

1

Bootstrapping on SEAL

HyungChul Kang
Samsung Advanced Institute of

Technology

Korea, Republic of

hc1803.kang@samsung.com

Joon-Woo Lee
Seoul National University

Korea, Republic of

 joonwoo3511@ccl.snu.ac.kr

Yongwoo Lee
Seoul National University

Korea, Republic of

 yongwool@ccl.snu.ac.kr

Young-Sik Kim
Chosun University

Korea, Republic of

iamyskim@chosun.ac.kr

Jong-Seon No
Seoul National University

Korea, Republic of

jsno@snu.ac.kr

ABSTRACT

We implement bootstrapping of RNS-CKKS on SEAL, a homomorphic encryption library released by Microsoft. And we measure the

accuracy of encrypted data after bootstrapping for various parameters, which allows us to do more than thousands of homomorphic

operations.

KEYWORDS

Bootstrapping, SEAL, Cheon-Kim-Kim-Song, RNS-CKKS

1 CKKS and RNS-CKKS

Cheon-Kim-Kim-Song (CKKS)[1] is a scheme proposed by Cheon et al.. The biggest feature of CKKS scheme is that it accepts errors as

part of a message, unlike other homomorphic encryption schemes. Because of this feature, CKKS scheme can perform homomorphic

operations among real numbers and complex numbers, which has attracted attention in the field of machine learning. RNS-CKKS

scheme[2] is a residue number system (RNS) variant of CKKS scheme, where power-of-two moduli of rings are replaced with products of

big primes by allowing the approximate rescaling. Currently, RNS-CKKS scheme is implemented in simple encrypted arithmetic library

(SEAL)[3] released by Microsoft.

2 Bootstrapping

Since the modulus of a ciphertext in CKKS (or RNS-CKKS) scheme is continuously reduced as the several homomorphic multiplications

with rescaling procedure are evaluated, the modulus eventually becomes too small to allow additional rescaling procedure at some time.

Then, it becomes the smallest modulus 𝑞0 from the initial modulus 𝑄. Thus, we have to raise the modulus of the ciphertext at that time

without modifying the message so that the additional rescaling procedure can be performed, which corresponds to the bootstrapping.

Bootstrapping of CKKS scheme[4] raises the modulus 𝑞0 reduced through rescaling to a larger modulus 𝑄′. Raising modulus 𝑄′ means

raising to a higher level in RNS-CKKS scheme.

Bootstrapping of CKKS(or RNS-CKKS) scheme is performed in the following process.

 ModRaise: ModRaise is a process of raising the modulus 𝑞0 to the modulus 𝑄 . Due to this process, coefficients of plaintext

polynomial are in the form of 𝑚(𝑌) + 𝑞0 ⋅ 𝐼(𝑋) (𝑌 = 𝑋𝑁/𝑛, 𝑁 = polynomial degree, 𝑛 = number of message slots).

 SubSum: Because of a sparse packing, the coefficients of plaintext polynomial are in the form of 𝑚(𝑌) + 𝑞0 ⋅ 𝐼(𝑋). If SubSum is

performed after ModRaise, these are in the form of 𝑚(𝑌) + 𝑞0 ⋅ 𝐼(𝑌). If you haven't done the sparse packing, you don't need SubSum.

 CoeffToSlot: A homomorphic evaluation is an operation on message slots. However, we have to perform a modular operation on the

coefficients of plaintext polynomial. Therefore, we need to put the coefficients into the message slots. CoeffToSlot is the process of

doing this.

 Modular Reduction: Modular Reduction is a process of approximating the modular reduction on the coefficients of plaintext

polynomial contained in the message slots.

 SlotToCoeff: SlotToCoeff is an inverse operation of CoeffToSlot, which is a process of returning the coefficients of plaintext

polynomial contained in the message slots back to their original positions.

2

3 Implementation Results

We implement bootstrapping of RNS-CKKS scheme on SEAL v3.5.6 for various parameters (Table 1. and 2.) using the algorithm in [5, 6].

The various parameters are defined as follows.

 log𝑁: a log value of a polynomial degree

 log𝑄: a log value of an initial modulus

 𝜆: a security level

 log𝑝: a log value of a scaling factor

 log𝑞0: a log value of the smallest modulus

 𝜖: a half-width of each approximation region for a scaled cosine fucntion

 ℎ: a hamming weight of a private key

 log slots: a log value of message slots

 Precision: a precision of bootstrapping (integer(bit) + decimal(bit))

 The number of remained levels: remained levels after bootstrapping

 Time (sec): bootstrapping time per all message slots

 Amortized time (ms): bootstrapping time per one message slot

Table 1. Sets of parameters in SEAL

No. log𝑁 log𝑄 𝜆 log𝑝 log𝑞0 𝜖 ℎ

1 16 1560 128 40 60 2−3 64

2 16 1550 128 50 60 2−6 64

3 16 1535 128 55 60 2−5 64

4 16 1740 128 40 60 2−3 96

5 16 1760 128 50 60 2−6 96

6 16 1760 128 55 60 2−5 96

7 16 1740 128 40 60 2−3 128

8 16 1760 128 50 60 2−6 128

9 16 1760 128 55 60 2−5 128

10 16 1760 128 40 60 2−3 192

11 16 1770 128 50 60 2−6 192

12 16 1765 128 55 60 2−5 192

Table 1 lists the twelve set of parameters for the simulation of the bootstrapping of SEAL. Table 2. shows the performance measurement

results for each parameter (CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz). In the previous, only the number between 0 and 1 was

treated as a message without considering an integer part. However, since bootstrapping for a number greater than 1 is required depending

on applications, the simulation is performed to restore the integer part.

We implement CoeffToSlot and SlotToCoeff proposed by Chen et al.[5], and Modular Reduction proposed Lee et al.[6].

Table 2. Performance of the bootstrapping of SEAL

No. log slots Precision*
The number of

remained levels
Time (sec)

Amortized time

(ms)

1
10 17 + 6.44 7 93.8 91.6

11 17 + 5.96 7 107.3 52.4

3

12 17 + 5.46 7 128.8 31.5

13 17 + 4.97 7 156.3 19.1

14 17 + 4.46 7 193.6 11.8

15 17 + 4.17 9 338.6 10.3

2

10 4 + 17.11 8 86.1 84.1

11 4 + 16.62 8 99.7 48.7

12 4 + 16.13 8 120.1 29.3

13 4 + 15.62 8 146.7 17.9

14 4 + 15.11 8 182.5 11.1

15 4 + 14.86 9 301.5 9.2

3

10 1 + 22.00 6 78.7 76.9

11 1 + 21.49 6 90.9 44.4

12 1 + 20.96 6 110.1 26.9

13 1 + 20.47 6 134.8 16.5

14 1 + 19.98 6 167.9 10.2

15 1 + 19.70 7 273.4 8.3

4

10 17 + 4.63 10 117.5 114.8

11 17 + 4.12 10 134.9 65.9

12 17 + 3.59 10 160.4 39.2

13 17 + 3.11 10 193.3 23.6

14 17 + 2.59 10 237.9 14.5

15 17 + 2.33 12 413.6 12.6

5

10 4 + 16.08 11 109.5 106.9

11 4 + 15.55 11 125.7 61.4

12 4 + 15.05 11 151.6 37.0

13 4 + 14.57 11 183.8 22.4

14 4 + 14.08 11 226.8 13.8

15 4 + 13.80 12 372.6 11.4

6

10 1 + 21.03 9 100.5 98.1

11 1 + 20.59 9 115.8 56.5

12 1 + 20.06 9 138.6 33.8

13 1 + 19.60 9 168.7 20.6

14 1 + 19.07 9 207.9 12.7

15 1 + 18.80 10 340.0 10.4

7

10 17 + 4.30 10 118.1 115.4

11 17 + 3.64 10 135.9 66.4

12 17 + 3.18 10 161.6 39.5

13 17 + 2.66 10 195.9 23.9

14 17 + 2.16 10 237.8 14.5

15 17 + 1.89 12 415.3 12.7

8

10 4 + 14.19 11 110.9 108.3

11 4 + 13.71 11 127.6 62.3

12 4 + 13.17 11 153.5 37.5

13 4 + 12.65 11 185.4 22.6

14 4 + 12.17 11 227.9 13.9

15 4 + 11.89 12 375.4 11.5

9

10 1 + 19.16 9 101.8 99.4

11 1 + 18.65 9 116.7 57.0

12 1 + 18.14 9 140.0 34.2

13 1 + 17.69 9 170.3 20.8

14 1 + 17.17 9 209.2 12.8

15 1 + 16.91 10 344.7 10.5

4

10

10 17 + 5.30 9 117.7 114.9

11 17 + 4.79 9 135.1 65.9

12 17 + 4.31 9 159.8 39.0

13 17 + 3.78 9 191.9 23.4

14 17 + 3.29 9 234.4 14.3

15 17 + 3.02 10 383.6 11.7

11

10 4 + 15.30 10 110.8 108.2

11 4 + 14.81 10 127.6 62.3

12 4 + 14.29 10 152.2 37.2

13 4 + 13.80 10 184.2 22.5

14 4 + 13.27 10 226.6 13.8

15 4 + 13.04 11 369.3 11.3

12

10 1 + 20.32 8 102.0 99.6

11 1 + 19.80 8 117.0 57.1

12 1 + 19.27 8 140.0 34.2

13 1 + 18.82 8 169.5 20.7

14 1 + 18.32 8 208.3 12.7

15 1 + 18.05 9 340.6 10.4

* In the precision(accuracy) of the above table, a + b stands for the accuracy of the integer part, a and the accuracy of the

fractional part, b.

ACKNOWLEDGMENTS

REFERENCES
[1] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.

10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

[2] J. H. Cheon, K. Han, A. Kim, M. Kim, Y. Song, A full RNS variant of approximate homomorphic encryption, in SAC 2018, pp. 347–368, 2018

[3] Microsoft SEAL (release 3.5), https://github.com/Microsoft/SEAL, apr 2020, Microsoft Research, Redmod, WA.

[4] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,

vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14

[5] Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homomorphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,

pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_2

[6] Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S., High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption Using Optimal Polynomial Approximation and

Inverse Sine Function, in ePrint 2020/552.

https://doi.org/10.1007/978-3-319-78381-9_14

