λ generates a λ-bit prime ` 6≡ 1 (mod p).

8. P computes
R := D (mod `) , qw := w(D−R)/`

and sends ŵ ∈ G to V.

9. P computes the integers

r̂i := d̂i (mod `) , ri := di (mod `)

and sends the tuple (r1, · · · , rn) ∈ [`]n to V.

10. P computes the integers q̃, r̃ such that

n∑
i=1

dpi γ
i = q̃ · `+ r̃ , r̃ ∈ [`]

and sends qg := gq̃ ∈ G to V.

11. The hashing algorithm HFS,λ generates a λ-bit prime γ0.

12. P computes the integers q̂0, r̂0 such that

n∑
i=1

d̂iγ
i = q̂0 · `+ r̂0 , r̂0 ∈ [`]

and sends Q̂0 := wq̂0 ∈ G to V.

13. V verifies that (r1, · · · , rn) ∈ [`]n and computes the λ-bit integers

R :=
n∏
i=1

ri (mod `) , r̂i = R · r−1
i (mod `) (i = 1, · · · , n),

r̃ :=
n∑
i=1

rpi γ
i (mod `) , r̂0 :=

n∑
i=1

r̂iγ
i
0 (mod `).

14. V computes the elements
∏n
i=1wi ,

∏n
i=1w

γi

i ,
∏n
i=1w

γi0
i ∈ G.

15. V verifies the equations

(Q̂0)`wr̂0
?
=

n∏
i=1

w
γi0
i

∧
Ã ·W ?

= w
∧

(qw)`wR
?
= A

∧
(qg)`gr̃

?
= g̃

and the two PoKEs from Step 4. He accepts if and only if all four equations hold and the two
PoKEs are valid.

The proof consists of O(1) G-elements and n + O(1) λ-bit integers. The most expensive part
of the proof generation is computing the element g̃. The effective runtime can be reduced if the
Prover pre-computes the set

{g2i : 1 ≤ i ≤ N} ⊆ G

for an appropriately large integer N . If n is large, the Verifier’s work can be reduced by the Prover

sending succinct proofs of multi-exponentiation for the computations
∏n
i=1w

γi

i ,
∏n
i=1w

γi0
i instead

of the Verifier computing them independently.

33

Theorem 4.11. The protocol PoAggRelPrimeDLog− 3 is an argument of knowledge for the
relation RAggRelPrimeDLog−3 in the generic group model.

Proof. The low order assumption implies that except with negligible probability, any PPT
algorithm can generate at most a unique tuple (d1, · · · , dn) ∈ Qn such that wdii = A. We
first show that the protocol is sound, i.e. in case of an accepting transcript, the Prover can
generate integers di bounded by 2poly(λ) such that

wdii = A ∀ i ∧ gcd(di, dj) = 1 ∀ i, j ,

except with negligible probability. We then show that an extractor E can efficiently extract the
integers di from sufficiently many accepting transcripts using the Chinese remainder theorem, in
expected polynomial runtime.

Since the λ-bit challenge γ0 is generated after the Prover sends the tuple (r1, · · · , rn) ∈ [`]n,
the equation

(Q̂0)`wr̂0 =

n∏
i=1

w
γi0
i ,

and lemma 2.5 imply that with overwhelming probability, the Prover possesses rationals d̂1, · · · , d̂n
such that wd̂i = wi ∈ G , d̂i ≡ r̂i (mod `) for every i. Furthermore, the equation (qw)`wR = A
implies that with overwhelming probability, the Prover possesses a rational D such that D ≡
R (mod `) , wD = A. Now,

D ≡ R ≡
n∏
i=1

ri ≡
n∏
i=1

di (mod `)

and since the λ-bit prime ` is randomly generated after the Prover sends w, it follows that with
overwhelming probability, D =

∏n
i=1Dd̂

−1
i . Setting di := Dd̂−1

i yields wdii = A, D =
∏n
i=1 di.

The equation (qg)`gr̃ = g̃ and lemma 2.4 imply that with overwhelming probability, the Prover
possesses a rational d̃ such that

g̃ = gd̃ , d̃ ≡ r̃ ≡
n∑
i=1

rpi γ
i ≡

n∑
i=1

dpi γ
i (mod `).

Since the λ-bit prime ` is randomly generated after g̃ has been sent by the Prover, it follows that
with overwhelming probability,

d̃ =
n∑
i=1

dpi γ
i.

The fractional root assumption implies that d̃ is an integer except with negligible probability. So∑n
i=1 d

p
i γ
i ∈ Z and lemma 2.2 then implies that with overwhelming probability, the di are all

integers.

Furthermore, since the equation Ã · W = w ∈ G and the proofs for PoKE[A, Ã] and
PoKE[(

∏n
i=1wi), W] are valid, it follows that, in particular, w is expressible as a product

w =

n∏
i=1

wxii , (x1, · · · , xn) ∈ Zn , |xi| < 2poly(λ).

for some tuple (x1, · · · , xn) known to the Prover. Hence,

wlcm(d1,··· ,dn) = Ak = w
k
n∏
i=1

di
∈ G

for some integer k known to the Prover. Now, the low order assumption implies that with

34

overwhelming probability, lcm(d1, · · · , dn) is divisible by the product
∏n
i=1 di, which forces

equality between these two integers. Hence, the integers di are pairwise co-prime. This completes
the proof of the soundness of the protocol.

Let N be the (polynomially bounded) number of queries from A to the group oracles O1, O2.
With overwhelming probability, 2N ≥ max{2|di| : 1 ≤ i ≤ n}. An extractor E can extract the
tuple (d1, · · · , dn) ∈ Zn as follows.

E makes queries to A, keeping the γ fixed and sampling the ` randomly and uniformly from the
set of λ-bit primes. Let `1, · · · , `k denote the prime challenges in the first k accepting transcripts
and let rj ∈ [`j]

n denote the tuple of remainders modulo `j in the j-th accepting transcript. E
uses the Chinese remainder theorem to efficiently compute the unique tuple e = (e1, · · · , en) ∈ Zn
such that

e ≡ rj (mod `j) ∀ j , 2|ei| <
k∏
j=1

`j ∀ i.

After receiving a new accepting transcript and updating the tuple e, the extractor E checks
whether aeii = A for i = 1, · · · , n. If so, he halts the process. Otherwise, he queries for another
accepting transcript and continues to update e by applying the Chinese remainder theorem to
the updated list of accepting transcripts.

When the number of accepting transcripts is N + 1, we have

max{2|di| : 1 ≤ i ≤ n} < 2N+1 <

N+1∏
j=1

`j

except with negligible probability. Thus, with overwhelming probability, ei = di ∀ i at this point.
Thus, E extracts the di in expected polynomial runtime.

Next, we discuss a dual to the Protocol AggRelPrimeDLog-2. Given elements B,C ∈ G and
subsets

b = {b1, · · · , bm} ∈ Gm , c = {c1, · · · , cn} ∈ Gn,

an honest Prover may provide a proof that he possesses integers {d1, · · · , dm}, {e1, · · · , en} such
that bdii = B, c

ej
j = C and every pair di, ej is relatively prime. We call this relation the

Aggregated Relatively Prime Discrete Logarithms 4 or AggRelPrimeDLog-4 for short. We provide
an argument of knowledge for the following relation:

RAggRelPrimeDLog-4[b, c, B,C] =

((B,C) ∈ G2,
b = (b1, · · · , bm) ∈ Gm , c = (c1, · · · , cn) ∈ Gn);
((d1, · · · , dm) ∈ Zm, (e1, · · · , en) ∈ Zn) :

(B = bdii , C = c
ej
j

∧
gcd(di, ej) = 1) ∀ i, j

An example: Consider the case where B, C ∈ G are accumulated digests for accumulators Acc1

and Acc2 respectively. Let D1, · · · ,Dm and E1, · · · , Em be data sets/multisets inserted into the
two accumulators. Let wi, uj denote the membership witnesses for Di, Ej and let di, ej denote
the products of elements of Di, Ej respectively(1 ≤ i ≤ m, 1 ≤ j ≤ n). Then

wdii = B , u
ej
j = C.

Suppose a Prover needs to prove the disjointness of the unions

35

D :=
m⋃
i=1

Di , E :=
n⋃
j=1

Ej

to a Verifier with access to the witnesses W := {w1, · · · , wm} , U := {u1, · · · , un}.
A straightforward approach would be to provide m · n distinct proofs that gcd(di, ej) = 1

for every pair di, ej using the protocol PoRelPrimeDLog. But such a proof would entail O(mn)
elements of G in addition to O(mn) λ-bit integers. Instead, the Prover could simply send a
non-interactive proof for the relation AggRelPrimeDLog-4[(W, B), (U , C)]. The proof consists of
a constant number of G-elements and 2(m + n) + O(1) λ-bit integers. The protocol hinges on
the simple observation that the following are equivalent:

- gcd(di, ej) = 1 for every pair i, j.

- gcd
(
lcm(d1, · · · , dm), lcm(e1, · · · , en)

)
= 1

Protocol 4.12. Proof of Aggregated Knowledge of Relatively Prime Discrete Logarithms 4
(PoAggRelPrimeDLog-4)

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements B,C ∈ G, b = (b1, · · · , bm) ∈ Gm, c = (c1, · · · , cn) ∈ Gn

Claim: The Prover possesses integers d1, · · · , dm, e1, · · · , en such that:

- bdii = B for i = 1, · · · ,m.

- c
ej
j = C for j = 1, · · · , n.

- gcd(di, ej) = 1 for every pair i, j.

1. Using Shamir’s trick, P computes elements b, c ∈ G such that

blcm(d1,··· ,dm) = B , clcm(e1,··· ,en) = C

and sends b, c to the Verifier V.

2. P generates non-interactive proofs for AggKE-2[b, B] and AggKE-2[c, C] and sends the proofs
to V.

3. P generates non-interactive proofs for AggKE-1[b, b] and AggKE-1[c, c] and sends the proofs
to V.

4. P generates a non-interactive proof for RelPrime[(b, B), (c, C)] and sends the proof to V.

5. V verifies all of these proofs and accepts the validity of the claim if and only if all proofs are
valid.

Thus, the proof for AggRelPrimeDLog-4 consists of a constant number of G-elements and
2(m+ n) + O(1) λ-bit integers.

Proposition 4.13. The protocol AggRelPrimeDLog-4 is an argument of knowledge for the relation
RAggRelPrimeDLog−4 in the generic group model.

Proof. An extractor E can simulate the extractors for AggKE-2[b, B] and AggKE-1[b, b] to
extract integers d, d1, · · · , dm, d̂1, · · · , d̂m such that

bd = B , bd̂i = bi , b
di
i = B ∀ i.

Similarly, E can simulate the extractors for AggKE-2[c, C] and AggKE-1[c, c] to extract integers
e, e1, · · · , en, ê1, · · · , ên such that

36

ce = C , cêj = cj , c
ej
j = C ∀ j.

The low order assumption implies that with overwhelming probability,

di · d̂i = d ∀ i , ej · êj = e ∀ j

and in particular, d, e are divisible by lcm(d1, · · · , dm), lcm(e1, · · · , en) respectively. Lastly, the
proof for RelPrimeDLog[(b, B), (c, C)] implies that with overwhelming probability, gcd(d, e) = 1.
This implies that the integers lcm(d1, · · · , dm), lcm(e1, · · · , en) are relatively prime and hence
with overwhelming probability, gcd(di, ej) = 1 for each pair i, j.

5 Applications

In this section, we discuss two potential applications of the techniques developed in this paper:
verifiable outsourcing of data and sharded stateless blockchains.

5.1 Verifiably outsourcing storage

The protocols we have developed so far allow us to build a mechanism whereby a client can
verifiably outsource data multisets to a server node. The client stores constant-sized commitments
to these multisets and can query the server for information regarding these data sets. The server
node, in turn, submits this information with proofs that can be publicly verified against the
constant-sized commitments stored by the client.

As before, G is a group of hidden order in which we assume the adaptive root and strong-RSA
assumptions to hold. The (fixed) element g ∈ G is a randomly generated element of G. For a
multiset M, the commitment to M is given by the element

Com(g,M) := gΠ(M) ∈ G

where Π(M) is the product of all elements of M, with the appropriate multiplicities.

Proof of storage: To ask the server P to prove that he is storing the data multiset M, the
client V can generate a random element g1 ∈ G and ask the server to provide the element

Com(g1,M) := g
Π(M)
1 ∈ G

along with a non-interactive proof for EqDLog[(g, Com(g,M)), (g1, Com(g1,M))]. The communication
complexity is constant and in particular, is independent of the size of M.

If the client needs the proof of storage for multiple data multisets M1, · · · ,Mn, they may
proceed as follows:

1. The hashing algorithm HFS,λ generates a λ-bit prime γ and a group element g1.

2. The Prover P computes

h :=
n∏
i=1

Com(g,Mi)
γi , h1 := g

n∑
i=1

Π(Mi)γ
i

1

and sends h1 to the Verifier V along with a non-interactive proof for EqDLog[(g, h), (g1, h1)].

3. V independently computes h and accepts if and only if the EqDLog proof is valid.

Thus, the proof is constant-sized irrespective of the number of data sets/multisets or their sizes.

Updates: When the data multiset is to be updated, the client sends the changes to the server.

37

The server stores these changes and sends back the updated commitment to the multiset, along
with a non-interactive proof of exponentiation (PoE) so that the client can efficiently verify that
the new commitment is the correct one.

Multiset sums: For multisets M1, · · · ,Mn, the server node can verifiably send the client the
commitment A∑ for the sum

n∑
i=1

Mi :=
{(n∑

i=1

mult(Mi, x)
)
× x : x ∈

n⋃
i=1

Set(Mi)
}

using the Protocol

PoMultPolyDLog[g, (A1, · · · , An, A∑),
(n∏
i=1

Xi

)
−Xn+1].

The proof consists of a constant number of G-elements and 2n λ-bit integers.

Multiset differences: For multisets M, N , the difference M\N has commitment

Com(g,M\N) = g
Π(M)

Π(M∩N) .

So the Prover can combine the Protocols PoGCD and PoMultPolyDLog to verifiably send the
commitment to M\N .

Disjointness: The server node can verifiably demonstrate that the multisets M1, · · · ,Mn are
pairwise disjoint using the protocol AggRelPrimeDLog-1[g, (A1, · · · , An)]. Similarly, for any
subset I ⊆ {1, · · · , n} of indices, the server node can use the protocol AggRelPrimeDLog-2 to
verifiably show that the multisets

M̃1 =
⋃
i∈I
Mi , M̃2 =

⋃
j∈{1,··· ,n}\I

Mj

are disjoint. In both cases, the proofs, consist of O(1) group elements and 2n + O(1) λ-bit
integers.

Underlying sets: Given commitments to two multisets M, N , if the client needs to know
whether the underlying sets coincide or if one is contained in the other, the server node can
demonstrate this using the protocol PoConSets or PoNonConSets. The proof is constant-sized in
each case.

5.1.1 Multiset intersections

Consider a setting where a client V who stores commitments Ai := Com(g,Mi) for data multisets
M1, · · · ,Mn needs a commitment Com(g,M∩) to the intersection

M∩ :=

n⋂
i=1

Mi.

In keeping with the rest of this paper, we would like to design a protocol that allows the Prover
to do so while keeping the communication complexity to a minimum. Note that

d = gcd(d1, · · · , dn) ⇐⇒ (d|di ∀ i)
∧
∃ (e1, · · · , en) ∈ Zn :

n∑
i=1

eidi = d.

38

Furthermore,

d = gcd(d1, · · · , dn) ⇐⇒
(
d1d
−1, · · · , dnd−1

)
∈ Zn

∧
gcd

(
d1d
−1, · · · , dnd−1

)
= 1.

Hence, by changing the base from g to a := gd, we can reduce this to the case where the GCD of
the n integers is 1. So, the Prover can verifiably send the commitment for M∩ as follows:

Protocol 5.1. Protocol for the intersection of multisets.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Commitments Ai = Com(g,Mi) := gΠ(Mi) for multisets Mi ; an element A∩ ∈ G

Claim: A∩ = Com(g,
n⋂
i=1
Mi) := g

Π(
n⋂
i=1
Mi)

.

1. The Prover P computes the integers di := Π(Mi)

Π(
n⋂
i=1
Mi)

(i = 1, · · · , n).

2. P generates a non-interactive proof for AggKE-1[A∩, (A1, · · · , An)] and sends it to the Verifier.

3. P uses the Euclidean algorithm to compute integers e1, · · · , en such that
∑n

i=1 eidi = 1.

4. P computes the elements qAi := aei (i = 1, · · · , n) and sends them to V.
5. P generates a non-interactive proof for MultPolyDLog[A∩, (A1, · · · , An, qA1, · · · , qAn), f] where

f(X1, · · · , X2n) :=

n∑
i=1

XiXn+i − 1

and sends the proof to V.

6. V verifies the proofs and accepts if and only if they are all valid.

This proof entails n+ O(1) group elements and O(n) λ-bit integers. As before, we would like
to keep the number of group elements constant. To this end, the Prover can sample λ-bit integers
γ until he finds one such that gcd(

∑n
i=1 diγ

i , d1) = 1. He can then send a non-interactive proof
for

RelPrimeDLog[(A∩,

n∏
i=1

Aγ
i

i), (A∩, A1)].

When the elements of the multisetsMi are all λ-bit primes, the integers Π(Mi) are λ-rough and
hence, finding an appropriate γ takes runtime O(1). This is because for an arbitrary γ and any
λ-bit prime p, the Schwartz-Zippel lemma implies that

Pr
[n∑
i=1

diγ
i ≡ 0 (mod p)

]
= negl(λ).

As before, we say a multiset M is λ-rough if the integer Π(M) is λ-rough or equivalently, if
all elements of M are primes > 2λ−1.

Protocol 5.2. Protocol for the intersection of λ-rough multisets.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Commitments Ai = Com(g,Mi) := gΠ(Mi) for λ-rough multisets Mi whose elements are
λ-bit primes; an element A∩ ∈ G

Claim: A∩ = Com(g,
n⋂
i=1
Mi) := g

Π(
n⋂
i=1
Mi)

.

39

1. The Prover P computes the integers di := Π(Mi)

Π(
n⋂
i=1
Mi)

(i = 1, · · · , n).

2. P generates non-interactive proofs for AggKE-1[A∩, (A1, · · · , An)], PoKE[g, A∩] and sends
them to the Verifier V.

3. P samples λ-bit primes γ until he finds one such that gcd(
n∏
i=1

di,
n∑
i=1

diγ
i) = 1 and sends the

integer γ to V.

4. P computes Ã := g(
∏n
i=1 di) ∈ G and sends Ã to V along with a non-interactive proof for

MultPolyDLog[A∩, (A1, · · · , An, Ã), (
∏n
i=1Xi)−Xn+1].

5. P generates a non-interactive proof for the relation RelPrimeDLog[(A∩, Ã), (A∩,
∏n
i=1A

γi

i)]
and sends it to V.

6. V verifies all the proofs he receives and accepts if and only if they are all valid.

Thus, the proof consists of a constant number of G-elements and 2n+ O(1) λ-bit integers.

5.1.2 Multiset unions

The techniques in the last protocol also allow a server node to verifiably send over a commitment
for the union of multisetsM1, · · · ,Mn. The proof that this commitment is valid can be publicly
verified against the commitments Com(g,Mi) (i = 1, · · · , n) which the client stores. The basic
idea here is as follows.

Lemma 5.3. For integers d1, · · · , dn, set d̂j :=
∏

1≤i≤n
i 6=j

di (j = 1, · · · , n). Then we have

lcm(d1, · · · , dn) · gcd(d̂1, · · · , d̂n) =

n∏
i=1

di.

We omit the proof since it is straightforward. Thus, the following are equivalent:

- lcm(d1, · · · , dn) = d

- di
∣∣d ∀ i and there exist integers ê1, · · · , ên such that

∏n
i=1 di = d ·

∑n
i=1 êid̂i.

- The rationals ddi
−1 are integers and gcd(dd1

−1, · · · , ddn−1) = 1.

Protocol 5.4. Protocol for the union of multisets.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Commitments Ai = Com(g,Mi) := gΠ(Mi); an element A∪ ∈ G

Claim: A∪ = Com(g,
n⋃
i=1
Mi) := g

Π(
n⋃
i=1
Mi)

.

1. The Prover P computes the integers d := Π
(n⋃
i=1
Mi

)
, qdi := d

Π(Mi)
(i = 1, · · · , n).

2. P generates a non-interactive proof for the relation AggKE-2[(A1, · · · , An), A∪] and sends it
to the Verifier V.
3. P uses the Euclidean algorithm to compute integers qe1, · · · , qen such that

∑n
i=1 qei

qdi = 1.

4. P computes the elements qAi := gqei and sends them to V.
5. P generates a non-interactive proof for MultPolyDLog[g, (A1, · · · , An, qA1, · · · , qAn, A∪), qf]
where

40

qf(X1, · · · , X2n+1) := X2n+1

(n∑
i=1

Xn+i

(∏
1≤j≤n
j 6=i

Xj

))
−

n∏
i=1

Xi

and sends the proof to V.
6. V verifies all of the proofs he receives and accepts if and only if they are valid.

The proof entails n + O(1) group elements and 2n + O(1) λ-bit integers. As was the case with
multiset intersections, when the multisets are λ-rough, the protocol can be modified so that the
number of group elements is constant.

Protocol 5.5. Protocol for the union of λ-rough multisets.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Commitments Ai = Com(g,Mi) := gΠ(Mi) for λ-rough multisetsMi; an element A∪ ∈ G

Claim: A∪ = Com(g,
n⋃
i=1
Mi) := g

Π(
n⋃
i=1
Mi)

.

1. The Prover P computes the integers d := Π(
n⋃
i=1
Mi) , qdi := d

Π(Mi)
(i = 1, · · · , n).

2. P generates a non-interactive proof for the relation AggKE-2[(A1, · · · , An), A∪] and sends it
to the Verifier V.
3. P samples λ-bit integers γ until he finds one such that gcd(d,

∑n
i=1

qdiγ
i) = 1 and sends γ to

V.
4. P computes

qA := g

n∑
i=1

qdiγ
i

∈ G
and sends qA to V along with a non-interactive proof for MultPolyDLog[g, (A1, · · · , An, A∪, qA), qf]
where

qf(X1, · · ·Xn+2) := Xn+1

(n∑
i=1

γi
(∏

1≤j≤n
j 6=i

Xj

))
−Xn+2

n∏
i=1

Xi.

5. P generates a non-interactive proof for RelPrimeDLog[(g,A∪), (g,
n∏
i=1

Aγ
i

i)] and sends it to V.

6. V verifies all the proofs he receives and accepts if and only if they are all valid.

The proof consists of a constant number of G-elements and 2n+O(1) λ-bit integers. A server node
storing the data multisets Mi can use this protocol to verifiably send the succinct commitment
for the union

⋃n
i=1Mi. The validity of this commitment can be verified against the commitments

to the Mi held by the client.

Thus, to summarize, the protocols in this paper allow the server node to verifiably send
the client succinct commitments to unions, intersections, sums (and combinations thereof) of
multisets for which the client holds succinct commitments.

5.1.3 Frequencies of elements

Consider a setting where a client node needs to keep track of the occurrences of a certain
keyword or certain blocks of keywords in the files that he stores for a client node. If the client node
suffers from a low storage capacity or weak computational power, he would prefer to outsource
the files to an untrusted server node. As before, he stores succinct commitments to the data

41

sets/multisets derived from hashing the files. This allows the server node storing the data to send
publicly verifiable proofs about the occurrences of batches of elements in the data sets/multisets.

Let M1, · · · ,Mn be data multisets and let

Ai := Com(g,Mi) = gΠ(Mi) (i = 1, · · · , n)

be the commitments with the same base g ∈ G. Suppose the server node storing the data for
the client needs to identify the data multiset with the highest frequency of a data set D. The
protocols we have developed so far allows him to do so with a proof that the client can verify
against the commitments A1, · · · , An.

The protocol hinges on the basic fact that for integers d, d1, d2, the following are equivalent:

1. For every prime p dividing d, valp(d1) > valp(d2), where valp(x) is the largest integer k such
that pk divides x.

2. There exists an integer e such that de divides d1 and gcd(de, d2) = e.

Protocol 5.6. Protocol for the frequency of elements 1.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Commitments Ai := gΠ(Mi) for multisets Mi; a data set D.

Claim: Each element of D occurs with a higher frequency in M1 than in Mi ∀ i ≥ 2.

1. The Prover P computes

Â1 := g
Π

(
n⋃
i=2
Mi

)
∈ G

and sends it to the verifier V along with a non-interactive proof for AggKE-2[(A2, · · · , An), Â1].

2. The Prover computes the group elements

B1 := g

∏
x∈D

x
mult

(
n⋃

i=2
Mi,x

)

, B2 := B
Π(D)
1 ∈ G.

3. P sends B1, B2 to V along with a non-interactive PoE for the equation B2 = B
Π(D)
1 .

4. P generates non-interactive proofs for PoKE[B2, A1], PoGCD[(g, Â1), (g,B2), (g,B1)] and sends
them to V.

5. V verifies the three proofs and accepts if and only if all of them are valid.

Proposition 5.7. The Protocol for the frequency of elements 1 is secure in the generic group
model.

Proof. Write d := Π(D) for brevity. The subprotocols

PoGCD[(g, Â1), (g,B2), (g,B1)] ∧ PoE[B1, d, B2]

imply that with overwhelming probability, the Prover possesses integers m̂1, e such that

gm̂1 = Â1 , g
e = B1 , g

ed = B2 , gcd(m̂1, ed) = e.

The subprotocol PoKE[B2, A1] implies that with overwhelming probability, ed divides Π(M1).

Furthermore, the subprotocol PoAggKE-2[(A2, · · · , An), Â1] implies that with overwhelming
probability, the integer lcm

(
Π(M2), · · · ,Π(Mn)

)
divides m̂1. Hence, for any prime p dividing d

and any index i ≥ 2,
valp(Π(Mi)) ≤ valp(m̂1) < valp(ed).

On the other hand, ed divides d1 and hence, valp(ed) ≤ valp(d1).

42

Thus, for any prime p ∈ D, valp(Π(M1)) > max
{

valp(Π(M2)), · · · , valp(Π(Mn))
}

, which
completes the proof.

Similarly, the following protocol allows the server to prove that every element of a certain
data set D occurs with a lower frequency in M1 than in any of the multisets M2, · · · ,Mn.

Protocol 5.8. Protocol for the frequency of elements 2.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Commitments Ai := gΠ(Mi) for multisets Mi; a data set D.

Claim: Each element of D occurs with a lower frequency in M1 than in Mi ∀ i ≥ 2.

1. The Prover P computes

B1 := g

∏
x∈D

xmult(M1,x)

, B2 = B
Π(D)
1 ∈ G.

2. P sends B1, B2 to V along with a non-interactive PoE for the equation B2 = B
Π(D)
1 .

3. P generates non-interactive proofs for AggKE-1[B2, (A2, · · · , An)] and
PoGCD[(g,A1), (g,B2), (g,B1)] and sends them to V.

4. V verifies the three proofs and accepts if and only if they are all valid.

We omit the security proof since it is virtually identical to the last one. The next two protocols
are duals to the last two. They allow the server node to verifiably identify the multiset with the
highest/lowest occurrence of a data set in a setting where the client stores the membership
witnesses for the multisets with respect to a single accumulated digest.

Protocol 5.9. Protocol for the frequency of elements 3.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Membership witnesses wi for multisets Mi with respect to an accumulated digest A; a
data set D.

Claim: Each element of D occurs with a higher frequency in M1 than in Mi ∀ i ≥ 2.

1. The Prover P uses Shamir’s trick to compute an element qw1 ∈ G such that

qw
Π(

n⋃
i=2
Mi)

1 = A

and sends it to the Verifier V.

2. P computes the elements

w̃1 := w

∏
x∈D

x
mult(

n⋃
i=2
Mi,x)

1 , w̃
Π(D)
1 ∈ G

and sends them to V along with a non-interactive PoE[w̃1, Π(D), w̃
Π(D)
1].

3. P generates a non-interactive proof for AggKE-1[qw1, (w2, · · · , wn)] and sends it to V.

4. P generates non-interactive proofs for PoGCD[(qw1, A), (w1, w̃
Π(D)
1), (w1, w̃1)] and

PoKE[w̃
Π(D)
1 , A] and sends them to V.

5. V verifies the three proofs and accepts if and only if they are all valid.

Proposition 5.10. The Protocol for the frequency of elements 3 is secure in the generic group
model.

43

Proof. Set d := Π(D). The subprotocols

PoGCD[(qw1, A), (w1, w̃
Π(D)
1), (w1, w̃1)]

∧
PoE[w̃1, Π(D), w̃

Π(D)
1]

imply that with overwhelming probability, the Prover possesses integers e, m̂1 such that

ŵm̂1
1 = A , we1 = w̃1 , gcd(ed, m̂1) = e.

The subprotocol PoAggKE-1[qw1, (w2, · · · , wn)] implies that with overwhelming probability, m̂1 is
divisible by lcm(Π(M2), · · · ,Π(Mn)). So, for any prime p dividing d and any index i ≥ 2, we
have

valp(Π(Mi)) ≤ valp(m̂1) < valp(ed).

On the other hand, the subprotocol PoKE[w̃
Π(D)
1 , A] implies that with overwhelming probability,

ed divides Π(M1). Hence, valp(ed) ≤ valp(Π(M1)).

Thus, for any prime p ∈ D, valp(Π(M1)) > max(valp(M2), · · · , valp(Π(Mn))), which completes
the proof.

Protocol 5.11. Protocol for the frequency of elements 4.

Parameters: G $←− GGen(λ), g ∈ G.

Input: Membership witnesses wi for multisets Mi with respect to an accumulated digest A; a
data set D.

Claim: Each element of D occurs with a lower frequency in M1 than in Mi ∀ i ≥ 2.

1. The Prover P computes an element ŵ1 ∈ G such that

ŵ
Π(

n⋂
i=2
Mi)

1 := A

and sends ŵ1 to the Verifier V along with a non-interactive proof for AggKE-2[(w2, · · · , wn), ŵ1].

2. P computes

Â := ŵ

∏
x∈D

xmult(M1,x)

1 , ÂΠ(D) ∈ G
and sends them to V along with a non-interactive PoE for the exponentiation ÂΠ(D).

3. P generates non-interactive proofs for PoKE[ŵ
Π(D)
1 , A] and PoGCD[(w1, A), (w1, Â

Π(D)), (w1, Â)]
and sends them to V.

4. V verifies the three proofs and accepts if and only if they are all valid.

We omit the security proof since it is virtually identical to the last one. In all four cases of the
protocols for frequency, the proof consists of O(1) G-elements and n+ O(1) λ-bit integers.

5.1.4 Updates

We briefly discuss a few ways to handle updates and the tradeoffs between them. As before,
letM1, · · · ,Mn be multisets a client V outsources to a server node P. The client stores succinct
commitments

Com(g,Mi) = gΠ(Mi),

where g is a randomly generated element of G. The multisets are dynamic and hence, the
commitments need to be updated in response to changes.

44

Inserts: When the multisetM1 changes toM1 +M′1, the server changes the commitment from
[g, gΠ(M1)] to [g, gΠ(M1+M′1)]. He sends gΠ(M1+M′1) to the client along with a non-interactive
PoE for the equation

(gΠ(M1))Π(M′1) = gΠ(M1+M′1).

Deletes: Let M′1 be a multiset contained in M1 and suppose M′1 is to be deleted from M1.
Broadly there are three ways of handling deletes, each with some tradeoffs. We discuss them
here.

1. The server node changes the commitment from [g, gΠ(M1)] to [g, gΠ(M1\M′1)]. He sends
gΠ(M1\M′1) to the client along with a non-interactive PoE for the equation

(gΠ(M1\M′1))Π(M′1) = gΠ(M1).

While this is probably the simplest way of handling deletions, the computational burden is
linear in the size of M1 \M′1.

2. The server node changes the commitment from [g, gΠ(M1)] to [gΠ(M′1), gΠ(M1)]. He sends
gnew := gΠ(M′1) to the client along with a non-interactive PoE for the equation

gΠ(M′1) = gnew.

The advantage is that the runtime complexity is O(#M′1). The downside is that the client
needs to keep track of the different bases for the commitments as opposed to a single base g.
This increases the communication complexity and the Prover’s work when the client asks for an
argument of knowledge for any relation between the multisets M1, · · · ,Mn.

3. The server node changes the commitment for M1 from [g, gΠ(M1)] to
[gΠ(M′1), gΠ(M1)]. Furthermore, he updates the commitments for Mi (i = 2, · · · , n) from
[g, gΠ(Mi)] to [gΠ(M′1), gΠ(Mi+M′1)]. He sends

gnew := gΠ(M′1) , gΠ(Mi+M′1) (i = 2, · · · , n)

to the client along with the relevant non-interactive PoEs.

This preserves a common base for the n commitments. The runtime complexity is O(n·#M′1),
but the n exponentiations are completely parallelizable.

5.2 Sharded stateless blockchains

We briefly discuss the concept of a stateless blockchain and the need for it. Currently, in
every existing blockchain, every full node in the system needs to store the entire state of the
blockchain in order to validate incoming transactions. This has already become cumbersome as
the size of the state grows. To this end, [Tod16] suggested the concept of a stateless blockchain.
In this proposed model, every node stores the data relevant to itself and the accumulated digest.
The miners no longer need to store the state since the concerns of state storage and consensus
are decoupled.

Recently, the idea of introducing shards has been gaining ground within the blockchain
ecosystem. While a sharded blockchain would theoretically have a higher throughput, it would be
less secure since each individual shard would have fewer validators than the entire blockchain. To
prevent collusion, an idea that has been floated is to periodically switch the validators assigned
to the shards. Such a model makes stateless validation highly desirable since a stateful model
would make it cumbersome for a validator to download the data for a new shard he gets assigned

45

to.

While this stateless model would drastically alleviate the problem of state bloat, the big
tradeoff would be that in such a model, a node sending over transactions must also send over
proofs attesting to the validity of these transactions. At the moment, the authentication data
structure used by blockchains is that of a Merkle tree and the membership proofs are what we call
Merkle branches/paths. Despite the several advantages that Merkle trees provide, a drawback
is that the membership proofs cannot be batched or aggregated. Thus, a stateless model that
continues to use Merkle trees as the accumulator would suffer from a bandwidth bottleneck.
To address this problem, [BBF19] etc. have proposed using a cryptographic accumulator with
batchable/aggregable membership and non-membership proofs for a UTXO model. An accounts
based model such as Ethereum could use a Vector Commitment with similar properties. In this
regard, accumulators hinging on groups of unknown order have an important advantage over
bilinear accumulators in that they are dynamic (constant runtime updates), have constant-sized
public parameters and are transparent if the underlying hidden order group is a class group or a
genus three Jacobian.

Consider the setting of a stateless sharded blockchain that, instead of a Merkle tree, hinges
on a cryptographic accumulator instantiated with a hidden order group G ([BBF19]). Let g be
a randomly selected element of G and S1, · · · ,Sn the distinct shards. Let Di denote the data in

shard Si and D :=
n⋃
i=1
Di. Then the accumulated digest (the analog of the Merkle root hash) of

Si is given by
Ai := Com(g,Di) = gΠ(Di) ∈ G.

The accumulated digest of the blockchain is given by

A := Com(g,D) = gΠ(D) ∈ G.

In order to demonstrate that the data sets in distinct shards are pairwise disjoint, a Prover
(such as a miner or an untrusted server node) can provide a non-interactive proof for the relation
RAggRelPrimeDLog-1[a, (A1, · · · , An)]. The proof consists of O(1) G-elements and 2n + O(1) λ-bit
integers.

Disjointness verifiable against membership witnesses: Now consider the setting of a single
shard. Let V1, · · · ,Vn be verifiers (such as light nodes) on the network. Let Ei denote the data
set corresponding to Vi. Suppose the verifiers need to verify that the data sets Ei are pairwise
disjoint, but do not have access to the data sets outside their shards. A Prover P (such as a
miner or an untrusted server node) can prove this pairwise disjointness as follows.

1. Vi (i = 1, · · · , n) broadcasts the membership witness wi for Di to the other n − 1 nodes Vj
(j 6= i).

2. Vi sends the data Di to the prover P.

3. P computes
di :=

∏
d∈Di

d (i = 1, · · · , n)

and generates a non-interactive proof for the protocol PoAggRelPrimeDLog-3[(w1, · · · , wn), A],
which he then broadcasts to the Verifiers.

The proof consists of O(1) G-elements and 2n+O(1) λ-bit integers. In particular, the Verifiers
do not need access to the data sets Di to verify this proof of disjointness.

Pre-computation: Although the argument systems in this paper have certain advantages such

46

as transparency and succinctness, an important drawback is that the Prover’s computational
burden is rather high. This is primarily because exponentiations in hidden order groups are
expensive. Furthermore, these exponentiations are conjectured to be almost purely sequential,
which means there is no way to make them faster, aside from better hardware. However, the
effective runtime in several cases can be reduced using pre-computations on the Prover’s part. In
most of the protocols, the most expensive part is the computation

g̃ := g

n∑
i=1

dnλi γi

∈ G

where the di are usually the products Π(Mi) of all elements of a data set/multiset and γ is a
λ-bit integer randomly generated by the Fiat-Shamir heuristic. We use this step in quite a few
of the protocols in this paper with the sole purpose of demonstrating that the di are integers
rather than merely rationals. The Prover can reduce the effective runtime of this computation
by pre-computing and storing the set {g2i : 1 ≤ i ≤ N} for an appropriately large integer
N . In certain settings such as an accumulator, this part can be circumvented by disallowing
accumulation of primes < 2λ−1.

6 Conclusion

We hope that at least some of the techniques will find more applications than what we have
discussed in this paper. Several open questions remain, the foremost of which is whether the
computational burden of the Prover can be alleviated. Furthermore, most of our proofs consist
of a constant number of group elements and O(n) λ-bit integers, where n is the number of
committed sets/multisets involved. It would be desirable to compress the proof sizes further so
that the proofs are genuinely constant-sized, independent of n.

The protocols involving disjointness of the committed sets/multisets inherently rely on the
Prover having access to the entirety of the data. It would be interesting to see if we can modify
the protocols so that they are more amenable to proof generation in a distributed setting where
multiple Provers can only access some of the data.

A closely related line of research is to further explore class groups and Jacobians as candidates
for transparent hidden order groups. The adaptive root assumption in these groups and the
weaker assumptions such as low order and fractional root need further scrutiny.

Acknowledgements: The author thanks Benedikt Bünz and Dimitris Kolonelos for helpful
feedback on previous drafts.

References

[BBF19] Dan Boneh, Benedikt Bünz, Ben Fisch, Batching Techniques for Accumulators with Applications to IOPs
and Stateless Blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
Crypto 2019, pages 561–586, Cham, 2019. Springer International Publishing.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz and Ben Fisch, Verifiable delay functions. In Hovav
Shacham and Alexandra Boldyreva, editors, Crypto 2018, Part I, volume 10991 of LNCS

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch, A survey of two verifiable delay functions. Cryptology ePrint
Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712

[BFS19] Benedikt Bünz, Ben Fisch, Alan Szepieniec, Transparent SNARKs from DARK Compilers, Cryptology
ePrint Archive, Report 2019/1229, 2019.

47

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2019/1229

[BCM05] Endre Bangerter, Jan Camenisch, and Ueli Maurer. Efficient proofs of knowledge of discrete logarithms
and representations in groups with hidden order. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS,
Springer, Heidelberg, January 2005.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, Nicholas Spooner. Interactive oracle proofs. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31-60. Springer, Heidelberg,
October/November 2016.

[BD94] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital
sinatures (extended abstract). In Tor Helleseth, editor, Eurocrypt’93, volume 765 of LNCS, pages 274-285.
Springer, Heidelberg, May 1994.

[BH01] Johannes Buchmann and Safuat Hamdy. A survey on IQ cryptography, In Public-Key Cryptography and
Computational Number Theory.

[BKSW20] Karim Belabas, Thorsten Kleinjung, Antonio Sanso, Benjamin Wesolowski, A note on the low order
assumption in class group of an imaginary quadratic number fields, Preprint

[BP97] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees.
In Walter Fumy, editor, Eurocrypt’97, volume 1233 of LNCS, pages 480-494. Springer, Heidelberg, May 1997.

[BS96] Wieb Bosma and Peter Stevenhagen. On the computation of quadratic 2-class groups In Journal de Theorie
des Nombres, 1996.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications, In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55-72. Springer, Heidelberg, February/March
2013.

[CFGKN20] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, Luca Nizzardo, Vector Commitment
Techniques and Applications to Verifiable Decentralized Storage

[Can87] David Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics of computation, 1987.

[Can94] David Cantor. On the analogue of the division polynomials for hyperelliptic curves, Crelle’s Journal, 1994.

[DGS20] Samuel Dobson, Steven Galbraith, Benjamin Smith, Trustless Groups of Unknown Order with Hyperelliptic
Curves

[DK02] Ivan Damgard and Maciej Koprowski. Generic lower bounds for root extraction and signature schemes
in general groups. In Lars R. Knudsen, editor, Eurocrypt 2002, volume 2332 of LNCS, pages 256-271. Springer,
Heidelberg, April / May 2002.

[Fis18] Ben Fisch. Tight Proofs of Space and Replication. In Y. Ishai and V. Rijmen, editors, Eurocrypt 2019, Part
II, volume 11477 of LNCS, pages 324-348. Springer, Heidelberg, May 2019.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. Crypto’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987

[HM00] Safuat Hamdy and Bodo Moller. Security of cryptosystems based on class groups of imaginary quadratic
orders. ASIACRYPT 2000, volume 1976 of LNCS, pages 234-247. Springer, Heidelberg, December 2000.

[KPZ17] N. Katz, C. Papamanthou, Y. Zhang, An Expressive (Zero-Knowledge) Set Accumulator, 2017 IEEE
European Symposium on Security and Privacy

[Lip12] Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup. ACNS 12, volume 7341 of
LNCS, pages 224240. Springer, Heidelberg, June 2012.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs ACNS
07, volume 4521 of LNCS, pages 253-269. Springer, Heidelberg, June 2007.

[LM18] Russell W.F. Lai and Giulio Malavolta, Optimal succinct arguments via hidden order groups. Cryptology
ePrint Archive, Report 2018/705, 2018.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436-453. IEEE Computer Society
Press, November 1994.

[Ngu05] L. Nguyen. Accumulators from bilinear maps and applications. CT- RSA, 2005.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM Transactions
on Computer Systems (TOCS), 1983 .

[Sho97] Victor Shoup, Lower bounds for discrete logarithms and related problems. Eurocrypt’97, volume 1233 of

48

https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2020/149
https://eprint.iacr.org/2020/149
https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2020/196

LNCS, pages 256266. Springer, Heidelberg, May 1997.

[Sut07] Andrew Sutherland, Order Computations in Generic Groups, MIT Thesis, 2007

[STY01] Tomas Sander, Amnon Ta-Shma, Moti Yung, Blind, auditable membership proofs, FC 2000, volume 1962
of LNCS, pages 5371. Springer, Heidelberg, February 2001.

[Th20] Steve Thakur, Constructing hidden order groups using genus three Jacobians, Preprint

[Tod16] Peter Todd. Making UTXO Set Growth Irrelevant With Low-Latency Delayed TXO Commitments.
https://petertodd.org/2016/delayed-txo-commitments, May 2016.

[Wes19] Benjamin Wesolowski, Efficient verifiable delay functions. Advances in Cryptology – Eurocrypt 2019,
pages 379–407, Cham, 2019. Springer International Publishing.

Steve Thakur
Cryptography research and audits group
Least Authority

Email: stevethakur01@gmail.com

49

https://eprint.iacr.org/2020/348

A List of symbols/abbreviations

G: a group of hidden order in which we assume the adaptive root and strong-RSA assumptions
to hold.

λ: The security parameter

negl(λ): The set of functions negligible in λ.

[n]: The set of integers {0, 1, · · · , n− 1}
NextPrime(n): the smallest prime ≥ n
PPT: Probabilistic Polynomial Time

a ≡λ b: The equivalence of a, b ∈ G with respect to the relation ≡λ
ZS : The localization of Z at a set S of rational primes

Z×S : The group of units of ZS
gcdS(a, b): The GCD of elements a, b ∈ ZS in the principal ideal domain ZS
Z(λ): The localization of Z at the set of all rational primes ≤ 2λ−1.

P: The Prover

Pmal: A malicious Prover

V: The Verifier

HFS,λ: The hashing algorithm used by the Fiat-Shamir heuristic
o.p.
=⇒: Implies with overwhelming probability

Set(M): The underlying set of a multiset M
mult(M, x): The multiplicity of an element x in a multiset M of λ-bit primes

Π(M): The product
∏

x∈Set(M)

xmult(M,x) of all elements of a multiset M

valp(n): The largest integer k such that pk divides n

PoE: Proof of Exponentiation ([Wes18], [BBF19])

PoKE: Proof of Knowledge of the Exponent ([BBF19])

O1, O2: The two oracles in a generic hidden order group

DLOG: The (unlikely) event that a PPT algorithm generate integers xi such that
∏k
i=1 g

xi
i = 1,

where the gi are the responses to the queries to the oracle O1.

B List of Protocols:

The following is a list of the protocols in this paper and the relations that the protocols are
arguments of knowledge for, in the generic group model. In each of the protocols, we may replace
Z by the localization ZS at any set S of rational primes.

1. PoEqDLog (Proof of equality of discrete logarithms)

REqDLog[(a1, b1), (a2, b2)] =

((a1, b1), (a2, b2) ∈ G2

d ∈ Z) :
(b1, b2) = (ad1, a

d
2)

50

2. PoPolyDLog (Proof of polynomial relation between (two) discrete logarithms)

RPolyDLog[(a1, b1), (a2, b2), f] =

((a1, b1), (a2, b2) ∈ G2, f ∈ Z[X]);
(d1, d2) ∈ Z2 :

b1 = ad1
1

∧
b1 = ad1

1

∧
d2 = f(d1)

3. PoAggKE-1 (Proof of aggregated knowledge of exponents-1)

RAggKE-1[a, (a1, · · · , an)] =

(a ∈ G, (a1, · · · , an) ∈ Gn);
(d1, · · · , dn) ∈ Zn) :
ai = adi ∀ i

4. PoAggKE-2 (Proof of aggregated knowledge of exponents-2)

RAggKE-2[(a1, · · · , an), A] =

((a1, · · · , an) ∈ Gn, A ∈ G)
(d1, · · · , dn) ∈ Zn) :

A = adii ∀ i

5. PoMultPolyDLog (Proof of multivariate polynomial relations between discrete logarithms)

RMultPolyDLog[a, (b1, · · · , bn), (f1, · · · , fk)] =

(a ∈ G, (b1, · · · , bn) ∈ Gn);
(f1, · · · , fk) ∈ Z[X1, · · · , Xn]k;
(d1, · · · , dn) ∈ Zn) :
bi = adi ∀ i

∧
fj(d1, · · · , dn) = 0 ∀ j

6. PoGCD (Proof of GCD)

RGCD[(a1, b1), (a2, b2), (a3, b3)] = {((ai, bi ∈ G); di ∈ Z) : bi = adii , gcd(d1, d2) = ±d3}

7. PoRelPrimeDLog (Proof of relatively prime discrete logarithms; special case of PoGCD)

RRelPrimeDLog[(a1, b1), (a2, b2)] = {((ai, bi ∈ G); di ∈ Z) : bi = adii , gcd(d1, d2) = 1}.

8. PoAggRelPrimeDLog-1 (Aggregated proof of relatively prime discrete logarithms-1)

RAggRelPrimeDLog-1[a,a] =

(
a ∈ G, a := (a1, · · · , an) ∈ Gn);

(d1, · · · , dn) ∈ Zn
)

:
ai = adi ∀ i , gcd(di, dj) = 1) ∀ i 6= j

9. PoAggRelPrimeDLog-2 (Aggregated proof of relatively prime discrete logarithms-2)

RAggRelPrimeDLog-2[a1, a2,b, c] =

(
(a1, a2) ∈ G2,

b := (b1, · · · , bm) ∈ Gm, c := (c1, · · · , cn) ∈ Gn);
((d1, · · · , dm) ∈ Zm, (e1, · · · , en) ∈ Zn

)
:

(bi = adi1

∧
cj = a

ej
2

∧
gcd(di, ej) = 1) ∀ i, j

10. PoAggRelPrimeDLog-3 (Aggregated proof of relatively prime discrete logarithms-3)

RAggRelPrimeDLog-3[(w1, · · · , wn), A] =

(
A ∈ G, (w1, · · · , wn) ∈ Gn);

((d1, · · · , dn) ∈ Zn
)

:

wdii = A ∀ i
∧

gcd(di, dj) = 1 ∀ i, j : i 6= j

51

11. PoAggRelPrimeDLog-4 (Aggregated proof of relatively prime discrete logarithms-4)

RAggRelPrimeDLog-4[b, c, B,C] =

(
(B,C) ∈ G2,

b = (b1, · · · , bm) ∈ Gm, c = (c1, · · · , cn) ∈ Gn);
((d1, · · · , dm) ∈ Zm, (e1, · · · , en) ∈ Zn

)
:

(B = bdii , C = c
ej
j

∧
gcd(di, ej) = 1) ∀ i, j

12. Protocol for the intersection of multisets

R∩[a, (A1, · · · , An), A∩] =

(a ∈ G;
(A1, · · · , An) ∈ Gn , A∩ ∈ G;
((d1, · · · , dn, d∩) ∈ Zn+1) :
Ai = gdi ∀ i , A∩ = gd∩

gcd(d1, · · · , dn) = d∩

13. Protocol for the union of multisets

R∪[a, (A1, · · · , An), A∪] =

(a ∈ G;
(A1, · · · , An) ∈ Gn) , , A∪ ∈ G;
((d1, · · · , dn, d∪) ∈ Zn+1) :
Ai = gdi ∀ i , A∪ = gd∪

lcm(d1, · · · , dn) = d∪

14. Proof of the containment/non-containment of the underlying sets

RConSets[(a1, A1), (a2, A2)] =

(a1, a2, A1, A2 ∈ G;
(d1, d2, N) ∈ Z3) :

ad1
1 = A1 ∧ ad2

2 = A2

∧ dN2 ≡ 0 (mod d1)

RNonConSets[(a1, A1), (a2, A2)] =

(a1, a2, A1, A2 ∈ G;
(d1, d2, p) ∈ Z3) :

ad1
1 = A1 ∧ ad2

2 = A2 ∧
p
∣∣d2 ∧ p

∣∣d1 ∧ p 6= ±1

15. Protocol for the highest/lowest frequency of elements

If the Verifier has access to the commitments Com(g,Mi) = gΠ(Mi) to multisetsM1, · · · ,Mn and
a data set D, the Prover can show that every element of D occurs with a higher/lower frequency
in M1 than in any Mi for i ≥ 2.

Similarly, given a single accumulated digest A and witnesses wi for multisets Mi such that

w
Π(Mi)
i = A, the Prover can show that every element of D occurs with a higher/lower frequency

in M1 than in any Mi for i ≥ 2.

52

C Proof of multi-exponentiation

As before, let G be a generic hidden order group for which we assume the adaptive root and
strong-RSA assumptions to hold. Consider an equation

∏n
i=1 a

ei
i = b, where the ei ∈ Z are public

integers and a1, · · · , an, b are elements of G. Wesolowski’s PoE protocol ([Wes18]) can be slightly
generalized so as to reduce the Verifier’s burden of computation for this equation.

Protocol C.1. Proof of multi-exponentiation

Parameters: G $←− GGen(λ), g ∈ G
Input: (a1, · · · , an) ∈ Gn; b ∈ G; (e1, · · · , en) ∈ Zn

Claim:
∏n
i=1 a

ei
i = b.

1. The hashing algorithm HFS,λ generates a λ-bit prime `.

2. The Prover P computes integers qi, ri such that ei = qi · `+ ri , ri ∈ [`].

3. P computes Q :=
∏n
i=1 a

qi
i ∈ G and sends Q to the Verifier V.

4. V computes ri := ei (mod `) and verifies the equation Q`
∏n
i=1 a

ri
i

?
= b and accepts if and only

if the equation holds.

Thus, the proof consists of a single element G-element Q. The Verifier’s work is thus reduced
to n+ 1 parallelizable λ-bit exponentiations in G.

Soundness of the protocol: Suppose the Prover P sends an element Q ∈ G such that

Q`
n∏
i=1

arii = b , ri := ei (mod `)

for a randomly generated λ-bit prime `. Let {g1, · · · , gk} ∈ G be the responses to the queries
from A to the oracle O1. With overwhelming probability, A is able to extract integers αi,j (1 ≤
i ≤ n , 1 ≤ j ≤ k), β1, . . . , βk bounded by 2poly(λ) such that

b =
k∏
j=1

g
βj
j , ai =

k∏
j=1

g
αi,j
j .

Since the equation Q`
∏n
i=1 a

ri
i = b holds, the adaptive root assumption implies that with

overwhelming probability, βj ≡
∑n

i=1 eiαi,j (mod `) ∀ j. Since the λ-bit prime ` was randomly
generated, it follows that with overwhelming probability, βj =

∑n
i=1 eiαi,j ∀ j and hence,

b =
∏n
i=1 a

ei
i .

D Z(λ)-integers and the equivalence relation (≡λ)

Definition D.1. For Z(λ)-integers d1, d2 we say d1 ≡λ d2 if d1d2
−1 is a unit in Z(λ).

This is clearly a homomorphic equivalence relation.

Definition D.2. For Z(λ)-integers d1, d2, we denote by gcdλ(d1, d2) the largest λ-rough integer
that divides both d1 and d2 in the principal ideal domain Z(λ). Similarly, we denote by lcmλ(d1, d2)
the smallest λ-rough integer divisible by d1 and d2 in Z(λ).

Definition D.3. For elements a, b in a hidden order group G, we say a ≡λ b with respect to a
PPT algorithm A if A can verifiably generate relatively prime λ-smooth integers d1, d2 such that
ad1 = bd2 ∈ G and |d1|, |d2| < 2poly(λ).

53

Because of Shamir’s trick, this is equivalent to P being able to generate an element a0 ∈ G and
relatively prime λ-smooth integers d1, d2 such that ad2

0 = a, ad1
0 = b. It is easy to see that this an

equivalence relation.

Proposition D.1. The relation (≡λ) is an equivalence relation.

Proof. Since the reflexivity and the symmetry are obvious, it suffices to show that the relation
is transitive.

(Transitivity): Suppose a ≡λ b and b ≡λ c for elements a, b, c ∈ G. Then P possesses λ-smooth
integers d1, d2, d3, d4 such that

ad1 = bd2 , bd3 = cd4 , gcd(d1, d2) = gcd(d3, d4) = 1.

Now,
ad1d3 = bd2d3 = cd2d4

and clearly, the integers d1d3, d2d4 are λ-smooth. Set d := gcd(d1d3, d2d4) and e1 := d1d3/d, e2 :=
d2d4/d. Then e1, e2 are co-prime and λ-smooth and

ae1 = ce2 .

Thus, a ≡λ c.

For elements a, b ∈ G the following are equivalent:

1. ad ≡λ b for some integer d.

2. ad ≡λ b for some λ-rough integer d.

3. b = ad1 for some Z(λ)-integer d1.

Furthermore, if a PPT algorithm is able to output an element a ∈ G and integers d1, d2 such
that ad1 ≡λ ad2 , then with overwhelming probability, d1d2

−1 ∈ Z×(λ). In particular, no PPT

algorithm can output an element a ∈ G and distinct λ-rough integers d1, d2 such that ad1 ≡λ ad2 .

We note, however, that the relation (≡λ) is not homomorphic, meaning that a1 ≡λ a2, b1 ≡λ b2
does not imply a1a2 ≡λ b1b2. But the relation is partly homomorphic in the sense that for any
integer d,

a ≡λ b⇐⇒ ad ≡λ bd.

Non-membership proofs in accumulators: The best-known application of the knowledge of
exponent protocol is constant-sized batched non-membership proofs in accumulators ([BBF19]).
We briefly discuss the implications of replacing equality of G-elements with the equivalence
relation ≡λ in this regard.

Let g ∈ G denote the genesis state of the accumulator, D the inserted data set and A =
gΠ(D) the accumulated digest. Given a data set D0 disjoint with D, the Prover demonstrates
non-membership for all elements of D0 by sending the following to the Verifier:

- Elements w,A1 ∈ G such that wΠ(D0)A1 = g.
- A non-interactive proof for PoKE[A, A1].

Suppose, instead of PoKE[A, A1], the Prover proves the weaker statement that he possesses
an integer k such that Ak ≡λ A1. By definition, there exist an integer k and a λ-smooth integer
e such that gcd(k, e) = 1 and Ak = Ae1. Write w = gx. Then

x ·Π(D0) +
k ·Π(D)

e
= 1

54

and hence,
e · xΠ(D0) + k ·Π(D) = e.

Thus, gcd(Π(D0),Π(D)) divides e which is a λ-smooth integer. Since each element of D is a λ-bit
prime, it follows that D∩D0 = ∅, despite k

e possibly not being an integer. Thus, the equivalence
relation ≡λ is compatible with the nonmembership protocol of [BBF19].

E Underlying sets of committed multisets

Let a1, a2 be elements of G. Let M,N be multisets of rational primes. Let

A1 := Com(g,M) = a
Π(M)
1 , A2 := Com(g,N) = a

Π(N)
2 ∈ G

be the commitments to M, N with bases a1, a2 ∈ G.

Clearly, the relation N ⊆ M can be demonstrated by the protocol PoKE[A2, A1]. We now
show that the protocol PolyDLog allows a Prover to succinctly demonstrate the following relations
between the underlying sets of M, N , the proofs for which can be publicly verified against the
commitments to M and N .

1. Set(M) ⊆ Set(N).

2. Set(M) * Set(N).

3. Set(M) = Set(N)

Before we describe the protocols, we note a few basic facts. Clearly, we have

Set(M) = Set(N)⇐⇒ Set(M) ⊆ Set(N)
∧

Set(N) ⊆ Set(M).

Furthermore, with notations as before, we have

Set(M) ⊆ Set(N)⇐⇒ ∃ N ∈ Z : Π(M)N ≡ 0 (mod Π(N)).

Likewise, to show that Set(M) * Set(N), it suffices to show that there exists an integer p such
that

p /∈ {−1, 1}
∧

Π(M) ≡ 0 (mod p)
∧

gcd(Π(N), p) = 1.

Protocol E.1. Protocol for the containment of underlying sets (PoConSets).

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a1, a2 ∈ G; commitments A1 := Com(a1,M) = a
Π(M)
1 , A2 := Com(a2,N) =

a
Π(N)
2 to multisets M, N .

Claim: Set(N) ⊆ Set(M).

1. The Prover P computes N := max{mult(N , x) : x ∈ N} and

A3 := a
Π(M)N

1 .

He sends A3 and N to the Verifier V.

2. P generates a non-interactive proof for PoPolyDLog[(a1, A1), (a2, A3), XN] and sends it to V.

3. P generates a non-interactive proof for PoKE[A2, A3] and sends it to V.

4. V verifies the two proofs and accepts if and only if both are valid.

Protocol E.2. Protocol for the non-containment of underlying sets (PoNonConSets).

55

Parameters: G $←− GGen(λ), g ∈ G.

Input: Elements a1, a2 ∈ G; commitments A1 := Com(a1,M) = a
Π(M)
1 , A2 := Com(a2,N) =

a
Π(N)
2 to multisets M, N .

Claim: Set(M) * Set(N).

1. The Prover chooses an integer p such that p ∈ Set(M) \ Set(N). and computes b1 := ap1. He
sends b1 to the Verifier V along with a non-interactive proof for PoKE[b1, A1].

2. P generates a non-interactive proof for RelPrimeDLog[(a1, b1), (a2, A2)] and sends it to V.

3. V verifies that b1 /∈ {a1, a
−1
1 } and the proofs for PoKE[b1, A1], RelPrimeDLog[(a1, b1), (a2, A2)].

He accepts if and only if both proofs are valid.

In both cases, the proofs consists of a constant number of G-elements and λ-bit integers. In
particular, the proof size is independent of the sizes of M and N .

56

	Introduction
	Structure of the paper

	Preliminaries
	Candidates for hidden order groups
	Argument Systems
	Cryptographic assumptions
	Generic group models for hidden order groups

	Multiset notations and operations
	Cryptographic Accumulators
	Aggregating and disaggregating membership witnesses
	Z()-integers
	Some preliminary lemmas
	Representations of group elements

	Arguments of Knowledge
	Preliminaries
	Aggregating the knowledge of multiple exponents

	Protocols for arguments of disjointness
	Protocols for aggregated arguments of disjointness
	Protocols for disjointness of sets/multisets in a single accumulator

	Applications
	Verifiably outsourcing storage
	Multiset intersections
	Multiset unions
	 Frequencies of elements
	Updates

	 Sharded stateless blockchains

	Conclusion
	List of symbols/abbreviations
	List of Protocols:
	 Proof of multi-exponentiation
	Z()-integers and the equivalence relation ()
	Underlying sets of committed multisets

