Deniable Fully Homomorphic Encryption from LWE

Shweta Agrawal® Shafi Goldwasser! Saleet Mossel*

November 12, 2021

Abstract

We define and construct Deniable Fully Homomorphic Encryption based on the Learning With
Errors (LWE) polynomial hardness assumption. Deniable FHE enables storing encrypted data in
the cloud to be processed securely without decryption, maintaining deniability of the encrypted
data, as well the prevention of vote-buying in electronic voting schemes where encrypted votes
can be tallied without decryption.

Our constructions achieve compactness independently of the level of deniability- both the size
of the public key and the size of the ciphertexts are bounded by a fixed polynomial, independent of
the detection probability achieved by the scheme. This is in contrast to all previous constructions
of deniable encryption schemes (even without requiring homomorphisms) which are based on
polynomial hardness assumptions, originating with the seminal work of Canetti, Dwork, Naor
and Ostrovsky (CRYPTO 1997) in which the ciphertext size grows with the inverse of the
detection probability. Canetti et al. argued that this dependence “seems inherent”, but our
constructions illustrate this is not the case. We note that the Sahai-Waters (STOC 2014)
construction of deniable encryption from indistinguishability-obfuscation achieves compactness
and can be easily modified to achieve deniable FHE as well, but it requires multiple, stronger
sub-exponential hardness assumptions, which are furthermore not post-quantum secure. In
contrast, our constructions rely only on the LWE polynomial hardness assumption, as currently
required for FHE even without deniability.

The running time of our encryption algorithm depends on the inverse of the detection
probability, thus the scheme falls short of achieving simultaneously compactness, negligible
deniability and polynomial encryption time. Yet, we believe that achieving compactness is a
fundamental step on the way to achieving all properties simultaneously as has been the historical
journey for other primitives such as functional encryption. Our constructions support large
message spaces, whereas previous constructions were bit by bit, and can be run in online-offline
model of encryption, where the bulk of computation is independent of the message and may
be performed in an offline pre-processing phase. This results in an efficient online phase whose
running time is independent of the detection probability. At the heart of our constructions is a
new way to use bootstrapping to obliviously generate FHE ciphertexts so that it supports faking
under coercion.

*IIT Madras, shweta.a@cse.iitm.ac.in.
fSimons Institute of TOC at UC Berkeley, shafi.goldwasser@gmail.com.
iMIT, saleet@mit.edu

Contents

1 Introduction

1.1 Prior Work on Deniability.
1.2 OurResults..
1.3 Our Techniques.
1.4 Perspective: FHE asa Tool
1.5 On Receiver Deniability
1.6 Other Related Work

2 Preliminaries

2.1 Fully Homomorphic Encryption
2.2 Deniable Homomorphic Encryption

3 Special Homomorphic Encryption

3.1 Instantiation

4 Deniable Encryption for Bits

4.1 Weakly Deniable FHE for Bits
4.2 Fully Deniable FHE for Bits

5 Weakly Deniable FHE with Large Message Space

6 Fully Deniable FHE with Large Message Space

6.1 Plan Ahead Deniability.

7 Weakening the Condition on Special FHE

7.1 Weakening of Property 4: Biased Decryption on Random Input

7.2 Removing Circularity Assumption for Levelled FHE
8 Lower Bound for Deniable Schemes

A Another Compact FHE for bits

13
14
16

18
19

21
21
24

27

31
36

36
36
38

38

43

1 Introduction

Deniable (public-key) encryption, which was introduced in a seminal work by Canetti, Dwork, Naor
and Ostrovsky (CRYPTO 1997) [11], is a seemingly paradoxical primitive that enables a user, who
may be coerced to reveal the plaintexts corresponding to her public ciphertexts, to successfully lie
about which messages she encrypted.

In particular, suppose Alice encrypted a message m with ciphertext ct which she deposits in
the cloud for the purpose of cloud computing, and is later forced by the government to reveal the
randomness she used and the message encrypted. Deniable encryption allows her to chose a different
message m’ at coercion time and reveal fake random coins, which convincingly explain ct as the
encryption of m’. Clearly, deniability is a property which may be highly desirable when one uses
a public resource such as cloud computing which expose him to possible coercion. Another use
case is preventing vote buying in electronic elections: if the voter encrypts her vote using deniable
encryption, then she can claim she encrypted an alternate message when forced to reveal her vote,
deeming vote selling ineffective and encouraging honest voting since the voter cannot be forced to
reveal her choice.

In this work, we introduce the notion of deniable fully homomorphic encryption (FHE) and
provide the first constructions based on the Learning With Errors polynomial hardness assumption.
In deniable FHE, the encryptor can produce ciphertexts that can be opened to fake messages under
coercion, and additionally support fully homomorphic computations and achieve security as in (by
now) classical FHE. We emphasize that for all the applications of deniable public key encryption
mentioned above, the capability of homomorphism is an important implicit requirement — indeed,
several modern e-voting protocols use FHE [13, 25|, and present-day encrypted data is often stored
on a cloud server which assists the data owner with computing “blind-folded” via FHE [19].

We proceed to describe important prior work before describing our results in detail.

1.1 Prior Work on Deniability.

Canetti et al. (CDNO) [11] provided elegant constructions of deniable encryption based on
the construct of so called “translucent sets”, which in turn can be constructed from trapdoor
permutations. A major disadvantage of the CDNO construction was lack of compactness —
the ciphertext size grows with the inverse of the detection probability achieved by the scheme.
Furthermore, it encodes large messages bit by bit, where the ciphertext for each bit grows inversely
with the detection probability. CDNO provided a lower bound that shows that their construction
is in some sense optimal. They identified a structural property of encryption, which they term as
separability and argued that as long as a construction is separable, the dependence of the ciphertext
size with the inverse of the detection probability “seems inherent” [11].

A significant step forward in our understanding of deniable encryption and compactness was
achieved via the work of Sahai and Waters in 2014 [27] which provided the first construction
achieving negligible deniability assuming indistinguishability obfuscation (i0) and one way functions.
However, iO seems to be an inherently sub-exponential assumption [17, 18], and while exciting as a
feasibility result, does not provide a satisfying solution to the question of deniable encryption from
standard polynomial hardness assumptions.

CDNO also suggested the notion of weak deniability where the encryptor can lie not only about
the random coins used to generate the ciphertext, but also the algorithm used to encrypt the message

and the notion of receiver deniability, where the receiver can also produce a fake secret key that
decrypts the message to an alternate one. In the weak model, [11] showed that compact public key
and ciphertext as well as negligible deniability are possible. However, whether the weak model is
meaningful for practical applications has been the subject of some debate — as discussed in [26], a
common objection to the weak model is “since there are alternative deniable algorithms that are
strictly more powerful than the normal ones, why would anyone ever run the normal algorithms?
And given this situation, why would a coercer ever accept a transcript corresponding to the normal
algorithms?”. We refer the reader to [26] for a detailed discussion.

Other extensions to deniable encryption were also explored — O’Neill, Peikert and Waters [26]
provided the first constructions of non-interactive bi-deniable encryption schemes where both the
sender and the receiver can fake simultaneously as well as the first construction of identity based
bi-deniable encryption. Apon, Fan and Liu [2] extended their results to provide the first construction
deniable attribute based encryption. However, in the full model, both works [26, 2] inherit the
detection probability of CDNO, which is inverse polynomial. Additional prior work not directly
related to the current work is discussed in Section 1.6.

Summarizing, barring the iO based construction which seems to require a sub-exponential
hardness assumption, all proposals for (fully) sender deniable encryption schemes from standard
assumptions suffer from ciphertext size that is inversely proportional to the detection probability.
This implies a prohibitively large blow on efficiency. For a primitive as fundamental and interesting
as deniable encryption, this state of affairs is very dissatisfying.

1.2 Our Results.

In this work, we introduce the notion of deniable fully homomorphic encryption (FHE) and provide
the first constructions of deniable FHE based on the Learning With Errors (LWE) assumption. Our
constructions enjoy deniability compactness - the public key as well as the ciphertext of our schemes
have size that can be bounded by a fixed polynomial, and are, in particular, independent of the level
of deniability (or detection probability) achieved by the scheme. Our constructions support large
messages paces, whereas all prior constructions encoded large messages bit by bit. On the down side,
our encryption time depends on the inverse of the detection probability, thus the scheme falls short
of achieving simultaneously compactness, negligible deniability and polynomial encryption time.
Luckily, the scheme can be run in online-offline model of encryption, where the bulk of computation,
which grows with the inverse of the detection probability, is independent of the message and may be
performed in an offline pre-processing phase. The running time of the online phase, is independent
of the detection probability.

We believe that achieving compact ciphertext even with large encryption time is a fundamental
step forward — indeed, note that for the related primitive of functional encryption (FE), compact
ciphertext was later found to imply compact running time [24] by additionally assuming LWE via
the “succinct” FE of Goldwasser et al. [22]. While this implication does not hold true for our work
at present, it is a tantalizing possibility for future work.

We now proceed to expound on the particulars of our results.

Deniable FHE. A (public key, sender) deniable fully homomorphic encryption consists of a tuple
of algorithms DFhe = (Gen, Enc, Eval, Dec, Fake) where Gen, Enc and Dec are the standard key-
generation, encryption and decryption algorithms, Eval is an algorithm that takes as input the

public key, a circuit C and a tuple of ciphertexts cty,...,ct, encrypting =1, ..., x, respectively, and
outputs a ciphertext ct* which encrypts C(x1,...,z,), and Fake is a faking algorithm, which takes
as input the public key, an original message m, randomness r, and a fake message m* and outputs
a fake randomness r* so that the encryption of message m using randomness r produces the same
ciphertext as the encryption of message m* using randomness r*, i.e. Enc(pk, m;r) = Enc(pk, m*;r*).
The detection probability is the probability with which an adversary can distinguish r from r*, and
we denote it by 1/ = 1/6(\) where A is the security parameter. Our notion of deniable FHE is
formalized in Definition 2.10.

We naturally extend this definition to the weak model (Definition 2.13) — a weakly deniable
FHE is defined as wDFhe = (Gen, DEnc, Enc, Eval, Dec, Fake) which is distinct from “fully” deniable
FHE in that there are two distinct algorithms for encryption, namely Enc and DEnc. Here, as
n [11], leveraging the additional secret “deniable” encryption algorithm DEnc, allows for better
constructions as discussed below (in particular, those that achieve negligible deniability in polynomial
time).

In more detail, Enc is an “honest” encryption algorithm and is used by the encryptor when it
does not wish to fake a ciphertext, and DEnc is a “deniable” encryption algorithm, which is used
when the encryptor wishes to retain the ability of faking a ciphertext in the future. Let us say the
encryptor wishes to compute an encryption of m which it may later want to explain differently.
Then it produces a ciphertext ct* by running the algorithm DEnc with message m using randomness
r. To explain ct* as encrypting an arbitrary fake message m* at a later time, the encryptor produces
random coins 7* using the Fake algorithm, so that the ciphertext output by the honest encryption
algorithm Enc on m™* using r* equals the ciphertext ct* which was produced using the deniable
encryption algorithm DEnc, i.e. DEnc(pk, m;r) = Enc(pk, m*; r*).

Next, we describe our constructions. We provide:

1. A weakly deniable FHE scheme for bits with negligible detection probability (Section 4.1). We
extend this scheme to support larger (polynomial sized) message spaces (Section 5).

2. A fully deniable FHE scheme for bits with inverse polynomial detection probability (Section
4.2). We also extend this scheme to support larger (polynomial sized) message spaces (Section
6). Both our fully deniable FHE schemes have compact public key and ciphertext, i.e. with
size independent of the detection probability, but with encryption running time that grows
with the inverse of the detection probability.

3. Plan-ahead deniable FHE schemes which support exponentially large message spaces (Section
6.1). Plan-ahead deniable encryption [11] requires the encryptor to choose all (polynomially
many) possible fake messages at the time of encryption. Later, when the encryptor desires
to explain a ciphertext, it can only provide convincing fake randomness for one of the fake
messages chosen during encryption.

Fake FEvaluation. We note that our notions of deniable FHE also allow, in some cases, to explain
evaluated ciphertexts as encoding a fake message. For instance, in the case that Eval is a deterministic
algorithm, suppose that ct* was computed by homomorphically evaluating a polynomial sized
circuit C on ciphertexts cty,...,ct, which encode messages z1,...,x, respectively. Suppose an
encryptor wishes to explain ct* as an encryption of an arbitrary message m* # C(x1,...,z,), and
C supports inversion, i.e. given a value m*, it is possible to efficiently sample 2/, ...z}, such that

C(z,...,z},) = m*. Then, the encryptor may simply explain ct; as an encryption of z for i € [n]
and exhibit that the homomorphic evaluation procedure for C results in ct*. This convinces the
adversary that ct* encodes m*, as desired. We note that for several applications of interest, the
circuit C can indeed be invertible — for instance, C may represent the vote counting circuit, which is

simply addition and hence easily invertible.

On the Underlying Assumptions. We remark that the Sahai-Waters construction of public
key deniable encryption from indistinguishability obfuscation (i0) [27] can be modified in a natural
way to construct deniable fully homomorphic encryption. This provides an appealing feasibility
result for deniable fully homomorphic encryption with negligible deniability, but rely on the strong
hammer of indistinguishability obfuscation. While (concurrent) exciting recent work [23] has
based indistinguishability obfuscation on well-founded assumptions, this construction relies on the
subexponential hardness of four different assumptions, including assumptions on bilinear maps
which are known to be insecure in the post-quantum regime. It is also well known that existing
reductions to indistinguishability obfuscation [27] run into subexponential barrier due to the number
of hybrids used in the security reductions — this results a subexponential assumption, please see [18]
for a discussion.

The focus of our work is to rely on minimal assumptions. The primitive of levelled (respectively,
pure) fully homomorphic encryption may be based on the polynomial hardness of the Learning With
Errors (respectively, with circular security) assumption, with polynomial approximation factors
[10]. Our constructions show that we can achieve (polynomially) deniable FHE without making any
additional assumptions.

Compact Deniable PKFE from FHE. Homomorphism aside, as discussed above, our construction
implies, as a special case, a compact deniable public key encryption scheme, where the size of the
public key and ciphertext are independent of the detection probability, which can be made an
arbitrarily small inverse polynomial. However, as discussed above, the running time of our encryption
algorithm does grow linearly with the inverse of the detection probability. This dependence again
seems inherent, since our constructions can be shown to be separable in the sense of CDNO and
hence subject to the lower bound (see Section 8). We discuss in Section 1.4 the technical barriers in
circumventing this lower bound from non-obfuscation assumptions.

Online-Offline Encryption. Our constructions of deniable FHE also enjoy a desirable online-offline
property, which allows the encryptor to do the bulk of the work in an offline phase that is independent
of the message to be encrypted. In more detail, our encryption algorithm can be divided into two
parts — an offline, message independent part which runs in time O(6) (recall that % is the detection
probability), and an online phase which is efficient and independent of §. We believe this feature
makes these schemes especially attractive for practice since it mitigates the disadvantage of the
large running time of encryption.

1.3 Our Techniques.

The primary technical challenge in (full) deniable encryption is satisfying the many constraints
imposed by the faking algorithm: the adversary knows the encryption algorithm and must be
shown correctly distributed randomness that explains a given challenge ciphertext to a fake message.

Excepting the construction based on obfuscation [27], all prior work addressed this challenge by
setting the ciphertext to be a long sequence of elements that are either random or pseudorandom,
and encoding the message bit in the parity of the number of pseudorandom elements. To fake, the
encryptor pretends that one of the pseudorandom elements is in fact random, thus flipping the
parity of the number of pseudorandom elements, and hence the encoded message. To construct
a deniable fully homomorphic encryption scheme, the first challenge that arises is that an FHE
ciphertext is highly structured, and this is necessary if it has to support homomorphic evaluation.
Moreover, valid FHE ciphertexts are sparse in the ciphertext space, so randomly sampled elements
are unlikely to be well-formed ciphertexts. Hence, if the encryptor for deniable FHE constructs all
components of the ciphertext by running the FHE encryption algorithm i.e. Fhe.Enc(pk, m;r), then
it is forced to open the FHE ciphertexts to provide r honestly — the structure of ciphertexts does
not support lying about any of the encoded bits. The encryptor is thus faced with the incongruous
task of producing highly structured ciphertexts without running the FHE encryption algorithm.

)

The Magic of Bootstrapping. To overcome this hurdle, we leverage the clever idea of “bootstrapping’
proposed by Gentry [19]. At a high level, bootstrapping is the procedure of homomorphically
computing the decryption circuit of a given scheme, say Fhe, on a ciphertext of the same scheme,
using an encryption of the scheme’s secret key, denoted by ctg. This procedure assumes circular
security, namely that semantic security of Fhe holds even when the adversary is provided an
encryption of the scheme’s own secret key. The original motivation for bootstrapping was to reduce
the “noise” level in FHE ciphertext — since the decryption circuit of an FHE scheme is quite shallow,
running the decryption circuit homomorphically on some FHE ciphertext ct using the encryption of
the FHE secret key ctg,, removes the noise contained in ct via decryption, and the noise in output
ciphertext ct’ can be bound depending on the depth of the decryption circuit and the noise in ctg.
To date, all constructions of “pure” FHE, namely, FHE that supports unbounded depth circuits,
must assume circular security of the underlying “somewhat homomomorphic” encryption scheme,
and hence of the underlying Learning With Errors (LWE) assumption. Since circular security is
required anyway for the construction of pure FHE, we assume it in our construction of deniable
(pure) FHE, and in the exposition below for simplicity. For the case of “levelled” FHE, which
assumes a bound on the depth of supported circuits, and which can be built from standard LWE,
this requirement can be removed as discussed in Section 7.2.

Aside from noise reduction, an additional attractive feature of bootstrapping is that it suggests
a way to obliviously generate FHE ciphertexts. Suppose our FHE scheme’s decryption algorithm
always outputs a valid message regardless of whether the ciphertext is well-formed or not. Then, by
running the bootstrapping procedure on a random element from the ciphertext space, we obtain a
well formed, valid FHE ciphertext for an unknown bit, by correctness of FHE evaluation. Moreover,
if we run the bootstrapping procedure on a valid FHE ciphertext of any bit, the ciphertext output
by bootstrapping still encodes the same bit, by correctness of FHE decryption and evaluation. If
FHE ciphertexts are indistinguishable from random (which they usually are), then the encryptor
may cheat about which of the two types of inputs was provided to the bootstrapping procedure and
thereby lie about the encoded bit in the bootstrapped ciphertext.

While this feels like progress, it is still unclear how to encrypt a single bit of one’s choosing using
obliviously generated ciphertexts of unknown bits and honestly generated ciphertexts of known bits.

Deniable FHE in the Weak Model. As a warm-up, let us consider the weak model of deniability,
where the encryptor can lie not only about the randomness used in encryption but also the algorithm
used. Let us suppose for the moment that we may engineer the bootstrapping procedure so that an
obliviously generated FHE ciphertext is biased and encodes the bit 0 with overwhelming probability
(we will weaken this assumption later). Then, an approach to encrypt in the weak model is as
follows.

Let the bootstrapping procedure be denoted by boot. In the honest mode, the encryptor encrypts
bit 0 by choosing R, and Ry randomly from the ciphertext space, converting these to well formed
FHE ciphertexts via the bootstrapping procedure, and finally computing the homomorphic XOR
operation (denoted by @) on these FHE ciphertexts. Thus, we have:

ctgp = boot(R;) @2 boot(R2)

Since we assumed that random elements are bootstrapped to encode 0 with overwhelming probability,
the ciphertext ctg encodes 0 due to correctness of the FHE evaluation procedure. To encrypt bit
1, the encryptor chooses R3 randomly from the ciphertext space, and computes R4 as an honest
encryption of 1 using the FHE encryption algorithm. It then sets:

ct; = boot(R3) @2 boot(Ry)

It is easy to see that correctness is preserved by the same arguments as above.

In the deniable or fake encryption algorithm, the sender changes the way it encrypts 0. Instead
of choosing R; and Ry uniformly at random, it now computes both R; and Ry as well formed FHE
ciphertexts of 1. Bootstrapping preserves the message bit and homomorphic evaluation of addition
modulo 2 ensures that ctg is a valid encryption of 0. The bit 1 is encrypted as before. However, if
asked to explain, the encryptor can pretend that ctg is in fact an encryption of 1 by claiming that
Ry is chosen uniformly and by explaining Rs as an encryption of 1. Since R; is an FHE ciphertext,
the adversary cannot tell the difference as long as FHE ciphertext is pseudorandom. Similarly, if
asked to explain ct; as an encryption of 0, she explains R4 as a randomly chosen element in the
ciphertext space. Thus, we obtain a construction of weakly deniable FHE for bits which achieves
negligible detection probability. For more details, please see Section 4.1.

Deniable FHE in the Full Model. In the full model, the encryptor is not allowed to cheat about
the algorithm it used for encryption, hence we may not take advantage of different ways of sampling
randomness in the real and deniable encryption algorithms — there is only one encryption algorithm.
In this model, we obtain FHE with polynomial deniability but with compact public key and
ciphertext, that is, the size of the public key and ciphertext are independent of the detection
probability. We proceed to describe the main ideas in the construction.

Let § be the inverse of the desired detection probability. To encrypt a bit b, the encryptor
samples uniform random bits z1,...,zs such that Zie[a} x; = b (mod 2). It then computes ¢
elements Ry, ..., Rs of which, R; is computed as an FHE encryption of 1 when x; = 1, and R; is
sampled uniformly at random when z; = 0. Finally, it outputs

ct = boot(R1) @2 boot(R2) @2 ... @2 boot(Rs)

To fake, it samples a random j € [§] such that z; = 1, sets :L‘;‘ = 0, and z] = z; for every
i # j,i € [0]. It pretends that R; is chosen uniformly at random, implying that boot(R;) encodes 0

with overwhelming probability. It is easy to see that this flips the message bit that was chosen during
encryption. Moreover, the statistical distance between honest randomness and fake randomness is
O(%) and we achieve polynomial deniability, so long as the encryption time is polynomial. Please
see Section 4.2 for more details.

Special FHE. The above informal description brushes several important details under the rug.
For instance, we assumed various properties about the underlying FHE scheme which are not true
in general. The most problematic assumption we made is that the FHE bootstrapping procedure
can be engineered so that it outputs an encryption of 0 for a random input with overwhelming
probability.

Some thought reveals that existing FHE schemes do not satisfy this property. Fortunately
however, we show that some constructions can be modified to do so. For concreteness, we describe
how to modify the FHE scheme by Brakerski, Gentry and Vaikuntanathan [8] to get the “special
FHE” that we require. At a high level, decryption in the BGV cryptosystem is a two step procedure,
where the first step computes the inner product of the ciphertext and the secret key over the ambient
ring, and the second step computes the least significant bit of the result, which is then output. One
can check that for any well formed ciphertext in this scheme, regardless of whether it encodes 0 or
1, the first step of the decryption procedure always yields a “small” element. On the other hand, for
a random element in the ciphertext space, the first step of decryption yields a random element, i.e.
it is small with low probability. Thus, we may modify the BGV decryption algorithm so that after
computing the inner product in the first step, it checks whether the output is small, and outputs
0 if not. This does not change decryption for well formed ciphertexts but by a suitable setting of
parameters, it biases the output of decryption to 0 for random inputs. In fact, we can make do with
a weaker requirement on bias, namely that the bootstrapping procedure outputs an encryption of 0
for a random input with only non-negligible (not overwhelming) probability. However this makes
the scheme more complicated, so we do not discuss it here. Please see Section 7.1 for details. We
also require some additional properties from our special FHE, which we define and establish in
Section 3.

Large Messages. In all prior constructions of deniable encryption, larger messages were encoded
bit by bit, where the ciphertext for a single bit is itself quite substantial (O(0)) as discussed above.
To further improve efficiency, we again leverage the power of FHE. This enables our schemes to
support large message spaces natively, thereby inheriting the significant advances in FHE schemes
with large information rate [28, 8, 7, 20], and bringing deniable FHE closer to practice.

Let M be the message space of an FHE scheme Fhe such that | M| = poly(\). Further, let us
assume that Fhe satisfies the special properties discussed above (formalized in Section 3). Then, to
compute a ciphertext for a message my € M, we express my as the output of a “selector” function
which computes the inner product of the k" unit vector with a vector of all messages in M. In
more detail, we express

my =1-mp + Z 0-m;
m; EM,i#k

Here, the bits 0 or 1 are referred to as “selector” bits for obvious reasons. Our main observation is
that the deniable encryption scheme for bits can now be used to add deniability to ciphertexts of
selector bits and thereby to the overall ciphertext.

In more detail, assume that the sender selects message my at the time of encryption. To compute
a ciphertext of my, she computes FHE ciphertexts ct; for all m; € M and selector bit ciphertexts
cts® for i € [[M|] where ctf® encodes 0 if i # k and 1 otherwise. We use deniable encryption to
compute the ciphertexts of selector bits as described above; thus, each selector bit is computed using
multiple elements {R;} where ¢ € [0]. She then homomorphically computes the selector function
described above to obtain a ciphertext ct* encoding my. Under coercion, she may explain ct* as
encoding of any message m;, even for i # k, by explaining the corresponding selector bits differently,
i.e. by explaining ctfeI as an encryption of 1 and ct'fgeI as an encryption of 0.

We note that the above description is oversimplified and glosses over many technical details —
for instance, the deniable FHE scheme for bits assumes that decryption of a random element in the
ciphertext space is biased to 0 with overwhelming probability, which is no longer the case for FHE
with large message spaces. However, this and other issues can be addressed, and we get schemes in
both the weak and full models — please see Sections 5 and 6 for details.

Plan-Ahead Deniability. Plan-ahead deniable encryption [11] requires the sender to choose all
possible fake messages at the time of encryption itself. For plan-ahead fully homomorphic encryption,
it becomes possible to instantiate the underlying FHE to have super-polynomial message space.
Intuitively, without the plan-ahead restriction, the construction discussed above fails for exponentially
large message spaces, since it is not possible to “select” between exponentially many options in
polynomial time. However, if the number of possible fake messages is fixed to some polynomial in
advance, as is the case for plan-ahead deniability, then the same construction as above works, as
long as we can establish the “special” properties of the FHE. We discuss how this can be achieved,
please see Section 6.1 for details.

Online-Offline Encryption. We now describe how our encryption algorithms lend themselves
naturally to the online-offline model, where a bulk of the computation required for encryption is
performed before the message is available. Consider the encryption algorithm for bits in the full

model. Observe that sampling § random bits @1, ..., x5 such that >, (5 #; = b (mod 2) is the same
as sampling 6 — 1 random bits 1, ..., z5_1 and setting z5 = b + Zie[é_l] x; (mod 2). In the offline
phase, we may select 6 — 1 bits x1,...,x5_1 at random as well as the corresponding § — 1 elements

R; based on the bit x; as specified in the encryption algorithm. Next, we homomorphically evaluate
the bootstrapping circuit on the § — 1 random elements, i.e. boot(R;) for ¢ € [§ — 1] and then
compute:

Ctoffline = boot(R;) @2 boot(Ra) @2 ... B2 boot(Rs_q).

Now, in the online phase we can simply select the last bit and corresponding randomness R
according to the message b being encrypted, compute the homomorphic bootstrapping algorithm on
Rs, and evaluate the homomorphic addition mod 2 as: ct = ctoffine P2 boot(Rs). Thus, the online
encryption time is independent of §.

Next, consider the encryption scheme for large message spaces. Even here, note that the
dependence of the encryption running time on the detection probability comes from the construction
of selector bits. Since the construction of any ciphertext involves |M|—1 encryptions of 0 and a single
encryption of 1, the encryptions of these selector bits can be computed in an offline pre-processing
phase. The encryptions of all possible messages in the message space can also be performed offline.
Then, in the online phase, given message mg, the encryptor needs only to perform the homomorphic

10

evaluation of the selector function to compute the final ciphertext. This leads to an online encryption
time which grows with |M| but not with the inverse of the detection probability.

The online processing time may be optimized further as follows — now, additionally in the offline
phase, let the encryptor perform the homomorphic evaluation of the selector function with all the
selector bits set to 0, i.e. Zmz em 0-m;. It stores the ciphertexts for all possible messages m € M,
the ciphertexts of the computed selector bits which are set to 0 as well as a ciphertext ct! for an
extra selector bit which is set to 1. In the online phase, when my is known, it subtracts the “wrong”
term ctg -cty, and adds the term ct! - ct;, to the evaluated ciphertext to obtain the correct ciphertext.
Thus, the online phase can be performed in time independent of both | M| as well as 0.

Removing the Circularity Assumption for Levelled FHE. Above, our usage of the bootstrapping
procedure implies the assumption of circular secure homomorphic encryption, hence circular secure
LWE. Since circular security is required anyway for all known constructions of pure FHE (we refer
the reader to [6] for a discussion), this assumption currently comes “for free” in the construction of
deniable pure FHE. However, for levelled FHE, which only supports circuits of bounded depth and
can be constructed from standard LWE [9, 8, 21], the assumption of circularity is not implied. In
this setting, our construction can be easily adapted to make do without the circularity assumption,
as observed by [29]. The idea is simple — instead of assuming that the encryption of a scheme’s
secret key under it’s own public key is secure, we can instead rely on two encryption schemes and
assume that the secret key of first scheme sk; can be securely encrypted using the public key of the
second scheme pky. Let us denote this ciphertext by ctek,. Now, the obliviously sampled ciphertexts
can be seen as encrypted under pk; and the ciphertext ctg, may be used to translate these to valid
ciphertexts under pky via a variant of the bootstrapping procedure discussed above. In more detail,
the modified bootstrapping procedure computes the homomomorphic evaluation procedure of the
second scheme using as inputs the ciphertext cts, and the decryption circuit of the first scheme to
produce valid ciphertexts under the second scheme. We refer the reader to Section 7.2 for more
details.

1.4 Perspective: FHE as a Tool

As discussed above, bootstrapping enables us to obliviously sample FHE ciphertexts, and
homomorphic evaluation enables us to “compactify” the final ciphertext — this makes FHE a
useful tool even in the context of deniable public key encryption (PKE). One of the main insights of
our work is that evaluation compactness in FHE can be leveraged to achieve deniability compactness
in PKE. All constructions of non-interactive sender deniable encryption in the full model known
from 1997 to date (excepting the one based on iO [27]), must provide multiple elements in the
ciphertext, both pseudorandom and random, and encode the message bit in the parity of the number
of pseudorandom elements leading to ciphertext size that grows inversely with detection probability.
We can avoid this dependence using FHE.

Can FHE also help achieve compact runtime of encryption? If so, this would lead to negligibly
deniable PKE from LWE, resolving the long-standing open problem of deniable PKE from a
standard, polynomial hardness assumption, with the post-quantum advantage as the “icing on the
cake”. While this exciting possibility cannot be ruled out, a thorny technical barrier that arises is
the hardness of inverting the bootstrapping procedure. Intuitively, deniable encryption requires
invertible biased oblivious sampling — the encryption procedure must obliviously sample a ciphertext
(biased to encoding 0, say) and the faking procedure must invert a given ciphertext, encoding either

11

0 or 1, to produce a well distributed randomness. In hindsight, even the iO based construction of
Sahai and Waters [27] can be viewed as a construction of invertible oblivious sampling — indeed,
similar techniques have been used to construct invertible sampling [15].

Using our current techniques, bootstrapping enables us to perform oblivious sampling, but not
inversion. Due to this limitation, we are restricted to cheating only in one direction — we can pretend
that a ciphertext of 1 encodes 0 but not the other way around. This leads to the attack discussed in
Section 8, which curtails the scheme to polynomial deniability. However if, given y = boot(R), we
could compute well-distributed R’ such that boot(R’) = y @2 1, where @21 denotes homomorphic
XOR of the bit 1, then we would gain the ability to cheat in both directions and obtain negligibly
deniable PKE. We remark that while boot is a one way function, infeasibility of inversion does
not apply since we have potentially useful side information about the preimage — we must find the
preimage of y @2 1 and know the preimage to y. Unfortunately, we currently do not know how to
leverage this information. Nevertheless, we view ciphertext compactness as a useful stepping stone
to full runtime compactness from LWE, and hope it can lead to progress towards a full solution.
Below, we provide an in-depth discussion on the barriers in achieving negligible deniability without
obfuscation.

Barriers from non-Obfuscation Assumptions. The Sahai-Waters construction works by obfuscating
the encryption algorithm as well as the faking algorithm. Recall that the faking algorithm is required
to output the fake randomness (rand™, say) that is used to explain a ciphertext ct* as encrypting a
fake message m*. The obfuscated explain algorithm simply takes in a ciphertext and message pair
(ct*,m*) and outputs a pseudorandom encoding of these as rand*. The encrypt algorithm, upon
receiving a message m and randomness rand*, first checks for a “hidden sparse trigger”, namely
whether rand™ is an encoding of some pair (ct*,m*) that was output by the faking algorithm. It
also checks whether m = m*, and outputs ct* if these two conditions hold. If not, and rand* looks
like genuine randomness, it proceeds to encrypt as usual.

Showing that the above idea can be made to work by relying only on iO (and one way functions),
and not virtual black box obfuscation, must overcome several hurdles and requires multiple innovative
techniques, but these are not relevant for the present discussion. Here, we only draw attention to two
relevant facts: first, since the encryption and faking algorithms are obfuscated, they can share secrets
such as PRF keys. In contrast, without using obfuscation, the encryption and faking algorithms
are public and cannot share any secrets, making any co-ordination between them significantly
harder. Second, in the above construction, the tuple (ct*, rand*, m*) are not required to satisfy any
structural /algebraic relation of well-formedness. In more detail, the ciphertext ct* and message m*
need not be related in any way, and the the only property that rand™ must satisfy is to “tie together’
this unrelated ciphertext and message pair via a pseudorandom encoding. These unrelated objects
can be made to appear related by triggering a trapdoor mode which is hidden in the encryption
procedure by the amazing power of obfuscation. Without relying on obfuscation, it is significantly
more difficult to design an encryption algorithm with compact randomness so that the structural
relationship of well-formedness holds for a single ciphertext with respect to multiple messages.

i

1.5 On Receiver Deniability

We briefly discuss here the prospect of constructing receiver deniable FHE. The notion of receiver
deniablity allows the receiver to decrypt a received ciphertext to an alternate message by using a

12

fake secret key, which is derived specifically for that particular “challenge” ciphertext. However, the
fake secret key must nevertheless correctly decrypt all other ciphertexts to their honest messages.
It is easy to see that inability to do so leads to a distinguishing attack — the adversary may itself
encrypt messages of its choice and use the fake secret key to open them.

Due to these requirements on the fake secret key, it is unclear whether the notion of receiver
deniability is meaningful in the context of FHE. To see the conundrum, consider an adversary, who
receives a challenge ciphertext ct* along with a fake secret key sk® which falsely decrypts ct* to m*.
Since ct* is an FHE ciphertext, it could be the result of evaluating some circuit on some other FHE
ciphertexts, or it could be the input ciphertext used in homomorphic operations to generate other
evaluated ciphertexts. Let us say that ct® participates in multiple homomorphic evaluations, say of
circuits Cq, . ..,C, to yield outputs cty,...,ct,. Then, given the input and output ciphertexts, the
adversary can decrypt these and test whether the circuits Cy,...,C, applied to the input messages
yield the output messages. To avoid a distinguishing attack, the fake key sk* should decrypt the
input and output ciphertexts to messages consistent with the fake message m™*, which implies that i)
these ciphertexts cannot be decrypted honestly in general, violating one of the conditions discussed
above, and ii) even if we modify the condition and allow faking for some non-challenge ciphertexts,
it may not be possible to find fake messages consistent with the multiple, arbitrary dependencies
imposed by the circuits.

Hence, to define receiver deniability in the context of FHE, it appears necessary to restrict
an adversary’s view to exclude all ciphertexts which are related to the challenge ciphertext ct* .
However, this restriction seems hard to justify in practice. For example, it appears infeasible to
control which ciphertexts are obtained by an adversary when encrypted data is stored on the cloud.
Due to these difficulties, we do not consider receiver deniabile FHE in this work.

1.6 Other Related Work

De Caro, Iovino and O’Neill [16] studied the notion of receiver deniable functional encryption, but
instantiating these constructions requires the assumption of full fledged functional encryption, which
in turn is known to imply indistinguishability obfuscation (iO) [1, 4].

Aside from work extending the functionality of deniable encryption, there was also progress
in lower bounds — for receiver deniability, [3] showed that a non-interactive public-key scheme
having key size § can be fully receiver-deniable only with non-negligible Q(%) detection probability
while for sender deniability, Dachman-Soled [14] showed that there is no black-box construction of
sender-deniable public key encryption with super-polynomial deniability from simulatable public
key encryption. There has also been work on interactive deniable encryption where the sender and
receiver are allowed to participate in an interactive protocol — in this setting, negligible bi-deniability
in the full model has been achieved based on subexponentially secure indistinguishability obfuscation
and one-way functions [12]. Our focus in this work is the non-interactive setting.

2 Preliminaries
In this section, we define the notation and preliminaries that we require in this work.

Notation. Let A(x;r) denote the randomized algorithm A run on input x, using randomness r.
We let 2 denote the complement of bit m. We denote by [n] the set {1,...,n}. If X is a random

13

variable, a probability distribution, or a randomized algorithm we let x < X denote the process of
sampling = according to X. If X is a set, we let z < X denote the process of sampling x uniformly
at random from X.

We say a function f(\) is negligible if it is O(A™°) for all ¢ > 0, and we use negl(\) to denote
a negligible function of \. We say f(\) is polynomial if it is O(A€) for some constant ¢ > 0, and
we use poly(A) to denote a (positive) polynomial function of A\. We say that an event occurs with
overwhelming probability in A if it occurs with probability 1 — negl(A). Where evident from context,
we sometimes use f to denote f(A).

Definition 2.1 (Statistical Distance). Let P and @ be two distributions over a finite set &. The
statistical distance is define as

D(P,Q) = 3 3 IP() ~ Q)]

zeld

2.1 Fully Homomorphic Encryption

Definition 2.2 (Fully Homomorphic Encryption). A public-key fully homomorphic encryption
scheme for a message space M consists of PPT algorithms Fhe = (Gen, Enc, Eval, Dec) with the
following syntax:

° Gen(l/\) — (pk,sk): on input the unary representation of the security parameter)\, generates
a public-key pk and a secret-key sk.

e Enc(pk,m) — ct: on input a public-key pk and a message m € M, outputs a ciphertext ct.

e Eval(pk,C,cty,...,cty) — ct: on input a public-key pk, a circuit C : M*¥ — M, and a tuple of
ciphertexts cty, ..., ctg, outputs a ciphertext ct.

e Dec(sk,ct) — m: on input a secret-key sk and a ciphertext ct, outputs a message m € M.
The scheme should satisfies the following properties:

Correctness. A scheme Fhe is correct if for every security parameter A, polynomial-time circuit
C: MF — M, and messages m; € M for i € [k]:

Pr[Dec(sk, Eval(pk,C,cty,...,ctg)) =C(my,...,mg)] =1 — negl(A)
where (pk, sk) < Gen(1%), and ct; < Enc(pk,m;) for i € [K].

Compactness. A scheme Fhe is compact if there exists a polynomial poly(-) such that for all
security parameter A\, polynomial-time circuit C : M* — M, and messages m; € M for i € [k]:

Pr [|Eval (pk,C,cty,...,ctg)| < poly(A)] =1
where (pk,sk) < Gen(1%), and ct; < Enc(pk,m;) for i € [k].
CPA Security. A scheme Fhe is IND-CPA secure if for all PPT adversary A:
|Pr [FheGame?y () = 1] — Pr [FheGamel; (A) = 1]| < negl(})
where FheGamei’4()\) is a game between an adversary and a challenger with a challenge bit b

defined as follows:

14

Sample (pk,sk) + Gen(1*), and send pk to A.

e The adversary chooses mg, m; € M.

e Compute ct < Enc(pk,my), and send ct to A.
e The adversary A outputs a bit b which we define as the output of the game.

Definition 2.3 (Circular Security). A public-key encryption scheme with key generation algorithm
Gen and encryption algorithm Enc is circular secure if for every PPT adversary A:

|Pr [CircGameY () = 1] — Pr [CircGamely(A) = 1]| < negl(})

where CircGamef’4()\) is a game between an adversary and a challenger with a challenge bit b defined
as follows:

Sample (pk,sk) < Gen(1%), compute cty < Enc(pk, sk), and give (pk, ctg) to A.

e The adversary chooses mg, m; € M.
e Compute ct < Enc(pk, m;), and give ct to A.
e The adversary A outputs a bit b’ which we define as the output of the game.

Definition 2.4 (Bootstrapping Procedure). [19] Let Fhe = (Gen, Enc, Eval, Dec) be a public-key
FHE scheme for a message space M with ciphertext space Rf. We define the bootstrapping
procedure, denoted by boot : Rfe — Rl as

boot(z) = Fhe.Eval(pk, Dec,, ctex)

where (pk, sk) < Fhe.Gen(1%), ctg + Fhe.Enc(pk, sk), and Dec,(sk) = Fhe.Dec(sk,z). Above, when
sk ¢ M, we assume that sk may be represented as a vector of elements in M, which would make
ctsk a vector of ciphertexts.

Definition 2.5 (Valid Ciphertext). We say that an Fhe ciphertext ct is a valid ciphertext of m, if
either
ct < Enc(pk,m),

or for any polynomial-sized circuit C, we have that:

Pr[Dec(sk, Eval(pk,C,ct)) = C(m)] = 1 — negl()),

where (pk,sk) < Gen(1*) and \ is the security parameter.

Some Useful Functions. In this paragraph, we define notation for some functions that will
prove useful in our constructions.

Definition 2.6 (Addition Modulo 2). We denote by @2 the homomorphic evaluation of addition
modulo 2 circuit, that is for k£ > 2, @a(cty,...,cty) = ct, ct is a valid encryption of Zle x; (mod 2)
where z; € {0,1} and ct; is a valid encryption of z; for i € [k].

For ease of readability, we will often denote @®a(cty,...,cty) by cty Bacty... D2 cty.

15

Definition 2.7 (Multiplexer). A multiplexer is a deterministic procedure that selects between
several inputs using “selector” bits. In more detail, on input xg,...,zx, and by, ..., b; where k < 2¢,
and b; € {0,1}, outputs x; where j = ¢_, 27~ 'b;. Let Fhe be a public-key FHE scheme for message
space M, we denote by Mux the homomorphic evaluation of the multiplexer (data selector) circuit.
That is for k < 2¢,
Mux(cto, . .., ctg, ct], ..., ct}) = ct,

ct is a valid encryption of the selected message z; where j = 2221 2071p;, ct! is a valid encryption
of b; € {0,1} for 7 € [t], and ct; is a valid encryption of x; € M for i € [k].

Definition 2.8 (Selector). Let b; € {0,1} such that for all ¢ € [k],i # j, b = 0, and b; = 1 for
some fixed j € [k]. For all i € [k], let z; € M. We define a selector function as }_;cp bizi = @;.
We denote the homomorphic evaluation of this function by

Z ct;‘-‘el ® ct; = ct,
1€[k]

where ct is a valid encryption of the selected message x;, ctjeI is a valid encryption of b; and ct; is a
valid encryption of z; for all ¢ € [k].

Definition 2.9 (Indicator Function). The indicator function for the set X', denoted by 1x(-),

defined as
1 ze X
1){(]]) = .
0 z¢ X

2.2 Deniable Homomorphic Encryption

Definition 2.10 (Compact Deniable FHE.). A compact public-key deniable fully homomorphic en-
cryption scheme for message space M consists of PPT algorithms DFhe = (Gen, Enc, Eval, Dec, Fake)
with the following syntax:

e Gen(1") — (dpk,dsk): on input the unary representation of the security parameter \, generates
a public-key dpk and a secret-key dsk.

e Enc(dpk,m;r) — ct: on input a public-key dpk and a message m € M, uses (-bit string
randomness r, outputs a ciphertexts dct.

e Eval(dpk,C,dcty,...,dct;) — dct: on input a public-key dpk, a circuit C : M¥ — M, and a
tuple of ciphertexts dcty, ..., dctg, outputs a ciphertext dct.

e Dec(dsk,dct) — m: on input a secret-key dsk and a ciphertext dct, outputs a message m € M.

e Fake(dpk,m,r,m*) — r*: on input a public-key dpk, an original message m € M, an {-bit
string randomness 7, and a fake message m* € M, output an ¢-bit string randomness r*.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme DFhe is correct, compact and secure
if the scheme (Gen, Enc, Eval, Dec) satisfies the standard notions of correctness, compactness
and IND-CPA security properties of fully homomorphic encryption, as in Definition 2.2. We
remark that a scheme cannot simultaneously satisfy perfect correctness and deniability, so
negligible decryption error in correctness is inherent.

16

Deniability. A scheme DFhe is §(\)-deniable if for all PPT adversary \A:
|Pr [DnblGame® () = 1] — Pr [DnblGamel4(A) = 1]| < §(\)

where DnblGa melj4()\) is a game between an adversary and a challenger with a challenge bit b
defined as follows:

e Sample (dpk,dsk) < Gen(1%), and send dpk to A.

e The adversary chooses m,m* € M.

e Sample 7 < {0,1}¢, and r* < Fake(dpk, m,r,m*); if b = 0 give (m*,r, Enc(dpk, m*;r))
to A, else if b = 1, give (m™*,r*, Enc(dpk, m;7)) to A.

e The adversary A outputs a bit b which we define as the output of the game.

Remark 2.11. We note that in our constructions, the length of randomness used during
encryption may depend on the message being encrypted. This does not affect deniability,
because the length of the randomness is only revealed together with the encrypted message.
For ease of exposition, we do not introduce additional notation to capture this nuance.

Deniability Compactness. A §()\)-deniable scheme DFhe is deniability compact if there exists a
a polynomial poly(-) such that for all security parameters A, and message m € M:

Pr[|Enc(dpk, m)| < poly(\)] = 1
where (dpk, dsk) <— Gen(1*), regardless of the encryption running time.

Remark 2.12. The above definition can be modified to capture a compact deniable public key
encryption scheme by removing the evaluation algorithm required by FHE.

Definition 2.13 (Weak Deniable FHE). A public-key weak deniable fully homomorphic encryption
scheme for message space M consists of PPT algorithms wDFhe = (Gen, DEnc, Enc, Eval, Dec, Fake)
where Gen, Eval, and Dec have the same syntax as in Definition 2.10, and DEnc, Enc and Fake have
the following syntax:

e DEnc(dpk, m;r) — ct: on input a public-key dpk and a message m € M, uses (-bit string
randomness 7, outputs a ciphertexts dct.

e Enc(dpk,m;r) — ct: on input a public-key dpk and a message m € M, uses £*-bit string
randomness 7, outputs a ciphertexts dct.

e Fake(dpk,m,r,m*) — r*: on input a public-key dpk, an original message m € M, an ¢-bit
string randomness 7, and a faking message m* € M, output an ¢*-bit string randomness r*.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme wDFhe is correct, compact and secure
if both schemes (Gen, Enc, Eval, Dec), and (Gen, DEnc, Eval, Dec) satisfy the standard notions of
correctness, compactness and IND-CPA security properties of fully homomorphic encryption,
as in Definition 2.2.

17

Weak Deniability. A scheme wDFhe is weakly-deniable if for all PPT adversaries A:
|Pr [wDnblGame (\) = 1] — Pr [wDnblGamely () = 1]| < negl())

where wDn bIGameZl()\) is a game between an adversary and a challenger with a challenge bit
b defined as follows:

e Sample (dpk,dsk) < Gen(1%), and send dpk to A.

e The adversary A chooses m, m* € M.

e Sample r <+ {0,1}*, ' < {0,1}¢, and r* < Fake(dpk,m,’,m*); if b = 0 return
(m*,r, Enc(dpk,m*;r)) else if b = 1 return (m*,r*, DEnc(dpk, m;7’)) to A.

e The adversary A outputs a bit b which we define as the output of the game.

3 Special Homomorphic Encryption

Our constructions rely on a fully homomorphic encryption scheme which satisfies some special
properties. We define these and instantiate it below.

Definition 3.1 (Special FHE). A special public-key FHE scheme for a message space M with
ciphertext space R’ is a public-key FHE scheme, Fhe = (Gen, Enc, Eval, Dec), with the following
additional properties:

1. Deterministic Algorithms. The evaluation and decryption algorithms, Eval and Dec respectively,
are deterministic. In particular, this implies the bootstrapping procedure boot, defined in 2.4,
is deterministic.

2. Pseudorandom Ciphertext. The distribution Fhe.Enc(pk, m;U Z) is computationally indistin-
guishable from R’ where U’ is the uniform distribution over f-bit strings, (pk,sk) «
Fhe.Gen(1*), and m € M. Moreover, the distribution boot(R%) is computationally
indistinguishable from R’ where boot is the bootstrapping procedure as in Definition 2.4.

3. Decryption Outputs Valid Message. The decryption algorithm, Fhe.Dec, always outputs a
message from the message space M. Namely, for any = € R, Fhe.Dec(sk,z) € M where
(pk,sk) < Fhe.Gen(1%). In particular, this implies that the output of the bootstrapping
procedure boot is always a valid ciphertext (Definition 2.5).

4. Biased Decryption on Random Input (Strong Version). The decryption algorithm Fhe.Dec,
when invoked with a random element in the ciphertext space = < R, outputs a message
from a fixed (strict) subset of the message space S C M with overwhelming probability.

Formally, we require that there exists a strict subset of the message space, S C M, such that

P(S):= Y P(m) >1— negl(})

meS

where P : M — R is defined as P(m) := Pr[Fhe.Dec(sk,z) = m| where z + R’ and
(pk,sk) < Fhe.Gen(1%). Moreover, we require that 0 € S. Thus, if the message space is binary,
then S = {0}.

18

We remark that the above property, while sufficient, is not strictly necessary for our
constructions. However, for ease of exposition, our constructions assume the “strong version”
stated above. In Appendix 7.1 we describe how to modify our constructions to instead use the
weaker version below.

Biased Decryption on Random Input (Weak Version). This version weakens overwhelming to
noticeable in the above definition, i.e. using the notation above, we require:

P(8):= Y P(m) > 1/poly())

meS

As before, we require that 0 € S.

5. Circular Secure. The scheme Fhe is circular secure as in Definition 2.3. As discussed in Section
1, this condition may be removed at the cost of making the construction more complicated,
please see Appendix 7.2 for details. Since this condition is anyway required for the construction
of pure FHE, we assume it for ease of exposition.

3.1 Instantiation

For concreteness, we instantiate our special FHE scheme with (a modified version of) the scheme by
Brakerski, Gentry and Vaikuntanathan [8] (henceforth BGV), which is based on the hardness of the
learning with errors (LWE) problem. To begin, note that BGV already satisfies the property that
the algorithms for evaluation and decryption are deterministic (property 1), the property that the
ciphertext is pseudorandom (property 2) as well as the property that decryption always outputs
valid message (property 3). The property of circular security (property 5) does not provably hold in
BGV, or indeed any existing FHE scheme, but is widely assumed to hold for BGV. In particular, the
authors already assume it for optimized versions of their main construction (which does not require
this assumption)— please see [8, Section 5| for a discussion. We also remark that circular security is
assumed by all “pure” FHE schemes, namely, schemes that can support homomorphic evaluation
of circuits of arbitrary polynomial depth. We require circular security for a different reason — to
support the bootstrapping operation, which allows us to obliviously sample FHE ciphertexts. Thus,
it remains to establish the property that decryption of a (truly) random element from the ciphertext
space outputs a biased message from the message space (property 4). Establishing this property
requires slight modifications to the BGV scheme!. Next, we describe these modifications for the
case when the M is binary, of polynomial size and of super-polynomial size.

Recap of BGV. Let us consider the BGV construction for binary messages [8, Section 4]. We
begin by providing a brief recap of the features of BGV that we require. We use the same notation
as in their paper for ease of verification. Let R be a ring and |R| = ¢. Recall that the key generation
algorithm of BGV samples a vector s’ € R"™ such that all the entries of s’ are “small” with high
probability (details of the distribution are not relevant here) and outputs sk = s = (1,s’). The public
key is constructed by sampling a uniform random matrix A’ <~ RY*" an error vector e € R from
a special “error” distribution, and setting b = A’s’ + 2 - e. Denote by A the (n 4 1) column matrix
consisting of b followed by the n columns of —A’. Observe that A -s = 2e. The public key contains

1We note that these properties are also satisfied by several other FHE schemes, for instance [9, 5, 21].

19

A in addition to some other elements which are not relevant for our discussion?. To encrypt a

message bit m, set m = (m,0,0,...,0) € {0,1}"*! sample r + {0,1}" and output ct =m + AT r.
To decrypt, compute and output [[(ct, sk)]q]2, where (-, -) denotes inner product over the ring,
and [-], denotes reduction modulo p. The above construction can be adapted to support larger
message spaces. A simple extension is to choose the message from Z, for a polynomial sized prime
p and multiply the error with p instead of 2. This, and other extensions are discussed in detail in [8,
Section 5.

Creating a Bias. Observe that the decryption algorithm, given a ciphertext ct and secret sk, outputs
the decrypted message bit as [[(ct, sk)],]2 regardless of the distribution of ct. Thus, even if ct is
a random element from the ciphertext space R™*! which may not be well formed, it still outputs
a valid message from the message space. However, it is easy to see that for a random element
R+ R™1 the output of [[(R, sk)],]2 is a uniformly distributed random bit, whereas we require
the decryption algorithm to output a biased bit to satisfy property 4. Below, we will describe the
modification to BGV to achieve the strong version of property 4. In Section 7.1, we describe how we
can instead rely on the weak version of the property, which is satisfied by BGV unmodified.

To create a bias, an idea is to build in an additional step in the decryption algorithm, which first
checks whether the input ciphertext ct is well-formed. If so, it proceeds with legitimate decryption,
i.e. computes [[(ct, sk)]4]2. If not, it simply outputs 0. Since well-formed ciphertexts in the BGV
FHE are sparse in the ciphertext space R™!, this ensures that a randomly chosen element from
the ciphertext space is decrypted to 0 with high probability.

It remains to identify an efficient check for the well-formedness of the ciphertext. Towards this,
we observe that for any valid ciphertext (Definition 2.5), the inner product [(ct, sk)], = m + 2e
where m is the encrypted bit and e is some error whose norm may be bounded using bounds on the
norms of the secret key s, the randomness r, the error term in the public key e and the depth of the
circuit — of which the norms of all aforementioned elements were chosen to be sufficiently “small”
and the depth of the circuit can be bounded by the depth of the bootstrapping circuit [19].

Let us assume that the decryption error is bounded above by B — 1, for some B = poly(\). We
note that this bound holds true for the current setting of parameters in [8]. Then, it follows that the
output of step 1 of decryption can be bounded from above by B (for any well formed ciphertext). On
the other hand, the output of [(R, sk)|, for a random element R will also be uniformly distributed,
and hence will have norm < B only with probability O(%). If we set ¢ to be super-polynomial in
the security parameter, then this term is negligible. Thus, we may modify the BGV decryption
algorithm so that after computing [(ct, sk)],, it checks whether the output is < B, and outputs 0 if
not. This biases the output of decryption to 0 for random inputs — in more detail, decryption of a
random element yields 0 with probability 1 — negl(\) as desired. With this modification, we ensured
that BGV satisfies all the properties required by special FHE. We refer the reader to [8] for more
details about the full construction of FHE.

In the above description, we chose the ring modulus ¢ to be super-polynomial in the security
parameter to obtain the desired bias. However, this large modulus is unnecessary and affects the
efficiency of the scheme negatively. In Section 7.1, we describe how to relax this requirement.

Next, we discuss how to modify the BGV scheme supporting larger (polynomial) message spaces,
as discussed in [8, Section 5]. As in the case of binary messages (discussed above), we have that

2Since we assume circular security which BGV do not, we can simplify their scheme — in particular, we not need
fresh keys for each level of the circuit as they do.

20

without performing any modifications, the BGV decryption algorithm, if executed on a random
element in the ciphertext space, outputs a uniformly distributed message from the message space.

It remains to establish property 4 which requires that there exists a strict subset of the message
space, S C M, such that

P(8):= Y P(m)>1—negl(\)
meS
where P : M — R is defined as P(m) := Pr [Fhe.Dec (sk, z) = m] where z + R’ and (pk,sk) <
Fhe.Gen(1%).

Let & be an arbitrary subset of M that contains 0. For the binary message case above,
we described a trick that ensures that random elements are decrypted to 0 with overwhelming
probability. The same trick may be generalized to larger message spaces. If the modulus ¢ is
superpolynomial, and the message space is polynomial (say of size p), then the first step of decryption
yields [(ct,sk)], = m + p - e for well-formed ciphertexts, and a random element in R otherwise.
Again, this term can be bounded by some polynomial B and the decryption procedure can be
modified to output 0 (or any element from the set S) if the output of step 1 is greater than B. By
the same reasoning as above, this biases the output to S with overwhelming probability as long as ¢
is super-polynomial. Please see Appendix 7.1 to avoid the restriction of super-polynomial q.

Finally, we remark that BGV also includes variants where the message space is super-polynomial
in size [8, Section 5.4]. In this case, biasing the output to a fixed set S is simple: we can just set
S = M\ {1}. Moreover S has efficient representation since it can simply be represented by its
complement, which is of small size and it is clear that the decryption output of a random element is
biased to S with overwhelming probability.

4 Deniable Encryption for Bits

In this section, we provide our constructions for weak deniable FHE, as in Definition 2.13, and
compact deniable FHE, as in Definition 2.10. Let Fhe = (Gen, Enc, Eval, Dec) be a special public-key
FHE scheme for the message space M = {0, 1} with ciphertext space R, as in Definition 3.1. For
reading convenience, we denote by lowercase r, the ¢-bit string randomness that is input to an
Fhe.Enc algorithm, and by uppercase R, the elements in R, where R’ is the co-domain of the
algorithm Fhe.Enc. We denote by £, the bit length of elements in R’ (that is, £, = [£.logs(|R])]).
Recall that boot denotes the bootstrapping procedure described in Definition 2.4 and @2 denotes
the homomorphic evaluation of addition mod 2 described in Definition 2.6.

4.1 Weakly Deniable FHE for Bits

Our public-key weak deniable fully homomorphic encryption scheme for message space M = {0, 1},
wDFhe = (Gen, DEnc, Enc, Eval, Dec, Fake), is described as follows:

wDFhe.Gen(1*) : Upon input the unary representation of the security parameter \, do the following:

1. Sample (pk, sk) < Fhe.Gen(1%), and ctg, <+ Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk, m;rand): Upon input the public key dpk, a message bit m and (3£+ ¢.)-bit string
randomness rand, do the following:

21

1. Parse dpk := (pk, ctsx) and rand = (71,72, 73, R4), where |r;| = £ for i € [3] and |Ry4| = ..
2. For i € [3], set R; = Fhe.Enc(pk, 1;7;).
3. Let ctgp = boot(R;) @2 boot(R2) and ct; = boot(R4) B2 boot(R3).
4. Output dct = ctyy,.
wDFhe.Enc(dpk, m;rand) : Upon input the public-key dpk, the message bit m, and the (¢ 4 3¢.)-bit
string randomness rand, do the following:
1. Parse dpk := (pk, cts) and rand = (R1, Ra, R3,74), where |R;| = £, for i € [3] and |r4| = ¢.
2. Set Ry = Fhe.Enc(pk, 1;74).
3. Let ctg = boot(R;) @9 boot(R3) and ct; = boot(R3) @2 boot(Ry).
4. Output dct = cty,.
wDFhe.Eval(dpk, C,dcty, . ..,dctg): Upon input the public key dpk = (pk, cts), the circuit C and

the ciphertexts dcty,...,dcty, interpret dct; as Fhe ciphertext ct; for ¢ € [k], and output
dct = Fhe.Eval(pk,C,cty,...,ctg).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct
as Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

wDFhe.Fake(dpk, m, rand, m*): Upon input the public key dpk, the original message bit m, (3¢4¢.,)-
bit string randomness rand, and the faking message bit m*, do the following:

Parse dpk := (pk, cts) and rand = (71,72, 73, R4), where |r;| = £ for i € [3] and |Ry4| = £...

For i € [3], set R; = Fhe.Enc(pk, 1;7;).

If m = m*, then set R} = Ry, R5 = R2, R = Ry, and) = r3.

Else if m # m*, then set R} = R4, R5 = R3, R; = Ry, and)} = ro.

Output rand* = (R}, R5, R5,75)

Al A

We now prove the scheme satisfies correctness, compactness, CPA security and weak deniability.

Compactness and Security. Observe that the output of both wDFhe.DEnc and wDFhe.Enc is
a valid ciphertext of the underlying Fhe scheme. This is due to property 3 of the special FHE which
states that the FHE decryption algorithm always outputs a valid bit, and due to the correctness of
FHE evaluation which implies correctness of bootstrapping. Together, these two properties ensure
that boot always outputs a valid ciphertext. Moreover, correctness of homomorphic evaluation
implies that the addition mod 2 operation is performed correctly, so that the output of wDFhe.DEnc
and wDFhe.Enc is a valid ciphertext of FHE.

Since the underlying FHE scheme satisfies compactness, it holds that the ciphertext output by
wDFhe.DEnc and wDFhe.Enc is also compact. Similarly, due to property 5 which states that the
scheme is circular secure, and since the ciphertext of the underlying FHE satisfies semantic security,
so does the ciphertext output by wDFhe.DEnc and wDFhe.Enc. Thus, both schemes are compact
and secure as the underlying FHE scheme is.

22

Correctness. We start by proving correctness of the deniable encryption algorithm wDFhe.DEnc.
Parse rand € {0, 1}3“@3 as rand = (r1, 79,73, R4). Observe that:

1. Since R; = Fhe.Enc(pk, 1;7;) for i € [3], we have by correctness of the underlying Fhe, that
Ry, Ry and Rj3 are valid encryptions of 1.

2. By properties 3 and 4 which state that FHE decryption always outputs a bit and this bit is
biased to 0 with overwhelming probability when decryption is invoked with a truly random
input, we have that boot(Ry) is a valid encryption of 0 with overwhelming probability.

Now, by correctness of FHE evaluation, we have that cty = boot(R;)®2boot(R2) is a valid encryption
of 0 and ct; = boot(R4) @2 boot(R3) is a valid encryption of 1.

Next we prove correctness of wDFhe.Enc. Parse rand € {0, 1}”3[c as rand = (Ry, Ra, R3,14).
Observe that:

1. Since R4 = Fhe.Enc(pk, 1;74), we have that Ry is a valid encryption of 1.

2. As above, we have by properties 3 and 4 that boot(R;) for ¢ € [3] are valid encryptions of 0
with overwhelming probability.

Thus, again by correctness of FHE evaluation, we have that ctp = boot(R;) @2 boot(R2) is a valid
encryption of 0 and ct; = boot(R3) @2 boot(R4) is a valid encryption of 1.

Weak-Deniability. Next, we prove weak deniability of the construction. Fix a security parameter
A, an original message m € {0,1}, and a faking message m* € {0,1}. Let (dpk,dsk) <«
wDFhe.Gen(1%), and parse dpk := (pk, cte), dsk := sk.

Faking Case. First consider the distribution of (dpk, m*,rand, DEnc(dpk,m;rand’)) in the case of
faking.

Select uniformly at random rand’ « {0,1}3¢ x Rf.

Parse rand’ := (rq1, 79,73, Ry), where |r;| = £ for i € [3] and |Ry| = £..

For i € [3], set R; = Fhe.Enc(pk, 1;7;).

Let rand* = wDFhe.Fake(dpk, m, rand’, m*).

By the faking algorithm rand* = (T, R3, R5, ;) which is computed as follows:

A

(a) Case m =m™:

RT =R1, R§=R2, R§=R4, T’ZZT’g.

By property 2 which asserts that ciphertexts are pseudorandom, we can explain
R} and R} as uniform from the ciphertexts space Rfc. Here, R} = Ry is already a
uniform element in R, and r} = r3 is a uniform ¢ bit string.
(b) Case m # m™:
RT :R4, R;ZRg, R;ZRl, T‘Z =T9.

As above, we can explain R5 and R3 as uniform elements in R, and R} = R4 and
ry = ro are already uniform.

23

6. The output of this hybrid is:
(dpk, m*,rand* = (R}, R3, R3,7}) ,ct® = wDFhe.DEnc(dpk, m; rand'))

where ct* := cty,, ctyp = boot(R1) @2 boot(R2) and ct; = boot(Ry4) @2 boot(R3).
Observe that ct* = wDFhe.Enc(dpk, m*;rand™). Thus, the output of this hybrid can be
written as:

(dpk,m*,rand* = (R}, R5, R3,7}) , ct* = wDFhe.Enc(dpk, m*; rand*))

where ct* := cty,«, ctg = boot(R]) @2 boot(R3), ct; = boot(Rj5) @2 boot(R}) and
T, RS, R} and r} are explained as uniform in R3% x {0, 1}*.

Honest Case. Next, note that in the honest case rand + R3¢ x {0, 1}Z , so the output distribution
is:

(dpk, m*,rand = (R1, Rz, R3,74) ,ct® = wDFhe.Enc(dpk, m*; rand))

where ct* := cty,», ctg = boot(R;) @2 boot(R3), ct; = boot(R3) @2 boot(Ry) and Ry, Ra, R3
and r4 are sampled uniformly. Hence, the two distributions are indistinguishable.

4.2 Fully Deniable FHE for Bits

Our compact public-key 1/d-deniable® fully homomorphic encryption scheme for message space
M = {0,1}, DFhe = (Gen, DEnc, Enc, Eval, Dec, Fake), is described below. We also provide an
alternate construction with slightly different parameters in Appendix A. Recall that boot denotes
the bootstrapping procedure described in Definition 2.4 and @9 denotes the homomorphic evaluation
of addition mod 2 described in Definition 2.6). We let n = §2.

DFhe.Gen(1*) : Upon input the unary representation of the security parameter \, do the following:

1. Sample (pk, sk) < Fhe.Gen(1), and ctg < Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctex), dsk := sk.

DFhe.Enc(dpk, m) : Upon input the public-key dpk, the message bit m, do the following:

1. Parse dpk := (pk, ctsk)
2. Select rand as follows:
(a) Select uniformly z1,...,z, € {0,1} such that Y ;" ; z; = m (mod 2).
(b) For i € [n]: if z; = 1, then select r; < {0,1}%; else if x; = 0, select R; <+ R'e.
3. For i € [n] such that z; = 1, set R; = Fhe.Enc(pk, 1;r;).
4. Output dct = By(boot(Ry),...,boot(R,))
DFhe.Eval(dpk, C,dcty, ..., dcty): Upon input the public key dpk = (pk, cts), the circuit C and

the ciphertexts dcty,...,dcty, interpret dct; as Fhe ciphertext ct; for i € [k], and output
dct = Fhe.Eval(pk,C,cty, ..., ctg).

3We remind the reader that § = §()\), but we drop the A for readability.

24

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct as
Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

DFhe.Fake(dpk, m,rand, m*): Upon input the public key dpk, the original message bit m,
randomness rand, and the fake message m* do the following:

1. If m = m™*, output rand® = rand.

2. Parse dpk := (pk, ctek) and rand = (x1,...,2Zpn, p1,-..,pn), Where z1,...,x, € {0,1}, and
for each i € [n], if z; = 1, then |p;| = ¢; else if x; = 0, |p;| = £...

3. Select uniform i* € [n] such that x; = 1. If there is no such i*, output “cheating
impossible”; else:
(a) Set xf =0 and p}. = Fhe.Enc(pk, 1; p;);
(b) For i € [n]\ {i*}, set] = x; and p] = p;.

4. Output rand* = (27,...,25,p7,...,p}).

We now prove the scheme satisfies correctness, compactness, CPA security and poly deniability.
Compactness and security follow exactly as in Section 4.1.

Correctness. To argue correctness, we note that:

1. Since R; = Fhe.Enc(pk, 1;7;) for ¢ such that x; = 1, we have by correctness of the underlying
Fhe that R;, and hence boot(R;) are valid encryptions of 1 for all i € [n] such that z; = 1.

2. By properties 3 and 4 which state that FHE decryption always outputs a bit and this bit is
biased to 0 with overwhelming probability when decryption is invoked with a truly random
input, we have that boot(R;) for 7 such that x; = 0 is valid encryption of 0 with overwhelming
probability.

Hence, since Y i ; z; = m (mod 2), the (FHE evaluation of) addition mod 2 of boot(R;) for ¢ € [n]
yields an encryption of m. Hence, the scheme encodes the message bit correctly.

Deniability. Next, we prove 1/0-deniability of the construction. Fix a security parameter A, an
original message m € {0,1}, and a faking message m* € {0,1}. Let (dpk,dsk) <— DFhe.Gen(1?"),
and parse dpk := (pk, ctgy), dsk := sk. When the original message m and the fake message m* are
the same, the faked randomness rand™ is equal to the original randomness rand. Thus in this case,
m = m*, the distributions are identical:

(dpk, m*, rand, DFhe.Enc(dpk, m*;rand)) = (dpk, m™, rand*, DFhe.Enc(dpk, m;rand)).

When the original message m and the fake message m* are not the same, observe that “cheating
impossible” will be output only in case that x; = 0 for all i € [n], which occurs with probability
27, Assuming we are not in this case, the output distribution is:

Faking Case. First consider the distribution of (dpk,m*, rand*, DFhe.Enc(dpk,m;rand)) in the case
of faking, where rand* +— DFhe.Fake(dpk, m, rand; m*).

1. Select uniform rand := (z1,...,Zn, p1,.-.,pPn), by,

25

(a) Select x; <= {0,1} for i € [n] such that } ;. @ =m (mod 2)
(b) For i € [n], if z; = 1, select p; + {0,1}*
(c) For i € [n], if z; = 0, select p; + R
2. Let rand™ = DFhe.Fake(dpk, m, rand, m*), that is rand* = (x7, ..., 2}, p},. .., p}) which is
computed as follows:
(a) Select a uniform index ¢* € [n] such that z;+ = 1, i.e. i* < {i|lz; = 1}.
(b) For i € [n],i # ¥, set x} = z; and p} = p;.
(c) Set x4+ =0, and p}. = Fhe.Enc(pk, 1; p;).

Intermediate Case. By property 2 of the special FHE, which asserts that ciphertexts are
pseudorandom, we can explain p}. = Fhe.Enc(pk, 1; p;+) as uniform element from the ciphertexts
space R%. The distribution of this hybrid is (dpk,m*, rand’, DFhe.Enc(dpk, m; rand)), where
rand’ = (2,..., 20, p},...,p)) is sampled as follows:

1. Select x; < {0,1} for i € [n] such that 3., #i =m (mod 2)

2. Select a uniform index ¢’ € [n] such that zy =1 (i.e. i’ + {i|z; = 1}), and set 2, =0,
and for all ¢ € [n] \ {7’} set 2} = ;.

3. For i € [n], if 2} = 1, select p! < {0, 1}

4. For i € [n], if 2} = 0, select p} < Rt

7

Honest Case. Note that in the honest case the distribution is
(dpk, m*, rand, DFhe.Enc(dpk, m*;rand)), where rand = (x1,...,2pn, p1,...,pn) is sampled as
follows:

1. Select x; < {0,1} for i € [n] such that }-cp, #; = m* (mod 2).
2. For i € [n], if ; = 1, select p} + {0, 1}
3. For i € [n], if 2; = 0, select p} < Rt

The statistical distance between the two distributions used to sample (z1,...,z,), in the
10

honest case and in the intermediate/faking case, is - To see this, first consider the
case when the message m = (0. Denote by £ the set of even n-bit string, ie. & =
{(xl, s wp) €40,13" X e i = 0 (mod 2) }, and by O the set of odd n-bit string, i.e. O =
{0,1}™\ €. Let P be the uniform distribution over £, namely P(x) = Qn%l for every x € €. Let
Q be the ”faking case” distribution, namely, first select a uniform 2z’ € O, then select uniformly
i € [n] s.t. ¥, =1 and flip it. Observe that 4 Q(z) = % for every x € £ where |z| denotes
the number of 1’s in z. The statistical distance between these distributions is by definition

SD(P,Q) = %Z\P(g:) — Q)] = zinz ‘1 _n—la
z€E

= lz| + 1
Clearly,
n— |zl n— |zl
1-— < — .
Z ||+ 1]~ Z |z| + 1

xe€ ze{0,1}m

“Fix an = € £ and let |z| be the number of 1’s in , the number of strings 2’ € O that can be selected in the first
step which can lead to = is n — |z|, moreover given that =’ was selected, the probability we obtain z from z’ is ﬁ

26

Now observe that,

2

ze{0,1}"

n — |x|
lz| +1

=S ()0) G,

k>n/2 k<n/2

Next, since (7) - 5% = (1)

2 @ <1_H>: 2 <Z)_ 2 (kL):(:)

k>n/2 k>n/2 k>n/2

where &/ = [n/2]. Similarly,

2 () ()= 2 60 2 6 - ()

k<n/2 k<n/2 k<n/2

Overall, since (%) + (") = (",jl), and using Stirling’s approximation

1 /n+1 10
o @) < 5 (") <

Hence, any PPT adversary A can win the Dn bIGameZl()\) game with probability at most 1—%,

which is % by our choice of n.

5 Weakly Deniable FHE with Large Message Space

In this section, we provide our construction for weak deniable FHE for polynomial size® message space
M, as in Definition 2.13. Let Fhe = (Gen, Enc, Eval, Dec) be a special public-key fully homomorphic
encryption for the message space M with ciphertext space R, as in Definition 3.1, and boot(z) be
the bootstrapping procedure, described in Definition 2.4. We denote by S a strict subset of the
message space to which decryption of random elements is biased,® by 15 the indicator function
for the set S = M\ S, described in Definition 2.9, and by s a fixed element in S. Recall that
@9 denotes the homomorphic evaluation of addition mod 2 described in Definition 2.6 and select
denotes the selector circuit described in Definition 2.8.

For reading convenience, we denote by lowercase r, the ¢-bit string randomness that is input
to an Fhe.Enc algorithm, and by upper case R, the elements in R, where R’ is the co-domain
of the FHE encryption algorithm. We denote by ¢, the bit length of elements in R’ (that is,
0, = [Lc.logy(|R|)]). We index the messages in the message space as M = {my,...,m,}.

Our (public-key) weakly deniable fully homomorphic encryption scheme for message space M
wDFhe = (Gen, DEnc, Enc, Eval, Dec, Fake) is described as follows:

wDFhe.Gen(1*) : Upon input the unary representation of the security parameter A, do the following:

1. Sample (pk, sk) < Fhe.Gen(1%), and ctg + Fhe.Enc(pk, sk).

®Polynomial in the security parameter. That is |M| = poly(}).
SNote that this exists from property 4 of the special Fhe.

27

2. Outputs dpk := (pk, ctgk), dsk := sk

wDFhe.DEnc(dpk, mg; rand): Upon input the public key dpk, a message my, € M and ((4¢+£.)p)-bit
string randomness rand, do the following:

1. Parse the input.

dpk := (pk,ctsk), rand = (ST (7"1,1,T1,2,?”1,3,R1,4), cees (7“#,1,7““,2,7“;;,37}%,4))
where |r;| = |r; ;| = € and |R; 4| = €, for i € [p],j € [3].

2. Generate ciphertexts for every possible message.

For i € [u], set ct; = Fhe.Enc(pk, m;;r;).

3. Generate ciphertexts for “selector” bits.

(a) For every i € [u],7 € [3], set]A%Z] = Fhe.Enc(pk,s;ri,jA).

(b) For every i € [u],j € [4], set R; ; = Fhe.Eval(pk, 13, R; ;).

(¢c) We compute ciphertexts for selector bits 0 and 1 for every index as follows. For
i € [p], compute

ct(i] = boot(R; 1) @2 boot(R; 2), ctli = boot(R; 4) P2 boot(R; 3)

(d) We let the k" message to be selected by setting it’s selector bit to 1, and all others
to 0 as follows. For every i € [u] if i # k, set ct'jeI = ctf); else if ¢ = k, set ctfe' = ctﬁ.

4. Evaluate selector circuit on ciphertexts.

Compute and output dct = select(cty, ..., ct,, ct§®, . .. ,ctze'), that is det = Zie[u] (ctfe' ® cti).

wDFhe.Enc(dpk, mg;rand) : Upon input public-key dpk, a message my € M, and ((2¢ + 3€.)p)-bit
string randomness rand, do the following:

1. Parse the input.

dpk := (pk,cte), rand = (r1,...,7y, (Ri1, Rio, Ria,m14)s s (Ruty Ryo, Ryusy)
where |rj| = |r;4| = £ and |R; j| = €, for i € [p],j € [3].

2. Generate ciphertexts for every possible message.

For i € [u], set ct; = Fhe.Enc(pk, m;;r;).

3. Generate ciphertexts for “selector” bits.

(a) For every i € [p], set f%iA = Fhe.Enc(pk, ;7 4).

(b) For every i € [u],j € [4], set R;; = Fhe.Eval(pk, 15, R;j).

(¢) We compute ciphertexts for selector bits 0 and 1 for every index as follows.
For i € [p], compute

cté = boot(R; 1) G2 boot(R; 2), ct”i = boot(R; 3) B2 boot(R; 4).

(d) We let the k" message to be selected by setting it’s selector bit to 1, and all others
to 0 as follows. For every i € [u] if i # k, set ct'je' = cty; else if i = k, set ctfe' = ctﬁ.

4. Evaluate selector circuit on ciphertexts.
Compute and output dct = select(cty,...,ct,, ctsel ... ,ctff'), that is Zie[u] (ctzs-eI ® cti).

28

wDFhe.Eval(dpk, C,dcty, . ..,dctg): Upon input the public key dpk = (pk, cts), the circuit C and
the ciphertexts dcty,...,dcts, interpret dct; as Fhe ciphertext ct; for ¢ € [k], and output
dct = Fhe.Eval(pk,C,cty,...,ctg).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct
as Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

wDFhe.Fake(dpk, mg, rand, my+): Upon input the public key dpk, the original message my € M,
((4¢ 4 £.)p)-bit string randomness rand and the fake message my-, do the following:

1. Parse dpk := (pk, cts), and R R
rand 2A: (7"1, . ,TM, (T171, 7“1’2, 7”1’3, R174), ey (Tu,lv Tug, ’f'mg, R,ll«74))’ Where ’TZ| = ’7",‘7]" = 6
and |R; 4| = £, for i € [u],j € [3].

2. For all i € [p], set v} =1r;.
3. For every i € [u],j € [3], set R;; = Fhe.Enc(pk, s;7; ;).
4. For every i € [u] \ {k, k*} set

~ A~ ~ ~ A~ ~

Riy =Ry, Rig=Rig, Rig=Riz, 774=ria
5. If k = k*, then set
% > % > % 1 * .
Ri1=Rry, Rpo=Rrz, Rp3=Rpa, Tha4=Tk3;

Else if k # k*, for every i € {k, k*} set

A~ ~ ~ A~ ~

% * * *
Ri1=Ria, Rio=Rigs, i3 =Rix, rig=ri2

A~

*

6. Output rand™ = (r],..., 75, (R} 1, Ry o, Ry 3,77 4), -+, (B 1, B}, 9, IR, 55770 4))
Remark 5.1. We observe that by using the circuit Mux instead of the circuit select, we can use
smaller randomness — in particular, we can achieve [rand| = uf + 2logs(u)L..

We now prove the scheme satisfies correctness, compactness, CPA security and weak deniability.
As in Section 4.1, compactness and security follow from those of the underlying FHE scheme. We
argue correctness and weak deniability next.

Correctness. We start by proving correctness of the deniable encryption algorithm wDFhe.DEnc.
Parse dpk := (pk, ctek), dsk := sk, and rand € {0, 1}“(4”4) as

rand = (r1,..., 7, (r1,1,71,2, 71,3, Ri4),..., (ru1, T2, T3y Rua)),

where |r;| = |r; ;| = £ and |R; 4| = £, for i € [u],j € [3]. Observe that:

1. Since ct; = Fhe.Enc(pk, m;;7;) for i € [u], we have by correctness of the underlying scheme
Fhe, that ct; is a valid encryption of m; for every i € [u].

2. S}nce R” = Fhe.Enc(pk, s;7;;), we have by correctness of the underlying scheme Fhe, that
R; j is a valid encryption of s for s ¢ S,i € [u], and j € [3].

29

3. By correctness of the underlying scheme Fhe, we have that R;; = Fhe.Eval(pk, 15, R”) is a
valid encryption of 1 for every i € [u],j € [3]. Thus, also boot(R; ;) is a valid encryption of 1.

4. By correctness of the underlying scheme Fhe and the properties 3 and 4 which state that
FHE decryption always outputs a valid ciphertext for some message m € M, and m € § with
overwhelming probability when decryption is invoked with a truly random input, we have
that R; 4 = Fhe.Eval(pk, 15, R;.4) is a valid encryption of 0 with overwhelming probability for
every i € [p]. Thus, for every i € [u], boot(R; 4) is also a valid encryption of 0 with similar

probability.

Now, by correctness of FHE evaluation, we have that ct) = boot(R; 1) @2 boot(R;2) is a valid
encryption of 0 and ct! = boot(R; 4) 42 boot(R; 3) is a valid encryption of 1 for every i € [u]. Thus,
for every i € [u],i # k, ct?e' is a valid encryption of 0, and for ¢ = k, ctze' is a valid encryption of 1.

This implies that the output dct = Zz‘e[u} ctfeI ® ct; is a valid encryption of the message my.

Next, we prove correctness of the encryption algorithm wDFhe.Enc. Parse dpk := (pk, ctsk),
dsk := sk, and rand € {0, 1}#(26436) a5

rand = (r1, ..., 7, (Ri1, Ri9, R13,714), -+ (Ruts Ruo, Ry mua)),

where where |r;| = |r; 4| = ¢ and |R; j| = ¢ for i € [u],j € [3]. Observe that, as in the proof of
correctness for DEnc, we have that:

1. For every i € [u], ct; = Fhe.Enc(pk,m;;r;) is a valid encryption of m;.

2. For every i € [u], R; 4 = Fhe.Enc(pk, s;7;.4) is a valid encryption of s for s ¢ S.

3. For every i € [u], R;4 = Fhe.Eval(pk, 15, RiA) is a valid encryption of 1.

A~

4. For every i € [u],j € [3], Ri; = Fhe.Eval(pk,15, R;;) is a valid encryption of 0 with
overwhelming probability. Thus, boot(R; ;) is also a valid encryption of 0 with overwhelming
probability.

Now, by correctness of FHE evaluation, we have that ct{ = boot(R;1) @2 boot(R;2) is a valid
encryption of 0 and ct} = boot(R; 3) @2 boot(R;4) is a valid encryption of 1 for every ¢ € [p]. Thus,
for every i € [u],1 # k, ctls-eI is a valid encryption of 0, and for i = k, ctzeI is a valid encryption of 1.
This implies that the output dct = Zie[u} ctls-eI ® ct; is a valid encryption of the message my.
Weak Deniability. Next, we prove weak deniability of the construction. Fix a security parameter
A, an original message my € M and a fake message my+ € M. Let (dpk,dsk) <- wDFhe.Gen(1?),
and parse dpk := (pk, ctgy), dsk := sk.

Faking Case. First consider the distribution of (dpk, myg«, rand*, DEnc(dpk, mg;rand’)) in the case
of faking.

1. Select uniformly at random rand’ < {0, 1}4#¢ x R#e.

2. Parse rand' ::A (Tl, e ,’f‘u, (7'171, 7“172, 7“1,3, R174), ey (7"'“71, Tu727 7'“73, RMA))? where "f'z‘ =
rij| = € and |R; 4| = £ for i € [u], j € [3].

30

3. Fori € [u],7 € [3], set R;; = Fhe.Enc(pk, s;7: ;).
4. Let rand* = wDFhe.Fake(dpk, my, rand’, my)

5. By the faking algorlthm
rand* = (r{,...,7 (R1 17R127R13,T14) (R
as follows:

T . 1’Ru 9, Ru?” .4)) which is computed

(a) For every i € [u], set r} = ;.
(b) For every i € [u] \ {k,k*},j € [4], set R{] = Rm,rzél =Tr;4.
(c) For every i € {k,k*}, set

i. Case k =k™:

% > % D % > *
Ry, =Rk1, Rpo=Rra Rps=Rra, 754=Tk3

By property 2 which asserts that ciphertexts are pseudorandom, we can explain
R*1 and R o as uniform from the ciphertexts space Rle. Here R*3 is already a

uniform element in R, and r7 4 is a uniform ¢ bit string. Hence, we can explain
rand* < {0, 1}2# x R3nte,
ii. Case k #£ k*:
% N % » % > *
Riy=Ria, Rio=Ri3z, Riz=Ri1, 7154="ri2
As above, we can explain R o and R ;3 as uniform element in Rl and RZ 1, and
r¥, are already uniform. Hence, we can explain rand* «+ {0, 1}2#¢ x Riule,

6. The output of this hybrid is:
(dpk, my=, rand*, ct* = wDFhe.DEnc(dpk, my; rand’)).

Observe that ct* = wDFhe.Enc(dpk, m+;rand®). Thus the output of this hybrid can be
written as:
(dpk, my=, rand*, ct® = wDFhe.Enc(dpk, my«; rand™)).

Honest Case. Next, note that in the honest case rand «+ {0, 1}2#¢ x R3#_ so0 the output distribution
is:
(dpk, my«, rand, ct* = wDFhe.Enc(dpk, my-~; rand)).

Hence, the two distributions are indistinguishable.

6 Fully Deniable FHE with Large Message Space

In this section, we construct a compact public-key 1/d-deniable” fully homomorphic encryption
scheme for polynomial sized message space M, as in Definition 2.10. Let Fhe = (Gen, Enc, Eval, Dec)
be a special fully homomorphic encryption scheme for the message space M with ciphertext R, as
in Definition 3.1. Again, we let boot(z) be the bootstrapping procedure, described in Definition
2.4. We denote by S a strict subset of the message space to which decryption of random element

"We remind the reader that § = §()), but we drop the \ for readability.

31

is biased,® by 15 the indicator function for the set S := M\ S, described in Definition 2.9, and
by s € S a fixed element in S. Recall that @, denotes the homomorphic evaluation of addition
mod 2 described in Definition 2.6) and select denotes the selector circuit described in Definition 2.8.
We let n = §2

For reading convenience, we denote by lowercase r, the ¢-bit string randomness that is input
to an Fhe.Enc algorithm, and by upper case R, the elements in Rf, where R’ is the co-domain
of the FHE encryption algorithm. We denote by ¢, the bit length of elements in RE (that is,
0., = [Lc.logy(|R|)]). We index the messages in the message space as M = {my,...,m,}.

Our (public-key) compact 1/d-deniable fully homomorphic encryption scheme for message space

M DFhe = (Gen, Enc, Eval, Dec, Fake) is described as follows:

DFhe.Gen(1*) : Upon input the unary representation of the security parameter), do the following:

1. Sample (pk, sk) < Fhe.Gen(1%), and ctg, < Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctgx), dsk := sk
DFhe.Enc(dpk, my) : Upon input the public-key dpk and a message my € M, do the following:

1. Parse the input.
dpk := (pk, ctek).

2. Select randomness.

Select rand as follow:
(a) Select uniform ¢-bit strings r; for i € [pu].
(b) For each i € [u] do:
i. If i # k: select uniformly @;1,..., 25, € {0,1} s.t. 330 255 =0 (mod 2).
ii. Elseif i = k: select uniformly g 1,..., 25, € {0,1} s.t. 320 @ =1 (mod 2).
iii. For every j € [n]: if 7;; = 1, then select r;; + {0,1}% else if z;; = 0, select
]:Zi,j — RZC.
3. Generate ciphertexts for every possible message.
Let ct; = Fhe.Enc(pk, m;;r;) for i € [u].

4. Generate ciphertext for “selector” bits.

(a) For each i € [u],j € [n] such that 2; ; = 1, let R; j = Fhe.Enc(pk, s;7;).
(b) We compute ciphertexts for selector bits for each i € [u] as follows.
i. For each j € [n], set R; ; = Fhe.Eval(pk, 15, f%z])
ii. Let ct$® = @y (boot (R;1),...,boot (Rin)).
5. Evaluate selector circuit on ciphertexts.
Compute and output dct = select(cty, ..., ct,, ctf»e', e ,ctie'), that is dct = Zz‘e[u] (ctﬁe' ® cti) .

DFhe.Eval(dpk,C,dcty,...,dcty): Upon input the public key dpk = (pk, cts), the circuit C and
the ciphertexts dcty,...,dcty, interpret dct; as Fhe ciphertext ct; for ¢ € [k], and output
dct = Fhe.Eval(pk,C,cty, ..., ctg).

8Note that this exists from property 4 of the special Fhe.

32

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct as
Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

DFhe.Fake(dpk, my, rand, my~): Upon input the public key dpk, the original message my € M, the
randomness rand, and the faking messages my+ do the following:

1. If £k = k*, output rand.

2. Parse dsk := (pk, ctsk), and the randomness as:

rand = (71,0, Ty (T1,15 ooy Ty Py e e oy PLin)s oo o5 (T« o o Tpms Pusls - - - P), Where |r;| = £,
and z;; € {0,1}, if 2;; = 1 then |p;;| = & else if z;; = 0, |p; ;| = L. for every
i € [p),j € nl.

3. Set r} =r; for all i € [p].
4. For every i € [u] \ {k, k" }, set o] ; = x; j and p} ; = p; ; for all j € [n].
5. For i € {k,k*} do:
(a) Select uniform j; € [n] such that z; ;> =1
i. Set :1:;‘7].; =0, and p;j;‘ = Fhe.Enc(pk, s; p; j:).
ii. Forevery j € [n]\ {j;}: set z]; = ; and p]; = pi ;.
6. Output

* * * * * * * * * * *
rand” = (rla .. '771u7 (ml,ly s 71'1,71:91,1, . '7pl,n)a RS (xu,lv' . 7xp,napu,17 e 7pu,n))'

Remark 6.1. We observe that by using the circuit Mux instead of the circuit select, we can use
smaller randomness - in particular, we can achieve |rand| = uf + 6% logy (1) (1 + £,).°

Online-Offline Encryption. It is easy to see that the only step in the encryption algorithm
whose running time depends on the detection probability is the step that computes the ciphertexts
for the selector bits, namely step 4. Since for every valid ciphertext, the number of selector bits
encoding 0 are |M| — 1 and there is a single selector bit encoding 1, these bits can be computed
offline. Moreover, the ciphertexts encoding every possible message in M can also be constructed
offline. Only the final step of evaluating the selector circuit based on the selected message, i.e. step
5 needs be performed after the message becomes available in the online phase. The running time of
this step depends on |M| but not on the detection probability of the scheme.

We also remark that the dependence of the online computation time on | M| may be mitigated
by evaluating the selector circuit with all selector bits set to 0 in the offline phase, and storing the
selector ciphertexts. An extra selector ciphertext ct! for the bit 1 is also computed and stored, to be
used in the online phase. Then, in the online phase when the message is known, the precomputed
sum can be adjusted by subtracting out the incorrect term and adding in the correct one. In more
detail, in the offline phase, the encryptor can perform the homomorphic evaluation of the function
Zmi em 0-m;, namely with all the selector bits set to 0, and store the selector bit ciphertexts in
a table. In the online phase, when the message my (say) is known, it can subtract the wrongly
deselected term ct% -cty, and add the term ct! - ct;, to obtain the correct ciphertext. Note that here,
ct! is the extra selector bit computed in the offline phase.

9Here we assume w.l.o.g that £ < £, namely the randomness used by the Fhe encryption algorithm is at most the
size of the output ciphertext.

33

Compactness and Security. As in Section 4.1, compactness and security follow from those
of the underlying FHE scheme. We argue correctness, polynomial deniability, and deniability
compactness next.

Correctness. Parse dpk := (pk, ctey), dsk := sk, and rand as

rand = (r1,.. ., 75, (Z10, - Tlm, PLds -2 PIm) s o> (Zpls oo oy Tpns Puls -« > Pun))
where |r;| = ¢, z;; € {0,1}, if z;; = 0, then |p; ;| = £.; else if x;; = 1, then |p; ;| = ¢; for
i€ [u],j € n]

Observe that:

1. Since ct; = Fhe(pk, m;;r;) for ¢ € [u], we have by correctness of the underlying scheme Fhe,
that ct; is a valid encryption of m; for every i € [u].

2. For every i € [u], j € [n] such that z;; = 1, since R;; = Fhe.Enc(pk, s;7;), we have by
correctness of the underlying scheme Fhe that R; ; is a valid encryption of s.

3. For every i € [u], j € [n] such that x; ; = 1, by correctness of the underlying Fhe, we have
that R;; = Fhe.Eval(pk, 15, R; ;) is a valid encryption of 1. Thus, also boot(R; ;) is a valid
encryption of 1.

4. For every i € [u], j € [n] such that x; ; = 0, by correctness of the underlying Fhe and the
properties 3 and 4 which state that FHE decryption always outputs a valid ciphertext for some
message m € M, and m € § with overwhelming probability when decryption is invoked with
a truly random input, we have that R; ; = Fhe.Eval(pk, 15,]A%”) is a valid encryption of 0 with
overwhelming probability. Thus, also boot(R; ;) is a valid encryption of 0 with overwhelming
probability.

5. For every i € [u],j € [n], since boot(R; ;) is a valid encryption of z; j, we have by correctness
of the underlying Fhe that ct3® is a valid encryption of jeln) Ti,j (mod 2) which is 0 for every
1#k,and 1 for i = k.

Hence, the output dct =) t§e| ® ct;, is a valid encryption of message my.

i€l ©
Deniability. Next, we prove polynomial deniability of the construction. Fix a security parameter
A, an original message m;, € M, and a faking message my- € M. Let (dpk,dsk) < DFhe.Gen(1%),
and parse dpk := (pk, cte), dsk := sk. When the original message my and the fake message my~ are
the same, the fake randomness rand” is equal to the original randomness rand. Thus in this case,
k = k*, the distributions are identical:

(dpk, my«, rand, DFhe.Enc(dpk, my~; rand)) = (dpk, my~, rand™, DFhe.Enc(dpk, my; rand))

When the original message my and the faked message my« are not the same, observe that the
only difference between the randomnesses rand and rand* is in the randomness used in the encryption
algorithm for encrypting the k and k* selector bits, i.e. in computing ctie' and th‘iI which is sampled
independent of the messages my, my. Moreover, all other randomness is selected independent of the
randomness used for ctzeI and ctske,). Thus, in the proof below we will only write the parts of the

distribution that involve the randomness used for encrypting the k and k* selector bits, that is:

($k,17 <o Thms Py -+ -5 Py Th* 1y -+ -5 Th* ny Pk* 15 - - - 7pk*,n)~

34

The proof is very similar to the proof of polynomial deniability for our public-key compact deniable
fully homomorphic encryption scheme for bits described in Section 4.2. We provide it here for the
sake of completeness.

Faking Case. First consider the distribution in the case of faking, where

(x?l, ..

1.

d.
6.

T Plts s Pl Tl 10+ -+ Thoe s Phv 15+ - - ,p,*;*m) is sampled as follows:

For i € [n], select uniformly at random 7} ;, z7. ; <= {0, 1} such that
Eie[n] :Uzz =1 (mod 2); Zie[n] :v?;*z =0 (mod 2).

. Select uniform indexes i}, 5. € [n] such that xzzz =1land 2}. ;. =1

fo*

. Set :U;;Zk =0 and ch*l =0.

k*
Set PZ,Z-;; = Fhe.Enc(pk, s; ,o;“k) and pz*ﬂ.z* = Fhe.Enc(pk, s; pk*vii*) where py iz, pi= iz, are
random £ bit strings.
For j € {k,k*},i € [n],i # i}, if 25, = 1, select p,; <+ {0, 1}
For j € {k,k*},i € [n],i # it if 23, = 0, select p}; Rbe.

Intermediate Case. By property 2 of the special FHE, which asserts that ciphertexts are

pseudorandom, we can explain pj; i = Fhe.Enc(pk, s; Pk;,z‘;;) and pj. ;. = Fhe.Enc(pk, s; pi+ i,)
b b k*

fo*

as uniform elements from the ciphertexts space R.
In this hybrid,

/ / / / / / / / : - .
(:UM, s T Pt Pl Thr 10 -+ s Tl s P 13-+ - ,pk*m) is sampled as follows:

1.

For i € [n], select uniformly at random xj ;, 7. ; - {0,1} for i € [n] such that
Zie[n] 37;“ =1 (mod 2); Zie[n] xﬁg*z =0 (mod 2).

2. Select uniform indexes i}, 4. € [n] such that x;m‘; =1 and x%*yiz* =1.
3.

4. For j € {k,k*},i € [n], if 2, = 1, select p}; < {0, 1}

5.

/ _ / —
Set, Ty ix = 0 and xk”z* =0.

For j € {k,k*},i € [n], if 2, = 0, select pj, < Rle.

Honest Case. In this hybrid,

(«Tk,h ..

1.

2.
3.

ks Phls - s Plms Th* 1y« - s Lkt my Pk* 15 - - - Pk n) 15 sampled as follows:
For i € [n], select uniformly at random =z, ;, 24+ ; <— {0,1} for i € [n] such that
Dicfn] Thi =1 (mod 2); 37, cp @i =0 (mod 2).

For j € {k,k*},i € [n], if 2; = 1, select p; < {0,1}*

For j € {k,k*},i € [n], if 2; = 0, select p; < R’

The statistical distance between the two distributions used to sample (z;1,...,x;,) for j € {k, k*},
in the honest case and in the intermediate/faking case, is ﬁ Hence, any PPT adversary A can

win the DnblGame% (\) game with probability at most in, which is 1/6 by our choice of n.

35

Deniability Compactness. Fix a security parameter A, and a message m € M. Observe that
the output of the encryption algorithm is a ciphertext of the underlying Fhe scheme, namely
DFhe.Enc(dpk, m) € R’ where (dpk, dsk) +— DFhe.Gen(1). Hence, it follows from the compactness
of Fhe that the ciphertext also satisfies deniability compactness.

6.1 Plan Ahead Deniability.

Plan-ahead deniable encryption [11] requires the sender to choose all possible fake messages at
the time of encryption. For the plan-ahead setting, we can instantiate the underlying FHE to
support message spaces of exponential size. Intuitively, without the plan-ahead restriction, the above
construction fails for exponentially large message spaces, since it is not possible to “select” between
exponentially many options in polynomial time. However, if the number of possible fake messages
is fixed to some polynomial in advance, then it is easy to check that exact same construction as
above is a plan-ahead deniable encryption scheme, provided we can instantiate the special FHE to
have an exponentially large message space. As discussed in Section 3, to support message spaces of
exponential size [8, Section 5], i.e. |M| = 2%, we can set S = M \ {1}. This ensures that S has an
efficient representation and that the output is biased to & with overwhelming probability, as desired.

7 Weakening the Condition on Special FHE

In this section we describe ways to weaken the properties required by special FHE.

7.1 Weakening of Property 4: Biased Decryption on Random Input

In this section, we describe how to adapt our constructions to rely on the weak version of property 4
of special FHE. To aid understanding, we recap the strong and weak version of the property below:

Biased Decryption on Random Input (Strong Version). The decryption algorithm Fhe.Dec, when
invoked with a random element in the ciphertext space = < R, outputs a message from a fixed
(strict) subset of the message space S C M with overwhelming probability.

Formally, we require that there exists a strict subset of the message space, S C M, such that

P(8):= Y P(m) > 1 negl(})

meS
where P : M — R is defined as P(m) := Pr [Fhe.Dec (sk, x) = m] where x +~ R’ and (pk,sk) <
Fhe.Gen(l)‘). Moreover, we require that 0 € S. Thus, if the message space is binary, then S = {0}.

Biased Decryption on Random Input (Weak Version). This version weakens overwhelming to
noticeable in the above definition, i.e. using the notation above, we require:

P(S) =) P(m)>1/poly(})

meS

As before, we require that 0 € S.

36

Modifying Our Constructions. Let us consider the case of binary message spaces. Let us say
that decryption of a random element R from the ciphertext space yields 0 with only non-negligible
probability. Thus, boot(R) is an encryption of 0 also with non-negligible probability. Intuitively,
we may amplify this probability by sampling many random elements, bootstrapping them, and
setting R as the homomorphic AND function on these. In more detail, denote by 1/p = 1/ poly(\)
the probability in which boot(R) is a valid encryption of 0, when R is a uniform element form the
ciphertext space, i.e. R < R'. If we sample k =) - p? random elements then the probability for
homomorphic AND of k such elements to be a valid encryption of 1 is (1 — 1/p)F < e #/P = ¢=AP,
which is negligible!’. Thus, the homomorphic AND ciphertext will be an encryption of 0 with
overwhelming probability as desired.

For concreteness, we describe the encryption algorithm in Section 4.2. Assume that for a
uniformly random R < R’c, Pr[Dec(sk, R) = 0] = 1/p. Then, the new encryption algorithm is
described as follows:

DFhe.Enc(dpk, m) : Upon input the public-key dpk, the message bit m, do the following:

1. Parse dpk := (pk, ctsk)
2. Select uniformly z1,...,z, € {0,1} such that y ;" , 2; = m (mod 2).

3. For i € [n], if z; = 0, select R; as in Figure 7.1. Observe that in Section 4.2, we select
R; + R when z; = 0.

4. For i € [n] such that x; = 1, select R; as in Figure 7.2. Observe that in Section 4.2, we select
R; = Fhe.Enc(pk, 1;7;) when z; = 1, where r; < {0,1}".

5. Output dct = @2 (boot(Ry), ..., boot(R;))

Sampling R; for x; =0

Sample R; as follows:
1. Sample Ay,...,Aj randomly in R’.
2. For j € [k], let T; = boot(A4;).
3. Set R; = Fhe.Eval(pk, AND, Ty, ..., T}).

Figure 7.1: Algorithm to sample R; when z; = 0.

Correctness. Observe that when z; = 0, R;, and hence boot(R;) will be an encryption of 0 with
overwhelming (1 — negl) probability. Similarly, when z; = 1, R; and hence boot(R;) will always be
an encryption of 1. The remainder of the correctness follows exactly as in Section 4.2.

T

10Recall, for any real numbers z, r with r > 0, one has 1+2)" <e

37

Sampling R; for z; =1

Sample R; as follows:
1. Sample r; < {0,1}¢ for j € [k].
2. Compute Aq,..., Ay as FHE encryptions of 1, that is A; < Enc(pk, 1;7;) for j € [k].
3. Set T; = boot(A;) for j € [k].
4. Set R; = Fhe.Eval(pk, AND, Ty, ..., T}).

Figure 7.2: Algorithm to sample R; when z; = 1.

Faking. Faking is performed exactly as in Section 4.2, except that each R; is now replaced by the
corresponding vector A; 1, ..., A; ;. If R; is explained as random (resp. pseudorandom) in the fake
algorithm of Section 4.2, then the corresponding tuple is explained as random (resp. pseudorandom)
in the current construction.

7.2 Removing Circularity Assumption for Levelled FHE

In order to remove the circularity assumption, we make the following changes to our constructions:
1. Change the key generation algorithm Gen to sample two pairs of keys (instead of one pair)
(pky,sky) < Fhe.Gen(1%), (pks,sky) < Fhe.Gen(1%)
and set the deniable key pair to be
dpk := (pky, pkog, Cthoot), dsk := ska
where ctpoot — Fhe.Enc(pky, ski).
2. Use pk; for sampling a valid encryption of 1, i.e. R; < Fhe.Enc(pky,1).
3. Change the argument in the bootstrupping procedure to be
boot(z) = Fhe.Eval(pk,, Dec,, Cthoot)
where Dec,(-) = Fhe.Dec(-, z).

These changes enable us to remove the circular security assumption from our special FHE, while
maintaining the desired properties.

8 Lower Bound for Deniable Schemes

As discussed in Section 1, Canetti et al. [11] (denoted by CDNO) showed that no one round
(sender) deniable scheme which satisfies a certain structural property called “separability”, can
enjoy negligible detection probability, say %. While our constructions (Sections 4.2 and 6) achieve
deniability compactness, where the size of the public key and ciphertext do not depend on §, we
show here that these schemes are separable in the sense of CDNO and hence the dependence of the
encryption running time on ¢ is inherent. This implies that our schemes cannot achieve negligible
deniability without incurring super-polynomial running time.

38

Separable Schemes. In a separable scheme, the decryption key is a trapdoor that allows the
holder to distinguish a pseudorandom element from random. In CDNO, the ciphertext consists
of a sequence of elements Ry,..., R, where R; for i € [n] may be random or pseudorandom,
and distinguishing between the two cases is hard given public information. To encrypt a bit b,
the encryptor samples uniform random bits x1,...,x, such that Zie[n] x; = b (mod 2). It then
computes n elements Ry,..., R, of which, R; is pseudorandom when z; = 1, and R; is random
when z; = 0. To fake, it samples a random j € [n] such that x; = 1, sets x; =0, and z} = z; for
every i # j,i € [n]. It pretends that R; is chosen uniformly at random — this flips the parity of
Zie[n] z} (mod 2) and hence the presumed encoded message.

CDNO provide an attack against any separable scheme which claims to enjoy negligible detection

probability. The attack is based on the observation that the faking algorithm always decreases the
number of claimed pseudorandom elements — in particular, one may pretend that pseudorandom is
random, but one cannot pretend in the opposite direction. Hence, for any bit b, the adversary can
compute the expected number of elements in [n] which ought to be pseudorandom. If the claimed
number of pseudorandom elements is below the expected value, the adversary decides that the
sender is lying. They show that this strategy succeeds with probability Q(%)
Separability of Our Schemes. Our schemes can be seen as following a similar philosophy of
separability as above, but with compactification of the public key and ciphertext using FHE. For
concreteness, let us consider the construction from Section 4.2 that achieves polynomial deniability
for bits in the full model. Here, to encrypt a bit b, the encryptor samples uniform random bits
T1,...,T, such that Zie[n] x; = b (mod 2). It then computes n elements Ry, ..., R, of which, R;
is computed as an FHE encryption of 1 when z; = 1, and R; is sampled uniformly at random when
x; = 0. Finally, it outputs

ct = boot(R;) @2 boot(R2) P2 ... &2 boot(R,,)

To fake, it samples a random j € [n] such that z; = 1, sets x; = 0, and z] = x; for every
i # j,i € [n]. It pretends that R; is chosen uniformly at random, implying that boot(R;) encodes 0
with overwhelming probability.

For applying the lower bound of CDNO, it suffices to observe that to fake a bit, the encryptor
must again always decrease the number of claimed pseudorandom elements by 1. As in CDNO,
one may pretend that pseudorandom is random, but it is infeasible to pretend in the opposite
direction. Hence, for any bit b, the adversary can compute the expected number of elements in [n]
which should be pseudorandom, and decide that the encryptor is cheating if the claimed number of
pseudorandom elements is below the expected value. The success probability of the adversary is
Q(%) by exactly the same argument as in CDNO. We recap the argument below.

Definition 8.1 (Separable Scheme). [11] A %-deniable public key encryption scheme is n-separable
if there exists an efficient deterministic algorithm Cnt which given an input rand (interpreted as the
claimed random input of the sender), outputs a number Cnt(rand) € {1,...,n} (interpreted as the
number of pseudorandom elements used by the encryption algorithm to generate the ciphertext).
Additionally:

1. For a value rand, let rand® be the random variable denoting the output of the faking algorithm
Fake(dpk, b, rand, b) and E(Cnt(rand®)) denote the expected value of Cnt(rand®). Then for any

39

value rand such that Cnt(rand) > 1, either E(Cnt(rand®)) < Cnt(rand) — 1 or E(Cnt(rand!)) <
Cnt(rand) — 1.

2. If Cnt(rand) = 0, then the faking algorithm aborts and outputs “cheating impossible”.

It is easy to see that our schemes in Sections 4.2 and 6 are n-separable. The value Cnt(rand),
i.e. the number of pseudorandom elements in rand can be easily computed as the number of 1’s in
T1,...,Tn. Moreover, the faking algorithm always decreases the number of pseudorandom elements
used during encryption hence condition 1 is satisfied. If the number of pseudorandom elements
used is 0, the fake algorithm outputs “cheating impossible” and aborts (please see step 3 of Fake in
Section 4.2), hence condition 2 is satisfied.

CDNO prove the following theorem:

Theorem 8.2. [11, Claim 8] For any n-separable scheme with % deniability, it holds that 2n > 6.

The proof follows by demonstrating an adversary A who can distinguish between the real and
fake distributions of randomness when the bit b is encrypted (or claimed encrypted). We have by the
definition of separable that E(Cnt(rand)) — E(Cnt(rand’)) > % or E(Cnt(rand)) — E(Cnt(rand')) > 1.

Let D denote the distribution of Cnt(rand) when rand is chosen randomly, and D, denote the
distribution of Cnt(rand®). Then we have that

1 1
SD(D,Dy) > o= or SD(D,Dy) > o~

The distinguisher A is now straightforward — it leverages the above statistical distance between
the real and fake distributions to distinguish successfully with probability at least ﬁ We refer the
reader to [11] for more details.

Acknowledgments

We are grateful to Daniele Micciancio for very insightful discussions about bootstrapping, and helpful
comments that helped us improve the quality of this writeup. We thank Vinod Vaikuntanathan and
Aayush Jain for suggesting the use of a key-chain rather than key-cycle to get rid of circular security
for the case of levelled FHE. Research of the first author is supported by the DST “Swarnajayanti”
fellowship, an Indo-French CEFIPRA project and the CCD Centre of Excellence. Part of the
research corresponding to this work was conducted while visiting the Simons Institute for the Theory
of Computing. Research of the second author is supported in part by DARPA under Agreement
No. HR00112020023. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

40

References

1]

[2]

P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption.
In Annual Cryptology Conference, pages 308-326. Springer, 2015.

D. Apon, X. Fan, and F.-H. Liu. Deniable attribute based encryption for branching programs
from lwe. In Theory of Cryptography Conference, pages 299-329. Springer, 2016.

R. Bendlin, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Lower and upper bounds for deniable
public-key encryption. In Asiacrypt. Springer, 2011.

N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
Journal of the ACM (JACM), 65(6):1-37, 2018.

Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In Annual Cryptology Conference, pages 868—886. Springer, 2012.

Z. Brakerski. Fundamentals of fully homomorphic encryption. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 543-563. 2019.

Z. Brakerski, N. Dottling, S. Garg, and G. Malavolta. Leveraging linear decryption: Rate-1
fully-homomorphic encryption and time-lock puzzles. In Theory of Cryptography Conference,
2019.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1-36, 2014.

Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
lwe. SIAM Journal on Computing, pages 831-871, 2014.

7. Brakerski and V. Vaikuntanathan. Lattice-based the as secure as pke. In Proceedings of the
5th conference on Innovations in theoretical computer science, pages 1-12, 2014.

R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Annual International
Cryptology Conference, pages 90-104. Springer, 1997.

R. Canetti, S. Park, and O. Poburinnaya. Fully deniable interactive encryption. In D. Micciancio
and T. Ristenpart, editors, Crypto, 2020.

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachéne. A homomorphic lwe based e-voting
scheme. In Post-Quantum Cryptography, pages 245-265. Springer, 2016.

D. Dachman-Soled. On minimal assumptions for sender-deniable public key encryption. In
International Workshop on Public Key Cryptography, pages 574-591. Springer, 2014.

D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multiparty
computation in constant rounds. In Theory of Cryptography Conference, 2015.

A. De Caro, V. Iovino, and A. O’Neill. Deniable functional encryption. In Public-Key
Cryptography—PKC 2016, pages 196-222. Springer, 2016.

41

[17]

[18]

[19]

[20]

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM Journal
on Computing, 45(3):882-929, 2016.

S. Garg, O. Pandey, A. Srinivasan, and M. Zhandry. Breaking the sub-exponential barrier in
obfustopia. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 156-181, 2017.

C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

C. Gentry and S. Halevi. Compressible fhe with applications to pir. In Theory of Cryptography
Conference, 2019.

C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Annual Cryptology Conference,
pages 75-92. Springer, 2013.

S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled
circuits and succinct functional encryption. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 555-564, 2013.

A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded assumptions.
arXiv preprint arXiv:2008.09317, 2020.

H. Lin, R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation with non-trivial
efficiency. In Public-Key Cryptography—PKC 2016, pages 447-462. Springer, 2016.

B. Meng. A secure internet voting protocol based on non-interactive deniable authentication
protocol and proof protocol that two ciphertexts are encryption of the same plaintext. J.
Networks, 4(5):370-377, 2009.

A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In Annual Cryptology
Conference, pages 525-542. Springer, 2011.

A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In Proceedings of the forty-sizth annual ACM symposium on Theory of computing, pages
475484, 2014.

N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In International Workshop on Public Key Cryptography, 2010.

V. Vaikuntanathan and A. Jain. Removing circularity for levelled the. Personal Communication,
2020.

42

crypto.stanford.edu/craig

A Another Compact FHE for bits

We provide another construction for compact deniable FHE, as in Definition 2.10, that achieves a
slightly better detection probability. Let Fhe = (Gen, Enc, Eval, Dec) be a special public-key FHE
scheme for the message space M = {0,1} with ciphertext space Rl as in Definition 3.1. For
reading convenience, we denote by lowercase r, the /-bit string randomness that is input to an
Fhe.Enc algorithm, and by uppercase R, the elements in R, where R’ is the co-domain of the
algorithm Fhe.Enc. We denote by £, the bit length of elements in R’ (that is, £, = [£.1logy(|R|)]).

Our alternate compact public-key deniable fully homomorphic encryption scheme for message
space M = {0,1}, DFhe = (Gen, DEnc, Enc, Eval, Dec, Fake), is described as follows:

DFhe.Gen(l)‘) : Upon input the unary representation of the security parameter A\, do the following:

1. Sample (pk, sk) < Fhe.Gen(1%), and ctg <+ Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk.

DFhe.Enc(dpk, m) : Upon input the public-key dpk, the message bit m, do the following:

1. Parse dpk := (pk, ctsk)
2. Select rand = (k,71,...,7%, Rig1,- .. Rn) € {0,1}1982(7) 5 {0, 1}F x R(=K)e a5 follows:
(a) If m =0, select k < {0,2,...,n— 1}, else if m =1 select k < {1,3,...,n} where n
is an odd integer.
(b) Select r; < {0,1}*, for i € [k].
(c) Select and R; < R’ for i € [n] \ [K].
3. Let R; = Fhe.Enc(pk, 1;r;) for i € [K].
4. Output dct = @o(boot(Ry),. .., boot(R,,))
DFhe.Eval(dpk,C,dcty,...,dcty): Upon input the public key dpk = (pk, ctsk), the circuit C and

the ciphertexts dcty,...,dcty, interpret dct; as Fhe ciphertext ct; for i € [k], and output
dct = Fhe.Eval(pk,C,cty,. .., ctg).

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct, interpret dsk and dct as
Fhe secret key sk and Fhe ciphertext ct and output Fhe.Dec(sk, ct).

DFhe.Fake(dpk, m,rand, m*): Upon input the public key dpk, the original message bit m,
randomness rand, and the faking message m* do the following:
1. If m = m™*, output rand® = rand.
2. Parse dpk := (pk,cts) and rand = (k,r1,...,7%, Rky1,..., Ryn), where |k| = logy(n),
|ril = £ for i € [k], |R;| = €. for i € [n]\ [K].
Set k* =k — 1. If £ =0, output “cheating impossible” and abort.
Set rf =r; for i € [k*].
Set Rj.., = Fhe.Enc(pk, 1;7%).
Set R = R; for i € [n] \ [k].

AN

43

7. Let rand” = (k*,rf,...,7f, Rpa 1, ..., Ity), that is
rand* = (k — 1,71,...,7%k—1, Fhe.Enc(pk, 1;7%), Rkt1, - -, Rn).
8. Output rand®.

We now prove the scheme satisfies correctness, compactness, CPA security and poly deniability.
Compactness and security follow exactly as in Section 4.1.

Correctness. To argue correctness, we note that:

1. Since R; = Fhe.Enc(pk, 1;7;) for i € [k], we have by correctness of the underlying Fhe that
Ry, ..., Ry, and hence boot(Ry),...,boot(Ry) are valid encryptions of 1.

2. By properties 3 and 4 which state that FHE decryption always outputs a bit and this bit is
biased to 0 with overwhelming probability when decryption is invoked with a truly random
input, we have that boot(Rj+1),...,boot(R,) are valid encryptions of 0 with overwhelming
probability.

Hence, when k is odd (respectively even), the (FHE evaluation of) addition mod 2 of boot(R;)
for i € [n] yields an encryption of 1 (respectively 0). Hence, the scheme encodes the message bit
correctly.

Polynomial Deniability. When the original message m and the fake message m* are the same,
the faked randomness rand” is equal to the original randomness rand. Thus in this case, m = m*,
the distribution are identical (dpk,m,rand) = (dpk, m*,rand*). When the original message m and
the fake message m* are not the same, we distinguish two cases:

1. When the original message m = 0, we have in the real randomness rand, k < {0,2,...,n — 1},
where n is an odd integer. In the faking algorithm, we have in the faked randomness rand*,
k* =k —1, that is k* < {-1,1,...,n — 2}.

2. When the original message m = 1, we have in the real randomness rand, k < {1,3...,n},
where n is an odd integer. In the faking algorithm, we have in the faked randomness rand*,
k* =k — 1, that is k* < {0,2,...,n— 1}.

Observe that when the original message is m = 1, we have that k* in the faking randomness
rand® is sampled from the exact same distribution as in the real randomness rand when encrypting
the message m = 0. Moreover, by property 2 which asserts that ciphertexts are pseudorandom, we
can explain R as uniform element in R'e. Hence, the output of the faking algorithm in this case
(m = 0,m* = 1) will be indistinguishable from real randomness.

When the original message is m = 0, the statistical distance between the distribution of
sampling k* in the faking algorithm (namely, sampling k < {2,4,...,n — 1} and setting k* =
k — 1) and the distribution of sampling k£ when encrypting the message m = 1 (namely, sampling
E <« {1,3,...,n}) is %H To see this, let P and @ be two distribution over a finite set U =
{-1,1,3,...,n}, where P(x) = n%rl = |u|\%—1}’ P(—1) = 0, i.e. P is the uniform distribution
over the set {1,3,...,n}, and Q(z) = for all z € U \ {n}, and Q(n) = 0 (Q is the uniform

2
n+1

44

distribution over the set {—1,1,...,n — 2}). The statistical distance between these distributions is

SD(P,Q) = 1 <%+1 + %H + O) = niﬂ Note that when & =0 (k* = —1) “cheating is impossible”,
which happened with %H probability. The probability we select k = 0 from the set of {0,2,...,n—1},
2

. 1 _
S o2, a=1y] = ntl

45

	Introduction
	Prior Work on Deniability.
	Our Results.
	Our Techniques.
	Perspective: FHE as a Tool
	On Receiver Deniability
	Other Related Work

	Preliminaries
	Fully Homomorphic Encryption
	Deniable Homomorphic Encryption

	Special Homomorphic Encryption
	Instantiation

	Deniable Encryption for Bits
	Weakly Deniable FHE for Bits
	Fully Deniable FHE for Bits

	Weakly Deniable FHE with Large Message Space
	Fully Deniable FHE with Large Message Space
	Plan Ahead Deniability.

	Weakening the Condition on Special FHE
	Weakening of Property 4: Biased Decryption on Random Input
	Removing Circularity Assumption for Levelled FHE

	Lower Bound for Deniable Schemes
	Another Compact FHE for bits

