Remark on the Security of CKKS Scheme in Practice

Jung Hee Cheon, Seungwan Hong, and Duhyeong Kim

Seoul National University, South Korea

Abstract. Recently, Li and Micciancio (ePrint 2020/1533) have proposed a passive at-
tack on the CKKS approximate homomorphic encryption (HE) scheme, which allows an
adversary to query decryption on valid ciphertexts. In this paper, we discuss for which
applications such attack is applicable, and introduce an extension of the HEaaN library.
In addition, we investigate the mitigation strategies of other HE libraries that support
the CKKS scheme including HElib, PALISADE, Lattigo and SEAL.

1 CKKS with IND-CPA Security

The Cheon-Kim-Kim-Song (CKKS) [10] scheme is a homomorphic encryption (HE) scheme
which supports approximate computations of real (complex) numbers. As usual HE schemes
such as BGV [§] and BFV [7, [I1], the CKKS scheme addresses the IND-CPA security of which
an adversary can query for the encryption oracle but not for the decryption oracle. Since it is
essentially impossible to achieve the IND-CCA2 security in HE and is even hard to construct
a practical IND-CCA1l-secure HE scheme, the IND-CPA security has been the conventional
security notion in these state-of-the-art HE schemes and their libraries.

Indeed, many applications of HE suffice to satisfy the IND-CPA security. In most of the sce-
narios of HE, a secret key owner provides her private data to others and receives outsourced data
manipulation results. For instance, a client may request model-specific inference computation to
model provider, such as outsourced matrix computation [I3], secure logistic regression [16] [14],
prediction phase of neural network [12], secure GWAS computation [I5] [6], and training models
for decision tree [5, [19].

In these scenarios, attacks using information leakage from decryption values cannot be
applied since the adversary cannot access the decryption oracle. Thus the client can use the
original decryption algorithm without any modification. However, in a practical perspective,
it is quite reasonable to consider the case that decrypted values are shared with some other
parties who do not own the secret key, and in this case the security cannot be covered by merely
the IND-CPA notion.

2 New Security Notion: IND-CPA+

Recently Li and Micciancio [17] formalized a new refined security notion called IND-CPA+,
which allows an adversary for decryption queries contrary to IND-CPA and similarly to IND-
CCA. However, the main difference between IND-CPA+ and IND-CCA is whether an adversary
is passive or active. More precisely, while an IND-CCA adversary can actively manipulate
arbitrary ciphertexts, an IND-CPA+ adversary is allowed for decryption queries only on valid
ciphertexts which are obtained by legitimate operations (e.g., encryption and homomorphic
computation only through the public interfaces provided by HE libraries as mentioned in [I7]).

They remarked that the IND-CPA+ security is equivalent to the IND-CPA security for
exact HE schemes such as BGV [8] and BFV [7, [I1], but the equivalence does not hold for

the CKKS approximate HE scheme. The weakness of the CKKS scheme against IND-CPA+
adversaries mainly comes from the linearity of its decryption function to the secret key. To be
precise, since the decryption function is of the form Decg (ctxt) = (ctxt,sk) (mod q), the secret
key is fully recovered if the decrypted value and ctxt are given as a pair.

3 Extension of CKKS Against IND-CPA+ Attack in HEaaN

3.1 Our Suggestion : “Decryption” and “Decryption for Sharing”

The main reason for the security issue for approximate encryption is the revelation of decryption
noise, which is a linear combination of the secret key. It can be easily prevented if the key owner
does not share the decrypted values. However, some applications for approximate homomorphic
encryption, such as collaboration with other cryptographic primitives including multi-party
computation and differential privacy, have to share decrypted values from each party. In other
words, we need to clearly distinguish between those cases, one to use the decryption algorithm
and the other to modify it to satisfy stronger security. For the details, consider the following
two scenarios.

In our settings, two parties are involved in each scenario: secret key owner and service
provider. The secret key owner wants to share her data to service provider and receive manipu-
lated result of them while the information of data is not leaked. For this purpose, she generates
a HE secret key and shares the encrypted data. On the other hand, the service provider has
its own data analysis model and wants to provide a service that manipulates and returns the
client’s data. To guarantee that the one who is not authorized to get the secret key cannot get
any information from data in manipulation, the data provider can provide two different security
levels.

1. Prohibit client disclosing the results of decrypted messages. In this scenario, attacks using
information leakage from decryption values cannot be applied since the adversary cannot
access to the decryption oracle. Thus the secret key owner can use the original decryption
algorithm without any modification. However, to be ensured for the safety of her data, it
is important that the decryption value should not be disclosed permanently.

2. Allow secret key owner to share her decrypted messages to others. In many real-world ap-
plications, applying manipulated results may cause us to share them with others. In this
case, the secret key owner should conceal the decryption values to ensure the safety of data.
Hence, she has to modify the decryption algorithm so that the message does not reveal any
information of the secret key. We say this modified decryption algorithm by “decryption
for sharing”.

In the rest of the section, we focus on the second scenario and introduce the new decryption
function for CKKS scheme in HEaaN library [I].

3.2 Updates in HEaaN

In HEaaN, we keep using the original decryption function Dec for the scenarios which are
satisfactory with IND-CPA security and provide another decryption function DecForShare con-
sidering the IND-CPA+ security that decrypted values are shared with other parties who do
not own the secret key.

For DecForShare, we follow one of the potential countermeasures suggested in [I7] to add a
proper error at the end of the original CKKS decryption process.

— DecForShareg(ctxt; Betxt): Sample a Gaussian error e < Dyzn g,,. Then compute m =
(ctxt, sk) + e (mod ¢), and output Decode(m) € CN/2.

When one decrypts a ciphertext ctxt through DecForShare, he is required to put some noise
upper bound By (w.r.t. the maximal norm ||-||o) of ctxt as an input of DecForShare. Then, a
Gaussian error of the width By is added at the end of the decryption procedure so that the
extension induces at most 1-bit loss of the precision with high probability.

Remark 1. There is not yet a complete theoretical result of how to choose the tight bound of
Beixt- However, assuming that the underlying CKKS scheme with DecForShare instead of Dec
is private-key setting and an adversary can query the decryption only for fresh ciphertexts,
one may choose much smaller additional noise than the above description with a theoretical
guarantee. That is, the IND-CPA security of the modified CKKS scheme is equivalent to this
weaker notion of the IND-CPA+ security under the hardness assumption of the multi-hint
RLWE problem [9]. It is also shown in [9] that the multi-hint RLWE problem is at least as
hard as the standard RLWE problem with a proper error width. It is left as a future work to
extend the theoretical result in [9] to the IND-CPA+ security so that the methodology is finally
adopted to HEaaN.

4 Mitigation of other HE Libraries for IND-CPA -+

After the Li-Micciancio attack [I7] on CKKS was disclosed, each HE library presented a miti-
gation strategy on the CKKS scheme to prevent the IND-CPA+ attack. At a high-level, they
share the same idea to attach a proper error at the end of the decryption process to avoid the
linearity on the secret key, which is in fact one of the potential countermeasures proposed in
[I7]. In this section, we investigate how the additional decryption error was applied in each
library (e.g., the error size, adding error or rounding, etc.) based on the official comments and
documents (e.g., Security.md) attached in the library.

HEIlib. The mitigation strategy of HElib [2] is precisely described in the CKKS-security.md
document. Basically, as default they set the size of an additional decryption error equal to the
noise bound of the ciphertext which is roughly estimated through ctxt.errorBound in the
library. However, sometimes the ciphertext noise can be estimated over-conservatively, and it
might yield a significant precision loss. For this reason, HEIlib let the application to determine
the required output precision, and then the size of the additional decryption error is chosen as
large as possible under this accuracy constraint. Based on the required output precision and the
target computation, the application computes the input precision for encrypting plaintext data
and take it as one of the inputs of the encryption function ptxt.encrypt. Under this setting,
the decrypted value of the resulting ciphertext after the target computation gets to satisfy the
predetermined output precision.

PALISADE. The PALISADE lattice cryptography library [4] takes an approach that the
noise growth in the ciphertext can be traced by looking into the imaginary part if we only use
the real part of each plaintext slot as a message. Precisely, the imaginary part of the plaintext is
encoded by 0 as default, and those are not allowed to be used as messages in the application. As
proceeding several operations among some ciphertexts, the noises in the imaginary parts also
increase. In this perspective, PALISADE observes that the imaginary parts after decryption
can be exploited to estimate the noise size in real parts. As a result, the size of the additional
decryption error is determined by the estimated ciphertext noise and the number of allowed
decryption queries. Please refer to Security.md in the library for more details.

Lattigo. In Lattigo library [3], they chose a strategy to take a rounding after the original
decryption process, while the previous libraries added an key-independent error. To be Precise,
they provide a new decoding function called DecodeAndRound (ptxt, b) which additionally
takes an output precision b contrary to the original decoding function Decode (ptxt). For the
case that decrypted values need to be disclosed, the DecodeAndRound function would be used
instead of Decode.

SEAL. Currently, a modification for IND-CPA+ security on algorithms or API does not
appear in SEAL [I8]. Instead, they noted in SECURITY.md that the decryption results of SEAL
ciphertexts should be treated as private information only available to the secret key owner.

[1]
2]
3]

[14]

[15]

Bibliography

HEaaN. https://github.com/snucrypto/HEAAN, 2018. SNUCRYPTO.

HEIib v1.3.0. https://github.com/homenc/HE1lib, 2020. IBM.

Lattigo (dev_indCPA+ mitigation branch). Online: https://github.com/ldsec/
lattigo/tree/dev_indCPA%2B_mitigation| dec 2020. EPFL-LDS.

PALISADE v1.10.6. https://gitlab.com/palisade/palisade-release, Dec. 2020.
PALISADE Project.

A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M. Vald. Privacy-
preserving decision tree training and prediction against malicious server. TACR Cryptol.
ePrint Arch., 2019:1282, 2019.

M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser. Secure large-scale genome-wide
association studies using homomorphic encryption. Proceedings of the National Academy
of Sciences, 117(21):11608-11613, 2020.

Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In Advances in Cryptology—CRYPTO 2012, pages 868-886. Springer, 2012.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Proc. of ITCS, pages 309-325. ACM, 2012.

J. H. Cheon, W. Cho, and D. Kim. Note on IND-CPA+ Security of CKKS. 2020.

J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic
of approximate numbers. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 409-437. Springer, 2017.

J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. TACR
Cryptology ePrint Archive, 2012:144, 2012.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryp-
tonets: Applying neural networks to encrypted data with high throughput and accuracy.
In International Conference on Machine Learning, pages 201-210, 2016.

X. Jiang, M. Kim, K. Lauter, and Y. Song. Secure outsourced matrix computation and
application to neural networks. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1209-1222, 2018.

A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model training
based on the approximate homomorphic encryption. BMC medical genomics, 11(4):83,
2018.

D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. H. Cheon. Privacy-preserving approx-
imate gwas computation based on homomorphic encryption. BMC Medical Genomics,
13(7):1-12, 2020.

M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based on
homomorphic encryption: Design and evaluation. JMIR medical informatics, 6(2):e19,
2018.

B. Li and D. Micciancio. On the security of homomorphic encryption on approximate
numbers. Cryptology ePrint Archive, Report 2020/1533, 2020. https://eprint.iacr.
org/2020/1533.

Microsoft SEAL (release 3.0). http://sealcrypto.org, Oct. 2018. Microsoft Research,
Redmond, WA.

X. Xiao, T. Wu, Y. Chen, and X. Fan. Privacy-preserved approximate classification based
on homomorphic encryption. Mathematical and Computational Applications, 24(4):92,
2019.

https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib
https://github.com/ldsec/lattigo/tree/dev_indCPA%2B_mitigation
https://github.com/ldsec/lattigo/tree/dev_indCPA%2B_mitigation
https://gitlab.com/palisade/palisade-release
https://eprint.iacr.org/2020/1533
https://eprint.iacr.org/2020/1533
http://sealcrypto.org

	Remark on the Security of CKKS Scheme in Practice

