
Adaptive layer-two dispute periods in blockchains
Rami Khalil

Imperial College London
rami.khalil@imperial.ac.uk

Naranker Dulay
Imperial College London
n.dulay@imperial.ac.uk

Abstract—Second-layer or off-chain protocols increase the
throughput of permissionless blockchains by enabling parties
to lock funds into smart-contracts and perform payments
through peer-to-peer communication, only resorting to the smart-
contracts for protection against fraud. Current protocols have
fixed time periods during which participants can dispute any
fraud attempts. However, current blockchains have limited trans-
action processing capacity, so a fixed dispute period will not
always be sufficient to deter all fraudulent behaviour in an off-
chain protocol. In this work, we describe how to set adaptive
dispute periods that accommodate the congestion and capacity
of the underlying blockchain. Adaptive dispute periods ensure
that users retain the opportunity to dispute fraudulent be-
haviours during blockchain congestion, while increasing second-
layer protocol efficiency by reducing dispute period lengths when
the number of disputes is low. We describe a non-interactive
argument system for setting adaptive dispute periods under the
current Ethereum Virtual Machine, and discuss how to efficiently
integrate built-in support for adaptive dispute periods in any
blockchain. We empirically demonstrate that an adaptive-dispute
second-layer protocol can handle a larger number of disputes
and prevent more fraud than its non-adaptive counterparts even
when users are slow to issue disputes, due to denial of service or
blockchain congestion.

I. INTRODUCTION

Second-layer cryptocurrrency platforms have attracted me-
dia attention and tens of millions of US dollars worth of invest-
ments. Such platforms aim to on-board millions of users while
substantially reducing the load on their underlying blockchain.
This is achieved by locking user funds into a smart-contract
which defines agreement terms for future withdrawal. The
agreement is accompanied by a protocol that allows users to
transfer ownership of portions of their locked funds to each
other by only exchanging peer-to-peer messages. Users can
always unlock their off-chain funds using the smart-contract,
even if other users are dishonest. Such payment agreements
have been realized so far in two main ways [1]: (i) two-party
agreements called payment channels; and (ii) multi-party
agreements, that we call Plasma schemes, where one party
acts as a designated intermediary called the Plasma operator.
In this paper we refer to blockchains as layer-one, and to off-
chain systems as layer-two.

The main security goal in second-layer systems is to prevent
fraudulent withdrawals, whereby a user attempts to unlock
funds it does not own. For example, in Payment channels,
a party can attempt fraud by requesting to close the channel
and unlock its funds based on outdated balance information. In
Plasma schemes, users can attempt to unlock their funds after
having spent them [2–6], or collude with the Plasma operator

to attempt to ”counterfeit” their balances [7, 8] and withdraw
them. To counter this, current platforms delay the completion
of a withdrawal by a fixed amount of time during which users
can dispute the withdrawal. After the dispute period ends, the
ability to contest a withdrawal is forfeit, and the withdrawn
funds are unlocked from the smart-contract into the blockchain
account of the withdrawal initiator. Little attention has been
given to the limitations of using fixed dispute periods.

Due to these limitations, OmiseGo Network platform1

users must broadcast their transactions with very high priority
to successfully protect their funds, which requires high trans-
action fees, while roughly no more than 300,000 Liquidity
Network platform2 users can be safely registered regardless
of their transaction fees as of the time of writing.

As we will demonstrate, a fixed dispute period implies that
only a limited number of fraud attempts can be prevented,
and consequently some fraud can succeed. This limit is based
on: (i) the duration of the dispute period, (ii) the transaction
throughput of the blockchain, and (iii) the size of dispute
transactions. Moreover, high blockchain transaction fees can
hinder a user’s ability to successfully publish a blockchain
transaction that proves fraud before the dispute period ends.
Since layer-one processing power is limited, the maximum
number of disputes can be calculated using Equation 1.

maximum disputes =
block size

dispute size
× dispute period

block delay
(1)

As a concrete example, consider the account-based Plasma
scheme NOCUST [7] when deployed on the Ethereum
blockchain. Once its central operator publishes a commitment
of the latest state of the layer-two ledger to the smart-contract,
users only have 36-hours to dispute its correctness. Given an
average Ethereum block creation delay of 12 seconds between
blocks, a block size of 10,000,000 gas units, a dispute cost of
360,000 gas per user, and a dispute period of 36-hours as
in [7], we can calculate using Equation 1 that no more than
roughly 300,000 disputes can be processed at that block size.

The rigidity of the dispute period, which has been com-
pletely unexplored prior to this paper, is problematic. First, a
fixed dispute period constrains the number of users that can
be safely registered in an account-based Plasma-scheme, as
every user would issue a dispute in the worst case. Second,
this equation generously assumes that the full transaction
processing capacity of layer-one is dedicated to disputes. In

1https://omg.network
2https://liquidity.network

https://omg.network
https://liquidity.network

reality, other activity may take place and reduce the capacity
to process disputes. This forces payment-channel and UTXO-
based Plasma-scheme users to pay high transaction fees for
high priority dispute transactions. A similar analysis can be
applied to other layer-two designs.

In this paper we describe adaptive dispute cutoffs (ADC), a
method for second-layer protocols to compute dynamic dispute
periods that adapt in response to layer-one congestion, the
number of disputes issued, and the time taken to settle the
disputes.

The requirements for ADC are (i) a smart-contract enabled
blockchain, such as Ethereum, (ii) that users possess sufficient
layer-one funds for publishing disputes, (iii) that users publish
disputes when necessary. The latter two requirements imply
that unless a user trusts another party to launch disputes on its
behalf, as in [9], a completely passive layer-two account with
no blockchain balance is not granted opportunity to dispute.

Furthermore, our method does not tackle privacy, and offers
no censorship resistance against powerful layer-one block
proposers. The identities of parties involved in dispute trans-
actions, and the smart-contract that implements our methods,
are assumed to be public. This leaves ADC vulnerable to a
powerful layer-one adversary preventing dispute transactions
from being ever confirmed.

The remainder of this paper is structured as follows: Sec-
tion II reviews related work. Section III overviews disputes.
Section IV presents ADC. Section V introduces a backwards-
compatible proving system for ADC, and Section VI dis-
cusses how to provide built-in support for ADC in layer-one
blockchains. Section VII evaluates ADC, and Section VIII
concludes the paper.

II. RELATED WORK

A. Plasma

Plasma is an off-chain architecture [10] managed by a
central operator. In Plasma MVP [2], the central operator
periodically publishes a commitment to the state of the
UTXO ledger on the parent-chain. Users must validate the
full ledger with every commitment, and dispute any fake
transactions or dishonestly minted funds. Plasma Cash [3]
reduces the user verification overhead of Plasma MVP. Each
deposit creates a new coin whose ownership can be trans-
ferred. A user withdrawing m individual coins has to initiate
m disputable withdrawals using the smart-contract. Plasma
Debit [4] amends Plasma Cash by adding a numeric value
a to each coin to denote what portion of the corresponding
deposit belongs to the owning user, while the rest is owed to
the operator, bringing it closer to a payment-channel design.
Plasma Prime [5] reduces the sizes of disputes. NOCUST is
an account-based Plasma design [7] where an operator that
withholds the data behind its commitments must be forced to
reveal it within a fixed-time period. In NOCUST-ZKP [8, 11]
commitments are proven in zero-knowledge to be correct, but
disputes to reveal data may only be performed within a fixed
amount of time. Lastly, [12] analyses the lower bound on the
number of disputes that must be made in such schemes.

B. Payment channels

Channels are established between two parties and undergo
three stages: (i) on-chain deployment, (ii) off-chain update
and (iii) on-chain termination. Several designs secure the
termination phase through the use of static-time locks [13–24],
or a fixed dispute period [9, 25–37], leaving both exposed to
the bandwidth limitations of layer-one. However, some designs
secure their termination differently: (i) Brick [38] relies on a
committee’s consensus on the latest state for termination, (ii)
Teechain [39] similarly uses committees called Treasuries that
are secured by trusted hardware, (iii) and Teechan [40] uses
trusted execution environments to prevent channel termination
with outdated balances.

C. Transaction Metering

In the Ethereum Virtual Machine [41] (EVM), the compu-
tational, storage, and transmission efforts required to process
a transaction are characterized by its gas consumption, where
gas is a unit designed to capture the total cost of execution of
a transaction. Consequently, an EVM transaction must specify
both (i) a limit of how much gas the transaction may consume,
and (ii) a price paid by the transaction sender per unit of
gas the transaction consumes. Accordingly, the capacities of
Ethereum blocks are decided by the network in terms of
gas units. While some studies investigate the precision of
gas as a measure of true transaction execution cost [42, 43],
and others investigate how transaction gas prices can be set
effectively [44], this paper, to the best of our knowledge, is
the first to propose blockchain gas consumption as a measure
of dispute opportunity.

III. DISPUTE OVERVIEW

In this section we informally define disputes, and discuss
several system aspects which affect the opportunity to issue
disputes in second-layer protocols.

A. Disputes

Layer-two protocols rely on a spokesperson publishing
statements in smart-contracts about the states of layer-two
data, such as accounts and payments. For example, a Plasma
operator would publish a statement of the form: ”Commitment
Y embodies the latest correct balances of all layer-two ac-
counts”. Any errors in a statement are resolved using disputes,
which are smart-contract operations that we classify as one of
(i) queries, (ii) claims or (iii) proofs of fraud. A published
statement that has not been disputed is only considered final
once the statement can no longer be disputed.

Queries are requests for information about a published
statement, to which a correct answer must be provided by
the spokesperson in a timely manner to prevent the statement
from being considered as disputed. For example, a query of
the form: ”What is the layer-two balance for account X as of
commitment Y?”, must be answered by returning the correct
layer-two balance for the account.

Claims are incriminating allegations in the smart-contract
against a statement’s validity. A claim must be refuted in a

S ∼ Q A C R F

0 1 2 10 11 19 27

Fig. 1: Timeline of an example dispute process chronologically ordered by the block number in which each event occurs. In
block 0, the spokesperson publishes a Statement. No action occurs in block 1. In block 2, a user publishes a Query about the
statement. In block 10, the spokesperson publishes the Answer to said query. In block 11, a user publishes a Claim against the
statement. In block 19, the spokesperson publishes a Refutation of said claim. In block 27, the statement is considered Final.
Blocks 1 to 26, surrounded by a dashed rectangle, constitute the opportunity to dispute the statement.

timely manner by proving the claim’s incorrectness and the
dishonesty of the claimant. For example, a claim of the form:
”The layer-two balance of account X as of commitment Y is
incorrect” can be refuted by proving that the account’s layer-
two balance is correctly derived. A claim should only be made
when the claimant is convinced that the allegation cannot be
refuted, and a refutation that shows a claim to be false should
penalize the claimant.

Lastly, proofs of fraud are direct arguments which undeni-
ably demonstrate that a statement is false and its spokesperson
is dishonest. For example, a proof of the form: ”The spokesper-
son has incorrectly calculated the balance of account X as of
commitment Y” would undeniably prove that the balance is
indeed incorrect, and that the operator is definitely at fault.

B. Dispute Opportunity

Following the publication of a statement, layer-two pro-
tocols are designed to grant some amount of time, or an
opportunity, for users to dispute the statement. The opportunity
to dispute statements of a layer-two protocol depends on two
main factors, (i) the ability of users to create disputes after
statement publication, and (ii) the ability to publish created
disputes on the layer-one blockchain within the amount of
time granted by the protocol.

1) Dispute Creation: When speaking about the ability of
a user to create a dispute, we refer only to the process of a
user realizing that some statement cannot (yet) safely be left to
become final. This process includes creating a query about the
statement, such as designating some data behind a commitment
to be revealed, or constructing a claim or fraud proof against
the statement. While such a process may be considered as
simply a prelude to actually launching a dispute, we isolate
and identify it on its own in our discussion, because it only
depends on the awareness of users of published statements and
answers to queries. There are two requirements to retain this
ability that vary across layer-two systems:

a) Online Presence: The highest form of online presence
dictates that users constantly monitor for any spokesperson
activity in layer-one, as the spokesperson is free to pub-
lish statements at any time. For example, payment-channel
users must always watch the blockchain for any attempts
by their counter-parties to withdraw funds using outdated
state information. This requires remaining constantly online,
downloading every layer-one block, and checking whether
there exists a transaction which attempts to close the channel.
On the other hand, a lower form of online presence only

requires users to come periodically online, as the spokesperson
may only publish a potentially disputable statement once
every pre-defined time period. For example, a NOCUST [7]
operator may only publish a commitment to the state of the
ledger once every pre-defined period, which means users only
have to monitor the chain for a statement once per period.
Consequently, the online presence requirements of a protocol
constrain the opportunity to dispute statements only to users
who meet a certain connectivity level to layer-one.

b) Verification Effort: Layer-two protocols require vary-
ing degrees of verification to take place by users before they
can gain confidence in their disposition towards a statement.
For example, when payment-channel users verify a channel
closure statement, they only need to compare the balance infor-
mation being used to close the channel with the latest balance
information they know, often a constant-time procedure. Sim-
ilarly, a NOCUST [7] user validates information proportional
to how many transactions it has personally performed since
the last commitment about the ledger, independent of how
many transactions other users in the ledger have performed.
On the other hand, Plasma MVP [2] extensively validate the
entire ledger after every statement by the operator, which may
require a non-trivial amount of time. Ultimately, verification
requirements constrain dispute opportunity only to users who
meet the necessary computational demands.

Because of a protocol’s online presence and verification
requirements, the opportunity available for issuing disputes
can be undermined by an adversary who launches a denial
of service attack that prevents users from realizing that a
disputable statement is published, or by the user’s own delay
in learning of a statement. For example, block number 1 in
Figure 1 contains no action by the user, which can be attributed
to either of the aforementioned possibilities.

2) Dispute Publication: The publication of created user
disputes in a layer-one blockchain largely depends on its
transaction confirmation behavior. This process begins with
the user broadcasting the dispute transaction to the layer-one
network of block proposers, and ends when a layer-one block
that contains the dispute transaction is confirmed. However, the
process may end in failure if the statement being disputed had
already been considered final before the dispute transaction
was included in a confirmed block.

a) Gas Usage: As mentioned in Section I, only a limited
number of disputes can be published per block, and conse-
quently, dispute transactions cannot always be immediately
published in a block following their creation. Notably, when

publishing statements costs significantly less gas than publish-
ing disputes, a layer-two protocol may create an asymmetry, in
terms of publication power, between spokespersons and users.
For example, in account-based Plasma schemes, the central
operator may affect the funds of all of its users by publishing
a single small commitment statement. However, to dispute this
statement, all of the affected users have to issue several queries
and claims, each of which is significantly more expensive than
the original statement. Essentially, the efficiency of dispute
publication, in terms of gas cost, in comparison to that of
statement publication, determines whether an opportunity to
dispute all of the effects of a statement exists.

b) Transaction Priority: The current transaction ordering
mechanisms in most layer-one blockchains incentivize min-
ers to prioritize transactions based on how much fees the
transactions pay to the miners upon their execution. Such
mechanisms enable wealthy transaction publishers to prioritize
their transactions over others by paying higher transaction fees.
Accordingly, such mechanisms enforce a minimum transaction
fee for disputes, putting a price on the opportunity to dispute
statements that is in line with the layer-one transaction fee
market prices at the time of publication. Fundamentally, the
difference in publication priority between statements and dis-
putes affects the layer-two protocol’s security determines the
fairness of the dispute opportunity. For example, in a payment-
channel protocol, a well-connected and wealthy spokesperson
with a significant number of open channels can publish a flood
of channel closure statements for all of its channels with a very
high priority. Such a scenario only grants a dispute opportunity
to channel users who can afford to publish disputes with higher
priority than the statements of the wealthy spokesperson.

IV. ADAPTIVE DISPUTE CUTOFF

In this section we describe the adaptive dispute cutoff
(ADC) mechanism by describing the conditions under which
a statement is considered final in this model.

A. Statement Finalization

Assuming that layer-one is resistant to censorship, ADC
considers gas that was unused for disputes as an indicator
that potential dispute opportunities were unnecessary. For
example, if after the publication of some statement in layer-
one, no disputes about this statement were published in any
of the blocks following the one containing the statement,
then the full gas of all these blocks is considered to have
added to the credibility of the statement, and is referred to as
ratification-gas, or ”r-gas” for short. Consequently, the end
of a statement’s dispute period is determined in ADC using
the amount of r-gas accumulated for the statement.

r(d) = ∆× gps + α× d× c (2)

Equation 2 defines the required r-gas for a statement to be
no longer disputable as r(d), a function of d, the number of
disputes issued against the statement during its dispute period.
The maximum gas cost, in gas units, for a dispute is denoted
by c, while the minimum dispute period is denoted by ∆,

a pre-defined amount of time. The layer-one throughput, in
terms of average gas per second, is denoted by gps.

The magnification factor α adjusts the increase of the
required r-gas remaining in response to the number of disputes
issued against a statement. This allows tolerance against
degradation in the online presence of users and adaptively
prolongs the dispute period of a statement in response to
disputes. For example, consider a layer-two protocol that
requires users to be constantly online to issue disputes. If
users appear online randomly during the minimum dispute
period, ∆, instead of being constantly online, and a disputable
statement is published, then users would not publish their
disputes in perfect sequence. Instead, some amounts of r-gas
would accumulate in between each user dispute. In turn setting
the magnification factor α to a value larger than 0 would make
up for the expected average gap between consecutive disputes.
Furthermore, if the minimum dispute period ∆ were not long
enough for all possible disputes to be processed (e.g. as in
NOCUST [7]), then setting the magnification factor α to a
value at least 1 would allow one more user dispute to be
processed for each user dispute that is processed, and allow
the dispute period to be prolonged enough for all possible
disputes to be issued.

In ADC, a dispute period that starts at time t0 ends at
the first point in time t1 > t0 + ∆ if at least r(d) of r-
gas was accumulated in the layer-one blockchain between t0
and t1. When there are no disputes, such that d = 0, or the
magnification factor α = 0, the dispute period ends after the
minimum dispute period ∆ seconds on average. However, as
disputes are issued and d increases, a delay is incurred. With
some fraction, denoted by e, of the gas not going towards
processing dispute transactions, the delay would amount to
r(d)÷ ((1− e)× gps). Optimizing the maximum gas cost of
a dispute c can mitigate this delay.

B. Priced Statement Finalization

The risk that not all dispute transactions are published
within the dispute period is a burden for a layer-two protocol’s
users. This risk creates an incentive to publish disputes with
high fees to increase their priority, which may lead to a surge in
layer-one transaction fees. The r-gas driven approach improves
this scenario by granting users more time based on layer-one
capacity. However, if layer-one fees surge, then r-gas would
not represent an unused dispute opportunity for users with
insufficient layer-one balance.

To remedy the aforementioned downside of r-gas, we incor-
porate a fixed dispute pricing factor p in ADC. Accordingly,
the adaptive dispute period of a statement then additionally
only ends when enough r-gas priced less than p, referred to as
”p-gas”, is accumulated after the publication of the statement.
Accounting for the layer-one gas pricing required for disputes
allows users to plan ahead their dispute costs, and provides an
equitable dispute opportunity for users who cannot afford to
win a layer-one transaction fee bidding war.

Empirically, the average daily gas price in Ethereum has not
risen above 1000× 10−9 ETH as of the time of writing3. For
Ethereum, p would determine the transaction gas price. With
this, we can estimate that p = 1000× 10−9 ETH would give
disputes a reasonably high priority in Ethereum.

C. Constant-Price Statement Finalization

One additional concern to be addressed is the fragmentation
of accumulated p-gas over several blocks. If publishing a
dispute costs a significant amount of gas, then p-gas may not
reflect the actual opportunity that had been available to issue
such a dispute.

For example, consider a dispute which requires 10,000,000
gas to execute. If exactly 5,000,000 of gas in two consecutive
blocks was accumulated as p-gas, then the total p-gas accumu-
lated would the gas required for a single dispute (10,000,000).
Relying on p-gas would lead to a false indication of a sufficient
opportunity to issue the dispute, despite there being no single
block containing 10,000,000 p-gas.

To remedy this, we incorporate c, the maximum gas cost of
a dispute against the statement, into the ADC mechanism, such
that a statement is considered final only when enough c-sized
consolidated units of p-gas has been accumulated. We use the
term ”c-gas” to refer to the accumulation of such consolidated
units, which must be accumulated only in multiples of c within
a single block. To elaborate, the total c-gas accumulated in the
example of the two blocks in the previous paragraph, where
c is equal to 10,000,000, would be zero, as no single block
contained the required amount of p-gas.

D. Bounded Statement Finalization

Lastly, we set a restriction that protects ADC against po-
tential changes in layer-one capacity. Primarily, Ethereum is
known to have a dynamic gas limit, which has been increasing
since its creation, and such an increase may lead to faster
accumulation of c-gas that would lead to unstable minimum
dispute periods. Consequently, we set an upper-bound on the
amount of c-gas that maybe accumulated in each block to
the pre-defined gps value multiplied by the expected time in
between consecutive layer-one blocks. This restriction means
that if the layer-one block gas limit increases, the adaptive
dispute period does not end before the pre-defined minimum
dispute period duration ∆.

V. PROBABILISTIC ADC

In this section we discuss how a spokesperson can create
a non-interactive computationally-sound proof [45], or non-
interactive argument, to convince a smart-contract that an ADC
dispute period has ended. Under this probabilistic approach,
the smart-contract is first convinced, with overwhelming prob-
ability, that some p-gas was accumulated after the publication
of a statement. Subsequently, the smart-contract calculates
the minimum c-gas value possible for that value. If at a
time t > ∆ the smart-contract receives the ADC argument,
and the statement had not been successfully disputed so far,

3https://etherscan.io/chart/gasprice

the smart-contract accepts the originally published statement
as final. However, the cost of verifying this argument is
non-negligible, and this probabilistic approach increases the
expected dispute period duration due to its imprecision. This
approach is backwards compatible with the existing Ethereum
Virtual Machine as of the time of writing.

A. Proving System

Using Algorithm 1, the spokesperson creates an argument
that n random p-gas units out of the p-gas units claimed to
have been accumulated are valid. The spokesperson prepares
the argument as follows: In lines 1 to 19 the spokesper-
son calculates the p-gas contributions of all reasonably-sized
transactions following the statement. All transactions with a
non-zero p-gas contribution are collected into a list sorted
by order of transaction execution in the blockchain. In line
20 the spokesperson then creates a Merkle-sum-min-max-tree
commitment over this list, where the leaf weights are the
p-gas contributions of each transaction, and the leaf values
are (block number, transaction number) pairs, over which the
minimum and maximum value annotiations are calculated.
Denoting the p-gas value claimed to have been accumulated by
b, in lines 21 to 35 the spokesperson generates a deterministic
pseudo-random sequence of n elements from Zb using any
cryptographically acceptable realization of a random oracle.
With bi denoting the ith value in the generated sequence, the
spokesperson appends to the argument the list of opening
information for the transaction which contributes the bith p-
gas unit.

Given the argument, the smart-contract can use Algorithm 2
to derive a c-gas value from it. In lines 1 to 18, the smart-
contract recalculates the list of bi values using the same
random oracle and commitment, and validates all the openings
provided in the argument, while ensuring4 that all opened
transactions in the commitment are relatively sorted by their
order of execution in the blockchain, and are published after
the target statement. In lines 19 to 20, with some security
threshold λ fixed for the smart-contract, such as λ = 2−128, the
smart-contract then calculates the maximum possible number
of valid p-gas units that the smart-contract is confident exist
in the measurement. As the argument contains no information
about how the p-gas units are distributed across continuous
segments, the smart-contract calculates in lines 21 to 31 the
minimum possible c-gas value that could have been accumu-
lated in the provided blocks.

Notably, the smart-contract needs access to block and trans-
action information in order to verify the claimed p-gas values.
In Ethereum, this can be accomplished using transaction and
block inclusion proofs as done in [21], as the Ethereum Virtual
Machine does not provide such built-in introspection as of the
time of writing.

B. Parameterization

The two primary parameters in this scheme are (i) the
number of samples in an proof, which is a dynamic parameter

4using the min-max tree annotations

https://etherscan.io/chart/gasprice

Algorithm 1: ProvePGas
input :
• maxGasPrice: p value for accumulating p-gas
• blocks: blocks from which to accumulate p-gas
• maxSize: maximum size of transaction to include
• numSamples: number of samples to open

output:
• pGas: accumulated p-gas
• commitment: Merkle-sum commitment root
• samples: random samples opening information

1 pGas← 0;
2 pgValues← [];
3 pgData← [];
4 for block ∈ blocks do
5 remGas← block.gasLimit− block.gasUsed;
6 pGas← pGas + remGas;
7 pgValues.append(remGas);
8 pgData.append((block.number, -1, 0);
9 for tx ∈ block.transactions do

10 if |tx| > maxSize
11 or tx.gasPrice > maxGasPrice then
12 skip tx;
13 end
14 pGas← pGas + tx.gasUsed;
15 pgValues.append(tx.gasUsed);
16 data← (block.number, tx.number, tx.gasPrice);
17 pgData.append(data);
18 end
19 end
20 commitment, openings←MSMMCommit(pgData,

pgValues);
21 samples← [];
22 for i = 0 to numSamples do
23 g← RO(commitment, pGas, i) mod pGas;
24 s← 0;
25 t← Φ;
26 for j = 0 to |pgValues| do
27 if s + pgValues[j] ≥ g then
28 t← (pgData[j], openings[j]);
29 break;
30 else
31 s← s + pgValues[j];
32 end
33 end
34 samples.append(t);
35 end
36 return pGas, commitment, samples

that the spokesperson can decide per argument, and (ii) the
security level λ, which dictates the level of confidence the
smart-contract must have in the argument. In this section we
describe the relationship between these two parameters and
how they affect the percentage of p-gas the smart-contract can

Algorithm 2: VerifyCGas
input :
• maxGasPrice: p value for accumulating p-gas
• segmentSize: c value for accumulating c-gas
• blocks: blocks from which to accumulate p-gas
• pGas: accumulated p-gas
• commitment: Merkle-sum commitment root
• samples: random samples opening information
• λ: probability of error
• α: p-gas fraction claimed

output:
• cGas: proven c-gas

1 n← |samples|;
2 for i = 0 to n do
3 g← RO(commitment, pGas, i) mod pGas;
4 weightPrefix,weightLeaf, data←

Open(commitment, samples[i]);
5 blockNum, txNum, gasPrice← data;
6 block← getBlock(blockNum);
7 remGas← block.gasLimit− block.gasUsed;
8 tx← getTransaction(blockNum, txNum);
9 if g < weightPrefix

10 or weightPrefix + weightLeaf < g
11 or gasPrice > maxGasPrice
12 or (txNum = −1 and remGas 6= weightLeaf)
13 or tx.gasPrice 6= gasPrice
14 or tx.gasUsed 6= weightLeaf
15 then
16 abort
17 end
18 end
19 if αn > λ then
20 abort
21 end
22 pgProven← α× pGas;
23 incompleteSegments← b pgProven

segmentSize−1c;
24 remainder← pgProven mod (segmentSize− 1);
25 m1 = |blocks| × (b incompleteSegments

|blocks| c − 1);
26 m2 = incompleteSegments mod |blocks|;
27 if m1 ≤ 0 then
28 return 0
29 else if remainder = 0 then
30 return m1 +m2

31 else
32 return m1 +m2 + 1
33 end

be confident to have been accumulated.
Interestingly, by setting ”maxSize” as input to Algorithm 1,

the spokesperson can control the maximum cost of verification
for each sample, including transaction membership proofs, and
can consequently derive the maximum cost of verification of
the argument in the smart-contract using the information in

0 20 40 60 80 100 120

Samples

0

10

20

30

40

50

60
%

of
p-

ga
s

co
un

te
d

λ = 2−80

λ = 2−128

Fig. 2: Number of correct samples provided in a proof versus
the percentage of p-gas that may be assumed to exist with
probability 1− λ.

Figure 2. This allows the spokesperson to perform a trade-
off between how much it is willing to wait for more p-gas to
accumulate, and how much gas it is willing to spend to prove
to the smart-contract that a certain portion of the p-gas that
has been accumulated exists.

For example, by limiting the maximum cost of verification
of a single sample to 100,000 gas, the spokesperson can
include any transaction of size 1 kilobyte or less in its
argument, and by including 40 samples, it can control the
argument verification cost to be on the order of 4,000,000 gas.
Smart-contracts with λ = 2−80 would accept roughly 25% of
the claimed p-gas value, while those with λ = 2−128 would
only accept roughly 10%.

VI. NATIVE ADC

In this Section, we discuss how ADC can be efficiently
enabled in layer-one with minimal overhead using a Binary
Indexed Tree [46] (BIT), which is an efficient data-structure
for updating and querying a subset of a d-dimensional matrix
of nd elements in O(logd n). For the remainder of this section,
we define upper(X, x), where X ⊆ N and x ∈ N, as the largest
value in X that is less than or equal x. Similarly, lower(X, x)
is the smallest value in X greater than or equal x.

To keep track of p-gas, a BIT can be used as follows: Let
P be the set of indexed prices, and n the number of blocks
indexed Let TP denote the two-dimensional BIT constructed
over the sparse matrix of n× |P| elements.

• To record that a transaction has used b units of gas at
price p in block i, let ρ = lower(P, p), and increment
TP(i, ρ) by b.

• To record that block i contains b unused gas units,
increment TP(i, 0) by b.

• To query how much p-gas was accumulated between
blocks i and j, let ρ = upper(P, p), and query TP for
the subset sum between indices (i, ρ) and (j, ρ).

All operations are in O(log n× log |P|).

To keep track of c-gas, the p-gas BIT TP is first computed,
then a separate set of BITs is populated as follows: Let C be
the set of indexed segment sizes. Let T C

P denote the set of |C|
two-dimensional BITs constructed, for each c ∈ C, over the
sparse matrices of n × |P| elements each. We denote by T c

P
the BIT for counting segments of size c.

• To record how much c-gas was accumulated in a block,
after updating TP using the transactions from block i, each
T c
P is updated as follows: Set temp← 0. For each p ∈ P

in non-decreasing order, set T c
P (i, p) to c×bTP(i,p)c c−temp

and temp to T c
P (i, p). This update process is in O(|C| ×

|P| × log n× log |P|).
• To query how much c-gas was accumulated between

blocks i and j, let ρ = upper(P, p), and query T c
P

for the subset sum between indices (i, ρ) and (j, ρ) in
O(log n× log |P|).

The efficiency and usability of this layer-one indexing
technique largely depends on the sets P and C. Using expo-
nentially increasing values, or some other small set of values,
would result in efficient updates and queries. However, such
coarse-grained indexing may not be perfectly suited to every
application.

VII. EVALUATION

In this section we evaluate our prototype ADC implemen-
tation, focusing on the cost and effectiveness of ADC in
protecting layer-two protocol users. The prototype implemen-
tation is in Solidity 0.6.6 and JavaScript, and is open-source5.
Measurements are sampled on a locally deployed test network
using Ganache6.

a) Cost: Figure 3 shows the smart-contract gas costs for
ADC proof verification versus number of samples provided in
a proof. The samples used consist of basic Ethereum transfers,
along with their inclusion proofs. It costs roughly 500,000
gas per such additional sample. Furthermore, it costs roughly
490,005 per 256 blocks that pass in a dispute period to commit
their hashes. These high costs are mostly due to the lack
of transaction inspection support, as the remainder of the
verification steps are inexpensive.

b) Effectiveness: In Figure 4 we plot the percentage
of successful fraud attempts under ADC, compared to the
layer-two systems, NOCUST and OmiseGO, with static-
dispute periods. We simulate n = 1,000,000 registered users
with a single layer-two operator, and an Ethereum layer-one
blockchain where blocks have a limit of 10,000,000 gas units,
and are produced once every 20 seconds. The variable RS

represents the average rate per block at which the spokesperson
publishes statements in the smart-contract, and RD represents
the average rate per block at which these statements are
disputed. We run the simulation with a fixed dispute period of
∆ = 24 hours for NOCUST and OmiseGO, and use the same
∆ as the minimum dispute period for our ADC ledger.

5https://github.com/rami-github/adaptive-dispute-cutoffs
6https://github.com/trufflesuite/ganache

https://github.com/rami-github/adaptive-dispute-cutoffs
https://github.com/trufflesuite/ganache

0 5 10 15 20

Samples

0.0

0.2

0.4

0.6

0.8

1.0
V

er
ifi

ca
tio

n
ga

s
co

st
×107

Fig. 3: Number of correct samples provided in a proof versus
the gas cost of executing our verifier contract.

0 10 20 30 40 50
RD

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
Fr

au
d

A
tte

m
pt

s

×106

NOCUST
OmiseGO
ADC α = 1

ADC α = 5

Fig. 4: Plot of estimated successful fraud attempts for
1,000,000 attempts under different RD values in our ADC
enabled ledger, NOCUST and OmiseGO. NOCUST permits
the operator to perform a high amount of fraud due to its
overeliance on static-time queries, while OmiseGO is inflexi-
ble with how slowly withdrawals can be disputed.

For our ADC enabled ledger, and NOCUST, RS = n in the
first block, and RS = 0 thereon after, as the spokesperson can
publish a single commitment statement, which simultaneously
affects all registered user accounts at once. For NOCUST, we
consider a maximum RD = 27, which is the maximum rate
whereby all blocks are filled with queries and their responses.
For our ADC enabled ledger, we consider a maximum RD =
52, as at most 52 claims and their refutations can fit inside a
block, while no queries are required.

In payment-channels and UTXO-based Plasma-schemes,
fraudulent channel closures and fraudulent withdrawals can
only be attempted per channel or transaction output respec-
tively. Therefore, we examine the resulting successful fraud
attempts while considering a maximum RS = 29 based the
cost for a standard withdrawal initialization being on the
order of an average 336,000 gas in the UTXO Plasma-based

OmiseGO Network as of the time of writing. We also use a
maximum value of RD = 49 for the OmiseGo platform, since
its challenge cost is on the order of an average 200,000 gas at
the time of writing. As both ongoing withdrawal initialization
and their challenges share the layer-one bandwidth, we vary
the value of RD and derive the value of RS based on the
remaining bandwidth.

The main observation about our ADC ledger in Figure 4 is
the impact of the two different values of α on the estimated
successful fraud attempts. We then see that α = 5 requires
RD = 10 for zero fraud, while α = 1 requires a higher user
dispute rate of RD = 42.

VIII. CONCLUSION

We have proposed ADC, a technique to increase the ro-
bustness of second-layer protocols and explained how second-
layer protocols can make use of ADC to secure disputes. We
evaluated the efficacy of ADC in allowing a Plasma scheme
to secure 1,000,000 accounts while providing an equitable
dispute opportunity under layer-one congestion.

A. Future Work

a) Privacy and Censorship: While we do not address
privacy or layer-one censorship resilience, it would be a
valuable contribution to design a system where disputes cannot
be easily identified or targeted for censorship.

b) Verification Costs: Using succinct zero-knowledge
proving systems, such as zkSNARKS, the maximum percent-
age of p-gas that can be proven to exist could be increased
through reducing the costs associated with running the verifi-
cation procedure in a smart-contract. It would be a promising
avenue of work to explore such designs and demonstrate their
tradeoffs.

ACKNOWLEDGMENT

This work is supported by the Imperial College London
President’s PhD Scholarship.

REFERENCES

[1] L. Gudgeon, P. McCorry, P. Moreno-Sanchez, A. Gervais, and
S. Roos, “Sok: Off the chain transactions,” IACR Cryptology
ePrint Archive, 2019.

[2] V. Buterin, “Minimal viable plasma,” https://ethresear.ch/t/
minimal-viable-plasma/426, 2018, online; Accessed 03-June-
2020.

[3] ——, “Plasma cash: Plasma with much less per-user data check-
ing,” https://ethresear.ch/t/plasma-cash-plasma-with-much-less-
per-user-data-checking/1298, 2018, online; Accessed 03-June-
2020.

[4] D. Robinson, “Plasma debit: Arbitrary-denomination payments
in plasma cash,” https://ethresear.ch/t/plasma-debit-arbitrary-
denomination-payments-in-plasma-cash/2198, 2018, online;
Accessed 03-June-2020.

[5] I. Gulamov, “Plasma prime design proposal,” https://ethresear.
ch/t/plasma-prime-design-proposal/4222, 2018, online; Ac-
cessed 03-June-2020.

[6] “Learn plasma,” https://www.learnplasma.org, online; Accessed
03-June-2020.

[7] R. Khalil, “NOCUST-A non-custodial 2nd-layer blockchain
payment hub,” Master’s thesis, Swiss Federal Institute of

https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/plasma-prime-design-proposal/4222
https://ethresear.ch/t/plasma-prime-design-proposal/4222
https://www.learnplasma.org

Technology, Zurich, 2018, https://pub.tik.ee.ethz.ch/students/
2018-FS/MA-2018-24.pdf.

[8] R. Khalil, P. Moreno-Sanchez, A. Zamyatin, A. Gervais, and
G. Felley, “Commit-chains: Secure, scalable off-chain pay-
ments,” Cryptology ePrint Archive, Report 2018/642, Tech.
Rep., 2019.

[9] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller,
“Pisa: Arbitration outsourcing for state channels,” in Proceed-
ings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 16–30.

[10] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart
contracts,” White paper, 2017.

[11] R. Khalil, A. Gervais, and G. Felley, “NOCUST-A securely
scalable commit-chain,” Cryptology ePrint Archive, Report
2018/642, Tech. Rep., 2018.

[12] S. Dziembowski, G. Fabianski, S. Faust, and S. Riahi, “Lower
bounds for off-chain protocols: Exploring the limits of plasma,”
Cryptology ePrint Archive, Report 2020/175., Tech. Rep., 2020.

[13] C. Decker and R. Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in Sym-
posium on Self-Stabilizing Systems. Springer, 2015, pp. 3–18.

[14] S. Werman and A. Zohar, “Avoiding deadlocks in payment chan-
nel networks,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology. Springer, 2018, pp. 175–187.

[15] E. Heilman, S. Lipmann, and S. Goldberg, “The arwen trading
protocols,” 2019.

[16] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate,
and M. Maffei, “Anonymous multi-hop locks for blockchain
scalability and interoperability.” in NDSS, 2019.

[17] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A2l: Anonymous
atomic locks for scalability and interoperability in payment
channel hubs,” Cryptology ePrint Archive, Report 2019/589,
Tech. Rep., 2019.

[18] D. Hosp, T. Hoenisch, P. Kittiwongsunthorn et al., “Comit-
cryptographically-secure off-chain multi-asset instant transac-
tion network,” arXiv preprint arXiv:1810.02174, 2018.

[19] D. Piatkivskyi and M. Nowostawski, “Split payments in pay-
ment networks,” in Data Privacy Management, Cryptocurren-
cies and Blockchain Technology. Springer, 2018, pp. 67–75.

[20] Y. Zhang, Y. Long, Z. Liu, Z. Liu, and D. Gu, “Z-channel: Scal-
able and efficient scheme in zerocash,” Computers & Security,
pp. 112–131, 2019.

[21] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Ger-
vais, and W. Knottenbelt, “Xclaim: Trustless, interoperable,
cryptocurrency-backed assets,” IEEE Security and Privacy.
IEEE, 2019.

[22] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and
S. Ravi, “Concurrency and privacy with payment-channel net-
works,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 455–471.

[23] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Gold-
berg, “Tumblebit: An untrusted bitcoin-compatible anonymous
payment hub,” in Network and Distributed System Security
Symposium, 2017.

[24] C. Decker, R. Russell, and O. Osuntokun, “eltoo: A simple
layer2 protocol for bitcoin,” White paper: https://blockstream.
com/eltoo. pdf, 2018.

[25] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain
payment networks,” Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[26] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable
off-chain instant payments,” https://lightning.network/lightning-
network-paper.pdf, 2016.

[27] M. M. Chakravarty, S. Coretti, M. Fitzi, P. Gazi, P. Kant,
A. Kiayias, and A. Russell, “Hydra: Fast isomorphic state
channels,” Cryptology ePrint Archive, Report 2020/299, Tech.
Rep., 2020.

[28] C. Buckland and P. McCorry, “Two-party state channels with
assertions,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2019, pp. 3–11.

[29] E. Wagner, A. Völker, F. Fuhrmann, R. Matzutt, and K. Wehrle,
“Dispute resolution for smart contract-based two-party proto-
cols,” in 2019 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, 2019, pp. 422–430.

[30] A. R. Pedrosa, M. Potop-Butucaru, and S. Tucci-Piergiovanni,
“Scalable lightning factories for bitcoin,” in Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, 2019,
pp. 302–309.

[31] P. McCorry, C. Buckland, S. Bakshi, K. Wüst, and A. Miller,
“You sank my battleship! a case study to evaluate state channels
as a scaling solution for cryptocurrencies,” in International
Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 35–49.

[32] M. Dong, Q. Liang, X. Li, and J. Liu, “Celer network:
Bring internet scale to every blockchain,” arXiv preprint
arXiv:1810.00037, 2018.

[33] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and
K. Hostáková, “Multi-party virtual state channels,” in Annual
International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2019, pp. 625–656.

[34] S. Dziembowski, S. Faust, and K. Hostáková, “General state
channel networks,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018,
pp. 949–966.

[35] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski,
“Perun: Virtual payment hubs over cryptocurrencies,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 106–123.

[36] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp.
1353–1370.

[37] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry,
“Sprites and state channels: Payment networks that go faster
than lightning,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2019, pp. 508–526.

[38] G. Avarikioti, E. K. Kogias, and R. Wattenhofer, “Brick: Asyn-
chronous state channels,” arXiv preprint arXiv:1905.11360,
2019.

[39] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G.
Sirer, “Teechain: Reducing storage costs on the blockchain with
offline payment channels,” in Proceedings of the 11th ACM
International Systems and Storage Conference, SYSTOR 2018,
HAIFA, Israel, June 04-07, 2018, 2018, p. 125.

[40] J. Lind, I. Eyal, P. Pietzuch, and E. G. Sirer, “Teechan: Payment
channels using trusted execution environments,” arXiv preprint
arXiv:1612.07766, 2016.

[41] G. Wood, “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum Project Yellow Paper, 2014.

[42] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au,
and X. Zhang, “An adaptive gas cost mechanism for ethereum
to defend against under-priced dos attacks,” in International
Conference on Information Security Practice and Experience.
Springer, 2017, pp. 3–24.

[43] D. Perez and B. Livshits, “Broken metre: Attacking resource
metering in evm,” arXiv preprint arXiv:1909.07220, 2019.

[44] S. M. Werner, P. J. Pritz, and D. Perez, “Step on the gas?
a better approach for recommending the ethereum gas price,”
arXiv preprint arXiv:2003.03479, 2020.

[45] S. Micali, “Cs proofs,” in Proceedings 35th Annual Symposium
on Foundations of Computer Science, 1994, pp. 436–453.

[46] P. M. Fenwick, “A new data structure for cumulative frequency
tables,” Software: Practice and experience, vol. 24, no. 3, pp.
327–336, 1994.

https://pub.tik.ee.ethz.ch/students/2018-FS/MA-2018-24.pdf
https://pub.tik.ee.ethz.ch/students/2018-FS/MA-2018-24.pdf

	Introduction
	Related Work
	Plasma
	Payment channels
	Transaction Metering

	Dispute Overview
	Disputes
	Dispute Opportunity
	Dispute Creation
	Dispute Publication

	Adaptive Dispute Cutoff
	Statement Finalization
	Priced Statement Finalization
	Constant-Price Statement Finalization
	Bounded Statement Finalization

	Probabilistic ADC
	Proving System
	Parameterization

	Native ADC
	Evaluation
	Conclusion
	Future Work

