SEMI-REGULARITY OF PAIRS OF BOOLEAN POLYNOMIALS

TIMOTHY J. HODGES AND HARI R. IYER

Abstract

Semi-regular sequences over \mathbb{F}_{2} are sequences of homogeneous elements of the algebra $B^{(n)}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$, which have a given Hilbert series and can be thought of as having as few relations between them as possible. It is believed that most such systems are semi-regular and this property has important consequences for understanding the complexity of Gröbner basis algorithms such as F4 and F5 for solving such systems. We investigate the case where the sequence has length two and give an almost complete description of the number of semi-regular sequences for each n.

1. Introduction

The concept of \mathbb{F}_{2}-semi-regularity (which we will here shorten to semiregularity) was introduced in $[1,2]$ in order to assess the complexity of certain Gröbner basis algorithms, such as the XL algorithm [16] or Faugère's F4 or F5 algorithms [7, 8], applied to solving systems of non-linear equations over the Galois field \mathbb{F}_{2}. Heuristically, semi-regular systems of equations are systems for which there are no non-trivial relations between the equations. Bardet, Faugère, Salvy and Yang were able to compute the asymptotic complexity of these algorithms in the case of semi-regular systems, proving that the complexity was exponential [2]. The motivation behind this work was to understand the security of certain multi-variate cryptosystems such as Patarin's Hidden Field Equation system, since the decryption of such systems could be performed by solving such systems of equations. Unfortunately, it soon became clear that the systems of equations that arose in multivariate cryptography were not semi-regular. Moreover, despite a belief that "generic" systems of quadratic equations are semi-regular, little progress has been made on proving even the existence of semi-regular systems of equations. Since systems of polynomial equations over \mathbb{F}_{2} arise

[^0]naturally in many diverse settings (such as the solution of the discrete logarithm problem [13]), it remains an important goal to understand whether indeed most such systems are semi-regular.

Set $B=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$. Let V be an m-dimensional subspace of the space B_{2} of homogeneous quadratic elements of B. The space V is semi-regular if the Hilbert series of the graded quotient ring $B / B V$ is given by the polynomial

$$
T_{n, m}(z)=\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right]
$$

where $\left[\sum_{i=0}^{\infty} a_{i} z^{i}\right]$ denotes the series $\sum_{i=0}^{\infty} a_{i} z^{i}$ truncated at the first i for which $a_{i} \leq 0$.

The question we would like to answer in general is: What proportion of such spaces are semi-regular? The total number of subspaces of dimension m is well-known - it is the cardinality of the Grassmanian $\operatorname{Gr}\left(m, B_{2}\right)$. Let

$$
\operatorname{sr}(n, m)=\mid\left\{V \in \operatorname{Gr}\left(m, B_{2}\right) \mid V \text { is semi-regular }\right\} \mid
$$

and let

$$
p_{n, m}=\frac{s r(n, m)}{\left|\operatorname{Gr}\left(m, B_{2}\right)\right|}
$$

That is, $p_{n, m}$ is the proportion of m dimensional spaces that are semi-regular. It is conjectured that for $m=m(n)$ sufficiently large compared to n (say $m(n)>n / 4)$, this proportion tends to 1 as n tends to infinity. Very little is known about this conjecture. In particular, it is not even known whether there are infinitely many n for which $p_{n, n} \neq 0$. It was shown in [11] that for any fixed m, we must have that $p_{n, m}=0$ for sufficiently large n. The case when $m=1$ was described in Kruglov's PhD thesis [12, Lemma 3.12]. We give a brief review of this case in Section 5.

The purpose of this paper is to describe in detail the case when $m=2$ and to give a fairly exact description of which 2-dimensional subspaces are semi-regular for all possible values of n. In Section 4 we show that no semiregular two dimensional subspaces exist for $n \geq 9$ (and in more generality that no semi-regular two dimensional subspaces exist for $n \geq 4(m+1)$). In Section 6 we deal with the easy cases when $n=3,4,5$ and 7 . In the last two sections we consider the more complicated situations when $n=6$ and 8 . In all cases except $n=8$ we are able to give the exact value of $p_{n, 2}$; for $p_{8,2}$ we give a fairly tight bound for the value. Our hope was that analysis of the special case $m=2$ would give insight into the more important general case. Our results were mixed. It is clear that the rank type (as defined in Section 3) is an important invariant which may help provide more general families of semi-regular spaces. On the other hand, as the degree of $T_{n, 2}(z)$ increased, the problem of determining each of the coefficients of the Hilbert series became increasingly intricate and frequently required more ad-hoc methods. This suggests that substantial results on the existence and/or ubiquity of semi-regular sequences may still be elusive.

Related work: The case when $m=1$ was described in Kruglov's PhD thesis [12, Lemma 3.12]. We give a brief review of this case in Section 5. In this case it is relatively easy to give an exact value for $p_{n, 1}$ for all n. At the opposite extreme, recent work by Semaev and Tenti [15] describes the behavior in the overdetermined case when m is sufficiently large compared to n. When $m>\lceil(n-1)(n-2) / 6\rceil$, Theorem 1.1 of [15] provides a lower bound on the proportion of m-dimensional spaces which are semi-regular and this bound tends to 1 as n tends to infinity. Some general results on the existence of semi-regular subspaces of B_{k} for $k \geq 2$ are given in [11]. In particular it is shown that for all m there exists an N_{m} such that $p_{n, m}=0$ for all $n \geq N_{m}$. A homological characterization of semi-regularity was given by Hodges and Molina in [10].

2. Background and Basics

Let $\mathbb{F}=\mathbb{F}_{2}$ be the field with two elements. Set

$$
B=B^{n}=\mathbb{F}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)
$$

(we shall drop the superscript when there is no need to emphasize the number n); and let x_{i} denote the image of X_{i} in B. This ring inherits the structure of a strongly graded ring from the polynomial ring $\mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$. That is, if we denote by B_{k}^{n} the span of the monomials $x_{i_{1}} \ldots x_{i_{k}}$ of degree k, then $B^{n}=\bigoplus_{k=0}^{n} B_{k}^{n}$ and $B_{k}^{n} B_{m}^{n}=B_{k+m}^{n}$. It is easy to see that $\operatorname{dim} B_{k}^{n}=\binom{n}{k}$ and that $\operatorname{dim} B^{n}=2^{n}$. The monomials $x_{\mathbf{i}}=x_{i_{1}} \ldots x_{i_{k}}$ form a basis for B^{n} so an arbitrary element of B can be written as $b=\sum_{\mathbf{i}} a_{\mathbf{i}} x_{\mathbf{i}}$ for some $a_{\mathbf{i}} \in \mathbb{F}$. We define the support of b to be

$$
\operatorname{Supp}(b)=\left\{x_{\mathbf{i}} \mid a_{\mathbf{i}} \neq 0\right\}
$$

For $m \leq n$ we will identify the graded subalgebra of B^{n} generated by x_{1}, \ldots, x_{m} with B^{m}.

In [2], the concept of a semi-regular sequence of elements of B was defined in the following iterative fashion.

Definition 2.1. Let $f_{1}, \ldots, f_{m} \in B$ be a sequence of homogeneous polynomials with $\operatorname{deg} f_{i}=d_{i}$. Let

$$
D_{f_{1}, \ldots, f_{m}}=\min \left\{k \mid \sum_{i=1}^{m} B_{k-d_{i}} f_{i}=B_{k}\right\}
$$

The sequence $f_{1}, \ldots, f_{m} \in B$ is semi-regular if for all $i=1,2, \ldots, m$ and homogeneous $g \in B$

$$
g f_{i} \in\left(f_{1}, \ldots, f_{i-1}\right) \quad \text { and } \quad \operatorname{deg}(g)+\operatorname{deg}\left(f_{i}\right)<D_{f_{1}, \ldots, f_{m}}
$$

implies $g \in\left(f_{1}, \ldots, f_{i}\right)$.
For any series $\sum_{i} a_{i} z^{i} \in \mathbb{F}[[z]]$, we denote by $\left[\sum_{i} a_{i} z^{i}\right]$ the truncated series $\sum_{i} b_{i} z^{i}$ where $b_{i}=a_{i}$ if $a_{j}>0$ for $j=0, \ldots, i$ and $b_{i}=0$ otherwise.

Proposition 2.2. [2] Let $f_{1}, \ldots, f_{m} \in B$ be a sequence of homogeneous polynomials with $\operatorname{deg} f_{i}=d_{i}$. The sequence f_{1}, \ldots, f_{m} is semi-regular if and only if the Hilbert series of the graded ring $B /\left(f_{1}, \ldots, f_{m}\right)$ is given by

$$
H S_{B /\left(f_{1}, \ldots, f_{m}\right)}(z)=\left[\frac{(1+z)^{n}}{\prod_{i=1}^{m}\left(1+z^{d_{i}}\right)}\right]
$$

This shows that the number $D_{f_{1}, \ldots, f_{m}}$ is the same for any semi-regular sequence of given multi-degree $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)$. We call this number the degree of regularity of a semi-regular sequence of degree \mathbf{d}.

We are interested here in the case where all the f_{i} are quadratic (that is $d_{i}=2$ for all i). In this case, Proposition 2.2 implies that if we restrict our attention to linearly independent sequences, then the semi-regularity of the sequence depends only on the subspace $V \subset B_{2}$ that they generate and not on the choice of f_{i} (note that if the sequence is linearly dependent, then it is never semi-regular so we may disregard this situation). For this reason, we find it more natural to discuss the semi-regularity of subspaces, rather than of sequences. Thus a quadratic subspace V of dimension m is semi-regular if

$$
H S_{B / B V}(z)=\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right]
$$

Set

$$
T_{m, n}(z)=\left[\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}\right], \text { and } D_{n, m}=1+\operatorname{deg} T_{m, n}(z)
$$

So $D_{n, m}$ is the degree of regularity of an m-dimensional semi-regular space of homogeneous quadratic elements.

Another way of characterizing semi-regularity is that the only relation between the f_{i} 's are the trivial ones in degrees less than $D_{n, m}$. Consider the linear maps $\phi_{j}: B_{j-2} \otimes V \rightarrow B_{j}$ given by $\phi_{j}\left(\sum_{i} b_{i} \otimes v_{i}\right)=\sum_{i} b_{i} v_{i}$. Let $R_{j}(V)=\operatorname{ker} \phi_{j}$. Inside $R_{j}(V)$ there is a subspace of "trivial relations" $T_{j}(V)$ spanned by the elements
(1) $b(v \otimes w-w \otimes v)$ where $v, w \in V$ and $b \in B_{j-4}$;
(2) $b(v \otimes v)$ where $v \in V$ and $b \in B_{j-4}$.

Theorem 2.3. [10, Theorem 3.8] Let V be an m-dimensional subspace of B_{2} and let $D=D_{n, m}$. Then V is semi-regular if and only if
(1) $R_{j}(V)=T_{j}(V)$ for all $3 \leq j<D$, and
(2) $B_{D-2} V=B_{D}$

If $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis for V, then it can be easily shown that

$$
T_{k}(V)=\sum_{i \neq j} B_{k-4}\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)+\sum_{i} B_{k-4}\left(v_{i} \otimes v_{i}\right)
$$

We are interested in understanding the proportion of such spaces which are semi-regular. Note that the set of all m-dimensional subspaces is the

Grassmannian $\mathrm{Gr}\left(m, B_{2}\right)$ and that the size of the Grassmanian of m-dimensional subspaces of the t-dimensional space W for $t \geq m$ is given by the formula

$$
|\operatorname{Gr}(m, W)|=\frac{\left(2^{t}-1\right)\left(2^{t}-2\right) \ldots\left(2^{t}-2^{m-1}\right)}{\left(2^{m}-1\right)\left(2^{m}-2\right) \ldots\left(2^{m}-2^{m-1}\right)}
$$

Let

$$
s r(n, m)=\mid\left\{V \in \operatorname{Gr}\left(m, B_{2}^{n}\right) \mid V \text { is semi-regular }\right\} \mid
$$

and let

$$
p_{n, m}=\frac{s r(n, m)}{\left|\operatorname{Gr}\left(m, B_{2}^{n}\right)\right|}
$$

be the proportion of m-dimensional subspaces which are semi-regular. It is generally believed that if $m(n)$ is a function of n that is sufficiently large relative to n, then

$$
\lim _{n \rightarrow \infty} p_{n, m(n)}=1 .
$$

For instance, one can conjecture for $c>1 / 4$, that $\lim _{n \rightarrow \infty} p_{n,\lfloor c n\rfloor}=1$. By contrast, we show here that for $c<1 / 4$

$$
\lim _{n \rightarrow \infty} p_{n,\lfloor c n\rfloor}=0
$$

At the other extreme, we can consider spaces such that $m=\operatorname{dim} V$ is large enough large that $\operatorname{deg} T_{n, m}=2$. This is the case if

$$
\frac{(n-1)(n-2)}{6} \leq m<\binom{n}{2}
$$

since

$$
\frac{(1+z)^{n}}{\left(1+z^{2}\right)^{m}}=1+n x+\left(\binom{n}{2}-m\right) x^{2}+\left(\binom{n}{3}-m n\right) x^{3}+\cdots
$$

In this case Theorem 2.3 implies that V is semi-regular if and only if the map $B_{1} \otimes V \rightarrow B_{3}$ is surjective. In this case, Semaev and Tenti give a lower bound [15, Theorem 1.1] for $p_{n, m}$ from which one deduces easily that

$$
\lim _{n \rightarrow \infty} p_{n, m(n)}=1
$$

if $m(n)>\lceil(n-1)(n-2) / 6\rceil$. However, little is known about the behavior of $p_{n, m}$ when m is between these bounds; in particular, it is not even known if $p_{n, n}$ is non-zero for infinitely many n.

The general linear group GL $\left(B_{1}\right)$ acts naturally as graded automorphisms of the algebra B. It therefore acts as permutations of $\operatorname{Gr}\left(m, B_{2}^{n}\right)$. Thus we can decompose the Grassmannian as a union of GL $\left(B_{1}\right)$-orbits and semiregularity is an invariant of these orbits. Under the action of GL $\left(B_{1}\right)$ every element $\mu \in B_{2}$ is equivalent to an element of the form $x_{1} x_{2}+\cdots+x_{2 i-1} x_{2 i}$, as shown in Corollary 3.2 below. We call the number $2 i$ the rank of μ and we often denote it as $\operatorname{rk}(\mu)$ or $\mathrm{rk} \mu$. There is an important connection between the rank and failure of semi-regularity due to the following result.

Theorem 2.4. [5, Corollary 2.2] If $\mu \in B_{2}$ has rank k, then

$$
\operatorname{dim} \frac{\operatorname{Ann}(\mu) \cap B_{d}}{B_{d-2} \mu}=\binom{n-k}{d-k / 2} 2^{k / 2}
$$

In particular, $\operatorname{Ann}(\mu) \cap B_{d} \supsetneq B_{d-2} \mu$ when $k / 2 \leq d \leq n-k / 2$.
This immediately yields the following condition on the ranks of elements of a semi-regular space.

Corollary 2.5. If V is a semi-regular subspace of B_{2}^{n}, then V contains no elements of rank k if $k / 2+2<D_{n, m}$. In particular, in order for there to exist semi-regular subspaces of dimension m, we must have $D_{n, m} \leq n / 2+2$.

Proof. Let $\mu \in V$ be an element of rank k and let $V^{\prime}=\langle\mu\rangle$. Suppose $d<D_{m, n}$; so $R_{d}(V) / T_{d}(V)=0$. Then by [9, Theorem 2.7]

$$
R_{d}\left(V^{\prime}\right)=R_{d}\left(V^{\prime}\right) \cap R_{d}(V)=R_{d}\left(V^{\prime}\right) \cap T_{d}(V)=T_{d}\left(V^{\prime}\right)
$$

so $R_{d}\left(V^{\prime}\right) / T_{d}\left(V^{\prime}\right)=0$. But $R_{d}\left(V^{\prime}\right) / T_{d}\left(V^{\prime}\right)=\left(\operatorname{Ann}(\mu) \cap B_{d-2}\right) / B_{d-4} \mu$. So by Theorem $2.4 R_{k / 2+2}\left(V^{\prime}\right) / T_{k / 2+2}\left(V^{\prime}\right) \neq 0$. Hence, $k / 2+2 \geq D_{n, m}$.

3. Alternating Matrices and Rank Type

An important invariant of a non-zero homogeneous quadratic element $\mu \in B_{2}$ is its rank: the number m such that we can write

$$
\mu=y_{1} y_{2}+\cdots+y_{m-1} y_{m}
$$

for some $y_{1}, \ldots y_{m} \in B_{1}$ (see Corollary 3.2). From this we can define the rank type of a two-dimensional subspace to be the set of ranks of its three non-zero elements. In order to calculate the proportion of subspaces that are semi-regular we need to count the number of subspaces of each rank type. Fortunately these numbers can be deduced from some work of Pott, Schmidt and Zhou [14, Theorem 5] on triples of alternating matrices $(A, B, A+B)$. In this section we establish the connection between elements of B_{2} and alternating matrices which enables us to count the subspaces by rank type.

Recall that a matrix $A=\left(a_{i j}\right) \in M_{n}(\mathbb{F})$ is alternating if
(1) $a_{i i}=0$ for all $i=1, \ldots, n$;
(2) $a_{i j}=a_{j i}$ for all $1 \leq i, j \leq n$

Denote by $\operatorname{Alt}_{n}(\mathbb{F})$ the space of all alternating matrices. Define $\Gamma: \operatorname{Alt}_{n}(\mathbb{F}) \rightarrow$ B_{2} by: for $A=\left(a_{i j}\right)$,

$$
\Gamma(A)=\sum_{i<j} a_{i j} x_{i} x_{j}
$$

Define $\Delta: B_{2} \rightarrow \operatorname{Alt}_{n}(\mathbb{F})$ by: for $\mu=\sum_{i<j} b_{i j} x_{i} x_{j}$,

$$
\Delta(\mu)=\left(a_{i j}\right) \text { where } a_{i j}= \begin{cases}b_{i j} & \text { if } i<j \\ b_{j i} & \text { if } i>j\end{cases}
$$

For any $P \in G L_{n}(\mathbb{F})$, denote by σ_{P} the automorphism of B obtained by extending the linear isomorphism of B_{1} defined by P with respect to the standard basis x_{1}, \ldots, x_{n}.

Theorem 3.1. The maps Γ and Δ are mutually inverse linear isomorphisms. Moreover, if $P \in G L_{n}(\mathbb{F}), B \in M_{n}(\mathbb{F})$ and $A=P^{T} B P$, then

$$
\Gamma(A)=\Gamma\left(P^{T} B P\right)=\sigma_{P}(\Gamma(B))
$$

Proof. Routine.
Corollary 3.2. For any $\mu \in B_{2}$ there exist linearly independent elements $y_{1}, \ldots y_{2 i} \in B_{1}$ such that

$$
\mu=y_{1} y_{2}+\cdots+y_{2 i-1} y_{2 i}
$$

Moreover the number $2 i$ is equal to the matrix rank of $\Delta(\mu)$, and is independent of the choice of $y_{1}, \ldots y_{2 i}$.
Proof. For any alternating matrix A there exists a matrix B which consists of diagonal 2×2 blocks of the form $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and invertible matrix P such that $A=P^{T} B P[3$, Lemma 10].

Definition 3.3. We call the number $2 i$ the rank of the element μ, and we often denote it as $\mathrm{rk} \mu$.

Let $\nu(m)$ be the number of elements $\mu \in B_{2}$ of rank m. Then $\nu(m)$ is the number of alternating matrices in $M_{n}(\mathbb{F})$ of rank m and this number is given by the formula [14, Equation 4]

$$
\nu(2 i)=\left[\begin{array}{c}
t \\
i
\end{array}\right]_{4} \prod_{k=0}^{i-1}\left(2^{\frac{n(n-1)}{2 t}}-2^{2 k}\right)
$$

where

$$
t=\left\lfloor\frac{n}{2}\right\rfloor \text { and }\left[\begin{array}{l}
t \\
i
\end{array}\right]_{q}=\prod_{j=1}^{i} \frac{q^{t-j+1}-1}{q^{j}-1}
$$

Table 1 gives the number of elements of each possible rank r for $n=3,4,5$ and 6

$r \backslash n$	3	4	5	6
2	7	35	155	651
4	0	28	868	18228
6	0	0	0	13888

TABLE 1. The number of elements of rank r in B_{2}^{n} for $n=$ $3,4,5$ and 6

Let $V \subset B_{2}$ be a subspace of dimension 2. In this case $V=\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ for some $\mu, \mu^{\prime} \in B_{2}^{n}$. An important invariant of this space is the triple

$$
\operatorname{Rk}(V)=\left[\operatorname{rk} \mu, \operatorname{rk} \mu^{\prime}, \operatorname{rk} \mu+\mu^{\prime}\right] \in \mathbb{N}^{3} / \Sigma_{3}
$$

(that is, the equivalence class of the triple under the action of the symmetric group $\left.S_{3}\right)$. We call $\operatorname{Rk}(V)$ the rank type of V.

Since $\Delta(V)$ is a two-dimensional subspace of the space of alternating matrices, we may use the formula of Pott, Schmidt and Zhou [14, Theorem $5]$ which counts the number of triples of alternating matrices $(A, B, A+B)$ of given matrix rank. Using the $\Delta-\Gamma$ correspondence this also counts the number of two-dimensional spaces with given rank type. For instance the numbers of subspaces of the different rank types when $n=6$ are given in Table 2.

Type	Number
$[2,2,2]$	9,765
$[2,2,4]$	182,280
$[2,4,4]$	$3,417,750$
$[2,4,6]$	$4,666,368$
$[2,6,6]$	$2,187,360$
$[4,4,4]$	$30,902,536$
$[4,4,6]$	$69,995,520$
$[4,6,6]$	$54,246,528$
$[6,6,6]$	$13,332,480$
Total	$178,940,587$

Table 2. The number of subspaces of B_{2}^{6} of each rank type

4. An Upper Bound on n

We begin by giving an explicit bound on n above which there are no m dimensional semi-regular subspaces of B_{2}^{n}. This improves upon the result in [11, Theorem 5.1] which established that such a bound always existed. A version of this result which fully extends [11, Theorem 5.1] is given in the Appendix.

Lemma 4.1. Given any $0 \neq a \in B$, there exists $b \in B$ such that $a b=$ $x_{1} \ldots x_{n}$. In particular, if a is homogeneous of degree k, we may pick b to be homogeneous of degree $n-k$.

Proof. Take a monomial m of smallest length in $\operatorname{Supp} a$. Say after renumbering, that $m=x_{1} \ldots x_{k}$. Then $m^{\prime}=x_{k+1} \ldots x_{n}$ must annihilate all the other elements of $\operatorname{Supp} a$. So $a m^{\prime}=m m^{\prime}=x_{1} \ldots x_{n}$.

Lemma 4.2. If $n \geq t+j$, then $B_{j} \cap \operatorname{Ann} B_{t}=0$. Equivalently, Ann $B_{t} \cap$ $\sum_{i=0}^{n-t} B_{i}=0$.

Proof. Let $0 \neq a \in B_{j} \cap$ Ann B_{t} where $j \leq n-t$, and suppose that $a \neq 0$. Then by Lemma 4.1 there exists an element $b \in B_{n-j}$ such that $a b=$ $x_{1} \ldots x_{n}$. But $b \in B_{n-j}=B_{t} B_{n-j-t}$, so

$$
a b \in a B_{n-j}=a B_{t} B_{n-j-t}=0
$$

contradicting $a b \neq 0$.
Theorem 4.3. Let V be a subspace of B_{2} of dimension m and let $D=D_{n, m}$. If $n \geq D+2 m$, then $B_{D-2} V \neq B_{D}$; in particular V is not semi-regular.
Proof. Let $B=\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be a basis for V. Choose a subset $\left\{\mu_{i_{1}}, \ldots, \mu_{i_{s}}\right\}$ which is maximal with respect to

$$
\mu_{i_{1}} \ldots \mu_{i_{s}} \neq 0
$$

Then for any $i=1, \ldots, m, \mu_{i_{1}} \ldots \mu_{i_{s}} \mu_{i}=0$, so $\mu_{i_{1}} \ldots \mu_{i_{s}} V=0$. Suppose that $B_{D-2} V=B_{D}$. Then

$$
\mu_{i_{1}} \ldots \ldots \mu_{i_{s}} B_{D}=\mu_{i_{1}} \ldots \mu_{i_{s}} B_{D-2} V=B_{D-2} \mu_{i_{1}} \ldots \mu_{i_{s}} V=0
$$

This implies that $\mu_{i_{1}} \ldots \mu_{i_{s}} \in B_{2 s} \cap$ Ann B_{D}. So Lemma 4.2 implies that $n<D+2 s \leq D+2 m$. Thus if $n \geq D+2 m$, then $B_{D-2} V \neq B_{D}$ and V is not semi-regular.

Unfortunately the behavior of $D_{n, m}$ is too erratic for this result to give us an upper bound (for instance, even though $D_{n, m}$ grows slower than n for any fixed m, the difference $n-D_{n, m}$ is not an increasing function). This can be rectified somewhat using the following result.
Theorem 4.4. There are no semi-regular m-dimensional subspaces of B_{2}^{n} when $n \geq 4(m+1)$.
Proof. Suppose that $n \geq 4(m+1)$; this implies that $n / 2+2 \leq n-2 m$. Suppose that there exist semi-regular subspaces of dimension m. By Corollary 2.5, we must have that $D_{n, m} \leq n / 2+2$. So $D_{n, m} \leq n-2 m$ contradicting Theorem 4.3.

For small n one can always backfill the difference to get more exact answers.

Corollary 4.5. There are no semi-regular subspaces of B_{2}^{n}

- of dimension one for $n \geq 7$;
- of dimension two for $n \geq 9$;
- of dimension three for $n \geq 12$;
- of dimension four for $n \geq 14$.

Proof. For instance when $m=2$, Theorem 4.4 tells us that there are no semiregular 2 -dimensional subspaces for $n \geq 12$. For the cases $n=9,10,11$, one can directly check that $D_{n, 2}=5,6,6$ respectively. Thus $D_{n, 2} \leq n-4$
in these cases and so by Theorem 4.3 there are no 2-dimensional semiregular subspaces. The cases $m=3$ and 4 follow similarly by observing that $D_{n, 3}=6,7,7,8$ for $n=12,13,14,15$; and that $D_{n, 4}=6,7,7,8,8,9$ for $n=14,15,16,17,18,19$

This leads to the following interesting conjecture:
Conjecture 4.6. For $m \neq 2$, there exist m-dimensional semi-regular subspaces of B_{2}^{n} if and only if $n \leq D_{n, m}+2 m$.

As we shall see, this conjecture is not true for $m=2$. However, this would seem to be an exceptional case. The validity of this conjecture when $m=3,4$ can be seen in [11, Table 1].

Theorem 4.4 also confirms the need for some condition on c in the Conjecture that $\lim _{n \rightarrow \infty} p_{n,\lfloor c n\rfloor}=1$.
Corollary 4.7. If $c<1 / 4$, then $\lim _{n \rightarrow \infty} p_{n,\lfloor c n\rfloor}=0$.
Proof. If $c<1 / 4$ then there exists an N such that for $n>N, c n \leq n / 4-1$. So Theorem 4.4 implies that $p_{n,\lfloor c n\rfloor}=0$ for $n>N$.

5. The Case $m=1$

Let us start by briefly reviewing the case when $m=1$. If one-dimensional semi-regular subspaces exist for small n, their Hilbert series and degree of regularity would be as in Table 1.

n	$T_{n, 1}(z)$	$D_{n, 1}$
3	$1+3 z+2 z^{2}$	3
4	$1+4 z+5 z^{2}$	3
5	$1+5 z+9 z^{2}+5 z^{3}$	4
6	$1+6 z+14 z^{2}+14 z^{3}+z^{4}$	5
7	$1+7 z+20 z^{2}+28 z^{3}+15 z^{4}$	5

TABLE 3. The polynomials $T_{n, 1}(z)$ and $D_{n, 1}=\operatorname{deg} T_{n, 1}(z)+1$ for $n=2, \ldots, 7$

Lemma 5.1. Suppose $n \geq 2$ and let $\mu \in B_{2}$. Then

$$
\operatorname{dim} B_{1} \mu= \begin{cases}n-2 & \text { if } \mathrm{rk} \mu=2 \\ n & \text { if } \mathrm{rk} \mu \geq 4\end{cases}
$$

and

$$
\operatorname{dim} B_{2} \mu= \begin{cases}\binom{n-2}{2} & \text { if } \operatorname{rk} \mu=2 \\ \binom{n}{2}-5 & \text { if } \operatorname{rk} \mu=4 \\ \binom{n}{2}-1 & \text { if } \operatorname{rk} \mu \geq 6\end{cases}
$$

Proof. Note that $\operatorname{dim} B_{d} \mu=\operatorname{dim} B_{d}-\operatorname{dim} \operatorname{Ann}(\mu) \cap B_{d}$. Hence by Theorem 2.4,

$$
\operatorname{dim} B_{d} \mu=\binom{n}{d}-\binom{n-k}{d-k / 2} 2^{k / 2}-\operatorname{dim} B_{d-2} \mu
$$

The result then follows by direct calculation.
Whether or not $V=\{0, \mu\}$ is semi-regular depends purely on the rank of μ.

Theorem 5.2. Let $V=\{0, \mu\}$ be a one dimensional subspace of B_{2}.
(1) When $n=3$, all one dimensional spaces are semi-regular. So $p_{3,1}=$ 1.
(2) When $n=4, V$ is semi-regular if and only if $\operatorname{rk} \mu=4$. So $p_{4,1}=$ $28 / 63 \approx 0.44$.
(3) When $n=5, V$ is semi-regular if and only if $\mathrm{rk} \mu=4$. So $p_{5,1}=$ $868 / 1023 \approx 0.85$
(4) When $n=6, V$ is semi-regular if and only if $\mathrm{rk} \mu=6$. So $p_{6,1}=$ $13888 / 32767 \approx 0.42$
(5) When $n \geq 7$, V cannot be semi-regular. Thus $p_{n, 1}=0$ for $n \geq 7$.

Proof. In the cases $n=3,4$, we have $D_{n, 1}=3$, so it suffices to verify the equality $B_{1} V=B_{3}$. Since $\operatorname{dim} B_{3}^{3}=1$ and $\operatorname{dim} B_{3}^{4}=4$, the result follows immediately from Lemma 5.1. In the case $n=5$, we have $D_{5,1}=4$, so we need to verify that the map $\phi_{5}: B_{1}^{5} \otimes V \rightarrow B_{3}^{5}$ is injective and the map $\phi_{4}: B_{2}^{5} \otimes V \rightarrow B_{4}^{5}$ is surjective. Lemma 5.1 implies that these conditions hold precisely when $\mathrm{rk} \mu=4$. Finally, for $n=6$, we need that $\operatorname{dim} B_{1}^{6} V=6$, $\operatorname{dim} B_{2}^{6} V=14$ and $B_{3}^{6} V=B_{5}^{3}$. Lemma 5.1 implies that first two conditions hold only when $\mathrm{rk} \mu=6$. The last condition is easily verified directly when rk $\mu=6$.

The figures for the proportions follow from the numbers of elements of each rank given in Table 1.

6. The Case $m=2$ - Preliminaries

We now consider the situation where $m=\operatorname{dim} V=2$. Then, $V=$ $\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ for some $\mu, \mu^{\prime} \in B_{2}^{n}$, and recall the definition of the rank type $\operatorname{Rk}(V)=\left[\operatorname{rk} \mu, \operatorname{rk} \mu^{\prime}, \operatorname{rk} \mu+\mu^{\prime}\right]$. Unfortunately the rank type of a space V does not determine its equivalence class under the action of $\mathrm{GL}\left(B_{1}\right)$. For instance, Examples 7.5 and 7.6 show two subspaces of B_{2}^{6} of equal rank type $[4,4,4]$, one of which is not semi-regular while the other is semi-regular; since automorphisms preserve the linear relations between elements in a subspace, $G L\left(B_{1}\right)$ maps semi-regular spaces to semi-regular spaces, so the latter examples are in different orbits under the action of $G L\left(B_{1}\right)$. However the rank type does provide an important and useful decomposition of the Grassmanian $\operatorname{Gr}\left(2, B_{2}\right)$.
6.1. The cases $n=3,4,5$ and 7. From the table below we see that for $n=3,4$, and 5 the degree of regularity of a semi-regular 2-dimensional subspace of B_{2} would be 3 . By Theorem 2.3 , when $D_{n, 2}=3$, semi-regularity

n	$T_{n, 2}(z)$	$D_{n, 2}$
3	$1+3 z+z^{2}$	3
4	$1+4 z+4 z^{2}$	3
5	$1+5 z+8 z^{2}$	3
6	$1+6 z+13 z^{2}+8 z^{3}$	4
7	$1+7 z+19 z^{2}+21 z^{3}$	4
8	$1+8 z+26 z^{2}+40 z^{3}+17 z^{4}$	5
9	$1+9 z+34 z^{2}+66 z^{3}+57 z^{4}$	5

TABLE 4. The polynomials $T_{n, 2}(z)$ and $D_{n, 2}=\operatorname{deg} T_{n, 2}(z)+1$ for $n=3, \ldots, 9$
is equivalent to condition $(2), B_{1} V=B_{3}$, since condition (1) is null.
Theorem 6.1. If $n=3$, then all two dimensional subspaces are semiregular.

Proof. In this case $\operatorname{dim} B_{3}=1$ and $B_{1} V \neq 0$ by Lemma 4.1, so we must always have $B_{3}=B_{1} V$.

Theorem 6.2. Let $n=4$ and let $V \subset B_{2}$ be a two dimensional subspace. Then V is semi-regular if and only if V contains an element of rank 4.

Proof. In this case $\operatorname{dim} B_{3}=4$. If $\operatorname{rk} \mu=4$, then by Lemma 5.1, $\operatorname{dim} B_{1} \mu=$ 4. So if V contains an element of rank 4, we have $B_{1} V=B_{3}$. On the other hand, suppose that V does not contain an element of rank 4. Then V has rank type $[2,2,2]$. Let μ, μ^{\prime} be a basis for V. Then $\mu=\lambda_{1} \lambda_{2}$ and $\mu^{\prime}=\lambda_{1}^{\prime} \lambda_{2}^{\prime}$ for some $\lambda_{1}, \lambda_{2}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime} \in B_{1}$. Let $\Lambda=\left\langle\lambda_{1}, \lambda_{2}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right\rangle$. If $\operatorname{dim} \Lambda=4$, then the λ 's are linearly independent and $\mu+\mu^{\prime}$ would have rank 4 ; on the other hand, if $\operatorname{dim} \Lambda=2$, then $\operatorname{dim} \Lambda^{2}=1$ and $V \subset \Lambda^{2}$, a contradiction. Therefore we must have $\operatorname{dim} \Lambda=3$. Hence we can find a one dimensional subspace $V_{0} \subset B_{1}$ such that $B_{1}=\Lambda \oplus V_{0}$. But then

$$
B_{1} V=\Lambda V+V_{0} V \subset \Lambda^{3}+V_{0} V
$$

Hence $\operatorname{dim} B_{1} V \leq \operatorname{dim} \Lambda^{3}+\operatorname{dim} V_{0} V \leq 1+2=3$ and therefore $B_{1} V \neq B_{3}$. So if V is semi-regular, it must contain an element of rank 4.

Corollary 6.3. In the case $n=4$, the proportion of subspaces of B_{2}^{4} that are semi-regular is $p_{4,2}=546 / 651 \approx 0.84$.

Proof. The total number of two-dimensional subspaces is $\left|\operatorname{Gr}\left(m, B_{2}^{4}\right)\right|=651$. From [14, Theorem 5], we have the number of subspaces of type [2, 2, 2] is 105 . So $p_{4,2}=(651-105) / 651$.

Now consider the case when $n=5$. Note that $\operatorname{dim} B_{3}^{5}=10$ so $B_{1} V=B_{3}$ if and only if the map $\phi_{3}: B_{1}^{5} \otimes V \rightarrow B_{3}^{5}$ is an isomorphism.

Theorem 6.4. The map $\phi_{3}: B_{1}^{5} \otimes V \rightarrow B_{3}^{5}$ is not surjective for any two dimensional subspace $V \subset B_{2}^{5}$. Hence there are no semi-regular two dimensional subspaces of B_{2}^{5}.
Proof. We may assume, after appropriate change of variables, that $V=$ $\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ where $\mu \in B_{2}^{4}$ and $\mu^{\prime}=\mu_{0}+\lambda x_{5}$ for $\mu_{0} \in B_{2}^{4}$ and $\lambda \in B_{1}^{4}$. Then

$$
\begin{aligned}
B_{1} V & =B_{1} \mu+B_{1} \mu^{\prime}=\left(B_{1}^{4}+\mathbb{F} x_{5}\right) \mu+\left(B_{1}^{4}+\mathbb{F} x_{5}\right)\left(\mu_{0}+\lambda x_{5}\right) \\
& \subset\left(B_{1}^{4} \mu+B_{1}^{4} \mu_{0}\right)+\left(\mathbb{F} \mu+\mathbb{F} \mu_{0}+B_{1}^{4} \lambda\right) x_{5}
\end{aligned}
$$

Now $B_{3}^{5}=B_{3}^{4}+B_{2}^{4} x_{5}$, so for this map to be surjective we must have $B_{1}^{4} \mu+$ $B_{1}^{4} \mu_{0}=B_{3}^{4}$ and $\mathbb{F} \mu+\mathbb{F} \mu_{0}+B_{1}^{4} \lambda=B_{2}^{4}$. However $\operatorname{dim} B_{1}^{4} \lambda \leq 3$, so

$$
\operatorname{dim}\left(\mathbb{F} \mu+\mathbb{F} \mu^{\prime}+B_{1}^{4} \lambda\right) \leq 5<6=\operatorname{dim} B_{2}^{4}
$$

Thus $B_{1} V \neq B_{3}^{5}$ and V is not semi-regular.
Next we jump ahead to consider the case when $n=7$. Here the degree of regularity is four. So in order for the space V to be semi-regular we need the map $\phi_{4}: B_{2}^{7} \otimes V \rightarrow B_{4}^{7}$ to be surjective.
Theorem 6.5. The map $\phi_{4}: B_{2}^{7} \otimes V \rightarrow B_{4}^{7}$ is not surjective for any 2dimensional subspace $V \subset B_{2}^{7}$. Hence there are no semi-regular two dimensional subspaces of B_{2}^{7}.

Proof. Pick a basis for V, say $\left\{\mu, \mu^{\prime}\right\}$. After a suitable choice of generators we can assume that

$$
\mu \in B_{2}^{6}, \quad \mu^{\prime}=\mu_{0}+\lambda x_{7}, \text { where } \mu_{0} \in B_{2}^{6}, \lambda \in B_{1}^{6}
$$

Then

$$
\begin{aligned}
B_{2}^{7} V & =B_{2}^{7} \mu+B_{2}^{7} \mu^{\prime} \\
& =\left(B_{2}^{6}+B_{1}^{6} x_{7}\right) \mu+\left(B_{2}^{6}+B_{1}^{6} x_{7}\right)\left(\mu_{0}+\lambda x_{7}\right) \\
& \subset\left(B_{2}^{6} \mu+B_{2}^{6} \mu_{0}\right)+\left(B_{1}^{6} \mu+B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda\right) x_{7}
\end{aligned}
$$

Suppose that ϕ_{4} is surjective. Then we must have

$$
B_{1}^{6} \mu+B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda=B_{3}^{6}
$$

If $\lambda=0$, then we would have $B_{1}^{6} \mu+B_{1}^{6} \mu_{0}=B_{3}^{6}$ which is impossible because the left hand side has dimension at most 12 and $\operatorname{dim} B_{3}^{6}=20$. So $\lambda \neq 0$. Consider the map $B^{6} \rightarrow \tilde{B}=B^{6} /(\lambda) \cong B^{5}$. Denote the images of μ and μ_{0} by $\tilde{\mu}$ and $\tilde{\mu}_{0}$. Then we would have

$$
\tilde{B}_{1} \tilde{\mu}+\tilde{B}_{1} \tilde{\mu}_{0}=\tilde{B}_{3}
$$

But this contradicts Theorem 6.4.

This yields an exact value for $p_{n, 2}$ in all cases except $n=6$ or 8 . In the next two sections we consider these two remaining cases which are considerably more complicated.

$$
\text { 7. The Case } m=2, n=6
$$

Since $D_{6,2}=4$, a two-dimensional space $V \subset B_{2}^{6}$ is semi-regular if
(1) the map $\phi_{3}: B_{1}^{6} \otimes V \rightarrow B_{3}^{6}$ is injective; and
(2) the map $\phi_{4}: B_{2}^{6} \otimes V \rightarrow B_{4}^{6}$ is surjective

Note that $\operatorname{dim} B_{1}^{6}=6, \operatorname{dim} B_{2}^{6}=15, \operatorname{dim} B_{3}^{6}=20$, and $\operatorname{dim} B_{4}^{6}=15$.
Proposition 7.1. If V contains an element of rank 2, then V is not semiregular. In particular if V has rank type $[2,2,2],[2,2,4],[2,4,4]$ or $[2,4,6]$, then V is not semi-regular.

Proof. By Corollary 2.5 a semi-regular two-dimensional subspace of B_{2}^{6} can contain no elements of rank less than $2\left(D_{6,2}-2\right)=4$.

This leaves the cases where V has rank type $[4,4,4],[4,4,6],[4,6,6]$ and $[6,6,6]$. In the case where V contains an element of rank 6 the surjectivity condition is easily established.

Lemma 7.2. If V contains an element of rank 6 , then the map $\phi_{4}: B_{2}^{6} \otimes$ $V \rightarrow B_{4}^{6}$ is surjective.

Proof. We may assume that the element of rank 6 is $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Then $B_{2}^{6} \mu$ contains all the monomials of B_{4}^{6} except

$$
x_{1} x_{2} x_{3} x_{4}, x_{1} x_{2} x_{5} x_{6}, x_{3} x_{4} x_{5} x_{6}
$$

In addition it contains

$$
\left(x_{1} x_{2}+x_{3} x_{4}\right) x_{5} x_{6},\left(x_{1} x_{2}+x_{5} x_{6}\right) x_{3} x_{4},\left(x_{3} x_{4}+x_{5} x_{6}\right) x_{1} x_{2}
$$

Let μ^{\prime} be another non-zero element of V. Suppose that we have a monomial $x_{i} x_{j} \in \operatorname{Supp}\left(\mu^{\prime}\right)$ which is not one of $x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}$. Without loss of generality suppose it is $x_{1} x_{3}$. Then $x_{1} x_{2} x_{3} x_{4} \in \operatorname{Supp}\left(x_{2} x_{4} \mu^{\prime}\right)$. Since $B_{2}^{6} \mu$ contains all the other monomials involving $x_{2} x_{4}, B_{2}^{6} V$ must contain $x_{1} x_{2} x_{3} x_{4}$ and so $B_{2}^{6} V=B_{4}^{6}$. Now suppose that $\operatorname{Supp}\left(\mu^{\prime}\right) \subset\left\{x_{1} x_{2}, x_{3} x_{4}, x_{5} x_{6}\right\}$ and $\mu^{\prime} \neq \mu$ so μ^{\prime} is the sum of one or two of these terms. It is easily verified that in this case again $B_{2}^{6} V=B_{4}^{6}$.

Lemma 7.3. Suppose that $n \geq 6$ and let V be a 2-dimensional subspace of B_{2}^{n}. If V contains an element of rank at least 6 , then $\mathrm{Ann} V \cap B_{2}^{n}=0$. If, in addition, V has no elements of rank 2, then the map $\phi_{3}: B_{1}^{n} \otimes V \rightarrow B_{3}^{n}$ is injective.

Proof. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\operatorname{rk} \mu \geq 6$ and $\mu^{\prime} \neq \mu$. Since $\operatorname{rk} \mu \geq 6$, we know from Lemma 5.1 that Ann $\mu \cap B_{2}=\{0, \mu\}$. Therefore $\mu^{\prime} \mu \neq 0$ and
$\mu \notin \operatorname{Ann} \mu^{\prime} \cap B_{2}$. Hence

$$
\begin{aligned}
\text { Ann } V \cap B_{2} & =\left(\operatorname{Ann} \mu \cap B_{2}\right) \cap\left(\operatorname{Ann} \mu^{\prime} \cap B_{2}\right) \\
& =\{0, \mu\} \cap\left(\operatorname{Ann} \mu^{\prime} \cap B_{2}\right)=\{0\}
\end{aligned}
$$

Now assume that $\operatorname{rk} \mu^{\prime}$ and $\operatorname{rk}\left(\mu+\mu^{\prime}\right)$ are both at least 4. An element of Ker ϕ_{3} is of the form $a \otimes \mu+b \otimes \mu^{\prime}$ where $a, b \in B_{1}$ and

$$
a \mu+b \mu^{\prime}=0
$$

In this case $a b \mu=0$ and $a b \mu^{\prime}=0$ so $a b \in \operatorname{Ann} V \cap B_{2}=\{0\}$. Hence $a \in \operatorname{Ann} b \cap B_{1}=\{0, b\}$. If $a=0$, then $b \mu^{\prime}=0$, so $b=0$ since $\mathrm{rk} \mu^{\prime} \geq 4$. If $a=b$ then $a\left(\mu+\mu^{\prime}\right)=0$, so $a=b=0$ since $\operatorname{rk}\left(\mu+\mu^{\prime}\right) \geq 4$. Thus Ker $\phi_{3}=0$.
Theorem 7.4. If V is a a 2-dimensional subspace of B_{2}^{6} of rank type $[4,4,6],[4,6,6]$ or $[6,6,6]$ then V is semi-regular.

Proof. The injectivity condition follows from Lemma 7.3 . The surjectivity condition follows from Lemma 7.2.
7.1. Spaces of rank type $[4,4,4]$. If V contains a rank four element we can assume this element is of the form $\mu=x_{1} x_{2}+x_{3} x_{4}$. Thus we may assume that $V=\left\langle\mu, \mu^{\prime}\right\rangle=\left\{0, \mu, \mu^{\prime}, \mu+\mu^{\prime}\right\}$ where

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =\mu_{0}+\lambda_{1} x_{5}+\lambda_{2} x_{6}+\epsilon x_{5} x_{6}
\end{aligned}
$$

and $\mu_{0} \in B_{2}^{4}, \lambda_{1}, \lambda_{2} \in B_{1}^{4}$ and $\epsilon \in\{0,1\}$.
Example 7.5. If $\mu_{0}=0, \lambda_{1}=x_{1}, \lambda_{2}=x_{3}$ and $\epsilon=0$, we get

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =x_{1} x_{5}+x_{3} x_{6} \\
\mu+\mu^{\prime} & =x_{1}\left(x_{2}+x_{5}\right)+x_{3}\left(x_{4}+x_{6}\right)
\end{aligned}
$$

Note that in this example $V \subset B_{1}\left\langle x_{1}, x_{3}\right\rangle$. Thus $B_{2} V \subset B_{3}\left\langle x_{1}, x_{3}\right\rangle$ and so $B_{2} V$ does not contain $x_{2} x_{4} x_{5} x_{6}$. Thus V is not semi-regular.
Example 7.6. If $\mu_{0}=x_{1} x_{2}, \lambda_{1}=\lambda_{2}=0$ and $\epsilon=1$, we get

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =x_{1} x_{2}+x_{5} x_{6} \\
\mu+\mu^{\prime} & =x_{3} x_{4}+x_{5} x_{6}
\end{aligned}
$$

One can verify directly that $B_{1} V=B_{1} x_{1} x_{2} \oplus B_{1} x_{3} x_{4} \oplus B_{1} x_{5} x_{6}$, which has dimension 12, so the map ϕ_{3} is injectve. Thus $B_{2} V=B_{2} x_{1} x_{2}+B_{2} x_{3} x_{4}+$ $B_{2} x_{5} x_{6}=B_{4}$ since every monomial of length 4 contains one of the subwords $x_{1} x_{2}, x_{3} x_{4}$ or $x_{5} x_{6}$. Hence ϕ_{4} is surjective and V is semi-regular.
Lemma 7.7. Let V be a two-dimensional subspace of rank type [4, 4, 4]. If either
(1) V is induced (there is a proper subspace $W \subset B_{1}$ such that $V \subset W^{2}$); or
(2) there is a two-dimensional subspace $\Lambda \subset B_{1}$ such that $V \subset B_{1} \Lambda$, then V is not semi-regular.
Proof. (1) Without loss of generality, we can assume that $V \subset B_{2}^{5}$. In this case,

$$
B_{2}^{6} V=\left(B_{2}^{5}+B_{1}^{5} x_{6}\right) V \subset B_{2}^{5} V+B_{1}^{5} V x_{6} \subset B_{4}^{5}+B_{1}^{5} V x_{6}
$$

Since $B_{4}^{6}=B_{4}^{5} \oplus B_{3}^{5} x_{6}$ and $B_{1}^{5} V \subsetneq B_{3}^{5}$ by Theorem 6.4, we cannot have $B_{2}^{6} V=B_{4}^{6}$.
(2) In this case, as in Example 7.5, $B_{2} V \subset B_{3} \Lambda \subsetneq B_{4}$ so V is not semiregular.

Theorem 7.8. Let V be a two-dimensional subspace of rank type $[4,4,4]$. Then V is semi-regular if and only if it is equivalent to a space of the form given in Example 7.6

Proof. Suppose that V is semi-regular. We may assume that V is generated by μ and μ^{\prime} of the form

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4} \\
\mu^{\prime} & =\mu_{0}+\lambda_{1} x_{5}+\lambda_{2} x_{6}+\epsilon x_{5} x_{6}
\end{aligned}
$$

where $\mu_{0} \in B_{2}^{4}, \lambda_{1}, \lambda_{2} \in B_{1}^{4}$ and $\epsilon \in\{0,1\}$. Let $\Lambda=\left\langle\lambda_{1}, \lambda_{2}\right\rangle$.
Suppose that $\epsilon=0$. If $\operatorname{dim} \Lambda=1$, then $\mu^{\prime}=\mu_{0}+\lambda x$ for some $\lambda \in \Lambda$ and $x \in\left\langle x_{5}, x_{6}\right\rangle$. So we are in case (1) of Lemma 7.7 with $W=B_{1}^{4}+\langle x\rangle$, contradicting the semi-regularity of V. Hence we must have $\operatorname{dim} \Lambda=2$. Extend $\left\{\lambda_{1}, \lambda_{2}\right\}$ to a basis $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ for B_{1}^{4}. Note that $B_{2}^{4}=\lambda_{1} B_{1}^{4}+$ $\lambda_{2} B_{1}^{4}+\mathbb{F} \lambda_{3} \lambda_{4}$. Therefore, since $V \not \subset \Lambda B_{1}$, we must have that either μ_{0} or $\mu_{0}+\mu$ is of the form $\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} \lambda_{4}$ for some $a_{1}, a_{2} \in B_{1}^{4}$. Assuming without loss of generality that it is μ_{0}, we have that

$$
\begin{aligned}
\mu^{\prime} & =\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} \lambda_{4}+\lambda_{1} x_{5}+\lambda_{2} x_{6} \\
& =\lambda_{1}\left(x_{5}+a_{1}\right)+\lambda_{2}\left(x_{6}+a_{2}\right)+\lambda_{3} \lambda_{4}
\end{aligned}
$$

which is of rank 6 because $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4},\left(x_{5}+a_{1}\right),\left(x_{6}+a_{2}\right)$ form a basis for B_{1}^{6}. This contradicts the assumption that $\mathrm{rk} \mu^{\prime}=4$.

Thus we must have $\epsilon=1$. In this case after an appropriate change of basis, we may assume that $\lambda_{1}=\lambda_{2}=0$ and $\mu^{\prime}=\mu_{0}+x_{5} x_{6}$. In this case $\operatorname{rk} \mu^{\prime}=\operatorname{rk} \mu_{0}+2$, so rk $\mu_{0}=2$; similarly $\operatorname{rk}\left(\mu+\mu_{0}\right)=2$. Thus $\mu=\mu_{0}+\left(\mu+\mu_{0}\right)$ and up to a linear change of variables we are in the case of Example 7.6.

Theorem 7.9. There are 153, 129, 088 semi-regular 2-dimensional subspaces of B_{2}^{6}. Thus the proportion of such subspaces that are semi-regular is

$$
p_{6,2}=\frac{153,129,088}{178,940,587} \approx 0.86
$$

Proof. From Proposition 7.1 and Theorem 7.4 it suffices to calculate the number of spaces of rank type $[4,4,4]$ that are semi-regular. By Theorem 7.8, such spaces are precisely the orbit of the space given in Example 7.6. The stabilizer of this space in $G L_{6}(\mathbb{F})$ is isomorphic to $\left(G L_{2}(\mathbb{F}) \times G L_{2}(\mathbb{F}) \times\right.$ $\left.G L_{2}(\mathbb{F})\right) \rtimes \Sigma_{3}$ which has order 6^{4}. Hence the size of the orbit is

$$
\frac{20,158,709,760}{1,296}=15,554,560
$$

Adding this number to the total number of subspaces of type $[4,4,6],[4,6,6]$ or $[6,6,6]$ given in the table, yields the claimed conclusion.

$$
\text { 8. The Case } n=8
$$

In this case $D_{8,2}=5$, so semi-regularity of a two-dimensional quadratic subspace V is equivalent to the following properties

- The map $\phi_{3}: B_{1} \otimes V \rightarrow B_{3}$ is injective
- The kernel of $\phi_{4}: B_{2} \otimes V \rightarrow B_{4}$ is the trivial kernel $T_{4}(V)$.
- The map $\phi_{5}: B_{3} \otimes V \rightarrow B_{5}$ is surjective.

Note that $\operatorname{dim} B_{2}=28, \operatorname{dim} B_{3}=56, \operatorname{dim} B_{4}=70$, and $\operatorname{dim} B_{5}=56$.
Throughout this section, unless stated otherwise, V will denote a twodimensional subspace of B_{2}^{8}.
Lemma 8.1. Let V be a semi-regular two-dimensional subspace of B_{2}^{8}. Then V contains no non-zero elements of rank less than or equal to 4.
Proof. By Corollary 2.5 a semi-regular two-dimensional subspace of B_{2}^{8} can contain no elements of rank less than $2\left(D_{8,2}-2\right)=6$.

Thus it remains to investigate semi-regularity when the rank of V is $[6,6,6],[6,6,8],[6,8,8]$ or $[8,8,8]$. Table 5 below gives the numbers of subspaces of the different rank types [14, Theorem 5].

Type	Number
$[6,6,6]$	$2,093,462,703,144,960$
$[6,6,8]$	$4,719,790,074,101,760$
$[6,8,8]$	$3,567,475,986,923,520$
$[8,8,8]$	$888,431,072,772,096$

Table 5. The number of two dimensional subspaces of B_{2}^{8} of Rank Type $[6,6,6],[6,6,8],[6,8,8]$ or $[8,8,8]$.

Note that the injectivity of the map $\phi_{3}: B_{1} \otimes V \rightarrow B_{3}$ holds in all such cases by Lemma 7.3. We can easily eliminate the following special case.

Theorem 8.2. Suppose that there exists a proper subspace $W \subset B_{1}$ such that $V \subset W^{2}$. Then the map $\phi_{5}: B_{3} \otimes V \rightarrow B_{5}$ is not surjective. Hence V is not semi-regular.

Proof. Without loss of generality, we may assume $W=B_{1}^{7}$ and $V \subset W^{2}$. Now $B_{3}=B_{3}^{7} \oplus B_{2}^{7} x_{8}$, so

$$
B_{3} V=B_{3}^{7} V+B_{2}^{7} V x_{8}
$$

By Theorem 6.5, $B_{2}^{7} V \subsetneq B_{4}^{7}$. Since $B_{5}=B_{5}^{7} \oplus B_{4}^{7} x_{8}$ we must have $B_{3} V \subsetneq B_{5}$ and the map is not surjective.

In this situation (there exists a proper subspace $W \subset B_{1}$ such that $V \subset$ W^{2}), we shall say that the space V is induced from W (or just induced if W is not specified).

Lemma 8.3. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$. The map $\phi_{4}: B_{2} \otimes V \rightarrow B_{4}$ has trivial kernel if and only if $\mathrm{rk} \mu$ and $\mathrm{rk} \mu^{\prime}$ are at least 6 and

$$
B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}
$$

Proof. The trivial kernel of the map $\phi_{4}: B_{2} \otimes V \rightarrow B_{4}$ is three dimensional with basis $\left\{\mu \otimes \mu, \mu^{\prime} \otimes \mu-\mu \otimes \mu^{\prime}, \mu^{\prime} \otimes \mu^{\prime}\right\}$. Thus the kernel is trivial if and only if $\operatorname{dim} B_{2} V=\operatorname{dim}\left(B_{2} \otimes V\right)-3=53$.

If $\mathrm{rk} \mu \leq 4$, then by Lemma 5.1 the kernel of the map $B_{2} \otimes \mathbb{F} \mu \rightarrow B_{2} \mu$ has dimension at least 5 and so ker ϕ_{4} cannot be trivial. So suppose that μ and μ^{\prime} both have rank at least 6 . Then $\operatorname{dim} B_{2} \mu=\operatorname{dim} B_{2} \mu^{\prime}=27$ by Lemma 5.1. On the other hand $B_{2} V=B_{2} \mu+B_{2} \mu^{\prime}$ so the kernel is trivial if and only if $\operatorname{dim} B_{2} V=54-\operatorname{dim}\left(B_{2} \mu \cap B_{2} \mu^{\prime}\right)=53$; that is, $\operatorname{dim} B_{2} \mu \cap B_{2} \mu^{\prime}=1$. Since $\mu \mu^{\prime} \neq 0$ (by Lemma 5.1 again), this is equivalent to $B_{2} \mu \cap B_{2} \mu^{\prime}=$ $\left\{0, \mu \mu^{\prime}\right\}$.

We now look in detail at the situation where V contains an element of rank 6.

Lemma 8.4. Let $\mu=y_{1} y_{2}+\cdots+y_{m-1} y_{m}$ be an element of rank m in B_{2}^{n}. Then the space $U(\mu)=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ is independent of the choice of $y_{1}, \ldots y_{m}$.
Proof. Suppose that

$$
\mu=y_{1} y_{2}+\cdots+y_{m-1} y_{m}=y_{1}^{\prime} y_{2}^{\prime}+\cdots+y_{m-1}^{\prime} y_{m}^{\prime}
$$

for some y_{1}, \ldots, y_{m} and $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ in B_{1}. Since $\operatorname{rk} \mu=m$, the y_{1}, \ldots, y_{m} and $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ must be linearly independent; hence it suffices to show that $y_{1}, \ldots, y_{m} \in\left\langle y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right\rangle$.

Extend $y_{1}^{\prime}, \ldots, y_{m}^{\prime}$ to a basis $y_{1}^{\prime}, \ldots, y_{m}^{\prime}, y_{m+1}^{\prime}, \ldots y_{n}^{\prime}$ for B_{1}^{n}. Write

$$
y_{i}=\sum_{j=1}^{n} a_{i j} y_{j}^{\prime}
$$

for some $a_{i j} \in \mathbb{F}$. Suppose that $y_{k} \notin\left\langle y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right\rangle$; that is, $a_{k l} \neq 0$ for some $m+1 \leq l \leq n$. After renumbering of the y_{1}, \ldots, y_{m} and $y_{m+1}^{\prime}, \ldots, y_{n}^{\prime}$ if necessary, we may assume that $a_{1 n}=1$. The coefficient of the monomial $y_{j}^{\prime} y_{n}^{\prime}$ in $y_{1} y_{2}+\cdots+y_{m-1} y_{m}$ is

$$
0=a_{1 j} a_{2 n}+a_{1 n} a_{2 j}+\cdots+a_{m-1, j} a_{m n}+a_{m-1, n} a_{m j}
$$

Hence

$$
a_{2 j}=a_{1 j} a_{2 n}+\sum_{k=2}^{m / 2}\left(a_{2 k-1, j} a_{2 k, n}+a_{2 k-1, n} a_{2 k, j}\right)
$$

Therefore

$$
\begin{aligned}
y_{2} & =\sum_{j=1}^{n} a_{2 j} y_{j}^{\prime} \\
& =\sum_{j=1}^{n}\left(a_{1 j} a_{2 n}+\sum_{k=2}^{m / 2}\left(a_{2 k-1, j} a_{2 k, n}+a_{2 k-1, n} a_{2 k, j}\right)\right) y_{j}^{\prime} \\
& =\sum_{j=1}^{n} a_{1 j} a_{2 n} y_{j}^{\prime}+\sum_{k=2}^{m / 2}\left(\sum_{j=1}^{n} a_{2 k-1, j} a_{2 k, n} y_{j}^{\prime}+\sum_{j=1}^{n} a_{2 k-1, n} a_{2 k, j} y_{j}^{\prime}\right) \\
& =a_{2 n} y_{1}+\sum_{k=2}^{m / 2} a_{2 k, n} y_{2 k-1}+\sum_{k=2}^{m / 2} a_{2 k-1, n} y_{2 k}
\end{aligned}
$$

contradicting the linear independence of the y_{i}. Hence we must have all $y_{1}, \ldots, y_{m} \in\left\langle y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right\rangle$, as required.
Definition 8.5. Let V be a non-induced 2-dimensional subspace of B_{2}^{8} containing an element μ of rank 6 . We say that V is of
(A) Type A with respect to μ if $V \not \subset U(\mu) B_{1}$.
(B) Type B with respect to μ if $V \subset U(\mu) B_{1}$

Note that the definition of type is dependent on the choice of μ, as the following example illustrates.

Example 8.6. Let

$$
\begin{aligned}
\mu & =x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \\
\mu^{\prime} & =x_{1} x_{2}+x_{3} x_{7}+x_{4} x_{8}
\end{aligned}
$$

and let $V=\left\langle\mu, \mu^{\prime}\right\rangle$. Then $\mu^{\prime} \in U(\mu) B_{1}$, so V is of Type B with respect to μ but $\mu \notin U\left(\mu^{\prime}\right) B_{1}$ so V is of Type A with respect to μ^{\prime}.

The following proposition gives a more explicit description of spaces of these different types.

Proposition 8.7. Let V be a non-induced two dimensional subspace of B_{2} containing an element μ of rank six.
(1) If V is of Type A with respect to μ then there exists a basis $\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$ of B_{1} such that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\mu=y_{1} y_{2}+y_{3} y_{4}+y_{5} y_{6}$ and $\mu^{\prime}=\mu_{0}+y_{7} y_{8}$ for some $\mu_{0} \in B_{2}^{6}$.
(2) If V is of Type B with respect to μ then there exists a basis $\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$ of B_{1} such that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\mu=y_{1} y_{2}+y_{3} y_{4}+y_{5} y_{6}$ and $\mu^{\prime}=\mu_{0}+\lambda y_{7}+\lambda^{\prime} y_{8}$ for some $\mu_{0} \in B_{2}^{6}$ and some linearly independent $\lambda, \lambda^{\prime} \in B_{1}^{6}$.

Proof. Since μ has rank six we may choose y_{1}, \ldots, y_{6} such that $\mu=y_{1} y_{2}+$ $y_{3} y_{4}+y_{5} y_{6}$ and the y_{i} are linearly independent. Extend $\left\{y_{1}, \ldots, y_{6}\right\}$ to a basis $\left\{y_{1}, \ldots, y_{8}\right\}$ for B_{1}. Pick $\mu^{\prime} \in V \backslash\{0, \mu\}$. Then $\mu^{\prime}=\mu_{0}+\lambda y_{7}+\lambda^{\prime} y_{8}+\eta y_{7} y_{8}$ where $\mu_{0} \in B_{2}^{6}, \lambda, \lambda^{\prime} \in B_{1}^{6}$ and $\eta \in \mathbb{F}$. Clearly V is of Type A with respect to μ if $\eta=1$ and of type B if $\eta=0$. If $\eta=1$, then

$$
\mu^{\prime}=\left(\mu_{0}+\lambda \lambda^{\prime}\right)+\left(\lambda^{\prime}+y_{7}\right)\left(\lambda+y_{8}\right)
$$

So replacing y_{7} with $\lambda^{\prime}+y_{7}$ and y_{8} with $\lambda^{\prime}+y_{8}$ yields the required form. If $\eta=0$ and $\operatorname{dim}\left\langle\lambda, \lambda^{\prime}\right\rangle \leq 1$, then V is induced. So if V is non-induced and of Type B we must have $\operatorname{dim}\left\langle\lambda, \lambda^{\prime}\right\rangle=2$.

Note that if $V \ni \mu$ is a Type A space of the form given in (1) above, then V has rank type $\left[6, \operatorname{rk}\left(\mu_{0}\right)+2, \operatorname{rk}\left(\mu+\mu_{0}\right)+2\right]$.

We now proceed to count the semi-regular subspaces of each possible rank type containing a fixed element μ of rank 6 . We break this into analysis of the two different possible types, beginning with Type A.
Theorem 8.8. Let V be a subspace of rank type $[6,6,6],[6,6,8]$ or $[6,8,8]$. If V is of Type A with respect to a rank 6 element $\mu \in V$, then V is semiregular.

Proof. By Proposition 8.7 we can assume that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where

$$
\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \text { and } \mu^{\prime}=\mu_{0}+x_{7} x_{8}
$$

for some $\mu_{0} \in B_{2}^{6}$; the assumption on the rank type of V implies that the rank of μ_{0} and $\mu+\mu_{0}$ are both at least 4. We need to prove (i) $B_{2} \mu \cap B_{2} \mu^{\prime}=$ $\left\{0, \mu \mu^{\prime}\right\}$ and (ii) $B_{3} V=B_{5}$.
(i) $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$. Suppose that $a \mu=b \mu^{\prime} \in B_{2} \mu \cap B_{2} \mu^{\prime}$, for some $a, b \in B_{2}$. Let

$$
b=\mu_{1}+\lambda_{1} x_{7}+\lambda_{2} x_{8}+\epsilon x_{7} x_{8}, \quad a=\mu_{2}+\lambda_{3} x_{7}+\lambda_{4} x_{8}+\epsilon^{\prime} x_{7} x_{8}
$$

where $\mu_{1}, \mu_{2} \in B_{2}^{6}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in B_{1}^{6}$ and $\epsilon, \epsilon^{\prime} \in \mathbb{F}$. Then

$$
\begin{aligned}
0= & a \mu+b \mu^{\prime} \\
= & \left(\mu_{0} \mu_{1}+\mu_{2} \mu\right)+x_{7}\left(\mu_{0} \lambda_{1}+\lambda_{3} \mu\right) \\
& +x_{8}\left(\mu_{0} \lambda_{2}+\lambda_{4} \mu\right)+x_{7} x_{8}\left(\mu_{0} \epsilon+\mu_{1}+\epsilon^{\prime} \mu\right)
\end{aligned}
$$

So

$$
\epsilon \mu_{0}+\mu_{1}=\epsilon^{\prime} \mu, \quad \mu_{0} \mu_{1}=\mu_{2} \mu, \quad \lambda_{3} \mu=\lambda_{1} \mu_{0}, \quad \lambda_{4} \mu=\lambda_{2} \mu_{0}
$$

Then $\lambda_{1} \lambda_{3} \mu=\lambda_{1}^{2} \mu_{0}=0$. Therefore $\lambda_{1} \lambda_{3} \in \operatorname{Ann}(\mu) \cap B_{2}=\{0, \mu\}$. But $\mu \neq \lambda_{1} \lambda_{3}$ since $\operatorname{rk} \mu=6$, so $\lambda_{1} \lambda_{3}=0$. Suppose $\lambda_{1}=\lambda_{3} \neq 0$. Then $\lambda_{1}\left(\mu+\mu_{0}\right)=0$; but this is impossible since $\operatorname{rk}\left(\mu+\mu_{0}\right) \geq 4$. If $\lambda_{1} \neq 0$ and $\lambda_{3}=0$ then we would have $\lambda_{1} \mu_{0}=0$ which is again impossible because $\operatorname{rk}\left(\mu_{0}\right) \geq 4$. A similar argument works for the case $\lambda_{1}=0$ and $\lambda_{3} \neq 0$. Thus we must have $\lambda_{1}=\lambda_{3}=0$. An analogous argument shows that $\lambda_{2}=\lambda_{4}=0$ also. Therefore, $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0$.

Now consider the first two constraints: $\epsilon \mu_{0}+\mu_{1}=\epsilon^{\prime} \mu, \mu_{0} \mu_{1}=\mu_{2} \mu$. Consider the two cases:
$\epsilon^{\prime}=1$: Then $\epsilon \mu_{0}+\mu_{1}=\mu$. So $\mu_{2} \mu=\mu_{0} \mu_{1}=\mu_{0} \mu$. Hence $\mu\left(\mu_{0}+\mu_{2}\right)=0$ and so $\mu_{0}+\mu_{2} \in \operatorname{Ann}(\mu) \cap B_{2}=\{0, \mu\} ;$ that is, $\mu_{2} \in\left\{\mu_{0}, \mu_{0}+\mu\right\}$. So $a \in\left\{\mu^{\prime}, \mu^{\prime}+\mu\right\}$ and $a \mu=\mu^{\prime} \mu$ as required.
$\epsilon^{\prime}=0$: Then $\mu_{1}=\epsilon \mu_{0}$, so $\mu_{2} \mu=\mu_{0} \mu_{1}=0$. Hence $\mu_{2} \in\{0, \mu\}$ and $a \mu=0$.

This proves that $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$.
(ii) $B_{3} V=B_{5}$. Recall that $B_{3}=B_{3}^{6} \oplus B_{2}^{6} x_{7} \oplus B_{2}^{6} x_{8} \oplus B_{1}^{6} x_{7} x_{8}$ so

$$
B_{3} \mu=B_{3}^{6} \mu \oplus B_{2}^{6} \mu x_{7} \oplus B_{2}^{6} \mu x_{8} \oplus B_{1}^{6} \mu x_{7} x_{8}
$$

Also

$$
B_{5}=B_{5}^{6} \oplus B_{4}^{6} x_{7} \oplus B_{4}^{6} x_{8} \oplus B_{3}^{6} x_{7} x_{8}
$$

It is easily seen that any degree 5 monomial is a multiple of μ, so $B_{3}^{6} \mu=B_{5}^{6}$. Since $x_{7} \mu^{\prime}=x_{7} \mu_{0}$,

$$
B_{3} V \supset x_{7} B_{2}^{6} \mu+x_{7} B_{2}^{6} \mu^{\prime}=\left(B_{2}^{6} \mu+B_{2}^{6} \mu_{0}\right) x_{7}=B_{4}^{6} x_{7}
$$

by Lemma 7.2. Similarly $B_{3} V \supset B_{4}^{6} x_{8}$.
Finally, if $a \in B_{3}^{6}$ then $a \mu^{\prime}=a \mu_{0}+a x_{7} x_{8} \in B_{3} V$. But $a \mu_{0} \in B_{5}^{6} \subset B_{3} V$, so $a x_{7} x_{8} \in B_{3} V$ also. Hence $B_{3}^{6} x_{7} x_{8} \subset B_{3} V$. Putting all this together yields $B_{5}=B_{5}^{6} \oplus B_{4}^{6} x_{7} \oplus B_{4}^{6} x_{8} \oplus B_{3}^{6} x_{7} x_{8} \subset B_{3} V$, so $B_{3} V=B_{5}$ as claimed. Hence, all such Type A spaces are semi-regular.

This enables us to count exactly the number of Type A spaces with respect to a fixed μ, by rank type.
Theorem 8.9. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Then
(1) There are 11, 796, 480 Type A semi-regular subspaces of B_{2}^{8} containing μ which are of type $[6,8,8]$.
(2) There are $31,997,952$ Type A semi-regular subspaces of B_{2}^{8} containing μ which are of type $[6,8,6]$.
(3) There are $20,643,840$ Type A semi-regular subspaces of B_{2}^{8} containing μ which are of type $[6,6,6]$.
Proof. (1) If V is of Type A with respect to μ, then there exist $\lambda, \lambda^{\prime} \in$ $\left\langle x_{1}, \ldots, x_{6}\right\rangle$ such that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ and

$$
\mu^{\prime}=\mu_{0}+\left(\lambda^{\prime}+x_{7}\right)\left(\lambda+x_{8}\right)
$$

for some $\mu_{0} \in\left\langle x_{1}, \ldots, x_{6}\right\rangle$. If V is of rank type $[6,8,8]$, then $\left\langle\mu, \mu_{0}\right\rangle$ must be of rank type $[6,6,6]$. From Tables 1 and 2 the number of $[6,6,6]$ subspaces of B_{2}^{6} is $13,332,480$ and the number of elements of B_{2}^{6} of rank 6 is 13,880 . So the number of $[6,6,6]$ subspaces of B_{2}^{6} containing μ is

$$
3 * 13,332,480 / 13,888=2,880
$$

For each such subspace there are 2^{12} choices for λ and λ^{\prime}, yielding a total of

$$
2,880 * 2^{12}=11,796,480
$$

$[6,6,6]$ subspaces of Type A containing μ. The numbers in (2) and (3) are found by a similar calculation using the number of $[6,4,6]$ and $[6,4,4]$ subspaces ($54,246,528$ and $69,995,520$ respectively).

This completes our analysis of the Type A case. We now move to the Type B case, which requires a little more work.

Lemma 8.10. Suppose $\lambda, \lambda^{\prime}, \kappa, \kappa^{\prime} \in B_{1}$ and λ and λ^{\prime} are linearly independent. If $\lambda \kappa+\lambda^{\prime} \kappa^{\prime}=0$, then $\kappa, \kappa^{\prime} \in\left\langle\lambda, \lambda^{\prime}\right\rangle$.
Proof. We may assume that $\lambda=x_{1}$ and $\lambda^{\prime}=x_{2}$. Let $\kappa=\sum_{i} \epsilon_{i} x_{i}$ and $\kappa^{\prime}=\sum_{i} \epsilon_{i}^{\prime} x_{i}$ where $\epsilon_{i}=0, \epsilon_{i}^{\prime} \in \mathbb{F}$. If $x_{1} \kappa+x_{2} \kappa^{\prime}=0$, then we must have $\epsilon_{i}=0$ and $\epsilon_{i}^{\prime}=0$ for $i \neq 1,2$.

Lemma 8.11. Consider elements of the form $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ where $\mu_{0} \in B_{2}^{6}$ and $\lambda, \lambda^{\prime} \in B_{1}^{6}$ are linearly independent. Then
(1) $\mathrm{rk} \mu^{\prime} \geq 6$ if and only if $\lambda \lambda^{\prime} \mu_{0} \neq 0$;
(2) there are $63 * 62 * 2^{9} * 28$ such elements μ^{\prime} of rank 8 .

Proof. Choose a complementary subspace $W \subset B_{1}^{6}$ such that $B_{1}^{6}=W \oplus$ $\left\langle\lambda, \lambda^{\prime}\right\rangle$. In this case we can write $\mu_{0}=\nu_{0}+\kappa \lambda+\kappa^{\prime} \lambda^{\prime}+\epsilon \lambda \lambda^{\prime}$ where $\nu_{0} \in W^{2}$, $\kappa, \kappa^{\prime} \in W$ and $\epsilon \in \mathbb{F}$. Then

$$
\mu^{\prime}=\nu_{0}+\lambda\left(x_{7}+\kappa+\epsilon \lambda^{\prime}\right)+\lambda^{\prime}\left(x_{8}+\kappa^{\prime}\right)
$$

and so $\mathrm{rk} \mu^{\prime}=\operatorname{rk} \nu+4$. So rk $\mu^{\prime}=8$ if and only if $\operatorname{rk} \nu_{0}=4$. In each case there are $63 * 62$ choices for $\lambda, \lambda^{\prime}, 2^{8}$ choices for κ and κ^{\prime} and 28 choices for ν_{0} yielding a total of $63 * 62 * 2^{9} * 28$ choices for μ^{\prime}.

For part (1) observe that $\mathrm{rk} \mu^{\prime} \geq 6$ if and only if $\nu_{0} \neq 0$; and this is equivalent to $\lambda \lambda^{\prime} \mu_{0} \neq 0$.

We can now give a useful characterization of when Type B spaces are semi-regular.

Theorem 8.12. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where

$$
\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6} \text { and } \mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}
$$

for some $0 \neq \mu_{0} \in B_{2}^{6}$ and some linearly independent $\lambda, \lambda^{\prime} \in B_{1}^{6}$. Then V is semi-regular if and only if $\lambda \lambda^{\prime} \mu_{0} \notin B_{2}^{6} \mu$.

Proof. Suppose that $\lambda \lambda^{\prime} \mu_{0} \in B_{2} \mu$. We want to show that V is not semiregular. We may assume that μ and μ^{\prime} have rank at least 6 because otherwise V is not semi-regular by Theorem 8.1. Clearly $\lambda \lambda^{\prime} \mu^{\prime} \in B_{2} \mu \cap B_{2} \mu^{\prime}$. We want to show that $\lambda \lambda^{\prime} \mu^{\prime} \notin\left\{0, \mu \mu^{\prime}\right\}$. Suppose that $\lambda \lambda^{\prime} \mu^{\prime}=\mu \mu^{\prime}$. Then $\lambda \lambda^{\prime}+\mu \in \operatorname{Ann}\left(\mu^{\prime}\right) \cap B_{2}^{6}=\left\{0, \mu^{\prime}\right\}$ by Lemma 5.1. Hence $\lambda \lambda^{\prime} \in\left\{\mu, \mu+\mu^{\prime}\right\}$, contradicting the fact that both μ and $\mu+\mu^{\prime}$ have rank at least 6 . If $\lambda \lambda^{\prime} \mu^{\prime}=0$, then $\lambda \lambda^{\prime} \in \operatorname{Ann}\left(\mu^{\prime}\right) \cap B_{2}^{6}=\left\{0, \mu^{\prime}\right\}$, again yielding a contradiction because the linear independence property of λ and λ^{\prime} implies that $\lambda \lambda^{\prime} \neq 0$. So $B_{2} \mu \cap B_{2} \mu^{\prime} \supsetneq\left\{0, \mu \mu^{\prime}\right\}$ and V is not semi-regular by Lemma 8.3.

Now assume that $\lambda \lambda^{\prime} \mu_{0} \notin B_{2} \mu$. Lemma 8.11 implies that the ranks of μ^{\prime} and $\mu^{\prime}+\mu$ are at least 6 . As before, we need to prove (i) $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$ and (ii) $B_{3} V=B_{5}$. Set $\Lambda=\left\langle\lambda, \lambda^{\prime}\right\rangle$.
(i) $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$: Suppose $a \mu=b \mu^{\prime} \neq 0$ where

$$
a=\mu_{2}+\lambda_{1} x_{7}+\lambda_{2} x_{8}+\epsilon^{\prime} x_{7} x_{8}, \quad b=\mu_{1}+\lambda_{7} x_{7}+\lambda_{8} x_{8}+\epsilon x_{7} x_{8},
$$

and $\mu_{2}, \mu_{1} \in B_{2}^{6}, \lambda_{1}, \lambda_{2}, \lambda_{7}, \lambda_{8} \in B_{1}^{6}, \epsilon, \epsilon^{\prime} \in \mathbb{F}$. Equating the coefficients of $x_{7} x_{8}$ on both sides of $a \mu=b \mu^{\prime}$, yields

$$
\epsilon^{\prime} \mu=\epsilon \mu_{0}+\lambda \lambda_{8}+\lambda^{\prime} \lambda_{7} .
$$

So

$$
\epsilon^{\prime} \mu+\epsilon \mu^{\prime}=\lambda\left(\epsilon x_{7}+\lambda_{8}\right)+\lambda^{\prime}\left(\epsilon x_{8}+\lambda_{7}\right) .
$$

Since the right hand side has rank at most 4 and the rank of μ, μ^{\prime} and $\mu+\mu^{\prime}$ are all at least 6 , this implies that $\epsilon=\epsilon^{\prime}=0$. Hence $\lambda \lambda_{8}+\lambda^{\prime} \lambda_{7}=0$, so by Lemma 8.10, $\lambda_{7}, \lambda_{8} \in \Lambda$.

Thus

$$
a=\mu_{2}+\lambda_{1} x_{7}+\lambda_{2} x_{8}, \quad b=\mu_{1}+\lambda_{7} x_{7}+\lambda_{8} x_{8},
$$

Comparing the coefficients of x_{7}, x_{8} and the term that is purely contained in B_{4}^{6} yields

$$
\begin{gathered}
\mu \lambda_{1}=\mu_{0} \lambda_{7}+\mu_{1} \lambda \\
\mu \lambda_{2}=\mu_{0} \lambda_{8}+\mu_{1} \lambda^{\prime} \\
\mu_{0} \mu_{1}=\mu \mu_{2}
\end{gathered}
$$

Since $\lambda_{7} \in \Lambda, \lambda_{7} \lambda \in \Lambda^{2}=\left\{0, \lambda \lambda^{\prime}\right\}$. If $\lambda_{7} \lambda=\lambda^{\prime} \lambda$, then

$$
\mu \lambda_{1} \lambda=\mu_{0} \lambda_{7} \lambda=\mu_{0} \lambda^{\prime} \lambda
$$

contradicting our assumption that $\mu_{0} \lambda \lambda^{\prime} \notin B_{2}^{6} \mu$. Therefore $\lambda_{7} \lambda=0$ and so $\lambda_{7} \in\{0, \lambda\}$. Similarly we obtain $\lambda_{8} \in\left\{0, \lambda^{\prime}\right\}$ and $\lambda_{7}+\lambda_{8} \in\left\{0, \lambda+\lambda^{\prime}\right\}$. Therefore

$$
\left(\lambda_{7}, \lambda_{8}\right)=(0,0) \text { or }\left(\lambda, \lambda^{\prime}\right)
$$

Since $\lambda_{7} \lambda=0$, we also have $\mu \lambda_{1} \lambda=0$. Since $\operatorname{rk} \mu=6$, this implies $\lambda_{1} \lambda=0$, and so $\lambda_{1} \in\{0, \lambda\}$. Similarly we obtain $\lambda_{2} \in\left\{0, \lambda^{\prime}\right\}$ and $\lambda_{1}+\lambda_{2} \in$ $\left\{0, \lambda+\lambda^{\prime}\right\}$. Thus

$$
\left(\lambda_{1}, \lambda_{2}\right)=(0,0) \text { or }\left(\lambda, \lambda^{\prime}\right)
$$

Suppose $\lambda_{1}=\lambda_{2}=0$. If $\lambda_{7}=\lambda_{8}=0$, then $\lambda, \lambda^{\prime} \in \operatorname{Ann}\left(\mu_{1}\right)$, so $\mu_{1} \in$ $\left\{0, \lambda \lambda^{\prime}\right\}$. Since $b \neq 0$, we must have $\mu_{1} \neq 0$, so $\lambda \lambda^{\prime} \mu_{0}=\mu_{1} \mu_{0}=\mu \mu_{2} \in B_{2}^{6} \mu$, a contradiction.

Now suppose that $\left(\lambda_{7}, \lambda_{8}\right)=\left(\lambda, \lambda^{\prime}\right)$. Then

$$
\left(\mu_{0}+\mu_{1}\right) \lambda=\mu_{0} \lambda_{7}+\mu_{1} \lambda=0 \text { and }\left(\mu_{0}+\mu_{1}\right) \lambda^{\prime}=\mu_{0} \lambda_{8}+\mu_{1} \lambda^{\prime}=0
$$

so $\lambda, \lambda^{\prime} \in \operatorname{Ann}\left(\mu_{0}+\mu_{1}\right)$ and $\mu_{0}+\mu_{1} \in\left\{0, \lambda \lambda^{\prime}\right\}$. If $\mu_{0}+\mu_{1}=0$, then $b=\mu^{\prime}$ and $b \mu^{\prime}=0$, contradicting our assumption. Thus $\mu_{0}+\mu_{1}=\lambda \lambda^{\prime}$ so $b=\mu^{\prime}+\lambda \lambda^{\prime}$ and $\lambda \lambda^{\prime} \mu_{0}=\left(b+\mu^{\prime}\right) \mu^{\prime}=a \mu \in B_{2}^{6} \mu$, again a contradiction.

Hence we must have $\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda, \lambda^{\prime}\right)$. In this case

$$
\begin{aligned}
\mu \lambda & =\mu_{0} \lambda_{7}+\mu_{1} \lambda \\
\mu \lambda^{\prime} & =\mu_{0} \lambda_{8}+\mu_{1} \lambda^{\prime}
\end{aligned}
$$

If $\left(\lambda_{7}, \lambda_{8}\right)=(0,0)$, then $\operatorname{Ann}\left(\mu+\mu_{1}\right)$ contains Λ and therefore $\mu+\mu_{1} \in$ $\left\{0, \lambda \lambda^{\prime}\right\}$. If $\mu+\mu_{1}=\lambda \lambda^{\prime}$, then $\mu_{1}=\mu+\lambda \lambda^{\prime}$ and so $\mu \mu_{2}=\mu_{0}\left(\mu+\lambda \lambda^{\prime}\right)$ which
would imply $\lambda \lambda^{\prime} \mu_{o} \in B_{2}^{6} \mu$, a contradiction. So $\mu+\mu_{1}=0$, in which case $b=\mu$ and $b \mu^{\prime}=\mu \mu^{\prime}$ as required.

If $\lambda_{7}=\lambda$ and $\lambda_{8}=\lambda^{\prime}$, then $\operatorname{Ann}\left(\mu+\mu_{1}+\mu_{0}\right)$ contains Λ and therefore $\mu+\mu_{1}+\mu_{0} \in\left\{0, \lambda \lambda^{\prime}\right\}$. If $\mu+\mu_{1}+\mu_{0}=\lambda \lambda^{\prime}$, then $\mu_{1}=\mu+\mu_{0}+\lambda \lambda^{\prime}$ and so $\mu \mu_{2}=\mu_{0}\left(\mu+\mu_{0}+\lambda \lambda^{\prime}\right)$ which again implies $\lambda \lambda^{\prime} \mu_{o} \in B_{2}^{6} \mu$, a contradiction. So $\mu+\mu_{1}+\mu_{0}=0$, or $\mu=\mu_{0}+\mu_{1}$. Since

$$
b=\mu_{1}+\lambda x_{7}+\lambda^{\prime} x_{8}=\mu+\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}=\mu+\mu^{\prime}
$$

we have that $b \mu^{\prime}=\mu \mu^{\prime}$. Thus we have proved that $B_{2} \mu \cap B_{2} \mu^{\prime}=\left\{0, \mu \mu^{\prime}\right\}$
In this case $\left\{\lambda, \lambda^{\prime}\right\}$ is linearly independent so we may extend $\left\{\lambda, \lambda^{\prime}\right\}$ to a basis $\left\{\lambda, \lambda^{\prime}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$ for B_{2}^{6}. Let $Y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle$. Then we have that after a possible change of the x_{i} basis, $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ where $\mu_{0} \in Y$.
(ii) $B_{3} V=B_{5}$: Recall, as in the previous proof, that $B_{3}=B_{3}^{6} \oplus x_{7} B_{2}^{6} \oplus$ $x_{8} B_{2}^{6} \oplus x_{7} x_{8} B_{1}^{6}$; that

$$
B_{5}=B_{5}^{6} \oplus B_{4}^{6} x_{7} \oplus B_{4}^{6} x_{8} \oplus B_{3}^{6} x_{7} x_{8}
$$

and that $B_{5}^{6}=B_{3}^{6} \mu \subset B_{3} V$. The assumption that $\lambda \lambda^{\prime} \mu^{\prime}=\lambda \lambda^{\prime} \mu_{0} \notin B_{2}^{6} \mu$ implies that $B_{2}^{6} V \cap B_{4}^{6} \supsetneq B_{2}^{6} \mu$. Since $\operatorname{dim} B_{2}^{6} \mu=14=\operatorname{dim} B_{4}^{6}-1$, this implies that $B_{2}^{6} V \supset B_{4}^{6}$. So

$$
B_{3} V \supset\left(B_{2}^{6} x_{7}+B_{2}^{6} x_{8}\right) V=B_{2}^{6} V x_{7}+B_{2}^{6} V x_{8} \supset B_{4}^{6} x_{7}+B_{4}^{6} x_{8} .
$$

Thus it remains to show that $B_{3} V \supset B_{3}^{6} x_{7} x_{8}$. For $b \in B_{2}^{6}$ we have that

$$
b x_{7} \mu^{\prime}=b \mu_{0} x_{7}+b \lambda^{\prime} x_{7} x_{8}
$$

Since $b \mu_{0} x_{7} \in B_{4} x_{7} \subset B_{3} V$, this implies that $b \lambda^{\prime} x_{7} x_{8} \in B_{3} V$. A similar argument for λ yields that $B_{3} V \supset\left(B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}\right) x_{7} x_{8}$. Also $B_{3} V \supset B_{1}^{6} x_{7} x_{8} \mu^{\prime}=$ $B_{1}^{6} \mu_{0} x_{7} x_{8}$, and $B_{3} V \supset B_{1}^{6} x_{7} x_{8} \mu$. Hence

$$
B_{3} V \supset\left(B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}+B_{1}^{6} \mu\right) x_{7} x_{8}
$$

Thus it suffices to show that $B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}+B_{1}^{6} \mu=B_{3}^{6}$. Then we may write $\mu=\nu+\lambda a+\lambda a^{\prime}$ where $\nu \in Y$ and $a, a^{\prime} \in B_{1}^{6}$. Then $B_{1}^{6} \mu_{0}+B_{2}^{6} \lambda+B_{2}^{6} \lambda^{\prime}+$ $B_{1}^{6} \mu=B_{3}^{6}$ is equivalent to $Y \mu_{0}+Y \nu=Y^{3}$. Suppose that $Y \mu_{0}+Y \nu \neq Y^{3}$. Then μ_{0}, ν and $\mu_{0}+\nu$ all have rank 2 , so we may assume that, after an appropriate change of basis for Y, that $\mu_{0}=y_{1} y_{2}$ and $\nu=y_{1} y_{3}$. In this case

$$
\mu=y_{1} y_{3}+\lambda a+\lambda^{\prime} a^{\prime}
$$

and since μ has rank $6, y_{1}, y_{3}, \lambda, a, \lambda^{\prime}, a^{\prime}$ must form a basis for B_{1}^{6}. Let $A=\left\langle a, a^{\prime}\right\rangle$. Then

$$
\Lambda y_{1} \mu=\Lambda y_{1}\left(\lambda a+\lambda^{\prime} a^{\prime}\right)=y_{1} \lambda \lambda^{\prime} A
$$

Since $\lambda \lambda^{\prime} \mu=y_{1} \lambda \lambda^{\prime} y_{3}$, this yields that

$$
B_{2}^{6} \mu \supset \Lambda y_{1} \mu+\mathbb{F} \lambda \lambda^{\prime} \mu=y_{1} \lambda \lambda^{\prime}\left(A+\mathbb{F} y_{3}\right)=y_{1} \lambda \lambda^{\prime} B_{1}^{6}=\left(y_{1} B_{1}^{6}\right) \lambda \lambda^{\prime}
$$

Hence $\mu_{0} \lambda \lambda^{\prime}=y_{1} y_{2} \lambda \lambda^{\prime} \in B_{2}^{6} \mu$, contrary to assumption.

Given this condition for Type B sequences to be semi-regular, we now enumerate such sequences. The following are auxiliary results to help do this.
Lemma 8.13. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ and let $\lambda, \lambda^{\prime}$ be linearly independent elements of B_{1}^{6}. Then there exists a $\mu_{1} \in B_{2}^{6}$ such that $\lambda \lambda^{\prime} \mu_{1} \notin B_{2} \mu$.
Proof. Recall that $\operatorname{dim} B_{2}^{6} \mu=15-1=14$ by Lemma 5.1 and $\operatorname{dim} B_{4}^{6}=15$, so $B_{2}^{6} \mu \subsetneq B_{4}^{6}$. On the other hand if $W=\left\langle\mu, \lambda \lambda^{\prime}\right\rangle$, then by Lemma 7.2 we have that $B_{2}^{6} W=B_{4}^{6}$. Hence there must exist a $\mu_{1} \in B_{2}^{6}$ with $\mu_{1} \lambda \lambda^{\prime} \notin B_{2}^{6} \mu$.
Theorem 8.14. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. There are $63 * 62 * 2^{13}=$ 31,997, 952 semi-regular subspaces containing μ which are of Type B with respect to μ.
Proof. Recall from Theorem 8.2 that if a space V is induced then it is not semi-regular. Let \mathcal{T}_{B} be the set of all non-induced two dimensional subspaces of B_{2}^{8} that are Type B with respect to μ. These are spaces of the form $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}$ and $\lambda, \lambda^{\prime} \in B_{1}^{6}$ are linearly independent. For each pair of linearly independent elements $\lambda, \lambda^{\prime}$ choose a $\mu_{1} \in B_{2}^{6}$ such that $\lambda \lambda^{\prime} \mu_{1} \notin B_{2} \mu$. Since $\operatorname{dim} B_{4}^{6} / B_{2}^{6} \mu=1$, we have that $\lambda \lambda^{\prime} \mu_{0} \in B_{2}^{6} \mu$ if and only if $\lambda \lambda^{\prime}\left(\mu_{0}+\mu_{1}\right) \notin B_{2}^{6} \mu$. Define $\Phi: \mathcal{T}_{B} \rightarrow \mathcal{T}_{B}$ by

$$
\Phi\left(\left\langle\mu, \mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}\right\rangle\right)=\left\langle\mu, \mu_{0}+\mu_{1}+\lambda x_{7}+\lambda^{\prime} x_{8}\right\rangle
$$

Then $\Phi^{2}=I$ and $\Phi(V)$ is semi-regular if and only if V is not semi-regular. Hence exactly half of the spaces in \mathcal{T}_{B} are semi-regular.

The number of choices for λ and λ^{\prime} is $63 * 62$; the number of choices for μ_{0} is 2^{15} and these come in pairs, $\left\{\mu_{0}, \mu_{0}+\mu\right\}$ which generate the same subspace. So the total number of non-induced Type B subspaces is $63 * 62 * 2^{14}$, and half of these are semi-regular.

At this point we know how many semi-regular spaces there are containing a given μ of rank 6 . In order to pass from this local result to a global result about the number of semi-regular subspaces we need to have a precise breakdown of these spaces by rank type (because each space can contain 1,2 or 3 elements of rank 6). Finding this breakdown for Type B spaces required a little more work.
Theorem 8.15. Let $\lambda, \lambda^{\prime}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}, x_{7}, x_{8}$ be a basis for B_{1}^{8} and let $W=$ $\left\langle\lambda, \lambda^{\prime}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$. Let $\mu^{\prime}=\epsilon_{3} \epsilon_{4}+\epsilon_{5} \epsilon_{6}+\lambda x_{7}+\lambda^{\prime} x_{8}$ and let $\mu=\nu+a \lambda+$ $b \lambda^{\prime}+\eta \lambda \lambda^{\prime} \in W^{2}$ be an element of rank 6 for some $\eta \in \mathbb{F}, a, b \in\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$ and $\nu \in\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle^{2}$. Then the two dimensional vector space $V=\left\langle\mu, \mu^{\prime}\right\rangle$ is semi-regular if and only if $\nu\left(\epsilon_{3} \epsilon_{4}+\epsilon_{5} \epsilon_{6}\right) \neq 0$.

Proof. Let $\mu_{0}=\epsilon_{3} \epsilon_{4}+\epsilon_{5} \epsilon_{6}$. Suppose that V is not semi-regular. then by an earlier result, we know that $\lambda \lambda^{\prime} \mu_{0}=\gamma \mu$ for some $\gamma=e+c \lambda+d \lambda^{\prime}+\eta^{\prime} \lambda \lambda^{\prime} \in W$. Now

$$
\begin{aligned}
\gamma \mu & =\left(\nu+a \lambda+b \lambda^{\prime}+\eta \lambda \lambda^{\prime}\right)\left(e+c \lambda+d \lambda^{\prime}+\eta^{\prime} \lambda \lambda^{\prime}\right) \\
& =\nu e+(a e+\nu c) \lambda+(d \nu+e b) \lambda^{\prime}+\left(\eta^{\prime} \nu+\eta e+c b+a d\right) \lambda \lambda^{\prime}
\end{aligned}
$$

Comparing coefficients yields

$$
\begin{aligned}
\mu_{0} & =\eta^{\prime} \nu+\eta e+c b+a d \\
0 & =\nu e \\
0 & =a e+c \nu \\
0 & =b e+d \nu
\end{aligned}
$$

So

$$
\begin{aligned}
\nu \mu_{0} & =\left(\eta^{\prime} \nu+\eta e+c b+a d\right) \nu \\
& =b c \nu+a d \nu=b(a e)+a(b e)=0
\end{aligned}
$$

Conversely assume that $\nu \mu_{0}=0$. Suppose first that $\eta=1$. Then $\lambda \lambda^{\prime}=$ $\mu+\nu+a \lambda+b \lambda^{\prime}$ and so

$$
\lambda \lambda^{\prime} \mu_{0}=\left(\mu+\nu+a \lambda+b \lambda^{\prime}\right) \mu_{0}=\mu_{0} \mu+\left(a \lambda+b \lambda^{\prime}\right) \mu_{0}
$$

Now $\mu=(\nu+a b)+(\lambda+b)\left(\lambda^{\prime}+a\right)$ and so $\operatorname{rk}(\nu+a b)=4$, since $\mathrm{rk} \mu=6$. Let $W=\left\langle\epsilon_{3}, \ldots, \epsilon_{6}\right\rangle$. Since rk $\mu_{0}=4$ also we have $W(\nu+a b)=W \mu_{0}$. So there exist $c, d \in U$ such that $a \mu_{0}=c(\nu+a b)$ and $b \mu_{0}=d(\nu+a b)$. But then

$$
\begin{aligned}
{\left[(\lambda+b) c+\left(\lambda^{\prime}+a\right) d\right] \mu } & =(\lambda+b) c(\nu+a b)+\left(\lambda^{\prime}+a\right) d(\nu+a b) \\
& =(\lambda+b) a \mu_{0}+\left(\lambda^{\prime}+a\right) b \mu_{0} \\
& =\left(a \lambda+b \lambda^{\prime}\right) \mu_{0}
\end{aligned}
$$

So $\lambda \lambda^{\prime} \mu_{0} \in B_{2} \mu$ and V is not semi-regular.
Now suppose $\eta=0$. Then, $\mu=\nu+a \lambda+b \lambda^{\prime}$. If $a=b, \mu=\nu+a\left(\lambda+\lambda^{\prime}\right)$ is expressible in five variables, but $\operatorname{rk}(\mu)=6$, so $a \neq b$. Then we can extend a, b to a basis a, b, c, d for $\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$. Since μ is rank 6 , it must have a term not divisible by a or b, so $c d \in \operatorname{Supp}(\nu) \subset \operatorname{Supp}(\mu)$ in the a, b, c, d basis. Depending on if $a c, a d, b c, b d, a b$ are in $\operatorname{Supp}(\nu)$, we have $\mu=\nu+a \lambda+b \lambda^{\prime}=$ $\left(c+\epsilon_{1} a+\epsilon_{1}^{\prime} b\right)\left(d+\epsilon_{2} a+\epsilon_{2}^{\prime} b\right)+\epsilon a b+a \lambda+b \lambda^{\prime}$, for some $\epsilon_{1}, \epsilon_{1}^{\prime}, \epsilon_{2}, \epsilon_{2}^{\prime}, \epsilon \in \mathbb{F}$. Making a coordinate transformation $c \rightarrow c+\epsilon_{1} a+\epsilon_{1}^{\prime} b, d \rightarrow d+\epsilon_{2} a+\epsilon_{2}^{\prime} b$, we get $\mu=c d+\epsilon a b+a \lambda+b \lambda^{\prime}$, where $\langle a, b, c, d\rangle=\left\langle\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right\rangle$ and $\epsilon \in\{0,1\}$ with $\nu=c d+\epsilon a b$. Note that

$$
\left(\lambda^{\prime}+\epsilon a\right) c \mu=\lambda \lambda^{\prime} a c \in B_{2} \mu
$$

Likewise,

$$
\lambda \lambda^{\prime}\langle a c, a d, b c, b d\rangle \in B_{2} \mu
$$

Also,

$$
\lambda \lambda^{\prime} \mu=\lambda \lambda^{\prime}(\epsilon a b+c d) \in B_{2} \mu
$$

In both cases, whether $\epsilon=0$ or 1 , we see therefore that
$B_{2} \mu \supseteq \lambda \lambda^{\prime}\langle a c, a d, b c, b d, \epsilon a b+c d\rangle=\lambda \lambda^{\prime} \operatorname{Ann}(\epsilon a b+c d)=\lambda \lambda^{\prime} \operatorname{Ann}(\nu) \ni \lambda \lambda^{\prime} \mu_{0}$
The last inclusion is because $\nu \mu_{0}=0$ implies $\mu_{0} \in \operatorname{Ann}(\nu)$. Hence, $\lambda \lambda^{\prime} \mu_{0} \in$ $B_{2} \mu$, and V is not semi-regular.
Lemma 8.16. Let $a, b \in B_{1}^{4}$. Then the following are equivalent
(1) $\operatorname{rk}\left(x_{1} x_{2}+a x_{5}+b x_{6}\right)=6$
(2) $x_{1}, x_{2}, a, b, x_{5}, x_{6}$ are a basis for B_{2}^{6}
(3) x_{1}, x_{2}, a, b are a basis for B_{2}^{4}
(4) $\operatorname{rk}\left(x_{1} x_{2}+a b\right)=4$
(5) $\operatorname{rk}\left(x_{1} x_{2}+a x_{5}+b x_{6}+x_{5} x_{6}\right)=6$

Moreover there are 96 possible such choices for the pair a, b.
Proof. The equivalence of the first four conditions is straightforward. For the last equivalence we note that

$$
x_{1} x_{2}+a x_{5}+b x_{6}+x_{5} x_{6}=x_{1} x_{2}+a b+\left(a+x_{6}\right)\left(b+x_{5}\right)
$$

Clearly the number of choices of a and b satisfying (3) is $\left(2^{4}-4\right)\left(2^{4}-8\right)=$ 96.

Lemma 8.17. Let $\mu \in B_{2}^{4}$ be an element of rank 4 and let $N=\left\{\nu \in B_{2}^{4} \mid\right.$ $\nu \mu \neq 0\}$. Then $|N|=32$ and N contains 12 elements of rank 4 and 20 elements of rank 2. Moreover, if $\nu \in N$, then $\operatorname{rk} \nu=\operatorname{rk}(\nu+\mu)$.

Proof. Let $V=\langle\mu, \nu\rangle$. Then $\nu \in N$ if and only if $V^{2} \neq 0$. The two dimensional subspaces of B_{2}^{4} of types $[4,4,4],[4,4,2]$ and $[4,2,2]$ are equivalent up to change of basis to the spaces

$$
\begin{array}{ll}
{[4,4,4]:} & \left\{0, x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{4}, x_{3} x_{4}+x_{1} x_{3}+x_{2} x_{4}\right\} \\
{[4,4,2]:} & \left\{0, x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{3}, x_{1} x_{3}+x_{1} x_{2}+x_{3} x_{4}\right\} \\
{[4,2,2]:} & \left\{0, x_{1} x_{2}+x_{3} x_{4}, x_{1} x_{2}, x_{3} x_{4}\right\}
\end{array}
$$

To see this, note first that the latter case $[4,2,2]$ is clear by the rank decomposition of an element. For $[4,4,2], \operatorname{Supp}\left(\mu^{\prime}\right)$ and $\operatorname{Supp}\left(\mu+\mu^{\prime}\right)$ cannot contain only elements of $\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$, so without loss of generality suppose μ^{\prime} is the rank 2 element and that $x_{1} x_{3} \in \operatorname{Supp}\left(\mu^{\prime}\right)$. Then, since μ^{\prime} is rank 2 , we can write it as $\mu^{\prime}=\left(x_{1}+a\right)\left(x_{3}+b\right)$ for $a, b \in\left\langle x_{2}, x_{4}\right\rangle$. In fact, if necessary we can make a change of basis $x_{1} \rightarrow x_{1}+x_{2}$ or likewise $x_{3} \rightarrow x_{3}+x_{4}$ without changing the form of μ, so also assume $a \in \mathbb{F} x_{4}$ and $b \in \mathbb{F} x_{2}$. If $a=b=0$, we're done. If $a=x_{4}$ and $b=x_{2}$, changing $x_{1} \rightarrow x_{1}+x_{4}$ and $x_{3} \rightarrow x_{3}+x_{2}$ again preserves the form of $\mu=x_{1} x_{2}+x_{3} x_{4}$ while yielding $\mu^{\prime}=x_{1} x_{3}$, so we're done again. On the other hand, if $a=x_{4}$ and $b=0$, $\mu+\mu^{\prime}=x_{1} x_{2}+x_{3} x_{4}+\left(x_{1}+x_{4}\right) x_{3}=x_{1}\left(x_{2}+x_{3}\right)$ which is rank 2 , contradicting the rank type $\operatorname{Rk}(V)=[4,4,2]$, and likewise for $a=0$ and $b=x_{3}$. The last case is $[4,4,4]$. In this case, again we can write $\mu^{\prime}=\left(x_{1}+a\right)\left(x_{3}+\right.$ $b)+x_{2} x_{4}$ for $a \in \mathbb{F} x_{4}, b \in \mathbb{F} x_{2}$ and each of the 4 choices for (a, b) gives either the equivalent form of V above or a contradiction to the rank type.
Thus $V^{2} \neq 0$ if and only if V is of type [4, 4, 4] or [4, 2, 2]. It follows immediately that $\operatorname{rk} \nu=\operatorname{rk}(\nu+\mu)$. There are 6 subspaces of type $[4,4,4]$ containing a given μ and 10 of type $[4,2,2]$. Thus N contains 12 elements of rank 4 and 20 elements of rank 2.

Lemma 8.18. Let ν be a rank 4 element of B_{2}^{4} such that $\nu \notin B_{1}^{4} x_{1}+B_{1}^{4} x_{2}$. Then there exists a basis $x_{1}, x_{2}, y_{3}, y_{4}$ of B_{1}^{4} such that $\nu=x_{1} x_{2}+y_{3} y_{4}$.

Proof. Extend x_{1}, x_{2} to an arbitrary basis $x_{1}, x_{2}, z_{3}, z_{4}$ of B_{2}^{4}. Write $\nu=$ $\epsilon x_{1} x_{2}+z_{3} a+z_{4} b+\epsilon^{\prime} z_{3} z_{4}$ for $a, b \in\left\langle x_{1}, x_{2}\right\rangle$. Since $\nu \notin B_{1}^{4} x_{1}+B_{1}^{4} x_{2}, \epsilon^{\prime}=1$. So, $\nu=\left(\epsilon x_{1} x_{2}+a b\right)+\left(z_{3}+b\right)\left(z_{4}+a\right)$ with $\epsilon x_{1} x_{2}+a b \in\left\{0, x_{1} x_{2}\right\}$. Then, since ν is rank 4, $\epsilon x_{1} x_{2}+a b=x_{1} x_{2}$ and $\nu=x_{1} x_{2}+\left(z_{3}+b\right)\left(z_{4}+a\right)$. Setting $y_{3}=z_{3}+b$ and $y_{4}=z_{4}+a, x_{1}, x_{2}, y_{3}, y_{4}$ is a basis of $B_{1}^{4}\left(\right.$ since $\left.a, b \in\left\langle x_{1}, x_{2}\right\rangle\right)$ such that $\nu=x_{1} x_{2}+y_{3} y_{4}$.
Theorem 8.19. Let \mathcal{V} be the set of semi-regular two dimensional subspaces of $B_{1}^{6} B_{1}^{8}$ which contain an element of B_{1}^{6} of rank 6 . Then there are
(1) $63 * 62 * 2^{9} * 28 * 12 * 128$ spaces in \mathcal{V} of rank type $[6,8,8]$.
(2) $63 * 62 * 2^{9} * 28 * 20 * 192$ spaces in \mathcal{V} of rank type $[6,6,8]$;

Proof. Let us fix an element $\mu^{\prime} \in B_{1}^{6} B_{1}^{8}$ of rank 8 and count the number of $V \in \mathcal{V}$ containing μ^{\prime}. As in the proof of Lemma 8.11, we may assume that μ^{\prime} has the form

$$
\mu^{\prime}=\mu_{0}+\lambda x_{7}+\lambda^{\prime} x_{8}
$$

where $B_{1}^{6}=W \oplus\left\langle\lambda, \lambda^{\prime}\right\rangle, \operatorname{dim} W=4$ and $\mu_{0} \in W^{2}$ has rank 4. Suppose that $V=\left\langle\mu, \mu^{\prime}\right\rangle$ where $\mu \in B_{2}^{6}$ has rank 6. In this case $\mu=\nu+a \lambda+b \lambda^{\prime}+\epsilon \lambda \lambda^{\prime}$ for some $\nu \in W^{2}, a, b \in W$ and $\epsilon \in \mathbb{F}$. By Theorem 8.15, V is semi-regular if and only if $\nu \mu_{0} \neq 0$. By Lemma 8.17, there are 12 choices for ν of rank 4 and 20 choices of rank 2. Again by Lemma 8.17, we see that if $\mathrm{rk} \nu=4$, then $\operatorname{rk}\left(\nu+\mu_{0}\right)=4$ also, so

$$
\mu^{\prime}+\mu=\left(\mu_{0}+\nu\right)+\lambda\left(x_{7}+a\right)+\lambda^{\prime}\left(x_{8}+b\right)+\epsilon \lambda \lambda^{\prime}
$$

has rank 8. Thus V is of type $[6,8,8]$. Similarly, if $\operatorname{rk} \nu=2$, then V is of type $[6,6,8]$. Now we use Lemma 8.16 to count the number of possible μ for which V has each of the two rank types. First consider the case rk $\nu=2$.
(i) If $\epsilon=0$, then $\mu=\nu+a \lambda+b \lambda^{\prime}$ and by Lemma 8.16 there are 96 choices for a and b which yield $\operatorname{rk} \mu=6$.
(ii) If $\epsilon=1$, then $\mu=\nu+a \lambda+b \lambda^{\prime}+\lambda \lambda^{\prime}$. Again by Lemma 8.16 there are 96 choices for a and b which yield $\operatorname{rk} \mu=6$..

Thus in the $[6,6,8]$ case, for any given μ^{\prime} there are 20 choices for ν and 192 choice for a, b and ϵ. The number of choices for μ^{\prime} is given by Lemma 8.11 and combining these two results yields (2).

Now consider the case $\mathrm{rk} \nu=4$.
(i) If $\epsilon=0$, then $\mu=\nu+a \lambda+b \lambda^{\prime}$. Note that $\mathrm{rk} \mu=6$ implies that a and b are linearly independent and $\nu \notin B_{1}^{4} a+B_{1}^{4} b$. So by Lemma 8.18 $\nu=a b+y_{3} y_{4}$ where a, b, y_{3}, y_{4} is a basis for W. Thus $\langle\nu, a b\rangle$ is a $[4,2,2]$ space containing ν. There are ten such subspaces for each ν; each space yields two choices for $a b$ and each such choice of $a b$ yields 6 choices for a and b. This yields a total of 120 choices for μ.
(ii) If $\epsilon=1$, then $\mu=\nu+a \lambda+b \lambda^{\prime}+\lambda \lambda^{\prime}=\nu+a b+(\lambda+b)\left(\lambda^{\prime}+a\right)$.. In this case $\mathrm{rk} \mu=6$ if and only if $\operatorname{rk}(\nu+a b)=4$. If $a b=0$, this is always true and there are 46 ways to choose a and b such that $a b=0$. The latter is because B_{1}^{4} has $2^{4}=16$ elements and $a b=0$ implies either $a=b$ (16 choices) or if $a \neq b$, either $a=0$ and $b \neq 0$ (16-1 $=15$ choices) or $b=0$ and $a \neq 0$ (again

15 choices), yielding $15+15+16=46$ choices. If $a b \neq 0$, this holds if and only if $\langle\nu, a b\rangle$ is of type $[4,4,2]$. There are 15 such spaces containing a given element of rank four, so 15 choices for $a b$; and for each of these, there are 6 different ways of choosing a and b. This yields 136 possibilities for μ in this case.

Thus there is a total of 256 choices for μ. Finally there is a $2-1$ correspondence between choices for μ and spaces of rank type $[6,8,8]$
Corollary 8.20. Let $\mu \in B_{2}^{8}$ have rank 6 . Then
(1) There are $6,193,152$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,8]$ which are Type B with respect to μ.
(2) There are $15,482,880$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ which are Type B with respect to μ.
(3) There are 10, 321, 920 two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,6,6]$ which are Type B with respect to μ.
Proof. Without loss of generality we can assume that $\mu \in B_{2}^{6}$. In this case the semi-regular subspaces of Type B with respect to μ are exactly the spaces $V \in \mathcal{V}$ containing μ.
(1) Let

$$
\mathcal{V}^{\prime}=\{V \in \mathcal{V} \mid V \text { has rank type }[6,8,8]\}
$$

and let $\mathcal{V}_{\mu}^{\prime}=\left\{V \in \mathcal{V}^{\prime} \mid \mu \in V\right\}$ be the subset of \mathcal{V}^{\prime} consisting of such spaces containing our fixed element μ. Note that if $\sigma \in G L\left(B_{1}^{6}\right)$, then $\sigma\left(\mathcal{V}_{\mu}^{\prime}\right)=\mathcal{V}_{\sigma(\mu)}^{\prime}$. Since $G L\left(B_{1}^{6}\right)$ acts transitively on the set of all rank 6 elements of B_{2}^{6}, we have that $\mathcal{V}=\bigsqcup \mathcal{V}_{\sigma(\mu)}^{\prime}$. Thus since B_{2}^{6} contains 13888 elements of rank $6,\left|\mathcal{V}^{\prime}\right|=13888 *\left|\mathcal{V}_{\mu}^{\prime}\right|$. So by Theorem 8.19

$$
\left|\mathcal{V}_{\mu}^{\prime}\right|=\left|\mathcal{V}^{\prime}\right| / 13888=63 * 62 * 2^{9} * 28 * 12 * 128 / 13888=6,193,152
$$

A similar argument proves (2). For part (3), notice that the number of semiregular subspaces containing μ and of Type B with respect to μ is $31,997,952$ by Theorem 8.14. Since these have either rank type $[6,8,8],[6,6,8]$ or $[6,6,6]$, the number of the latter type is

$$
31,997,952-6,193,152-15,482,880=10,321,920
$$

Corollary 8.21. Let $\mu=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Then
(1) There are 17, 989, 632 two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,8]$ containing μ.
(2) There are 47, 480, 832 two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ containing μ.
(3) There are 30, 965, 760 two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,6,6]$ containing μ.
Proof. The number of such spaces is just the sum of the number of spaces which are Type A and Type B with respect to μ. Thus we just add the numbers in Theorem 8.9, and Corollary 8.20.

Corollary 8.22. There are
(1) $2,697,022,899,486,720$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,8]$
(2) $3,559,185,957,519,360$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$
(3) $1,547,472,155,442,200$ two-dimensional semi-regular subspaces of B_{2}^{8} of type $[6,6,6]$
Proof. For any element of B_{2}^{8} of rank 6, there is an automorphism $\sigma \in$ $\mathrm{GL}\left(B_{1}^{8}\right)$ such that $\sigma(\tilde{\mu})=\mu$. This automorphism then induces a bijection between the set of semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ containing $\tilde{\mu}$ and the set of semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ containing μ. Since there are 149, 920, 960 elements of B_{2}^{8} of rank 6 , the total number of semi-regular subspaces of B_{2}^{8} of type $[6,8,6]$ is

$$
\frac{47,480,832 * 149,920,960}{2}=3,559,185,957,519,360
$$

The other cases are handled similarly.
8.1. Approximation of $p_{8,2}$. The case when $\operatorname{Rk} V=[8,8,8]$ seems to be even more complex than the Type B case above. Thus we content ourselves with an approximation of $p_{8,2}$ in this case.

Theorem 8.23. Let $p_{8,2}$ be the proportion of two dimensional subspaces of B_{2}^{8} which are semi-regular. Then

$$
0.65 \leq p_{8,2} \leq 0.72
$$

Proof. We are able to determine the semi-regularity of all but the $888,431,072,772,096$ spaces of rank type [8, 8, 8]. Using Corollary 8.22 we obtain that the number $\operatorname{sr}(8,2)$ of semi-regular 2 dimensional subspaces satisfies

$$
7,803,681,012,449,280 \leq \operatorname{sr}(8,2) \leq 8,692,112,085,221,376
$$

Dividing by the total number of 2 dimensional subspaces, $12,009,598,872,103,595$ yields the claimed bounds.

9. Hilbert Polynomials

An even more fine-grained understanding can be obtained by looking at the possible Hilbert polynomials that can arise for $B / B V$. We list here (without proof) a complete description of the Hilbert polynomials that can arise in the cases $n=4,5$ and 6 . The main determining factor is the ranktype and whether or not the space is induced.

When $n=4$ the situation is simple. When $n=5$ we begin to see the distinction between the induced and non-induced cases. When $n=6$, more subtle distinctions begin to appear. In the types column we have

- i4: V is induced from a 4 dimensional subspace
- i5: V is induced from a 5 dimensional subspace

Type	Number	$H_{V}(z)$
$[2,2,2]$	105	$1+4 z+4 z^{2}+z^{3}$
$[2,2,4]$	280	$1+4 z+4 z^{2}$
$[2,4,4]$	210	$1+4 z+4 z^{2}$
$[4,4,4]$	56	$1+4 z+4 z^{2}$
Total	651	

Table 6. Hilbert Polynomials of $B / B V$ by Rank when $n=4$

Rank	Type	Number	$H_{V}(z)$
$[2,2,2]$		1,085	$1+5 z+8 z^{2}+5 z^{3}+z^{4}$
$[2,2,4]$		8,680	$1+5 z+8 z^{2}+4 z^{3}$
$[2,4,4]$	i	6,510	$1+5 z+8 z^{2}+4 z^{3}$
$[2,4,4]$	ni	52,080	$1+5 z+8 z^{2}+2 z^{3}$
$[4,4,4]$	i	1,736	$1+5 z+8 z^{2}+4 z^{3}$
$[4,4,4]$	ni	104,160	$1+5 z+8 z^{2}+z^{3}$
Total		174,251	

Table 7. Hilbert Polynomials of $B / B V$ by Rank and Type when $n=5$

- nin: V is not induced but not semi-regular
- nis: V is not induced and is semi-regular

10. Conclusion

We conducted a detailed study of the semi-regularity of two dimensional quadratic spaces. We found the following values for $p_{n, 2}$, the proportion of quadratic subspaces that were semi-regular.

Our hope was that this study would shed some light which would enable progress towards two of the most glaring open questions concerning semi-regularity: a) do there exist semi-regular sequences of homogeneous quadratic elements for all n ? and b) is $\lim _{n \rightarrow \infty} p_{n, n}=1$; i.e., are most sequences of n homogeneous quadratic elements in n variables semi-regular? On the positive side, the rank type is an invariant which can be used to establish certain results easily. It seems possible that the answer to a) can be found by considering specific spaces of high rank type. On the other hand the table of Hilbert series in the case $n=6$ suggest that getting the Hilbert series exactly right is a hard thing to control. While most spaces seem to be close to being semi-regular (in the sense that their Hilbert series are close to $T_{n, m}(z)$), it appears that it will be a highly non-trivial problem to prove the exact match of dimensions in each degree.

Rank	Type	Number	$H_{V}(z)$
$[2,2,2]$		9,765	$1+6 z+13 z^{2}+13 z^{3}+6 z^{4}+z^{5}$
$[2,2,4]$		182,280	$1+6 z+13 z^{2}+13 z^{3}+4 z^{4}$
$[2,4,4]$	i 4	136,710	$1+6 z+13 z^{2}+13 z^{3}+4 z^{4}$
$[2,4,4]$	i 5	$3,281,040$	$1+6 z+13 z^{2}+10 z^{3}+2 z^{4}$
$[2,4,6]$		$4,666,368$	$1+6 z+13 z^{2}+10 z^{3}$
$[2,6,6]$		$2,187,360$	$1+6 z+13 z^{2}+10 z^{3}$
$[4,4,4]$	i 4	36,456	$1+6 z+13 z^{2}+13 z^{3}+4 z^{4}$
$[4,4,4]$	i 5	$6,562,080$	$1+6 z+13 z^{2}+9 z^{3}+z^{4}$
$[4,4,4]$	nin	$8,749,440$	$1+6 z+13 z^{2}+8 z^{3}+z^{4}$
$[4,4,4]$	nis	$15,554,560$	$1+6 z+13 z^{2}+8 z^{3}$
$[4,4,6]$		$69,995,520$	$1+6 z+13 z^{2}+8 z^{3}$
$[4,6,6]$		$54,246,528$	$1+6 z+13 z^{2}+8 z^{3}$
$[6,6,6]$		$13,332,480$	$1+6 z+13 z^{2}+8 z^{3}$
Total		$178,940,587$	

Table 8. Hilbert Polynomials of $B / B V$ by Rank and Type when $n=6$

n	3	4	5	6	7	8	≥ 9
$p_{n, 2}$	1.00	0.84	0.00	0.86	0.00	$[0.65,0.72]$	0.00

Table 9. The proportion $p_{n, 2}$ of 2 -dimensional subspaces of B_{2} that are semi-regular

For most applications, it is sufficient to show that the degree of the Hilbert polynomial is the same as that of a semi-regular system. Proving this should be significantly easier and would give a more useful result from the point of view of applications. Thus a weaker but more accessible conjecture would be that for "most" m-dimensional subspaces $B_{D-2} V=B_{D}$ for $D=D_{n, m}$. For instance we are able to prove this result in the one case that we were not able to establish semi-regularity - spaces of rank type $[8,8,8]$ when $n=8$.

References

[1] M. Bardet, Étude des systèmes algébriques surdéterminés. Applications aux codes correctuers et la cryptographie. PhD thesis, Université Paris VI, Décembre 2004.
[2] M. Bardet, J.-C. Faugère, B. Salvy and B.-Y. Yang, Asymptotic Expansion of the Degree of Regularity for Semi-Regular Systems of Equations, MEGA 2005, Sardinia, Italy
[3] P. Delsarte and J.M. Goethals, Alternating Bilinear Forms on $G F(q)$, J. Comb. Theory Ser. A., 19 (1975), 26-50
[4] J. Ding, T. J. Hodges, Inverting the HFE systems is quasipolynomial for all fields. In: Advances in Cryptology - Crypto 2011, Lecture Notes in Computer Science 6841, pp 724-742, Springer, Berlin 2011.
[5] J. Ding, T. J. Hodges, V. Kruglov, D. Schmidt, S. Tohaneanu, Growth of the ideal generated by a multivariate quadratic function over GF(3), J. of Algebra and Its Applications, 12 (2013), 1250219-1 to 23.
[6] V. Dubois, N. Gama, The degree of regularity of HFE systems. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010-16th International Conference on the Theory and Application of Cryptology and Information Security. LNCS, vol. 6477 , pp. 557-576. Springer, Berlin (2010)
[7] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), Journal of Pure and Applied Algebra. 139 (1): 61-88.
[8] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ISSAC). ACM Press. pp. 75-83.
[9] T. J. Hodges, C. Petit and J. Schlather, First Fall Degree and Weil Descent, Finite Fields and Their Applications 30 (2014), 155-177.
[10] T. J. Hodges and S. D. Molina, Homological Characterization of bounded \mathbb{F}_{2} regularity, Journal of Algebra 588 (2021). pp 148-165
[11] T. J. Hodges, S. D. Molina and J. Schlather, On the existence of homogeneous semi-regular sequences in $\mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$, Journal of Algebra 476 (2017): 519-547.
[12] V. Kruglov, Growth of the ideal generated by a quadratic multivariate function, PhD Thesis, University of Cincinnati, USA, 2010.
[13] Christophe Petit and Jean-Jacques Quisquater, On Polynomial Systems Arising from a Weil Descent, in X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 451-466, 2012.
[14] A. Pott, K-U. Schmidt, Y. Zhou, Pairs of quadratic forms over Finite Fields, Elec. J. Combin 23(2) (2016), \#P2.8
[15] I. Semaev and A. Tenti, Probabilistic analysis on Macaulay matrices over finite fields and complexity of constructing Gröbner bases, J. Algebra 565, 2021, pp 651-674
[16] Yang, B.-Y., Chen, J.-M.: Theoretical Analysis of XL over Small Fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) Information Security and Privacy, 9th Australasian Conference, ACISP 2004. LNCS, vol. 3108, pp. 277-288. Springer, Berlin (2004)

Appendix A. The General Upper Bound

Let V be an m-dimensional graded subspace of B. Let $\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be a homogeneous basis for V and set $d_{i}=\mu_{i}$. If we assume that $d_{1} \leq \cdots \leq d_{m}$ then the vector $\underline{d}=\left(d_{1}, \ldots, d_{m}\right)$ is independent of the choice of homogeneous basis. For such a vector $\underline{d}=\left(d_{1}, \ldots, d_{m}\right)$ we define

$$
T_{n, \underline{d}}(z)=\left[\frac{(1+z)^{n}}{\prod_{i}\left(1+z^{d_{i}}\right)}\right]
$$

and

$$
D_{n, \underline{d}}:=\operatorname{deg} T_{n, \underline{d}}(z)
$$

Denote the Hilbert series of the quotient ring $B / B V$ by $H S_{V}(z)$. We say the space V is semi-regular if $H S_{V}(z)=T_{n, \underline{d}}(z)$.

Theorem A.1. Let V be a graded subspace of B^{n} with degree vector \underline{d} and let $d=\sum_{i} d_{i}$. If $n \geq D_{n, \underline{d}}+d$, then V is not semi-regular.

Proof. Let $B=\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be a basis for V. Choose an element ξ of $B V$ of maximal degree. Clearly $\operatorname{deg} \xi \leq d$ and $\xi \mu_{i}=0$ for all i. Let $D=D_{n, \underline{d}}$. If V is semi-regular, then

$$
B_{D}=\sum_{i} B_{D-d_{i}} \mu_{i}
$$

But then

$$
\xi B_{d}=\xi \sum_{i} B_{D-d_{i}} \mu_{i}=\sum_{i} B_{D-d_{i}} \xi \mu_{i}=0
$$

This implies that $\xi \in B_{\operatorname{deg} \xi} \cap \operatorname{Ann} B_{D}=0$. So Lemma 4.2 implies that $n<D+\operatorname{deg} \xi \leq D+d$. Thus if $n \geq D+d, V$ can not be semi-regular.

Email address, Tim Hodges: timothy.hodges@uc.edu
University of Cincinnati, Cincinnati, OH 45221-0025, USA
Email address, Hari Iyer: hiyer@college.harvard.edu
Harvard College, Cambridge, MA 02138

[^0]: Key words and phrases. Semi-regular sequences, finite fields.
 2020 Mathematics Subject Classification. 11T55, 12E05, 12E20, 13A02, 13M10, 94A60.
 Corresponding author: Hari Iyer, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA, email: hiyer@college.harvard.edu.

 This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

 We thank the anonymous reviewers for helpful comments and suggestions.

