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Abstract

Our main result is a quantum public-key encryption scheme based on the Extrapolated Di-
hedral Coset problem (EDCP) which is equivalent, under quantum polynomial-time reductions,
to the Learning With Errors (LWE) problem. For limited number of public keys (roughly linear
in the security parameter), the proposed scheme is information-theoretically secure. For poly-
nomial number of public keys, breaking the scheme is as hard as solving the LWE problem.
The public keys in our scheme are quantum states of size Õ(n) qubits. The key generation and
decryption algorithms require Õ(n) qubit operations while the encryption algorithm takes O(1)
qubit operations.
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1 Introduction

The application of quantum information in cryptography goes back to the work of Wiesner [39] who
proposed the first quantum cryptographic tool called Conjugate Coding. Remarkably, the idea of
conjugate coding is still used in different forms in many modern protocols in quantum cryptography.
Quantum cryptography, however, gained much attraction after the introduction of Quantum Key
Distribution (QKD) by Bennett and Brassard [6, 5]. It was later proved by Lo and Chau [23]
and Mayers [26] that QKD is information-theoretically secure. A more accessible proof of security,
based on error correcting codes, was given by Shor and Preskill [36].
Although in theory QKD provides perfect security, its real-world implementations are not (and
perhaps will not be) ideal. That means the QKD implementations, like other cryptographic im-
plementations, are vulnerable to side-channel attacks, e.g., see [24]. Even if we assume that QKD
provides perfect security in practice, there are many other important cryptographic tasks, such
as bit commitment, multiparty computation and oblivious transfer, that are not addressed by key
distribution. In fact, it was proved by Mayers [25] and Lo and Chau [22] that unconditionally
secure quantum bit commitment is impossible. The impossibility of information-theoretically se-
cure two-party computation using quantum communication was also later proved by Colbeck [11].
Such schemes can be made secure if the adversary is assumed to have bounded computational
power or limited storage. Computational assumption are therefore still needed and are important
in quantum cryptography. In particular, the necessity of computational assumptions in quantum
public-key cryptography, which is an increasingly important area in quantum cryptography, needs
to be further investigated.
The principles of quantum public-key cryptography are close adaptations of those of classical public-
key cryptography. In a quantum public-key scheme, a pair of keys (skA, pkA) is associated to each
user A, the secret key skA which is only known to A, and the public key pkA which is published by
A and it can be accessed by everyone. The pair of keys are generated by an efficient key generation
algorithm. Like classical public-key schemes, quantum public-key schemes are modelled based on
trapdoor one-way functions. Informally, a one-way function is a function that is easy to compute
but hard to invert. A trapdoor one-way function is a one-way function f to which some information
k, called the trapdoor, can be associated in a way that anyone with the knowledge of k can easily
invert f [7]. In the quantum setting, f is a mapping |α〉 7→ |fα〉 from the space of secret keys to
the space of public keys. The secret key |α〉 can be a classical or quantum state, and the public
key |fα〉 is a quantum state.
The three main constructions in quantum public-key cryptography are public-key encryption, digital
signature and public-key money. In this work, we focus on quantum public-key encryption. We refer
the reader to [13] for quantum digital signatures, and [1, 2, 12] for quantum money. In a public-key
encryption scheme, user B can send a secret message m to A by encoding m into a ciphertext c
using A’s public key pkA and a public encryption algorithm. Upon receiving the ciphertext c, user
A decrypts c using her private key skA and a public decryption algorithm.

1.1 Previous constructions

Kawachi et al. [17, 18] proposed a quantum public-key encryption scheme based on the Graph
Isomorphism (GI) problem. For a security parameter n, they consider quantum states over the
symmetric group Sn. The (secret key, public key) pair in the proposed scheme is (sk, pk) = (s, |ψs〉)
where s ∈ Sn is such that s2 = 1, and |ψs〉 = (|t〉 + |ts〉)/

√
2 for a random t ∈ Sn. A single bit

b of classical information is then encrypted as (|t〉 + (−1)b|ts〉)/
√

2. They prove their scheme is
secure assuming the hardness of the GI problem. However, GI is not considered as a standard
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quantum-secure assumption, especially after the recent breakthrough by László Babai [3] which
shows that GI can be solved classically in quasipolynomial time.
An encryption scheme based on rotations of 1-qubit states was proposed by Nikolopoulos [28].
Their scheme is based on the trapdoor function s 7→ |ψs(θn)〉 where 0 ≤ s < 2n is an integer,
θn = π/2n−1 and |ψs(θn)〉 = cos(sθn/2)|0〉+sin(sθn/2)|1〉. The encryption algorithm, however, was
deterministic and could be broken by a simple attack proposed in [29]. A randomized version of the
encryption algorithm was proposed, in the same paper, to minimize the success probability of the
aforementioned attack. To encrypt a classical message, the randomized algorithm uses significantly
larger public-key states than the original algorithm.

1.2 Overview and results

Extrapolated dihedral cosets. Let q be a positive integer. A dihedral coset over the additive
group Zq is a quantum state defined as |ψx〉 := (|0〉|x〉+ |1〉|x+d〉)/

√
2 where x ∈ Zq is random and

s ∈ Zq is random and fixed. The Dihedral Coset Problem (DCP) is the problem of recovering (the
secret) s, given dihedral cosets states |ψx〉 for different random values of x. DCP arises naturally
when one uses the “standard method” to solve the hidden shift problem over the group Zq [10].
More precisely, the states |ψx〉 are obtained by performing a measurement on a superposition over
the dihedral group Dq = Zq oZ2. Regev [32] gave the first connection between DCP and standard
lattice problems. Informally, if the number of states in DCP is bounded by poly(log q), then DCP
is (quantumly) at least as hard as poly(log q)-unique-SVP.
In a recent work, Brakerski et al. [8] proved that the Learning With Errors (LWE) problem is
equivalent, under quantum polynomial-time reductions, to an extended version of DCP, which
they call the Extrapolated Dihedral Coset Problem (EDCP). The LWE problem was proposed by
Regev [34, 35], and it has been used as the underlying security assumption in a large number
of cryptographic schemes. For parameters n, q ∈ Z and α ∈ (0, 1), LWEn,q,α is the problem of
recovering s ∈ Znq from samples of the form (a, 〈a, s〉+ e) where a ∈ Znq is uniformly random and e
is sampled from the discrete Gaussian distribution DZ,αq of standard deviation αq. The (uniform)
EDCP is a generalization of DCP where coset states are over the group Znq and the number of terms
in the coset states is parameterized by an integer 2 ≤ r ≤ q. An EDCP state is written as

1√
r

r−1∑
j=0

|j〉|x+ js〉, (1)

where s is fixed and x ∈ Znq is uniformly random. The EDCPn,q,r is then to recover s, given states
of the form (1). In the EDCP and LWE equivalence given in [8], the parameter r is proportional to
1/α. Intuitively, one would expect that EDCP becomes easier for larger r, since for smaller α the
LWE problem becomes easier. In fact, we show that EDCPn,q,r for any r can be efficiently reduced
to EDCPn,q,2 (Lemma 10). On the other hand, in the extreme case r = q, EDCP can be solved in
polynomial time (Remark 5.1).

A search-to-decision reduction for EDCP. The decision-EDCP, as was defined in [8], is the
problem of distinguishing between states of the form (1) and the same number of states of the form
|j〉|x〉 for uniformly random (j,x) ∈ Zr × Znq . It was pointed out in [8] that there is a polynomial
time search-to-decision reduction for EDCP via LWE. More precisely, search-EDCP can be reduced
to decision-EDCP via the following sequence of polynomial-time reductions

search-EDCP ≤ search-LWE ≤ decision-LWE ≤ decision-EDCP. (2)
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In Section 3, we give a direct reduction from search-EDCP to decision-EDCP (Theorem 11) which
works for a large class of moduli q.

A new decision-EDCP. The original decision-EDCP, explained above, is obtained from decision-
LWE by following the same procedure used to establish the equivalence between search-LWE and
search-EDCP. For such a decision problem for EDCP, however, there is no known general reduction
from the search-EDCP; The search-to-decision reductions are either obtained using the sequence (2)
or using Theorem 11. In the former case, one has to rely on the search-to-decision reductions for
LWE, e.g., [35, 9, 27], which are not general enough in the sense that they either incur non-negligible
loss in LWE parameters, or work only for special forms of the modulus q. In the latter case, the
parameter r has to satisfy some constraints with respect to q.
One could argue that the equivalence between the search and decision problems for EDCP is of less
importance due to the recent result of Peikert et al. [31] who proved that there is a polynomial-
time quantum reduction from standard lattice problems directly to decision-LWE. Their proof
works for any modulus q. In any case, another issue is that it is not clear to us how to base efficient
cryptographic primitives on the original decision-EDCP, see the discussion in Section 6. To resolve
these issues, we propose a new decision problem for EDCP. Informally, the new decision problem
asks to distinguish between states of he form (1) and states of the form

1√
r

r−1∑
j=0

ωjtp |j〉|x+ js〉,

where p is a prime divisor of q and t ∈ Zp\{0} is uniformly random. This new decision problem
allows us to accomplish the following:

� We prove that for any modulus q with poly(n)-bounded prime factors, there is a quantum
polynomial-time reduction from solving search-EDCP to solving decision-EDCP.

� We build an efficient quantum public-key encryption scheme based on decision-EDCP.

Quantum public-key cryptosystem. In Section 6, we build a quantum public-key encryption
scheme from EDCP. The idea behind the encryption is very simple. The public key is a single
EDCP state as in (1). To encrypt a classical bit b ∈ {0, 1}, a unitary transform is applied to the
public key to encode the value bt into the phase, where t ∈ Zp is uniformly random and nonzero.
The ciphertext is the state

1√
r

r−1∑
j=0

ωjbtp |j〉|x+ js〉.

Here, r and p are divisors of q, and r = ps
′

for some integer s′ ≥ 1. The decryption algorithm is
essentially a scalar multiplication over Znq and an application of the quantum Fourier transform Fr
over Zr. This scheme is very efficient in terms of both computation and public key size. An even
more efficient instantiation of this scheme is obtained by setting p = 2, r = 2s

′
, and q = 2s such

that q = poly(n) and s′ � s. In this case, the size of the public key is Õ(n) qubits. The encryption
algorithm takes O(1) qubit operations, and the key generation and decryption algorithms take Õ(n)
qubit operations.
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Security beyond Holevo’s bound. A fundamental difference between classical and quantum
public-key cryptosystems is that in classical systems the public key can be copied arbitrarily many
times, while in quantum systems making even two copies of the same public key is generally
impossible. This is a consequence of the no-cloning theorem. Also, in the quantum setting, the
amount of information one can extract from a public key is bounded by a certain quantity which
depends on the parameters of the system. This is a consequence of Holevo’s theorem (Theorem
15) which says that the accessible information of an ensemble is bounded by the χ quantity of the
ensemble. Therefore, according to Holevo’s theorem, the secret key cannot be recovered as long as
the number of copies of the public key stays below Holevo’s bound.
A feature common to all previous quantum public-key systems is that they rely on Holevo’s bound
for information-theoretic security, but do not provide a security proof based on a standard as-
sumption beyond Holevo’s bound. This puts a sever limitation on the total number of public keys
published at any time. In Section 5, we prove that our cryptosystem is information-theoretically
secure when the number of public keys is bounded by O(n log q/ log r). Beyond that, when the
number of public keys is poly(n), breaking the scheme is as hard as solving LWE.

2 Preliminaries

2.1 Quantum Computation

Our notations for quantum information mostly follow those of [38]. The classical state of a register
X is represented by a finite alphabet, say Σ. If the registers X1, . . . ,Xn are represented by alphabets
Σ1, . . . ,Σn then the classical state of the tuple (X1, . . . ,Xn) is represented by Σ1 × · · · × Σn. The
complex Euclidean space associated with the register X is denoted by CΣ. For a complex Euclidean
space X , denote the unit sphere in X by S(X ). A linear operator ρ acting on X is called a density
operator if ρ is positive semidefinite with trace equal to 1. The quantum state of the register X is
represented by the set of density operators D(X ).
We will use the Dirac notation for the elements of S(X ). In particular, we denote the column
vector x ∈ S(X ) by |x〉 and the row vector x∗ by 〈x|. A state ρ is called pure if it can be written
as ρ = |x〉〈x|, in which case we will simply write the state as |x〉. By the spectral theorem, every
state ρ is a linear combination of pure states. Therefore, a quantum state can also be represented
by a linear combination ∑

x

αx|x〉,
∑
x

|αx|2 = 1.

We shall alternate between these equivalent representations of quantum states throughout this
paper. The density operator representation is particularly useful when the underlying quantum
state is not completely known. For example if, we only know that the system is in the state |ψx〉
with probability px then the state of the system is described by the density operator

ρ =
∑
x

px|ψx〉〈ψx| = Ex
[
|ψx〉〈ψx|

]
.

More, generally, the density operator corresponding to a probability distribution γ : S(X )→ [0, 1]
is defined as

ργ =

∫
|φ〉∈S(X )

|φ〉〈φ|dγ(|φ〉) = E|φ〉∈γ
[
|φ〉〈φ|

]
.

For quantum public-key cryptography we will need a formal notion of quantum state discrimination.
In particular, we need to formally define the notion of computational (in)distinguishability of
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quantum states. For our purposes, it is more convenient to define computational distinguishability
for probability distributions over quantum states. The following is adapted from [37, 3.3].

Definition 1. Let X be a complex Euclidean space, and let γ, µ : S(X ) → [0, 1] be probability
distributions. Then γ is said to be (s, ε)-distinguishable from µ if there is a quantum measurement
circuit Q of size s such that ∣∣∣Pr

ρ∈γ
[Q(ρ) = 1]− Pr

ρ∈µ
[Q(ρ) = 1]

∣∣∣ ≥ ε.
Two distributions γ, µ are (s, ε)-indistinguishable if they are not (s, ε)-distinguishable.

Definition 2. For each n ∈ N, let Xn be a complex Euclidean space and let γn, µn : S(Xn) →
[0, 1] be probability distributions. Then the two ensembles {γn}n∈N and {µn}n∈N are said to be
polynomially quantum indistinguishable if for all polynomially bounded functions s, p : N→ N, the
distributions γn and µn are (s(n), 1/p(n))-indistinguishable for almost all n ∈ N.

Two ensembles are called quantum computationally indistinguishable if they are polynomially quan-
tum indistinguishable. The advantage of a polynomial-time quantum algorithm Q in distinguishing
between the distributions γn and µn is defined as

δQ(γn, µn) =
∣∣∣ Pr
ρ∈γn

[Q(ρ) = 1]− Pr
ρ∈µn

[Q(ρ) = 1]
∣∣∣.

Two ensembles {γn} and {µn} are then quantum computationally indistinguishable if δQ(γn, µn) =
negl(n) for all such Q and almost all n.

2.2 Error reduction

We can abstractly define the advantage of an algorithm A, regardless of A being quantum or
classical, in distinguishing between two probability distribution P1 and P2 as

δA(P1, P2) =
∣∣∣ Pr
x∈P1

[A(x) = 1]− Pr
x∈P2

[A(x) = 1]
∣∣∣.

Two ensembles of distributions {P1,n} and {P2,n} are said to be polynomial-time indistinguishable if
for any polynomial-time algorithm A and any poly(n)-bounded function p we have δA(P1,n, P2,n) ≤
1/p(n) for large enough n. The following lemma follows from the triangle inequality.

Lemma 3 (Hybrid lemma). Let P1, . . . , Pk be a sequence of probability distributions. Assume that
δA(P1, Pk) ≥ ε for some polynomial-time algorithm A. Then δA(Pi, Pi+1) ≥ ε/k for some 1 ≤ i < k.

Suppose an algorithm A can distinguish between two distributions P1 and P2 with non-negligible
advantage. A common technique to amplify the distinguishing advantage of A is to sample enough
times from the input distribution and then decide based on majority. A brief description of this
technique, which we shall use several times in this paper, is as follows. First, we need the following
well-known tail inequality.

Lemma 4 (Hoeffding [16]). Let X1, . . . , Xn be independent random variables with Xi ∈ [ai, bi], and
let S = X1, · · ·+Xn. Then

Pr[S − E[S] ≥ t] ≤ e−2t2/
∑n

i (bi−ai)2 , and

Pr[S − E[S] ≤ −t] ≤ e−2t2/
∑n

i (bi−ai)2 .
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Now, assume δA(P1, P2) ≥ 1/p(n) for some polynomial p(n), and let P be the input distribution.
Draw m = 2np(n)2 samples from P , and let Xi be a random variable representing the output of A
on input the i-th sample. Here, Xi = 0 (resp., Xi = 1) means A has recognized the i-th sample to
be from P1 (resp., P2). Let S = X1 + · · · + Xm. If P = P2 then from the bound on δA we have
E[S] ≥ m/2 + np(n). By Hoeffdings’s inequality,

Pr
[
S ≤ 1

2
(m+ np(n))

]
= Pr

[
S − m

2
− np(n) ≤ −1

2
np(n)

]
≤ Pr

[
S − E[S] ≤ −1

2
np(n)

]
≤ e−n/4.

Similarly, if P = P1 then

Pr
[
S ≥ 1

2
(m− np(n))

]
≤ Pr

[
S − E[S] ≥ 1

2
np(n)

]
≤ e−n/4.

Therefore, by running A on m samples and counting the number of 1’s we can tell, with probability
exponentially close to 1, whether P = P1 or P = P2.

2.3 Learning With Errors

In the following, we briefly review the Learning With Errors (LWE) problem and the Extrapolated
Dihedral Coset Problem (EDCP). In [8], EDCP refers to a general class of problems from which
two specific instances are studied in detail: the U -EDCP and G-EDCP which are the Uniform and
Gaussian EDCP, respectively. In this work, we will only study uniform-EDCP, and simply refer to
it as EDCP.
Let n ≥ 1 and q = q(n) ≥ 2 be integers, and let χ be a probability distribution over Z. For a
random fixed s ∈ Znq , denote by As,χ the probability distribution over Znq × Zq defined as follows:
choose a ∈ Znq uniformly at random, choose e according to χ and output (a, 〈a, s〉+ e).

Definition 5 (LWE, Search). The search-LWEn,q,χ is the problem of recovering s given samples
from the distribution As,χ. An algorithm Q is said to solve LWEn,q,χ if Q outputs s with probability
at least 1/ poly(n log q) and has running time at most poly(n log q).

Definition 6 (LWE, Decision). The decision-LWEn,q,χ problem is to distinguish between the dis-
tribution As,χ and the uniform distribution over Znq × Zq. An algorithm Q is said to solve the
desicion-LWEn,q,χ if it succeeds with advantage at least 1/ poly(n log q) and has running time at
most poly(n log q).

The distribution χ is called the error distribution and is usually chosen to be DZ,αq, the discrete
Gaussian distribution centered around zero with standard deviation αq. The parameter α ∈ (0, 1)
is called the error rate. We sometimes write LWEn,q,α instead of LWEn,q,χ for simplicity. Let n ≥ 1
and q ≥ 2 be as above and let r = r(n) < q be a positive integer. Let Σ = Zr × Znq and define

the complex Euclidean space X = CΣ. For a fixed uniformly random s ∈ Znq define the probability
distribution µs,r : S(X ) → [0, 1] as follows: choose x ∈ Znq uniformly at random and output the
state

|φs,r(x)〉 =
1√
r

r−1∑
j=0

|j〉|x+ js〉.

7



If we only have access to the output of µs,r, e.g., if x is unknown, then the quantum system
corresponding to the state |φs,r(x)〉 is described by the density operator

ρs,r =
1

qn

∑
x∈Zn

q

|φs,r(x)〉〈φs,r(x)| = Ex∈U(Zn
q )

[
|φs,r(x)〉〈φs,r(x)|

]
.

Therefore, the output of the distribution µs,r is always described by the same state ρs,r. In other
words, a sample from the distribution µs,r is a copy of the state ρs,r.

Definition 7 (EDCP, Search). Let n, q and r be defined as above. The search-EDCPn,q,r is the
problem of recovering s given samples from the distribution µs,r. A quantum algorithm Q is said
to solve EDCPn,q,r if it outputs s with probability at least 1/ poly(n log q) and has running time at
most poly(n log q).

Definition 8 (EDCP, Decision). Let n, q and r be defined as above. Define the probability
distribution γr : S(X ) → [0, 1] by choosing (j,x) ∈ Zr × Znq uniformly at random and outputting
the state |j〉|x〉. The decision-EDCPn,q,r is the problem of distinguishing between the distributions
µs,r and γr. A quantum algorithm Q is said to solve the decision-EDCPn,q,r if it succeeds with
advantage at least 1/ poly(n log q) and has running time at most poly(n log q).

The density operator corresponding to the output of the distribution γr in Definition 8 is

ρ =
1

rqn

r−1∑
j=0

∑
x∈Zn

q

|j〉|x〉〈j|〈x| = E(j,x)∈U(Zr×Zn
q )

[
|j〉|x〉〈j|〈x|

]
=

1

rqn
1X ,

which is the maximally mixed state over the space X . Therefore, decision-EDCPn,q,r is the problem
of distinguishing between the same number of copies of the states ρs,r and 1X /(rq

n). For an integer
m > 0, we denote by EDCPmn,q,r the EDCP problem in which the number of samples from µs,r is
bounded by m. The following theorem establishes a polynomial-time equivalence between LWE and
EDCP.

Theorem 9 ([8]). Let χ be a discrete Gaussian distribution centered around zero with standard
deviation αq. There is a polynomial-time quantum reduction from LWEn,q,χ to EDCPmn,q,r with
m = poly(n log q) and r = poly(n log q)/α. Conversely, for the same parameter relationship up to
poly(n log q) factors, there is a polynomial-time quantum reduction from EDCP to LWE.

It is important to note that the equivalence in Theorem 9 holds only when the number of EDCP
samples is polynomially bounded, i.e., m = poly(n log q). Giving such an equivalence for arbitrary
m is an open problem, see the discussion in Section 5.2.

3 A Search to Decision Reduction

In this section, we give a search-to-decision reduction for EDCP. The reduction works for a large
class of moduli q. The technique we use is inspired by the one in [27] for a search-to-decision
reduction for LWE. We need the following lemma, which shows the self-reducibility of EDCP.

Lemma 10. For any r′ ≤ r, given access to the distribution µs,r, we can efficiently sample from
the distribution µs,r′. In particular, there is an efficient reduction from EDCPn,q,r to EDCPn,q,r′.
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Proof. To keep the reduction efficient, we treat the two cases r′ > r/2 and r′ ≤ r/2 separately.
If r′ > r/2 then a simple indicator function can be used to to produce samples from µs,r′ . More
precisely, define the function f : [0, r)→ {0, 1} by

f(x) =

{
1 if x < r′,

0 otherwise.

Then applying the transform |j〉|y〉|0〉 7→ |j〉|y〉|f(j)〉, where y ∈ Znq , to ρs,r ∈ µs,r and measuring
the last register results in the state ρs,r′ with probability at least 1/2. If the measurement outcome
is not 1 then we repeat the above process.
If r′ ≤ r/2 then we proceed as follows. Let X = CZr×Zn

q and define the measurement µ : [0, br/r′c]→
Pos(X ) using the operators

µa =

`−1∑
b=0

|b〉〈ar′ + b| ⊗ 1,

where ` = r′ for 0 ≤ a < br/r′c and ` = r−r′ for a = br/r′c. This measurement can be implemented
efficiently [19, A.8]. If we perform µ on a sample ρs,r from µs,r the probability of observing the
outcome a is

Tr(µ∗aµaρs,r) = Ex∈U(Zn
q )

[
Tr(µa|φs,r(x)〉〈φs,r(x)|µ∗a)

]
=

1

r

`−1∑
b,c=0

Ex∈U(Zn
q )

[
Tr(|b〉|x+ (ar′ + b)s〉〈c|〈x+ (ar′ + c)s|)

]

=
1

r

`−1∑
b,c=0

Ex∈U(Zn
q )

[
Tr(|b〉〈c| ⊗ |x+ (ar′ + b)s〉〈x+ (ar′ + c)s|)

]
=
`

r
,

and the post-measurement state corresponding to this outcome is

µaρs,rµ
∗
a

(`/r)
=

1

r

`−1∑
b,c=0

Ex∈U(Zn
q )

[
|b〉|x+ (ar′ + b)s〉〈c|〈x+ (ar′ + c)s|

]

=
1

r

`−1∑
b,c=0

Ex∈U(Zn
q )

[
|b〉|x+ bs〉〈c|〈x+ cs|

]
= ρs,`,

So if the outcome is a ∈ [0, br/r′c) we obtain the state ρs,r′ , which is what we are looking for.
Therefore, the probability of obtaining the desired state after one measurement is

br/r′c `
r

= br/r′cr
′

r
≥
( r
r′
− 1
) r
r′

= 1− r′

r
≥ 1

2
.

If the measurement outcome is a = br/r′c then we repeat the above process.

It follows from the proof of Lemma 10 that obtaining a sample from µs,r′ requires (an expected) 2

samples from µs,r. This means EDCPmn,q,r is reduced to EDCP
Θ(m)
n,q,r′ regardless of the ratio between

r and r′.
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Theorem 11. Let q = pe11 · · · p
e`
` be the prime factorization of q and assume that the primes pi are

of size poly(n). Let 0 < r < q and let k be the number of primes pi < r. Then there is a polynomial-
time quantum reduction from solving worst-case search-EDCPn,q,r, with overwhelming probability,
to solving average-case decision-EDCPn,q,r′, with non-negligible probability, for any r′ ≤ r such that
(r′)k ≤ r, and r′ ≤ peii for all i.

Proof. Let D be an oracle for solving decision-EDCPn,q,r′ . The idea of the proof is to use D and

samples from the distribution µs,r to recover s mod phii , with large-enough hi, for each i, and then

assemble the results using the Chinese remainder theorem to recover s mod
∏
i p
hi
i . From there,

since q/
∏
i p
hi
i is small-enough, we can use quantum Fourier transform to recover s mod q. We

shall compute s mod pe11 , the algorithm is the same for the other pi. Let p = p1 and e = e1. The
proof proceeds in several steps.

1. Sampling from µs,r′ : given samples from µs,r, according to Lemma 10, we can efficiently sample
from µs,r′ . So, from now on we assume that we have access to samples from µs,r′ .

2. Building hybrid distributions: from the distribution µs,r′ we construct the distribution µks,r′ for

all k = 0, . . . , e. Given a sample ρs,r′ ∈ µs,r′ , a sample from µks,r′ is obtained by computing

j mod pk into an auxiliary register and then measuring the register. More precisely, denote by
|φks,r′(x)〉 the result of

|φs,r′(x)〉|0〉 7→ 1√
r′

r′−1∑
j=0

|j〉|x+ js〉|j mod pk〉 (3)

7→ 1
√
rk

rk−1∑
j=0

|jpk + c〉|x+ (jpk + c)s〉, (measure the last register)

where 0 < rk ≤ br′/pkc and the random constant 0 ≤ c ≤ pk − 1 depend on the outcome of
measuring the last register. Then

ρks,r′ = Ex∈U(Zn
q )

[
|φks,r′(x)〉〈φks,r′(x)|

]
is a sample from µks,r′ .

3. Computing s mod p: for k = 0 we have j = 0 mod p0 for all j, so ρ0
s,r′ = ρs,r′ hence µ0

s,r′ = µs,r′ .

Let h be the smallest integer such that r′ ≤ ph, such an h exists since r′ ≤ pe by assumption.
Then for k = h, measuring the last register in (3) collapses the state ρs,r′ to 1X ′/(r

′qn) where
X ′ = CZr′×Zn

q . Therefore, by a hybrid argument (Lemma 3) there is a minimal 0 < t ≤ h
such that D can distinguish between µt−1

s,r′ and µts,r′ with non-negligible advantage. Using the
amplification technique of Section 2.2 we can assume that the distinguishing advantage of D is
exponentially close to 1. Note that t can be efficiently computed by analyzing the output of
D. Let s = (s1, . . . , sn). We recover s1 mod p, the other si mod p can be recovered similarly.
Consider the state |φt−1

s,r′ (x)〉 where x = (x1, . . . , xn), and let a ∈ Zp and y = (y1, . . . , yn) ∈ Znq
be arbitrary. If we perform the transform

U1 : |j〉|y〉|0〉 7→ |j〉|y〉|y1 − ja mod pt〉 (4)

on |φt−1
s,r′ (x)〉|0〉 we obtain the state

1
√
rt−1

rt−1−1∑
j=0

|jpt−1 + c〉|x+ (jpt−1 + c)s〉|x1 + (jpt−1 + c)(s1 − a) mod pt〉.

10



Measuring the last register results in a state that will be a sample from µt−1
s,r′ or µts,r′ depending

on whether s1 = a or s1 6= a mod p, respectively:

� s1 = a mod p. In this case, the value of the last register is x1 + (s1 − a)c mod pt. So the
last register is not entangled with the first two registers, and we obtain the original sample
from µt−1

s,r′ .

� s1 6= a mod p. Let 0 ≤ c1 ≤ pk − 1 be the outcome of the measurement. Then the post-
measurement state contains the terms with j satisfying jpt−1 = (c1−x1)/(s1−a)−c mod pt.
If we write the right hand side as c2p

t−1 for some constant 0 ≤ c2 ≤ p−1 then j = c2 mod p
and the post-measurement state is

|ψx〉 =
1
√
rt

rt−1∑
j=0

|(jp+ c2)pt−1 + c〉|x+ ((jp+ c2)pt−1 + c)s〉

=
1
√
rt

rt−1∑
j=0

|jpt + c2p
t−1 + c〉|x+ (jpt + c2p

t−1 + c)s〉

where 0 < rt ≤ brt−1/pc. We clearly have

Ex∈U(Zn
q )

[
|ψx〉〈ψx|

]
∈ µts,r′ .

Therefore, using D we can find out whether s1 = a mod p. Since p ≤ poly(n), we can recover
s1 mod p by trying every a ∈ Zp.

4. Computing s mod pk: assume we have recovered, for some k > 1, the first k − 1 digits of s1 in
base p, that is we have computed 0 ≤ s̃1 < pk−1 such that s̃1 = s1 mod pk−1. Let s1,k−1 be the
k-th digit of s1 in base p. To compute s1,k−1, we can modify the transform in Step 3 as

Uk : |j〉|y〉|0〉 7→ |j〉|y〉|y1 − js̃1 − jpk−1a mod pt+k−1〉.

Applying Uk to a sample from µt−1
s,r′ and measuring the last register produces a sample from µt−1

s,r′

or µts,r′ depending on whether s1,k−1 = a or s1,k−1 6= a mod p, respectively. This method works
as long as t+ k − 1 ≤ e.

5. Quantum Fourier transform: using the procedure in Step 4, we can compute s mod pe−t+1 where
t is the minimal integer determined in Step 3. Similarly, we recover s mod pei−ti+1 with ti the
corresponding minimal integer for pi, for all i. Note that if r′ ≤ pi then ti = 1. Also, we always
have r′ ≥ pti−1

i . Using the Chinese remainder theorem we can compute s̃ = s mod v where

v =
∏̀
i=1

pei−ti+1
i = q/

∏̀
i=1

pti−1
i ≥ q

(r′)k
≥ q

r
.

Now, by applying the transform |j〉|y〉 7→ |j〉|y − js̃〉 to the states |φs,r(x)〉, we assume all the
coordinates of s are multiples of v. Next, using Lemma 10, we project |φs,r(x)〉 onto |φs,q′(x)〉,
where q′ = q/v ≤ r. Finally, we apply Fqn to the second register of |φs,q′(x)〉 and measure to
obtain the state

1√
q′

q′−1∑
j=0

ωj〈u,s〉q |j〉 =
1√
q′

q′−1∑
j=0

ω
j〈u,s/v〉
q′ |j〉 = Fq′ |〈u, s/v〉 mod q′〉,

11



where u ∈ Znq is uniformly random. Applying F∗q′ to the above state, we obtain 〈u, s/v〉 mod
q′. The value s/v can be computed, with high probability, by gathering O(n) of these linear
equations.

Corollary 12. Let q = pe11 · · · p
e`
` be the prime factorization of q and assume that the primes pi

are of size poly(n). If r ≤ pi for all 1 ≤ i ≤ ` then there is a polynomial-time quantum reduction
from solving search-EDCPn,q,r to solving decision-EDCPn,q,r.

It follows from the above corollary that for a prime power q = pe, where p < poly(n) and r ≤ p,
search-EDCPn,q,r and decision-EDCPn,q,r are quantum polynomial-time equivalent. Two interesting
special cases of this equivalence are {q = 2e, r = 2} and {q = p, r < p}.

4 A New Decision Problem

In this section, we propose an EDCP decision problem that we believe is more suitable for appli-
cations than the decision problem defined in Section 2. In particular, our public-key cryptosystem
(Section 6) is based on the new decision problem. We show that the new decision problem is quan-
tum polynomial-time equivalent to search-EDCP. This establishes the fact that the new decision
decision problem is at least is as hard as the old one.
We assume, as before, that the modulus q has poly(n)-bounded prime factors. Perhaps the new
decision problem is best understood for a prime modulus q. So let us assume, for now, that q is a
poly(n)-bounded prime. Define the distribution µ̃s,r on the unit sphere S(X ) by choosing x ∈ Znq
and t ∈ Zq\{0} uniformly at random and outputting the state

|φs,r(x, t)〉 =
1√
r

r−1∑
j=0

ωjtq |j〉|x+ js〉. (5)

The new decision problem is to distinguish between the distributions µs,r and µ̃s,r. The motivation
behind this new definition is that from states of the form (5) we can efficiently obtain “shifted”
LWE samples (a, 〈a, s〉+ e+ t) where a ∈ Znq is uniformly random and e is sampled from DZ,q/λ for
an appropriate value of λ. For a large enough q, this pair is closer to a uniformly random element
of Znq × Zq than an LWE sample. An instance of the above decision problem then translates to an
instance of the LWE decision problem.
A shifted LWE sample can be obtained from the state (5) using the technique in [8], which we briefly
explain in the following. We ignore the normalization factors in front superpositions for clarity.
Applying the transform |j〉 7→ |j − b(r − 1)/2c〉 to the first register of the state (5) we obtain the
state

d(r−1)/2e∑
j=−b(r−1)/2c

ωjtq |j〉|x+ js〉, (6)

where we have again denoted the uniformly random element x + b(r − 1)/2cs ∈ Znq by x. Next,
using Lemma 22 we can transform (6) into

d(r−1)/2e∑
j=−b(r−1)/2c

ωjtq gλ(j)|j〉|x+ js〉, (7)

with probability Ω(λ/r). Here, gλ(x) = exp(−πx2/λ2) is a one-dimensional Gaussian function.
We assume that r is large enough so that the above probability is not too small. For example,

12



r = bλ
√
nc and so Ω(λ/r) = Ω(1/

√
n). Now if we apply the transform Fq ⊗Fqn to (7) and measure

the last register we obtain the state

|ψ〉 =
∑
y∈Zq

d(r−1)/2e∑
j=−b(r−1)/2c

ωj(〈a,s〉+y+t)
q gλ(j)|y〉,

where a ∈ Znq is uniformly random and known. In the following, we use the notation |ψ1〉 ≈ |ψ2〉
when the two quantum states |ψ1〉 and |ψ2〉 have an exponentially small trace distance. We have

|ψ〉 ≈
∑
y∈Zq

∑
j∈Z

ωj(〈a,s〉+y+t)
q gλ(j)|y〉 (by Corollary 25)

=
∑
y∈Zq

∑
j∈Z

g1/λ

(
j +
〈a, s〉+ y + t

q

)
|y〉 (by Theorem 21)

=
∑
e∈Z

g1/σ

(e
q

)
|〈−a, s〉+ e− t mod q〉 (e← jq + 〈a, s〉+ t+ y)

≈
∑
e∈Zq

g1/σ

(e
q

)
|〈−a, s〉+ e− t mod q〉. (by Corollary 25)

Measuring the above state, we obtain a pair (−a, 〈−a, s〉+ e− t) where e is sampled from DZ,q/λ.
For a general modulus q, an immediate generalization of the above decision problem would be to
just replace the prime modulus with a general one, and the above process of obtaining an LWE
sample goes through without any change. However, for such a generalization, it is not clear how
to reduce the search problem to the decision problem when q is super-polynomially large in n. An
alternative approach is to associate a distribution to each of the primes p | q, then the decision
problem is to distinguish between these distribution and µs,r. We make this precise in the following.

Definition 13 (EDCP, Decision). Let p | q be a prime. Define the distribution µs,r,p on the unit
sphere S(X ) by choosing x ∈ Znq and t ∈ Zp\{0} uniformly at random and outputting the state

|φs,r(x, p, t)〉 =
1√
r

r−1∑
j=0

ωjtp |j〉|x+ js〉. (8)

The decision-EDCPn,q,r is the problem of distinguishing between the distribution µs,r and any
distribution in the set {µs,r,p}p|q.

Theorem 14. Assume that all the prime factors of q are poly(n)-bounded. Then there is a quantum
polynomial-time reduction from solving search-EDCPn,q,r to solving decision-EDCPn,q,r.

Proof. Let q = pe11 · · · p
e`
` be the prime factorization of q. Let D be an oracle for solving decision-

EDCPn,q,r. The idea is to use D to find s mod peii for all i and then reconstruct s mod q using the
Chinese remainder theorem. Let s = (s1, . . . , sn). We show how to recover s1 mod pe11 , the other
values si mod p

ej
j can be recovered similarly. Set p = p1 and e = e1. For any y ∈ Zp and nonzero

c ∈ Zp define the unitary

Uc,y|j〉|a〉 = ω(a1−jy)c
p |j〉|a〉,

where a1 is the first coordinate of a. Given a sample ρs,r from µs,r, fix y ∈ Zp and select a fresh
nonzero c ∈ Zp uniformly at random. Then we have

Uc,y|φs,r(x)〉 =
1√
r
ωx1cp

r−1∑
j=0

ωj(s1−y)c
p |j〉|x+ js〉.

13



# samples

O
(
n

log q

log r

) Information-theoretically secure

poly(n) as hard as LWE

2O(
√
n log q) can be solved in 2O(

√
n log q)

Figure 1: The hardness of EDCP based on the number of samples. These bounds also hold for the
security of the public-key encryption scheme of Section 6. In that case, a sample is a copy of the
public key.

Therefore, ignoring the global phase, if s1 6= y mod p then Uc,yρs,rU
∗
c,y is a sample from µs,r,p,

otherwise Uc,yρs,rU
∗
c,y = ρs,r. So, the oracle D could tell us which is the case. Trying all y ∈ Zp

we can find s1 mod p. Now assume we have recovered s̃1 = s1 mod pk for k < e. To compute
s1 mod pk+1, we can modify the unitary Uc,y as

Uc,y,k|j〉|a〉 = ω
(a1−js̃1−jpky)c

pk+1 |j〉|a〉.

To see how Uc,y,k acts on a sample ρs,r from µs,r, let s1,k be the (k + 1)-th digit of s1 in base p.
Then

Uc,y,k|j〉|x+ js〉 = ω
(x1+js1−js̃1−jpky)c

pk+1 |j〉|x+ js〉

= ωx1c
pk+1ω

j(s1,k−y)c
p |j〉|x+ js〉.

Therefore, repeating the above procedure, we can recover s1,k. This completes the proof.

5 Information-Theoretic and Hardness Bounds

In this section, we derive hardness bounds for EDCP based on the number of samples. The EDCPmn,q,r
problem is to recover the secret s ∈ Znq given m copies of the state ρs,r. We consider bounds

O(n log q/ log r), poly(n) and 2O(
√
n log q) for m. As m increases, EDCP becomes easier. Figure 1

summarizes the hardness of EDCP based on these bounds.

5.1 Limited number of samples

We derive a lower bound on m using tools from quantum information theory. A special case of the
result of this section was also obtained in [4]. To better understand the problem we can model it
in the following standard way, for m = 1. Alice selects a uniformly random s ∈ Znq and stores it in
the classical register Y. She then prepares a register X in the state ρs,r and sends X to Bob. So,
Bob has access to the register X that is prepared according to the ensemble

η : Znq −→ Pos(X )

s 7−→ 1
qn ρs,r,

where Pos(X ) is the space of positive semidefinite operators on X . Bob picks a measurement
µ : Znq → Pos(X ) and measures X according to µ. He stores the outcome of the measurement

14



in a classical register Z. The pair (Y,Z) of classical registers will be distributed according to the
distribution

q : Znq × Znq −→ [0, 1]

(s,u) 7−→ 〈µ(u), η(s)〉.

The amount of information that Bob can learn about Y using the measurement µ is determined by
the mutual information between Y and Z, which we denote by Iµ(η). The accessible information of
the ensemble η is defined as

I(η) = sup
µ

Iµ(η),

where the supremum ranges over all choices of the measurement µ. Note that the pair (Y,X) is in
the classical-quantum state

σ =
∑
s∈Zn

q

|s〉〈s| ⊗ η(s).

The quantum mutual information between Y and X, with respect to the state σ, is called the Holevo
information of the ensemble η and is denoted by χ(η). We have

χ(η) = I(Y : X) = H

(
1

qn

∑
s∈Zn

q

ρs,r

)
− 1

qn

∑
s∈Zn

q

H(ρs,r), (9)

where H(·) is the von Neumann entropy.

Theorem 15 (Holevo’s theorem). Let Σ be an alphabet and let X be a complex Euclidean space.
For any ensemble η : Σ→ Pos(X ) it holds that I(η) ≤ χ(η).

Therefore, according to Theorem 15, we can obtain an upper bound on the accessible information
of the ensemble η by computing χ(η). For an arbitrary number of samples m, we need to bound
χ(η⊗m) for the ensemble

η⊗m : Znq −→ Pos(X⊗m)

s 7−→ 1
qn ρ
⊗m
s,r .

(10)

This is done is the following theorem.

Theorem 16. For the ensemble η⊗m in (10) we have χ(η⊗m) ≤ m(1− q−n) log r.

Proof. First, note that the entropy is additive with respect to tensor products, i.e., for any two
states σ1 and σ2 it holds that H(σ1 ⊗ σ2) = H(σ1) + H(σ2). It follows that H(ρ⊗ms,r ) = mH(ρs,r).
Next, for a state σ of a compound register (X1, · · · ,Xm), we have, by the subadditivity of von
Neumann entropy,

H(σ) ≤ H(Tr1(σ)) + · · ·+ H(Trm(σ))

where Trk(σ) is the reduction of σ to the (state of the) register Xk. Therefore,

H

(
1

qn

∑
s∈Zn

q

ρ⊗ms,r

)
≤

m∑
i=1

H

(
Tri

(
1

qn

∑
s∈Zn

q

ρ⊗ms,r

))
(by subadditivity of H)

=
m∑
i=1

H

(
1

qn

∑
s∈Zn

q

Tri(ρ
⊗m
s,r )

)
(by linearity of Tr)

= mH

(
1

qn

∑
s∈Zn

q

ρs,r

)
.
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It follows from (9) that χ(η⊗m) ≤ mχ(η). Now, we can compute χ(η) by computing the eigenvalues
of the operators ρs,r and ρ = q−n

∑
s∈Zn

q
ρs,r. The eigenvectors of ρs,r are

|ψx,t〉 =
1√
r

r−1∑
j=0

ωjtr |j〉|x+ js〉, (t,x) ∈ Zr × Znq ,

and the eigenvalues are 0 and q−n with multiplicities (r − 1)qn and qn, respectively. To compute
the eigenvalues of ρ it is best to write the second register in the Fourier basis. We have

(1⊗ Fqn)ρs,r(1⊗ Fqn)∗ = Ex∈U(Zn
q )

[
(1⊗ Fqn)|φs,r(x)〉〈φs,r(x)|(1⊗ Fqn)∗

]
=

1

rqn

∑
y,z∈Zn

q

Ex∈U(Zn
q )

[
ω〈x,y−z〉q

] ∑
j,k∈Zr

ω〈jy−kz,s〉q |j〉〈k| ⊗ |y〉〈z|

=
1

r
Ey∈U(Zn

q )

[ ∑
j,k∈Zr

ω〈(j−k)y,s〉
q |j〉〈k| ⊗ |y〉〈y|

]
,

where the last equality follows from the fact that

Ex∈U(Zn
q )

[
ω〈x,y−z〉q

]
=

{
1 if y = z

0 if y 6= z.

Therefore, we have

(1⊗ Fqn)ρ(1⊗ Fqn)∗ =
1

r
Ey∈U(Zn

q )

[ ∑
j,k∈Zr

Es∈U(Zn
q )

[
ω〈(j−k)y,s〉
q

]
|j〉〈k| ⊗ |y〉〈y|

]
=

1

rqn

∑
j,k∈Zr

|j〉〈k| ⊗ |0〉〈0|+ 1

rqn
1⊗ (1− |0〉〈0|) (11)

where the second equality follows from

Es∈U(Zn
q )

[
ω〈(j−k)y,s〉
q

]
=

{
1 if (j − k)y = 0

0 if (j − k)y 6= 0.

The eigenvectors of (11) are

|ψx,t〉 =
1√
r

r−1∑
j=0

ωjtr |j〉|x〉, (t,x) ∈ Zr × Znq , x 6= 0,

|ψt〉 =
1√
r

r−1∑
j=0

ωjtr |j〉|0〉, t ∈ Zr,

and the eigenvalues are 0, q−n and r−1q−n with multiplicities r − 1, 1 and (qn − 1)r, respectively.
Finally, using (9) and the eigenvalues for ρ and ρs,r, we have

mχ(η) ≤ m
( 1

qn
log(qn) +

r(qn − 1)

rqn
log(rqn)− log(qn)

)
= m

(
1− 1

qn

)
log r.
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Assume that Bob has found a measurement µ on η⊗m, i.e., a measurement that can operate on the
joint state of m copies of Alice’s state, such that, after possibly some post-measurement processing,
he can guess the value of Y with a constant probability p. Then a lower bound on m, that depends
on p, can be computed using Theorem 16. We need the following result known as Fano’s inequality.

Lemma 17 (Fano’s inequality). Let X and Y be random variables on some finite set Γ, and let
X̃ = f(Y ) for some function f . Let p = Pr[X 6= X̃]. Then it holds that

H(X|Y ) ≤ p log(|Γ| − 1) + H(p, 1− p).

Corollary 18. Let s ∈ Znq be chosen uniformly at random. The number of copies of the state ρs,r
needed to recover s with constant probability is at least O(n log q/ log r).

Proof. Recall the communication scenario above: Alice selects s ∈ Znq uniformly at random and
stores it in the register Y. She then generates m copies of the state ρs,r and sends them to Bob. On
receiving ρ⊗ms,r , Bob applies a measurement µ and stores the measurement outcome in the register

Z. Bob might perform some post-processing on Z to obtain another register Z̃. Assume that
p = Pr[Y 6= Z̃] is a constant. Then

Iµ(η⊗m) = I(X : Z)

= H(Y)−H(Y|Z) (by definition)

≥ n log(q)− (1− p) log(qn − 1)−H(p, 1− p) (by Lemma 17)

≥ pn log(q)− 1

Now, by Theorem 16, m(1− q−n) log r ≥ χ(η⊗m) ≥ Iµ(η⊗m) which completes the proof.

Remark. An interesting case for which the bound in Corollary 18 is tight is when q = r. In this
case, given the state ρs,r, applying the transform F∗r ⊗Fqn results in the state

1√
qn

∑
y∈Zn

q

ω〈y,x〉q |〈y, s〉〉|y〉.

Measuring this state, we obtain a linear equation 〈y, s〉 where y ∈ Znq is uniformly random. We
can solve for s by gathering O(n) of these linear equations.

5.2 Polynomial number of samples

When the number of samples is poly(n), EDCP is quantum polynomially equivalent to LWE [8].
The reduction form EDCP to LWE is proved as in Section 4. The reduction from LWE to EDCP is
based on the ball-intersection technique that was originally proposed by [32]. We briefly review the
reduction idea here and refer the reader to [32, 8] for details.
Let (A, b0 = As0 + e0) be a set of m samples from LWEn,q,α, written in matrix form. We start by
preparing the state ∑

s∈Zn
q

r−1∑
j=0

|j〉|s〉,

where we have omitted the normalization factors for clarity. Here, r is a function of n and q. We
then compute (j, s) 7→ As − jb0 into an auxiliary register. After a change of variables we obtain
the state ∑

s∈Zn
q

r−1∑
j=0

|j〉|s+ js0〉|As− je0〉. (12)
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The goal is to project the above state onto a state
∑
s∈Zn

q

∑r−1
j=0|j〉|s + js0〉 for some s ∈ Znq with

high probability. To do this, the idea is to draw m-dimensional balls around the points As − je0

for all s ∈ Znq and j ∈ Zr and then select a random point in one of these balls. Let Bm(0, R) be a
ball of radius R around 0. To implement the above idea, we can represent Bm(0, R) using points
of a fine grid. More precisely, Bm(0, R) is represented by B̃m(0, R) = 1

LZ
m ∩ Bm(0, R) for a large

integer L. We can efficiently prepare (an approximation of) the superposition

|B̃m(0, R)〉 =
1√

B̃m(0, R)

∑
x∈B̃m(0,R)

|x〉. (13)

Note that for any y ∈ Zmq we have y+ B̃m(0, R) = B̃m(y, R). Tensoring the states in (12) and (13)
and adding the third register to the fourth register we obtain the state

∑
s∈Zn

q

r−1∑
j=0

|j〉|s+ js0〉|As− je0〉|B̃m(As− je0, R)〉.

For an appropriate choice of the radius R, for each s ∈ Znq the intersection ∩jB̃m(As − je0, R) is

large, while B̃m(As − je0, R) ∩ B̃m(As′ − j′e0, R) = ∅ for any s 6= s′ and any j, j′. Therefore, if
we measure the last register we obtain the state

r−1∑
j=0

|j〉|s+ js0〉|As− je0〉

for some random s ∈ Znq , with probability O(1 − 1/`) where ` = poly(n log q). The last register
can be uncomputed using the transform |j〉|x〉|y〉 7→ |j〉|x〉|y − Ax + jb0〉 to obtain the state∑r−1

j=0|j〉|s+ js0〉.
The above procedure produces an EDCP sample from LWE samples with a probability that is only
polynomially close to 1. This means we can obtain a polynomial number of EDCP sample from a
polynomial number of LWE samples, and that is the most we can do. In other words, producing a
super-polynomial number of EDCP samples from a super-polynomial number of LWE sample using
the above procedure, can be done only with negligible probability. There is no known reduction
from LWE to EDCP for which the sample conversion probability is, for example, subexponentially
close to 1.

5.3 Subexponential number of samples

When the number of samples is subexponential, EDCP can be solved in time subexponential in
O(n log q). This can be done using Kuperberg’s algorithm [20, 21], which solves the hidden subgroup
problem for the dihedral group DN . The idea of the algorithm is to use a sieve on states of the
form

1√
2

(|0〉|x〉+ |1〉|x+ s〉), (14)

where x ∈ ZN is uniformly random, to recover the hidden shift s ∈ ZN . The state (14) is called a
dihedral coset state and the problem of recovering s, given such states, is called the Dihedral Coset
Problem (DCP). The complexity of Kuperberg’s algorithm is 2O(

√
logN) for both time and space.

Regev [33] improved the algorithm to use only poly(logN) space at the cost of slightly increasing
the running time to 2O(

√
logN log logN).
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Note that DCP is a special case of EDCPn,q,r where n = 1, q = N and r = 2. Conversely, EDCP
can be reduced to vectorial variant of DCP which can be solved using a similar algorithm as in [20].
We briefly explain the steps of the algorithm here.

Theorem 19. Given 2O(
√
n log q) samples, EDCPn,q,r can be solved in time 2O(

√
n log q).

Proof. Let s = (s1, . . . , sn). We will recover sn, the rest of the si can be recovered similarly. The
proof proceeds in a sequence of simple reductions.

1. From EDCPn,q,r to DCP over Znq : Given the distribution µs,r we can efficiently sample from the
distribution µs,2 using Lemma 10. A sample from µs,2 is of the form

|φx,2〉 =
1√
2

(|0〉|x〉+ |1〉|x+ s〉),

where x ∈ Znq is uniformly random. This is a dihedral coset state over the group Znq .

2. From DCP over Znq to DCP over Zq: measuring the second register of (1⊗Fqn)|φx,2〉 we obtain
the state

|φy〉 =
1√
2

(|0〉+ ω〈y,s〉q |1〉) (15)

where y ∈ Znq is the outcome of the measurement and is uniformly random. Given two such
states |φy1〉 and |φy2〉, we can compute the state

|φy1−y2〉 =
1√
2

(|0〉+ ω〈y1−y2,s〉q |1〉)

with probability 1/2 by measuring the second register of cnot|φy1〉|φy2〉. If y1 and y2 had the
first k coordinates in common then y1 − y2 would have 0 in the first k coordinates. From this,
we can perform a sieve operation: prepare many states of the form (15), then pair the states
that have y with the same first k coordinates, and then perform the above operation to produce
new states with y that have the first k coordinates zeroed out. Repeating the same process on
the new states produces states with y that have first 2k coordinates equal to 0, and so on. The
final output of this process is a state |φy〉 where y = (0, . . . , 0, y), i.e., the state

|φy〉 := |φy〉 =
1√
2

(|0〉+ ωysnq |1〉). (16)

This is a DCP state over the group Zq.

3. Kuperberg for DCP over Zq: From the states (16) sn can be recovered using Kuperberg’s
algorithm.

To analyze the above algorithm, suppose we start with q` states. Since we are zeroing out k
coordinates at each stage, there are n/k stages. At any stage, if there are c · qk states, it can
be shown, using a simple application of Lemma 4, that at least c/8 · qk states service the sieve
operation. Therefore, to have Θ(qk) states remaining in the last stage, we must have q`8−n/k ≥ qk,
hence ` ≥ k + 3n/(k log q). To minimize the right hand side, we take k ∈ Θ(

√
n/ log q), and

therefore, we can take ` ∈ Θ(
√
n/ log q).

Remark. When q = poly(n), Kuperberg’s algorithm is not very efficient for solving DCP over Zq.
Instead, we can use a POVM called the Pretty Good Measurement (PGM) [15]. Suppose we have
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prepared the states |φy0〉, . . . , |φyt〉, of the form (16), for some t ≥ dlog qe+ 1. The tensor product
of these states is

|ψ〉 :=
t−1⊗
j=0

1√
2

(|0〉+ ω
yjsn
q |1〉) =

1√
2t

∑
x∈{0,1}t

ωα(x)sn
q |x〉,

where α(x) = x0y0 + · · · + xtyt mod q. Using PGM on the state |ψ〉, we can recover sn with
constant probability [4]. The implementation of PGM, in this case, boils down to inverting the
function α : {0, 1}t → Zq, which can be done efficiently since q = poly(n).

6 Quantum Public-Key Cryptosystem

A quantum public-key cryptosystem, similar to a classical system, consists of three algorithms:

� Gen(1n) generates a public-key pk and a secret-key sk based on the security parameter n.

� Enc(pk,m) outputs a ciphertext c for a given public-key pk and message m.

� Dec(sk, c) outputs a message m for a given secret-key sk and ciphertext c.

The output pair (pk, sk) of the Gen algorithm for a quantum system consists of a quantum state and
a classical state, respectively. In particular, the public-key pk is a quantum state that is generated
using a classical key sk. The algorithm Enc encrypts the message m, which is classical information,
using the quantum state pk. The output c of Enc is a quantum state. The algorithm Dec uses the
key sk to decrypt the quantum state into a classical message m.
For the security parameter n, we set the parameters for public key system as follows. We choose a
prime p = poly(n) and set q = ps for some integer s > 0. We also set r = ps

′
where s′ < s. The

reason for these choices of parameters is that the resulting encryption scheme is simpler and more
efficient. More generally, one could select q to be a positive integer with poly(n)-bounded prime
factors and r = ps

′ |q to be a proper divisor where p is prime. In what follows, we describe our
cryptosystem for encrypting a one-bit message b ∈ {0, 1}. Since there is only one prime p, we drop
the parameter p in (8) for clarity.

Gen(1n): Select x, s ∈ Znq uniformly at random. Apply the transform Fr ⊗1 to the register |0〉|x〉
to obtain the state |ψ〉 = 1√

r

∑r−1
j=0|j〉|x〉. Apply the transform As : |j〉|x〉 7→ |j〉|x + js〉 to |ψ〉 to

obtain the state

|φs,r(x, 0)〉 =
1√
r

r−1∑
j=0

|j〉|x+ js〉.

Return the public-key, secret-key pair (pk, sk) = (|φs,r(x, 0)〉, s).

Enc(pk = ρs,r,0, b ∈ {0, 1}): Select t ∈ Zr\{0} uniformly at random. Apply the transform U :

|j〉|y〉 7→ ωbtjp |j〉|y〉 to ρs,r,0 to obtain the state

Uρs,r,0U
∗ = U Ex←Zn

q

[
|φs,r(x, 0)〉〈φs,r(x, 0)|

]
U∗

= Ex←Zn
q

[
U |φs,r(x, 0)〉〈φs,r(x, 0)|U∗

]
= Ex←Zn

q

[
|φs,r(x, bt)〉〈φs,r(x, bt)|

]
= ρs,r,bt.

Return ρs,r,bt.
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Dec(sk = s, c = ρs,r,bt): Apply the transform Ss : |j〉|y〉 7→ |j〉|y− js〉 to ρs,r,bt. Discard the second
register. Apply Fr to the resulting state and measure. If the measurement result is 0 then output
0, otherwise output 1.

Lemma 20 (Correctness). For any bit b ∈ {0, 1} and all outputs (s, ρs,r,0) of Gen, we have

Pr[Dec(s,Enc(ρs,r,0, b)) = b] = 1.

Proof. Given the ciphertext ρs,r,tb, the decryption steps are as follows

ρs,r,b 7→ Ex←Zn
q

[
Ss|φs,r(x, bt)〉〈φs,r(x, bt)|S∗s

]
(apply Ss)

= Ex←Zn
q

[
1

r

r−1∑
k,j=0

ωbt(j−k)
p |k〉|x〉〈j|〈x|

]

=
1

r

r−1∑
k,j=0

ωbt(j−k)
p |k〉〈j| ⊗ Ex←Zn

q

[
|x〉〈x|

]

7→ 1

r

r−1∑
k,j=0

ωbt(j−k)
p |k〉〈j| (discard the second register)

7→ Fr
1

r

r−1∑
k,j=0

ωbt(j−k)
p |k〉〈j|F∗r (apply quantum Fourier transform)

= |btr/p〉〈btr/p|

If b = 0 then the above state is |0〉〈0|, otherwise it is |tr/p〉〈tr/p| 6= |0〉〈0|.

Discussion. The above encryption scheme can be naturally based on the original decision-EDCP
(Definition 8) as well. The resulting scheme, however, is not as efficient. To see this, suppose public
keys are generated using the Gen algorithm above. Bob encrypts a bit b ∈ {0, 1} as follows: if b = 0
then he outputs the public key as the ciphertext. If b = 1 then he measures the first register of the
public key to obtain a state |j〉|x〉, for uniformly random (j,x) ∈ Zr×Znq , and outputs this state as
the ciphertext. Distinguishing between the encryption of 0 and 1 is then equivalent to solving the
decision-EDCP. Now, if Alice runs the above Dec algorithm on the ciphertext she gets two possible
outputs depending on the value of b:

� When b = 0, the output is always 0, since the last state obtained in the algorithm is always
|0〉〈0| and so the measurement outcome is 0.

� When b = 1, the output is 1 with probability 1− 1/r. This is because the last state obtained
in the algorithm, just before the last measurement, is Fr|j〉〈j|F∗r .

To decrease the above (rather large) decryption error down to, say, 2−Ω(n), the Dec algorithm has
to be repeated Ω(n/ log r) times. In the quantum setting, that means Alice has to have access to
Ω(n/ log r) copies of the ciphertext, which in turn means Bob needs the same number of copies
of the public key to generate the ciphertexts. This is equivalent to saying that for an encryption-
decryption round with negligible error probability, the size of the public key increases by a factor
of Ω(n/ log r). This scheme then has no advantage over a classical LWE-based encryption scheme.
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6.1 Circuits

All there algorithms Gen,Enc,Dec in the above public-key cryptosystem are very easy to implement.
In the following, we briefly describe the circuits for these algorithms. Since all the arithmetic unites
used in the circuits are already known, we will not give a gate-level design for them.
Figure 2 shows the key generation circuit. The gate Fr is the quantum Fourier transform over Zr,
and the gate As is the multiply-add transform |j〉|x〉 7→ |j〉|x+ js〉.

|0〉 Fr

|x〉 As

Figure 2: The circuit for Gen

For the encryption algorithm, we need to implement the transform |j〉|y〉 7→ ωbtjp |j〉|y〉. We start
by preparing the state

(1⊗ Fp)
1√
r

r−1∑
j=0

|j〉|x+ js〉 ⊗ |1〉 =
1√
r

r−1∑
j=0

|j〉|x+ js〉 1
√
p

∑
z∈Zp

ωzp|z〉.

Then we apply the transform Tbt : |j〉|y〉|z〉 7→ |j〉|y〉|z − jbt〉 to obtain the state

1√
r

r−1∑
j=0

|j〉|x+ js〉 1
√
p

∑
z∈Zp

ωzp|z − jbt〉 =
1√
r

r−1∑
j=0

ωbtjp |j〉|x+ js〉 1
√
p

∑
z∈Zp

ωzp|z〉.

Finally, we measure the last register to obtain the desired state. Figure 3 shows the encryption
circuit.

|j〉
|y〉

|1〉 Fp Tbt

Figure 3: The circuit for Enc.

Figure 4 shows the decryption circuit. The gate Fr is the quantum Fourier transform over Zr, and
the gate Ss is the multiply-subtract operation |j〉|x〉 7→ |j〉|x− js〉.

|j〉 Fr

|y〉 Ss

Figure 4: The circuit for Dec.

6.2 A very efficient instantiation

Although our cryptosystem is efficient even for a super-polynomial modulus q = ps and any poly(n)-
bounded prime p, it can be made more efficient by choosing a poly(n)-bounded q and a small prime
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p. In particular, we can choose p = 2 and q = 2s such that q = poly(n). In this case, we choose
r = 2s

′
where s′ � s.

For the above parameters, we have ωp = −1. In the encryption algorithm, since t 6= 0, the only
choice for t is t = 1 and, therefore, random number generation is not required. For an input bit b
the ciphertext state is

|φs,r(x, b)〉 =
1√
r

r−1∑
j=0

(−1)bj |j〉|x+ js〉.

The phase (−1)bj is much simpler to compute than the more general phase ωbtjp . In particular, the
quantum Fourier transform Fp is now the Hadamard transform H : |x〉 7→ (|0〉+(−1)x|1〉)/

√
2, and

the transform Tbt is now Tb : |j〉|y〉|z〉 7→ |j〉|y〉|z⊕ (jb mod 2)〉. Figure 5 shows the new encryption
circuit.

|j〉
|y〉

|1〉 H Tb

Figure 5: The circuit for Enc.

Let us briefly analyze the complexity of this scheme. The Gen algorithm requires random generation,
scalar multiplication and addition in Znq . These can be done at the cost of O(n log q log log q)
qubit operations. The quantum Fourier transform over Zr can be done in O(log r log log r) qubit
operations [14]. The Enc algorithm takes O(1) since the Tb operation takes O(1). The Dec algorithm
has the same complexity as the Gen algorithm.
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A Poisson Summation

Let G be a locally compact abelian group, and let T be the circle group. The dual group Hom(G,T)
of all continuous group homomorphisms from G to T is denoted by Ĝ. The operation in Ĝ is
pointwise multiplication, i.e., for χ1, χ2 ∈ Ĝ, (χ1.χ2)(x) = χ1(x)χ2(x). There is a natural topology
on Ĝ, called the compact-open topology, that makes it a topological group. It can be shown that
Ĝ is a locally compact abelian group as well. In the representation theory language, Ĝ is called the
character group of G and the element of Ĝ are called characters.
The group G carries a Haar measure that unique up to a multiplicative positive constant. The
space L1(G) is then defined according to the Haar measure. For a character χ ∈ Ĝ, the Fourier
transform of a function f ∈ L1(G) is defined by the Haar integral

f̂(χ) =

∫
G
f(g)χ(g)dg.

Let H ≤ G be a closed subgroup, so there is an exact sequence

0→ H → G→ G/H → 0 (17)

of topological groups. Applying the functor Hom(−,T) to the above sequence, we obtain the exact
sequence

0→ Ĝ/H → Ĝ→ Ĥ → 0 (18)

of duals. The Fourier transform is a linear map from the groups in (17) to the groups in (18). The
Poisson summation formula relates these Fourier transforms. We can always choose Haar measures
on H,G, and G/H such that the quotient integral identity∫

G
f(g)dg =

∫
G/H

∫
H
f(gh)dhd(gH)

holds for every compactly supported continuous function f : G→ C.

Theorem 21 (Poisson summation). Let H ≤ G be a closed subgroup and let f ∈ L1(G). Define

fH ∈ L1(G/H) by fH(gH) =
∫
H f(gh)dh. Then f̂H = f̂ |

Ĝ/H
, where | is restriction. If f̂ |

Ĝ/H
∈

L1(Ĝ/H) then we also have ∫
H
f(gh)dh =

∫
Ĝ/H

f̂(χ)χ(g)dχ

for almost all g ∈ G.

An example of a locally compact group is G = Rn with Haar measure taken to be the usual
Lebesgue measure. For each u ∈ Rn the mapping χu : Rn → C defined by χu(x) = e2πi〈u,v〉 is a

character of G. In fact, all the elements of Ĝ are of this form, and we have Rn ' R̂n via the map

u 7→ χu. Let H = L where L is a lattice. Then since L and R̂n/L = L⊥ are both discrete groups,
the integrals in Theorem 21 are just summations, so we obtain∑

x∈L
f(x+ y) =

1

Vol(Rn/L)

∑
x∈L⊥

f̂(x)e2πi〈x,y〉
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B Some Tools From Quantum Information

B.1 Rejection sampling

Let π ∈ Rn be such that ‖π‖2 = 1 and let ε ∈ Rn be any vector such that ε ≤ π, i.e., εk ≤ πk for
all k. Let

|ψπ〉 =

n∑
k=1

πkζk|k〉|αk〉, (19)

where |ζk| = 1 for all k, and αk is a function of k. The process of transforming the state (19) into
the state

|ψε〉 =
1

‖ε‖2

n∑
k=1

εkζk|k〉|αk〉, (20)

is called quantum rejection sampling [30]. Define the set of single-qubit operations

Rε(k) =
1

πk

 √|πk|2 − ε2
k −εk

εk

√
|πk|2 − ε2

k

 , 1 ≤ k ≤ n,

and let Rε =
∑n

k=1|k〉〈k| ⊗ 1⊗Rε(k). Then we have

Rε|ψπ〉|0〉 =
n∑
k=1

ζk|k〉|αk〉
(√
|πk|2 − ε2

k|0〉+ εk|1〉
)
.

If we measure the last register, the probability of obtaining the state (20) is
∑n

k=1|ζkε|2 = ‖ε‖22.
We state this result in the following lemma for the sake of reference.

Lemma 22. The state conversion |ψπ〉 7→ |ψε〉 can be done with probability ‖ε‖22.

B.2 Norms and Gaussians

Let X = Cn. For a quantum state σ ∈ D(X ), the trace norm is defined as

‖σ‖1 = Tr
(√
σ∗σ

)
.

This is the Schatten p-norm for p = 1. Let u,v ∈ S(X ) be unit vectors, and let

|ψu〉 =

n∑
k=1

uk|αk〉, |ψv〉 =

n∑
k=1

vk|αk〉

be quantum states, where {|αk〉} is an orthonormal set, and vk and uk are the coordinates of u and
v, respectively. Then the following inequality holds between the trace norm and the `1 norm.

‖|ψu〉〈ψu| − |ψv〉〈ψv|‖1 ≤ ‖u− v‖1. (21)

The inequality (21) can be used to approximate quantum states that involve Gaussians. In partic-
ular, let gr(x) = exp(−πx2/r2) be a one-dimensional Gaussian. For any set of complex numbers
{ζk}k∈Z on the unit circle and any subset A ⊆ Z define

gr(A) =
∑
k∈A

gr(k), g̃r(A) =
∑
k∈A

ζkgr(k).
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Lemma 23. For any κ, r > 0, we have |g̃r(Z\[−
√
κr,
√
κr])| ≤ 2−Ω(κ)gr(Z).

Proof.

|g̃r(Z\[−
√
κr,
√
κr])| ≤

∑
k∈Z\[−

√
κr,
√
κr]

|ζkgr(k)|

= gr(Z\[−
√
κr,
√
κr])

≤ 2−Ω(κ)gr(Z),

where the last inequality follows from Lemma 24.

Lemma 24 ([8, Lemma 1]). For any κ, r > 0, we have gr(Z\[−
√
κr,
√
κr]) ≤ 2−Ω(κ)gr(Z).

Corollary 25. Let κ, r > 0 and let A = [−
√
κr,
√
κr]. Let {ζk,j}(k,j)∈Zn×Z be complex numbers on

the unit circle. For the quantum states

|ψA〉 =
1

S

n∑
k=1

∑
j∈A

ζk,jgr(j)|k〉, |ψZ〉 =
1

T

n∑
k=1

∑
j∈Z

ζk,jgr(j)|k〉

we have ‖|ψA〉〈ψA| − |ψZ〉〈ψZ|‖1 ≤ 2−Ω(κ)T−1gr(Z).

Proof. This follows from (21), Lemma 23 and a straightforward calculation.
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