
Privacy-Preserving Epidemiological Modeling on Mobile Graphs

DANIEL GÜNTHER, MARCO HOLZ, ENCRYPTO, Technical University of Darmstadt, Germany

BENJAMIN JUDKEWITZ, Charité-Universitätsmedizin, Germany

HELEN MÖLLERING, ENCRYPTO, Technical University of Darmstadt, Germany

BENNY PINKAS, Bar-Ilan University, Israel

THOMAS SCHNEIDER, ENCRYPTO, Technical University of Darmstadt, Germany

AJITH SURESH, Technology Innovation Institute, Abu Dhabi

Since 2020, governments all over the world have used a variety of containment measures to control the spread of COVID-19, such as

contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those

policies before they are implemented. Unfortunately, their predictive accuracy is hampered by the scarcity of relevant empirical data,

specifically detailed social contact graphs. As this data is inherently privacy-critical, there is an urgent need for a method to perform

powerful epidemiological simulations on real-world contact graphs without disclosing sensitive information.

In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework that enables the execution of standard

epidemiological models for infectious disease on a population’s most recent real contact graph while keeping all contact information

privately and locally on the participants’ devices. As underlying building block, we present PIR-SUM, a novel extension to private

information retrieval that allows users to securely download the sum of a set of elements from a database rather than individual

elements. We provide a proof-of-concept implementation of our protocols demonstrating that a 2-week simulation over a population

of half a million can be finished in 7 minutes, with each participant communicating less than 50 KB of data.

CCS Concepts: • Security and privacy → Privacy-preserving protocols; Social network security and privacy; Information

accountability and usage control; Privacy protections.

ACM Reference Format:
Daniel Günther, Marco Holz, Benjamin Judkewitz, Helen Möllering, Benny Pinkas, Thomas Schneider, and Ajith Suresh. 2018. Privacy-

Preserving Epidemiological Modeling onMobile Graphs. In .ACM, New York, NY, USA, 36 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The COVID-19 pandemic has profoundly affected people’s daily lives, posing significant challenges such as increased

mental illness, balancing childcare, homeschooling, and work, an increase in domestic abuse cases, and many more [91,

119, 128]. Governments all over the world have taken a variety of steps to restrict the spread of the virus to save human

lives and keep the economic system working. Those range from closing institutions, such as schools, to country-wide

lockdowns. Despite these courageous efforts, the global number of infections skyrocketed, and COVID-19 claimed far

too many lives. Aside from highly lethal diseases like COVID-19, many other infectious diseases have emerged and

have had a significant impact on human life over time. For example, since 2022 incidences of mpox (previously known

as monkeypox) in Europe have increased to the point that quarantine measures have been implemented [23, 34, 56].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

In the context of COVID-19, contact tracing apps are being used all over the world to notify contacts of potential

infections [108, 113]. Unfortunately, contact tracing has a fundamental limitation: It only notifies contacts of an infected

person after the infection has been detected, i.e., typically after a person develops symptoms, is tested, receives the test

result, and can connect with previous contacts [85, 123]. Tupper et al. [123] report that in British Columbia in April

2021, this process ideally took five days, reducing new cases by only 8% compared to not using contact tracing. They

conclude that contact tracing must be supplemented with multiple additional containment measures to effectively

control disease spread.

In contrast, we consider epidemiological modeling, which allows predicting the spread of an infectious disease in

the future and has received a lot of attention [59, 133]. Epidemiological modeling allows to assess the effectiveness

of containment measures by mathematically modeling their impact on the spread, aiding governments in selecting

effective strategies [120]. For example, Davis et al. [40] predicted in early 2020 that COVID-19 would infect 85% of the

British population without any containment measures in place, causing a massive overload of the health system (13-80×
the capacity of intensive care units). Their forecast also indicated that short-term interventions such as school closures,

social distancing, and so on would not effectively reduce the number of cases. As a result, the British government decided

to implement a lockdown in March 2020, effectively reducing transmissions and stabilising the health system [120].

With access to detailed information about a population’s size, density, transportation, and health care system,

epidemiological modeling could accurately forecast disease transmission in a variety of situations [2]. Especially precise,

up-to-date information about movements and physical interactions in space and time is crucial for precisely forecasting

transmission as well as the impact of various control measures before being implemented [76]. In practice, these

simulations may quickly model a future disease’s spread, calculate the projected number of infections when specific

actions are taken, and divert the spread to specific areas.

However, data on personal encounters in the real-world is very scarce and, thus the impact of containment measures

can only be approximated so far [2, 53, 76]. This lack of data is primarily owing to the fact that encounter data has

generally been acquired by surveys, which do not accurately reflect reality [48, 76], e.g., random encounters in public

transport or shopping malls. Moreover, social interaction patterns change over time and sometimes even rapidly, as

we have seen with social distancing measures, rendering collected contact information outdated. Hence, none of the

existing data permits realistic simulations on the actual person-to-person social contact graph. Epidemiologists desire

the full physical interaction graph of a population from a modeler’s standpoint. Yet, strict data protection regulations

such as in democratic states, honoring privacy rights, hinder accurate tracking of interpersonal contacts.

To address the issue of obtaining the most recent contact data while protecting individuals’ privacy, we present

RIPPLE, the first privacy-preserving framework for epidemiological modeling that allows precise simulations of disease

spread based on current physical contact information while taking into account deployed control measures and without

leaking any information about individuals’ contacts. RIPPLE provides a privacy-preserving method for collecting

real-time physical encounters and can compute arbitrary compartment-based epidemiological models
1
on the most

recent contact graph of the previous days in a privacy-preserving manner. RIPPLE can be used to investigate the effect

of containment measures not only for COVID-19, but for any infectious diseases. We anticipate that our framework’s

privacy guarantee will encourage more people to participate, allowing epidemiologists to compute more accurate

simulations that will eventually help to develop effective containment measures against diseases in the future.

1
The implementation of concrete simulation functions is outside the scope of this work and referred to medical experts. More details on epidemiological

modeling are given in §2.

2

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Our Contributions. This paper introduces RIPPLE (cf. Fig. 1), a framework that expands the scope of privacy research

from contact tracing to epidemiological modeling. While contact tracing only warns about potential infections in

the past, epidemiological modeling can predict the spread of infectious diseases in the future. Anticipating the effects

of various control measures allows for the development of informed epidemic containment strategies and political

interventions prior to their implementation.

time steps

#
of
in
di
vi
du
al
s

Research Institute

3b

3c

3a 2

1
4

ΣAnonymous
Communication Participants

1 Mobile app collects anonymous encounter tokens during interactions. 2 Research Institute begins the simulation by providing

initialization parameters. 3a Participants securely upload infection likelihood to servers. 3b Servers securely compute cumulative

infection likelihood per participant. 3c Participants retrieve their cumulative infection likelihood. 4 The aggregate results

(#S,#E,#I,#R) are sent to the Research Institute.

Fig. 1. Overview of RIPPLE Framework.

RIPPLE uses a fully decentralised system similar to the federated learning paradigm [93], fostering trust and

widespread participation, and encouraging participants to contribute representative contact information. All participant

data, such as encounter location, time, and distance, are kept locally on the participants’ devices. Communication

among participants occurs through anonymous channels facilitated by a group of semi-honest central servers.

RIPPLE offers two methods for privacy-preserving epidemiological modeling, each covering different use cases.

The first method, RIPPLETEE, relies on the presence of a Trusted Execution Environment (TEE) on participants’ mobile

devices. The second method, RIPPLEPIR, eliminates this assumption by utilising cryptographic primitives like Private

Information Retrieval (PIR). Along the way, we develop a multi-server PIR extension enabling clients to retrieve the sum

of a set of elements (in our case, infection likelihoods) from a database without learning anything about individual entries.

We assess the practicality of our methods by benchmarking core components using a proof of concept implementation.

Our results show that, with adequate hardware, both protocols scale up to millions of participants. For instance, simulat-

ing 14 days with 1million participants takes less than 30minutes to complete.We summarize our contributions as follows:

(1) We present RIPPLE, the first privacy-preserving framework to perform epidemiological modeling on contact

information stored on mobile devices. RIPPLE formalises the notion of privacy-preserving epidemiological modeling

and defines privacy requirements.

(2) For epidemiological simulations using real-world contact data acquired with participants’ mobile devices, we present

two techniques – RIPPLETEE and RIPPLEPIR – that combine anonymous communication techniques with either

TEEs or PIR and anonymous credentials.

(3) We propose PIR-SUM, an extension to existing PIR schemes, that allows a client to download the sum of 𝜏 distinct

database entries without learning the values of individual entries or revealing which entries were requested.

(4) We demonstrate the practicality of our framework by providing a detailed performance evaluation using our open

source implementation of RIPPLE.

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

2 RELATEDWORK & PRELIMINIARIES

This section discusses related works addressing privacy challenges in the context of infectious diseases as well as

necessary background information on contact tracing and epidemiological modeling, including a clarification of the

differences between the two. An overview of the (cryptographic) primitives used in this work is presented in §A.

2.1 Privacy-preserving Solutions in the Context of Infectious Diseases

CrowdNotifier [89] notifies visitors of (large) events about an infection risk when another visitor reported SARS-

CoV-2 positive after the event, even if they have not been in close proximity of less than 2 meters. To protect user

privacy, it follows a distributed approach where location and time information is stored encrypted on the user’s device.

Bampoulidis et al. [13] introduce a privacy-preserving two-party set intersection protocol that detects infection hotspots

by intersecting infected patients, input by a health institute, with customer data from mobile network operators.

CoVault [42] is a data analytics platform based on secure multi-party computation techniques (MPC) and trusted

execution environments (TEEs). The authors discuss the usage of CoVault for storing location and timing information

of people usable by epidemiologists to analyse (unique) encounter frequencies or linkages among two disease outbreak

clusters while preserving privacy.

Al-Turjman and David Deebak [4] integrate privacy-protecting health monitoring into a Medical Things device

that monitors the health status (heart rate, oxygen saturation, temperature, etc.) of users in quarantine with moderate

symptoms. Only in the event of an emergency is medical personnel notified. Pezzutto et al. [107] optimize the distribution

of a limited set of tests to identify as many positive cases as possible, which are then isolated. Their system can be

deployed in a decentralized, privacy-aware environment to identify individuals who are at high risk of infection.

Barocchi et al. [14] develop a privacy-preserving architecture for indoor social distancing based on a privacy-preserving

access control system. When users visit public facilities (e.g., a supermarket or an airport), their mobile devices display

a route recommendation for the building that maximizes the distance to other people. Bozdemir et al. [19] suggest

privacy-preserving trajectory clustering to identify typical movements of people allowing to detect forbidden gatherings

when contact restrictions are in place.

Contact Tracing. A plethora of contact tracing systems has been introduced and deployed since the outbreak of the

pandemic [3, 35, 113]. They either use people’s location (GPS or telecommunication provider information) or measure

proximity (via Bluetooth LE). Most systems can be categorized into centralized and decentralized designs [125]. In a

centralized contact tracing system (e.g., [68, 118]), computations such as the generation of the tokens exchanged during

physical encounters are done by a central party. This central party may also store some contact information depending

on the concrete system design. In contrast, in decentralized approaches (e.g., [24, 108, 122]), computation and encounter

information remain (almost completely) locally at the participants’ devices.

Contact tracing focuses on determining contacts of infected people in the past. In contrast, epidemiological modeling,

which we consider in this work, forecasts the spread of infectious diseases in the future. Thus, epidemiological modeling

goes beyond established contact tracing systems. They share some technical similarities (specifically, the exchange of

encounter tokens), but on top of anonymously recording the contact graph, simulations have to be run on it. Similarly,

presence tracing and hotspot detection are concerned with “flattening the curve” in relation to infections in the past. In

contrast, epidemiological modeling is a tool for decision-makers to evaluate the efficacy of containment measures like

social distancing in the future, allowing them to “get ahead of the wave”.

4

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2.2 Epidemiological Modeling

There are several options to model a disease mathematically. The popular compartment models [20, 21, 55, 61, 64, 66,

114, 133] capture the spread with a few continuous variables linked by simple differential equations. A prominent

example is the SEIR model [45, 66, 74, 133] with four compartments to which people are assigned, namely, susceptible (S),

exposed (E), infectious (I), and recovered (R). For each simulated time interval, the number of people assigned to each

class is computed. While such models are useful for capturing macroscopic trends and also used in state-of-the-art

epidemiological research, e.g., [32, 117], the basic approaches condense complex individual behaviour into few variables,

thus, limiting the simulation’s predictive power [92, 104]. Agent-based epidemiological models [54], on the other hand,

initialise a large number of agents with a set of individual properties (e.g., location or age). These agents then interact

according to a set of interaction rules (e.g., location-based or age-based) to simulate disease spread. The simulations are

carried out in many time steps. Combining both directions, i.e., using agents in a compartment model, allows for a more

realistic model of individual behaviour for forecasting disease transmission in a population. Many such simulations with

varying parameters are run in parallel to simulate the effect of various policy interventions (e.g., reducing interactions

between agents of a certain age, capping the maximum number of allowed contacts, or vaccinating a selected group of

agents). The aggregated number of agents assigned to the same “infection class” (e.g., susceptible, exposed, infectious,

and recovered for the SEIR model) is then computed for each simulation step.

A crucial question is how to model the agents’ individual contact behaviour. Older models relied on survey-based

contact matrices, which included information such as the average number of contacts in a given age range [76]. This is

already a significant improvement over treating all people the same. However, aggregated network statistics cannot

recreate the dynamics of a real complex network graph, as evidenced by the prevalence of super-spreaders with far

more contacts than the average [80]. Thus, using the real-world contact graph between all individual members of the

population would be ideal from an epidemiological standpoint.

Privacy-Preserving Epidemiological Modeling from Contact Tracing. If contact information collected through contact

tracing apps was centralised, an up-to-date full contact graph could be constructed for epidemiological simulations.

However, contact information is highly sensitive information that should not be shared. Contact information collected

via mobile phones can reveal who, when, and whom people meet, which is by itself sensitive information and must

be protected. Moreover, such information also enables to derive indications about the financial situation [16, 90, 116],

personality [97], life-partners [6], and ethnicity [6]. One can think about many more examples: By knowing which

medical experts are visited by a person, information about the health condition can be anticipated; contact with members

of a religious minority as well as visits to places related to religion might reveal a religious orientation, etc. Thus, it

would be ideal to enable precise epidemiological simulations without leaking any individual contact information.

One way to achieve privacy-preserving epidemiological modeling from contact tracing apps is to let each participant

(i.e., each device using the contact tracing app) secretly share its contact information between a set of non-colluding

servers, which can then jointly run simulations using techniques like secure multi-party computation (MPC), cf. §A. In

fact, Araki et al. [9] show how to run graph algorithms on secret shared graphs via MPC efficiently. Even though such a

non-collusion assumption is common in the crypto community, the general public in some countries may have difficulty

trusting a system in which all contact information is disclosed if the servers collude. In contrast, RIPPLE distributes

trust among all participants in such a way that they can keep their own contact information local while simulating the

spread of disease by sending messages to each other anonymously. Furthermore, only aggregated simulation results will

be shared with a research institute, so no data directly relating to a single identity will be shared. This approach mimics

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

the baseline idea of Federated Learning [93] and prominent contact tracing designs supported by Apple and Google.
2

The increased trust level of a distributed design fosters the crucial broad adoption of such a system in the population.

To the best of our knowledge, RIPPLE is the first framework that allows the execution of any agent-based compartment

model on the distributed real contact graph while maintaining privacy.

3 THE RIPPLE FRAMEWORK

RIPPLE’s primary goal is to facilitate the assessment of various combinations of potential containment measures

proposed by epidemiologists and the government. Rather than implementing measures in real-life and analyzing their

impact afterwards, our focus is on finding a balance between the benefits and drawbacks of these measures. Examples of

such measures include mandating face masks in public places, limiting the size of gatherings, closing specific institutions

or stores, and even implementing curfews and regional lockdowns.

Participants in RIPPLE collect personal encounter data anonymously and locally store it on their mobile devices such

as cell phones, similar to privacy-preserving contact tracing apps. However, for epidemiological modeling, RIPPLE

must also derive a contact graph without leaking sensitive personal information in order to compute simulations of

disease spread, which may involve multiple sets of containment measures for some time period, such as two weeks. In

almost every country, we can find a 6-hour period during the night when the majority of the population sleeps and

mobile devices are idle, connected to the Internet via WiFi, and possibly charging, i.e., an ideal time window for running

RIPPLE simulations. The results can then be analysed by medical experts to learn more about the disease or by political

decision-makers to determine the most promising containment measures to implement.

To acquire representative and up-to-date physical encounter data, widespread public usage of RIPPLE would be ideal,

similar to contact tracing apps. One way to encourage this is to piggyback RIPPLE on the official contact tracing applica-

tions used by several countries. Politicians, on the other hand, can motivate residents beyond the intrinsic incentive of

supporting public health by coupling the use of RIPPLE with additional benefits such as discounted or free travel passes.

3.1 System and Threat Model

RIPPLE comprises of p participants, denoted collectively by P, a research institute RI who is in charge of the epidemio-

logical simulations, and a set of MPC servers C responsible for anonymous communication among the participants.

We assume that the research institute and MPC servers are semi-honest [60], which means they correctly follow

protocol specifications while attempting to learn additional information. The semi-honest MPC servers are also used to

establish an anonymous communication channel. We discuss the security of the anonymous communication channel in

more detail in §B.3. A protocol is considered to be secure if nothing is leaked beyond what can be inferred from the output.

Though the semi-honest security model is not the strongest security model, it provides a good trade-off between privacy

and efficiency, which is why it is commonly used in the design of several practical privacy-preserving applications such

as privacy-preserving machine learning [26, 94, 96, 105], genome/medical research [115, 121, 127], and localization

services [71, 124]. It also protects against passive attacks by curious administrators and accidental data leakage.

Furthermore, it is quite often the first step toward developing protocols with stronger privacy guarantees [11, 87]. We

believe this is a reasonable assumption in our setting because the research institute and the servers will be controlled/run

by generally trusted entities such as governments or (public) medical research centres, potentially in collaboration with

NGOs such as the EFF
3
or the CCC

4
.

2
https://covid19.apple.com/contacttracing

3
https://www.eff .org 4

https://www.ccc.de/en/

6

https://www.eff.org
https://www.ccc.de/en/

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Parameter Description

P Set of all participants; P = {P1, . . . ,Pp}
RI Research Institute

C Communication Servers {S0, S1, S2}

paramsim simulation parameters defined by RI

𝑁sim # distinct simulations (executed in parallel)

𝑁step # steps per simulation

classinf infection classes; classinf = {class1inf , . . . , class
Ninf
inf }

𝐼 s
𝑖

P𝑖 ’s infection class in simulation step s ∈ [0, 𝑁step]
E𝑖 Encounter tokens of P𝑖

𝐸max
𝑖

#max. encounters by P𝑖 in pre-defined time interval

𝐸avg average number of encounters

𝜅 computational security parameter 𝜅 = 128

𝑟𝑒 Unique token for encounter 𝑒 ∈ [0, 𝐸max]
𝛿
𝑟𝑒
𝑖

P𝑖 ’s infection likelihood w.r.t. token 𝑟𝑒

Δ𝑖 P𝑖 ’s cumulative infection likelihood

𝑚𝑒
𝑖

metadata of an encounter 𝑒 by P𝑖
(pk𝑖 , sk𝑖) P𝑖 ’s public/private key pair

𝜎𝑒
𝑖
. P𝑖 ’s signature on message about encounter 𝑒

Entities

Simulations

Protocols

Table 1. Notations used in RIPPLE.

Given the importance of effective contain-

ment measures, we expect motivated partici-

pants to contribute to epidemiological model-

ing. However, assuming complete honesty

from all millions of potential participants

is unrealistic. Therefore, we also consider a

client-malicious security model [25, 84] for

the participants in P, in which some of the

participants are malicious and may deviate

from the protocol to gather additional infor-

mation about their encounters. Malicious be-

haviour can actively try to hamper or even

destroy the correctness of the simulation.

However, in the scope of this work, we con-

centrate on the aforementioned deviations

for additional information gain, leaving the

problem of developing efficient countermea-

sures against correctness attacks to future

work. Tab. 1 summarises the notations used

in this work.

3.2 Phases of RIPPLE

RIPPLE consists of four phases shown in Fig. 1: i) Token Generation, ii) Simulation Initialization, iii) Simulation Ex-

ecution, and iv) Result Aggregation. While RIPPLE can be applied to any compartment-based epidemiological modeling

of infectious diseases (see §2.2), we will explain RIPPLE using the SEIR model [45, 74] and the COVID-19 virus as an

example. For simplicity, we assume that each participant has installed an app that emulates RIPPLE on their mobile

device, and they enter attributes like workplace, school, regular eateries, and cafes locally within the app (resp. the

app could make suggestions for those based on the user’s frequent locations).

Fig. 2 summarises the phases of the RIPPLE framework in the context of a single simulation setting. Multiple simula-

tions can be executed in parallel. The concrete number of simulation runs with the same parameters or different param-

eters should be determined by epidemiologists. Note that simulations are run on collected data, e.g., from the last days,

and not on real-time encounter information. This combines efficiency with maximally up-to-date encounter information.

1 - Token Generation: During a physical encounter, participants exchange data via Bluetooth LE to collect anony-

mous encounter information (Fig. 3a), similar to contact tracing [65, 108, 122]. These tokens are stored locally on the

devices of the users and do not reveal any sensitive information (i.e., identifying information) about the individuals

involved. In addition to these tokens, the underlying application will collect additional information on the context of

the encounter known as “metadata" for simulation purposes. This varies depending on the underlying instantiation of

the protocol and can include details such as duration, proximity, time, and location. To generate the metadata, a set of

standard labels (e.g., restaurants, bars, gyms) can be automatically assigned to a location derived from Google maps.

The metadata can be used to include or exclude different encounters in the simulation phase, allowing the effect of

containment measures to be modelled (e.g., restaurant closings by excluding all encounters that happened in restaurants).

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

The token generation phase is not dependent on the simulation phase, so no simulation-dependent infection data is

exchanged. The token generation phase is modelled as an ideal functionality Fgen that will be instantiated later in §4.

1 - Token Generation

• P𝑖 ∈ P executes Fgen all the time (on its mobile device), collecting encounter data of the form (𝑟𝑒 ,𝑚𝑒) with 𝑒 < 𝐸max
𝑖

.

2 - Simulation Initialization

• P𝑖 ∈ P receives paramsim from RI and locally sets 𝐼 1
𝑖
= 𝐼 init

𝑖
.

3 - Simulation Execution

For each simulation step s ∈ [𝑁step], P𝑖 ∈ P execute the following:

• Filter out encounters using paramsim to obtain encounter set Es
𝑖
.

• For each token 𝑟𝑒 ∈ Es𝑖 , compute the infection likelihood 𝛿
𝑟𝑒
𝑖

locally using the formula from RI.

• Invoke Fesim with the input {𝛿𝑟𝑒
𝑖
}𝑟𝑒 ∈Es𝑖 and obtain Δs

𝑖
=

∑
𝑟𝑒 ∈Es𝑖

ˆ𝛿
𝑟𝑒
𝑖
.

• Update the infection class 𝐼 s
𝑖
using Δs

𝑖
and the guidelines from RI.

4 - Result Aggregation

For each simulation step s ∈ [𝑁step], execute the following:

• P𝑖 ∈ P prepares {v1i , . . . , v
Ninf
i }s with vki = 1 if 𝐼 s

𝑖
= classkinf and vki = 0 otherwise, for 𝑘 ∈ [𝑁inf].

• Invoke Fagg with inputs {v1i , . . . , v
Ninf
i }s to enable RI obtain the tuple {C1

inf, . . . ,C
Ninf
inf }

s
, whereCk

inf =
∑
P𝑖 ∈P

vki for𝑘 ∈ [𝑁inf].

Protocol RIPPLE

Fig. 2. RIPPLE Framework (for one simulation setting).
Running Example: Assume that a participant, Alice, takes the bus to pick up her daughter from school. There are several

other people on this bus – for simplicity, we call them Bob1, . . . , Bobx. As part of the token generation phase, Alice’s

phone exchanges unique anonymous tokens with the devices of the different Bobs. Now, two weeks later, it is night,

and the national research institute (RI) wants to run a simulation covering 14 days to see what effect closing all schools

would have on the disease’s spread. To accomplish this, the RI notifies all registered participants’ applications to run a

simulation using encounter data from the previous two weeks.

2 - Simulation Initialization: The research instituteRI initiates the simulation phase by sending a set of parameters,

denoted by paramsim, to the participants in P. The goal is to “spread" a fictitious infection across 𝑁sim different

simulation settings. To begin a simulation, each participant P𝑖 is assigned to an infection class 𝐼 init
𝑖
∈ classinf (e.g.,

{S}usceptible, {E}xposed, {I}nfectious, {R}ecovered for the SEIR model) as specified in paramsim. For each individual

simulation, paramsim defines a set of containment measures, such as school closings and work from home, which the

participants will use as filters to carry out the simulation in the next stage.
5
In addition, RI publishes a formula to

calculate the infection likelihood 𝛿 . The likelihood is determined by several parameters in the underlying modeling,

such as encounter distance and time. For example, this likelihood might range from 0 (no chance of infection) to

100 (certain to get infected).

5
Note, that potential alternatives (e.g., visiting a bar after restaurant closings) are not covered in this model.

8

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Running Example: Assume Alice is designated as infectious, while Bob1 is designated as susceptible by RI. The other

participants Bob2, . . . , Bobx are also assigned to an infection class (S, E, I, or R). To simulate containment measures,

the RIPPLE-app now employs filters defined in paramsim. Using the information provided by the participants
6
, the

application may automatically filter out encounters that would not happen if a containment measure were in place,

such as encounters in school while simulating school closings.

3 - Simulation Execution: Once the RI initialises the simulation, 𝑁step simulation steps (steps 3a , 3b , 3c in Fig. 1)

are performed for each of the 𝑁sim simulation settings (e.g., 𝑁step = 14 days). Without loss of generality, consider the

first simulation step and let 𝑁sim = 1. The simulation proceeds as follows:

1) Participant P𝑖 ∈ P filters out the relevant encounters based on the containment measures defined by RI. Let the

corresponding encounter tokens be represented by the set E𝑖 .
2) For each token 𝑟𝑒 ∈ E𝑖 , P𝑖 computes the infection likelihood 𝛿

𝑟𝑒
𝑖

using the formula from RI, i.e., the probability

that P𝑖 infects the respective participant he met during the encounter with identifier token 𝑟𝑒 .

3) Participants use the likelihood values 𝛿 obtained in the previous step to execute an ideal functionality called Fesim,
which allows them to communicate the 𝛿 values anonymously through a set of MPC servers C. Furthermore, it

allows each participant P𝑗 to receive a cumulative infection likelihood, denoted by Δ 𝑗 , based on all of the encounters

they had on the day being simulated, i.e., Δ 𝑗 =
∑

𝑟𝑒 ∈E 𝑗
ˆ𝛿
𝑟𝑒
𝑗
. In this case,

ˆ𝛿
𝑟𝑒
𝑗

denotes the infection likelihood computed

by participant P𝑓 and communicated to P𝑗 for an encounter between P𝑓 and P𝑗 with identifier token 𝑟𝑒 . As will be

discussed later in §3.3, Fesim must output the cumulative result rather than individual infection likelihoods because

the latter can result in a breach of privacy.

4) Following the guidelines set by the RI, P𝑗 updates its infection class 𝐼 𝑗 using the cumulative infection likelihood Δ 𝑗

acquired in the previous step.

These steps above are repeated for each of the 𝑁step simulation steps in order and across all the 𝑁sim simulation settings.

Running Example: Let the simulated containment measure be the closure of schools. As Alice is simulated to be infectious,

Alice’s phone computes the infection likelihood for every single encounter it recorded on the day exactly two weeks

ago (Day 1) except those that occurred at her daughter’s school. Following that, Alice’s phone combines the computed

likelihood of each encounter with the corresponding unique encounter token to form tuples, which are then sent

to the servers instantiating the anonymous communication channel. Using the encounter token as an address, the

servers anonymously forward the likelihood to the person Alice has met, for example, Bob1 (cf. Fig. 3b). Likewise, Bob1

receives one message from each of the other participants he encountered and obtains the corresponding likelihood

information. Bob1 aggregates all likelihoods he obtained from his encounters on Day 1 and checks the aggregated

result to a threshold defined by the RI to see if he has been infected in the simulation
7
.

4 - Result Aggregation: For a given simulation setting, each participant P𝑖 ∈ P will have its infection class 𝐼 s
𝑖

updated at the end of every simulation step s ∈ [𝑁step]. The goal of this phase is to allow RI to obtain the aggregated

number of participants per class (e.g., #S, #E, #I, #R) for each simulated time step. For this, we rely on a Secure

Aggregation functionality, denoted by Fagg, which takes a 𝑁inf-tuple of the form {v1i , . . . , v
Ninf
i }s from each participant

for every simulation step s and outputs the aggregate of this tuple over all the p participants to RI. In this case, vki
is an indicator variable for the 𝑘-th infection class, which is set to one if 𝐼 s

𝑖
= classkinf and zero otherwise. Secure

6
This may also include location data obtained from the mobile app., e.g., Check In and Journal fields in the Corona-Warn contact tracing app.

7
Bob1

obtains only the aggregated likelihood in the actual protocol.

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

aggregation [50, 81, 86, 86] is a well-studied building block in cryptography these days, particularly in the context of

federated learning, and there are numerous solutions proposed for various settings, such as using TEEs, a semi-trusted

server aggregating ciphertexts under homomorphic encryption, or multiple non-colluding servers that aggregate secret

shares. In this work, we consider Fagg to be a black box that can be instantiated using multiple existing solutions.

dkc9

b1kq

(a) Token Generation

Sent:
dkc9

Sent:
b1kq

Received:
dkc9
b1kq

simulated

(b) Simulation

Fig. 3. Token Generation and Simulation phases in RIPPLE.

Running Example: All participants will know their

updated infection class at the end of Day 1’s simula-

tion round, and they will prepare a 4-tuple of the form

{vS, vE, vI, vR} representing their updated infection class

in the SEIR model. Participants will then engage in a se-

cure aggregation protocol that determines the number

of participants assigned to each infection class, which

is then delivered to the RI. Then, the second simulation

round begins, which replicates the procedure but this

time using encounters from 13 days ago, i.e., Day 2. The

RI obtains the aggregated number of participants for each

of the simulated 14 days, i.e., a simulation of how the disease would spread if all schools had been closed in the previous

14 days (cf. graph in Fig. 1).

3.3 Privacy Requirements

1
1
1

Fig. 4. Linking Identities Attack. Alice
and Bob had several encounters, but Al-
ice and Charlie only had one.

Keeping the contact graph private requires that the participants remain unaware

of any unconscious interactions. This means they cannot find out if they had

unconscious contact with the same person more than once or how often they

did. We remark that an insecure variant of RIPPLE, in which each participant

P𝑖 receives the infection likelihood
ˆ𝛿𝑒
𝑖
for all of its encounters 𝑒 ∈ 𝐸𝑖 separately

(instead of the aggregation of all), will not meet this requirement as described

next.

Linking Identities Attacks. To demonstrate this, observe that when running

multiple simulations (with different simulation parameters paramsim) on the same

day, participants will use the same encounter tokens and metadata from the token generation phase in each simulation.

If a participant P𝑖 (Alice) can see the infection likelihood
ˆ𝛿𝑖 of each of her interactions separately, P𝑖 can look for

correlations between those likelihoods to see if another participant P𝑗 (Bob) was encountered more than once. We call

this a Linking Identities Attack and depict it in Fig. 4, where, for simplicity, the infection likelihood accepts just two

values: 1 is a high infection likelihood and 0 is a low one.

Consider the following scenario to help clarify the issue: Alice and Bob work together in the same office. As a

result, they have numerous conscious encounters during working hours. However, in their spare time, they may be

unaware that they are in the same location (e.g., a club) and may not want the other to know. Even if they do not see

each other, their phones constantly collect encounters. Assume the RI sent the participants a very simple infection

likelihood formula that simply returns 0 (not infected) or 1 (infected). Furthermore, since the data is symmetric, both

Alice and Bob have the same metadata (duration, distance, etc.) about their conscious and unconscious encounters. Let

Bob be modelled as infectious in the first simulation. As a result, he will send a 1 for each (conscious and unconscious)

10

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

encounter he had (including those with Alice). If multiple simulations are run on the same day (i.e., with the same

encounters), Alice will notice that some encounters, specifically all conscious and unconscious encounters with Bob,

always have the same infection likelihood: If Bob is not infectious, all will return a 0; if Bob is infectious, all will return

a 1. Thus, even if Alice had unconscious encounters with Bob, she can detect the correlations between the encounters

and, as a result, determine which unconscious encounters were most likely with Bob.

The more simulations she runs, the more confident she becomes because the infection state for multiple simulations

is a unique fingerprint. Since every participant knows the formula, this attack can be extended to complex infection

likelihood functions as well. While it may be more computationally expensive than the simple case, Alice is still able to

identify correlations. This attack also works even if all of the encounters were unconscious. In such situations, Alice

may not be able to trace related encounters to a single person (Bob), but she can infer that they were all with the same

person (which is more than learning nothing). To avoid a Linking Identities attack, RIPPLE ensures that in a simulation

phase, each participant receives just an aggregation of all infection likelihoods of their encounters. It cannot be avoided

that participants can understand that when “getting infected” someone of their contacts must have been in contact

with a (simulated) infectious participant. As this is only a simulated infection, we consider this leakage acceptable.

11

Fig. 5. Sybil Attack.

Sybil Attack. While the Linking Identities Attack is already possible for semi-

honest adversaries, malicious participants may go even further to circumvent the

aggregation mechanism that prevents access to individual infection likelihoods.

They could, for example, construct many sybils, i.e., multiple identities using several

mobile devices, to collect each encounter one by one and then conduct a Linking

Identities Attack with the information.

A registration system can be used to increase the costs of performing sybil attacks,

i.e., to prevent an adversary from creating many identities. This assures that only

legitimate users are allowed to join and participate in the simulation. In a closed ecosystem, such as a cpmpany, this can

be achieved by letting each member receive exactly one token to participate in the simulation. On a larger scale at the

national level, one can let each citizen receive a token linked to a digital ID card. In such authentication mechanisms,

anonymous credentials (cf. §A) can be used to ensure anonymity.

Inference Attacks. Note that although RIPPLE mimics the spirit of Federated Learning (FL) [93], it is not susceptible

to so-called inference attacks [52, 99] in the same sense as FL. First of all, RIPPLE only reveals the final output (to a

research institute RI) and no individual updates/results that ease information extraction. However, the analysis results

provided to RI (cf. §3.1) contain information about the spread of the modeled disease in a specific population (otherwise

it would be meaningless to run the simulation). The ideal functionality does not cover leakage from the final output

but protects privacy during the computation. Thus, anything that might be inferred from the output is not considered

in our security model. We argue that it is in the public interest to provide such aggregated information to the RI for

deciding upon effective containment measures against infectious diseases.

4 INSTANTIATING Fesim
In this section, we propose two instantiations of Fesim that cover different use cases and offer different trust-efficiency

trade-offs. Our first design, RIPPLETEE (§4.1), assumes the presence of trusted execution environments (TEEs) such as

ARM TrustZone on the mobile devices of the participants. In our second design, RIPPLEPIR (§4.2), we eliminate this

assumption and provide a software only solution using cryptographic techniques such as private information retrieval.

11

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

4.1 RIPPLETEE

The deployment of the entire operation in a single designated TEE would be a simple solution to achieving the ideal

functionality Fesim. However, given the massive amount of data that must be handled in a large-scale simulation with

potentially millions of users, TEE resource limitations are a prohibitive factor. Furthermore, since the TEE would contain

the entire population’s contact graph, it would be a single point of failure and an appealing target for an attack on TEE’s

known vulnerabilities. RIPPLETEE (Fig. 6), on the other hand, leverages the presence of TEEs in participants’ mobile

devices but in a decentralised manner, ensuring that each TEE handles only information related to the encounters made

by the respective participant.

72 1

0
3

Anonymous Communication

4

6

5

Fig. 6. RIPPLETEE Overview. Messages in red denote addi-
tional steps needed for malicious participants.

Before going into the details of RIPPLETEE, we will go over

the Fanon functionality (cf. §B.3) that we will use in our instanti-

ation. We define it as follows: Fanon allows two participants, P𝑖
and P𝑗 , to send messages to each other anonymously via a set of

communication servers C. The set C consists of one server act-

ing as an entry node (Nentry), receiving messages from senders,

and one server acting as an exit node (Nexit), forwarding mes-

sages to receivers. In Fanon, sender P𝑖 does not learn to whom

the message is sent, and receiver P𝑗 does not learn who sent

it. Similarly, the servers in C will be unable to link receiver and

sender of a message. Anonymous communication (cf. §A) is an

active research area, e.g., [1, 5, 51, 63], and Fanon in RIPPLETEE

can be instantiated using any of these efficient techniques.

4.1.1 The RIPPLETEE Protocol.

Token Generation (steps 0 to 1 in Fig. 6): During the pre-computation phase, the TEE of each participant P𝑖 ∈ P
generates a list of fresh unique public/private keys (pk𝑒𝑖 , sk

𝑒
𝑖) for all possible encounters 𝑒 ∈ [𝐸max

𝑖
]. The keys can

be pre-generated and stored, e.g., on the day before. The newly generated public keys are then sent by P𝑖 ’s TEE to

the exit node Nexit (step 0 in Fig. 6) to enable anonymous communication (cf. §B.3) via Fanon later in the protocol’s

simulation part.

During a physical encounter 𝑒 , P𝑖 and P𝑗 exchange two unused public keys pk
𝑒
𝑖 and pk

𝑒
𝑗 (step 1 in Fig. 6). Simulta-

neously, both participants compute and record metadata𝑚𝑒 , such as the time, location, and duration of the encounter,

and store this information alongside the received public key.

Additional measures are required for malicious participants to ensure that the participants are exchanging public

keys generated by the TEEs: After obtaining the new public keys from P𝑖 , the exit node Nexit signs them and returns

the signatures to P𝑖 after checking that it is connecting directly with a non-corrupted TEE (step 0 in Fig. 6). During a

physical encounter, P𝑗 will provide the corresponding signature, denoted by 𝜎𝑒
𝑗
along with pk

𝑒
𝑗 so that the receiver P𝑖

can verify that the key was correctly generated by P𝑗 ’s TEE (step 2 in Fig. 6).

Simulation Execution. (steps 2 to 7 in Fig. 6): All local computations, including infection likelihood calculation

and infection class updates, will be performed within the participants’ TEEs. In detail, for each encounter 𝑒 involving

participants P𝑖 and P𝑗 , the following steps are executed:
– P𝑖 ’s TEE computes 𝛿

𝑟𝑒
𝑖

and encrypts it using the public key pk
𝑒
𝑗 of P𝑗 obtained during the token generation phase.

Let the ciphertext be 𝑐𝑒
𝑖, 𝑗

= Enc
pk

𝑒
𝑗
(𝛿𝑟𝑒
𝑖
) (step 2 in Fig. 6).

12

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

– P𝑖 ’s TEE establishes a secure channel with the entry node Nentry of C via remote attestation and uploads the tuple

(pk𝑒𝑗 , 𝑐𝑒𝑖, 𝑗) (step 3 in Fig. 6).

– The tuple (pk𝑒𝑗 , 𝑐𝑒𝑖, 𝑗) traverses through the servers in C and reaches the exit nodeNexit (step 4 in Fig. 6, instantiation

details for the anonymous communication channel are given in §B.3).

– If the public key pk
𝑒
𝑖 has already been used in this simulation step

8
, Nexit discards the tuple (step 5 in Fig. 6).

– Otherwise, Nexit uses pk
𝑒
𝑗 to identify the recipient P𝑗 and sends the ciphertext 𝑐𝑒

𝑖, 𝑗
to P𝑗 (step 6 in Fig. 6).

After receiving the ciphertexts for all of the encounters, P𝑗 ’s TEE decrypts them and aggregates the likelihoods to

produce the desired output (step 7 in Fig. 6).

4.1.2 Security of RIPPLETEE. First, we consider the case of semi-honest participants. During the token generation

phase, since the current architecture in most mobile devices does not allow direct communication with a TEE while

working with Bluetooth LE interfaces, participant P𝑖 can access both the sent and received public keys before they

are processed in the TEE. However, unique keys are generated per encounter and do not reveal anything about an

encounter’s identities due to the security of the underlying Fgen functionality, which captures the goal of several contact

tracing apps in use.

The Fanon functionality, which implements an anonymous communication channel utilising the servers in C, aids in
achieving contact graph privacy by preventing participants from learning to/from whom they are sending/receiving

messages. While the entry node learns who sends messages to it, it does not learn who receives them. Similarly, the exit

node Nexit has no knowledge of the sender but learns the recipient using the public key. Regarding confidentiality,

participants in RIPPLETEE have no knowledge of the messages being communicated because they cannot access the

content of the TEEs and the TEEs communicate directly to the anonymous channel. Furthermore, servers in C will not

have access to the messages as they are encrypted.

For the case of malicious participants, they could send specifically crafted keys during the token generation phase

instead of the ones created by their TEE. However, this will make the signature verification fail and the encounter will

get discarded. Furthermore, a malicious participant may reuse public keys for multiple encounters. This manipulation,

however, will be useless because the exit nodeNexit checks that each key is only used once before forwarding messages

to participants. During the simulation phase, all data and computation are handled directly inside the TEEs of the

participants, so no manipulation is possible other than cutting the network connection, i.e., dropping out of the

simulation, ensuring correctness. Dropouts occur naturally when working with mobile devices and have no effect on

privacy guarantees.

4.2 RIPPLEPIR

In the following, we show how to get rid of RIPPLETEE’s assumption of each participant having a TEE on their mobile

devices. If we simply remove the TEE part of RIPPLETEE and run the same protocol, decryption and aggregation of a

participant’s received infection likelihoods would be under their control. Thus, the individual infection likelihoods

of all encounters would be known to them, leaking information about the contact graph (cf. §3.3). To get around this

privacy issue, we need to find another way to aggregate the infection likelihoods so that only the sum, not individual

values, can be derived by the participants.

Private Information Retrieval (PIR, cf. §A) is one promising solution for allowing participants to retrieve infection

likelihoods sent to them anonymously. PIR enables the private download of an item from a public database D held byM

8
This step is not required for semi-honest participants.

13

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

servers without leaking any information to the servers, such as which item is queried or the content of the queried item.

However, classical PIR is unsuitable for our needs because we need to retrieve the sum of 𝜏 items from the database

rather than the individual ones. As a result, we introduce the ideal functionality Fpirsum (Fig. 7), which is similar to a

conventional PIR functionality but returns the sum of 𝜏 queried locations of the database as a result. For the remainder

of this section, we consider Fpirsum to be an ideal black-box and will discuss concrete instantiations in §5.

Fpirsum interacts withM servers, denoted by C, and participant P𝑖 ∈ P.

Input: Fpirsum receives 𝜏 indices denoted by Q = {𝑞1, . . . , 𝑞𝜏 } from P𝑖 and a database D from C.
Output: Fpirsum sends

∑𝜏
𝑗=1 D[𝑞 𝑗] to P𝑖 as the output.

Functionality Fpirsum

Fig. 7. Ideal functionality for PIR-SUM (semi-honest).

2

6
2 1

4

5
3

Anonymous Communication

Fig. 8. RIPPLEPIR Overview.

4.2.1 The RIPPLEPIR Protocol.

Token Generation (step 1 in Fig. 8): During a physical encounter

𝑒 among participants P𝑖 and P𝑗 , they generate and exchange

unique 𝜅-bit random tokens denoted by 𝑟𝑒
𝑖
and 𝑟𝑒

𝑗
. Both partici-

pants, like in RIPPLETEE, record the metadata𝑚𝑒
as well. Thus,

at the end of a simulation step s ∈ [𝑁step] (e.g., a day), P𝑖 holds
a list of sent encounter tokens 𝐸s

𝑖
= {𝑟𝑒

𝑖
}𝑒∈E𝑖 , where E𝑖 is the

complete (sent/received) set of encounters of P𝑖 , and a list of re-
ceived tokens, denoted by 𝑅s

𝑖
= {𝑟𝑒

𝑗
}𝑒∈E𝑖 . Looking ahead, these

random tokens will be used as addresses for communicating the

corresponding infection likelihood among the participants.

Simulation Execution (steps 2 to 6 in Fig. 8): For local com-

putations like encounter filtering and infection likelihood cal-

culation, the steps for an encounter 𝑒 between P𝑖 and P𝑗 are:
• P𝑖 blinds each 𝛿𝑟𝑒𝑖 computed with the corresponding random token 𝑟𝑒

𝑗
received from P𝑗 and obtains the ciphertext

𝑐𝑒
𝑖, 𝑗

= 𝛿
𝑟𝑒
𝑖
+H(𝑟𝑒

𝑗
| |ssim | |0) mod 2

𝑙
. Further, it computes the destination address for the ciphertext as 𝑎𝑖, 𝑗 = H(𝑟𝑒

𝑗
| |ssim | |1).

Here, H() is a cryptographic hash function and ssim ∈ [𝑁sim] denotes the current simulation setting. (step 2 in Fig. 8)

To prevent the exit node Nexit from linking messages from different simulations, ssim is utilized in H() to generate
unique (ciphertext, address) tuples for the same encounters across multiple simulation settings.

• P𝑖 sends the tuple (𝑐𝑒𝑖, 𝑗 , 𝑎𝑖, 𝑗) anonymously toNexit with the help of the servers in C.Nexit discards all the tuples

with the same address field (𝑎𝑖, 𝑗). (step 3 to 4 in Fig. 8, instantiation details for the anonymous communication

channel are given in §B.3)

As a server in C,Nexit locally creates the database D for the current simulation step using all of the (𝑎𝑖, 𝑗 , 𝑐𝑒𝑖, 𝑗) tuples
received (part of step 4 in Fig. 8). A naive solution of inserting 𝑐𝑒

𝑖, 𝑗
using a simple hashing of the address 𝑎𝑖, 𝑗 will not

provide an efficient solution in our case since we require only one message to be stored in each database entry to have

an injective mapping between addresses and messages. This is required for the message receiver to precisely download

the messages that were sent to them. Using simple hashing, this would translate to a large database size to ensure a

negligible probability of collisions. Instead, in RIPPLEPIR, we use a novel variant of a garbled cuckoo table that we call

arithmetic garbled cuckoo table (AGCT, cf. §4.2.3), with 𝑎𝑖, 𝑗 as the insertion key for the database.

14

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Once the database D is created, Nexit sends it to the other servers in C based on the instantiation of Fpirsum (cf. §5).

Each P𝑗 ∈ P will then participate in an instance of Fpirsum with the PIR servers C sharing a database D. P𝑗 uses the
addresses of all its sent encounters from 𝐸s

𝑗
, namely H(𝑟𝑒 | |ssim | |1), as the input to Fpirsum and obtains the blinded

cumulative infection likelihood, denoted by Δ̂ 𝑗 , as the output (step 5 in Fig. 8). The cumulative infection likelihood, Δ 𝑗 ,

is then unblinded as Δ 𝑗 = Δ̂ 𝑗 −
∑
𝑟𝑒 ∈ 𝐸s

𝑗
H(𝑟𝑒 | |ssim | |0) mod 2

𝑙
concluding the current simulation step (step 6 in Fig. 8).

4.2.2 Security of RIPPLEPIR. Except for the database constructions at exit nodeNexit and the subsequent invocation of

the Fpirsum functionality for the cumulative infection likelihood computation, the security guarantees for semi-honest

participants in RIPPLEPIR are similar to those of RIPPLETEE.

0 1 N-1

...

2

0 1 N-1

...

2

0 1 N-1

...

2

Fig. 9. Insertion into the Arithmetic Garbled Cuckoo Table (AGCT). H1 and H2

are two hash functions. {𝑘1,𝑚1} and {𝑘2,𝑚2} are key-value pairs where the
key is used to determine the address of the data in the database.

Unlike RIPPLETEE,Nexit in RIPPLEPIR can-

not identify the message’s destination from

the address as it is only known by the re-

ceiving participant. Further, participants ob-

tain their cumulative infection likelihood di-

rectly via the Fpirsum functionality, ensuring

that Nexit cannot infer the participant’s en-

counter data and, thus, contact graph privacy.

Malicious participants in RIPPLEPIR, as op-

posed to RIPPLETEE, can tamper with the pro-

tocol’s correctness by providing incorrect in-

puts. However, as stated in the threat model

in §3, we assume that malicious participants

in our framework will not tamper with the

correctness and will only try to learn addi-

tional information. A malicious participant

could re-use the same encounter token for multiple encounters during token generation which would result in multiple

tuples with the same address. However, as stated in the protocol,Nexit will discard all such tuples, effectively removing

the malicious participant from the system. Another potential information leakage caused by a participant re-using

encounter tokens is that the entry point of the anonymous communication channel will be able to deduce that multiple

participants, say P𝑖 and P𝑗 , had an encounter with the same participant. This is not an issue in our protocol because we

instantiate the Fanon functionality using a 3-server oblivious shuffling scheme (cf. §B.3), where all the servers except

Nexit will not see any messages in the clear, but only see secret shares.

4.2.3 Arithmetic Garbled Cuckoo Table (AGCT). We design a variant of garbled cuckoo tables ([109], cf. §A) that we

term arithmetic garbled cuckoo table (AGCT) to reduce the size of the PIR database while ensuring a negligible collision

probability. It uses arithmetic sharing instead of XOR-sharing to share database entries and the details are presented next.

Let’s assume two key-message pairs {𝑘1,𝑚1} and {𝑘2,𝑚2}9 shall be added to database 𝐷 with 𝑁 bins and two hash

function H1 and H2 to determine the insertion addresses. The insertion process works as follows:

1. Insertion of {𝑘1,𝑚1}:
a) Compute 𝑎1 = H1 (𝑘1) mod 𝑁 and 𝑎2 = H2 (𝑘1) mod 𝑁 .

b) Check if bins 𝑎1, 𝑎2 are already occupied. Let’s assume this is not the case.

9 𝑘 corresponds to a key and𝑚 to a message in our application.

15

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

c) Compute the arithmetic sharing of the message𝑚1: ⟨𝑚1⟩0 = 𝑟1 ∈𝑅 Z2ℓ and ⟨𝑚1⟩1 =𝑚1 − ⟨𝑚1⟩0 mod 2
ℓ
.

d) Insert 𝐷 [𝑎1] = ⟨𝑚1⟩0, 𝐷 [𝑎2] = ⟨𝑚1⟩1.
2. Insertion of {𝑘2,𝑚2}:
a) Compute 𝑏1 = H1 (𝑘2) mod 𝑁 and 𝑏2 = H2 (𝑘2) mod 𝑁 .

b) Check if bins 𝑏1 and 𝑏2 are already occupied. Let’s assume 𝑏1 = 𝑎1, i.e., the first bin is already occupied, but bin 𝑏2

is free.

c) Compute the arithmetic sharing 𝑚2 with ⟨𝑚2⟩0 = ⟨𝑚1⟩0 as 𝑏1 = 𝑎1. Then, the other share is ⟨𝑚2⟩1 = 𝑚2 −
⟨𝑚2⟩0 mod 2

ℓ
.

d) Insert 𝐷 [𝑏1] = ⟨𝑚2⟩0 and 𝐷 [𝑏2] = ⟨𝑚2⟩1.
Double Collision: Now the question is how to handle the insertion of a database entry if both addresses determined by

the two hash functions are already occupied. An easy solution is to pick different hash functions s.t. no double collision

occurs for all 𝑛 elements that shall be stored in the database. Alternatively, Pinkas et al. [109] demonstrate for a garbled

cuckoo table how to extend the database by 𝑑 + 𝜆 bins, where 𝑑 is the upper bound of double collisions and 𝜆 is an error

parameter, such that double collisions occur with a negligible likelihood. For details, please refer to [109, §5].

5 PIR-SUM: INSTANTIATING Fpirsum
So far, the discussion has focused on RIPPLE as a generic framework composed of multiple ideal functionalities that could

be efficiently instantiated using state-of-the-art privacy-enhancing technologies. In this section, we will concentrate on

instantiating our novel Fpirsum functionality (Fig. 7) using three semi-honest MPC servers. In particular, we have three

servers S0, S1, and S2, and we design the PIRsum protocol to instantiate the Fpirsum functionality.

The problem statement in our context is formally defined as follows: Participant P𝑖 ∈ P has a set of 𝜏 indices denoted

by Q = {𝑞1, . . . , 𝑞𝜏 } and wants to retrieve res =
∑
𝑞∈Q D[𝑞] mod 2

ℓ
. In this case, D is a database with 𝑁 elements of

ℓ-bits each that is held in the clear by both the servers S1 and S2. The server S0 aids in the computation performed by

the servers S1 and S2. Furthermore, we assume a one-time setup (cf. §B.1) among the servers and P𝑖 that establishes
shared pseudorandom keys among them to facilitate non-interactive generation of random values and, thus, save

communication [9, 26, 105].

5.1 Overview of PIRsum protocol

At a high level, the idea is to use multiple instances of a standard 2-server PIR functionality [18, 33], denoted by F 2S
pir ,

and combine the responses to get the sum of the desired blocks as the output. D𝑚 = D +𝑚 mod 2
ℓ
denotes a modified

version of the database D in which every block is summed with the same ℓ-bit mask𝑚, i.e., D𝑚 [𝑖] = D[𝑖] +𝑚 for

𝑖 ∈ [𝑁]. The protocol proceeds as follows:
– S1 and S2 non-interactively sample 𝜏 random mask values {𝑚1, . . . ,𝑚𝜏 } such that

∑𝜏
𝑗=1𝑚 𝑗 = 0.

10

– S1, S2, and P𝑖 execute 𝜏 instances of F 2S
pir in parallel, with servers using D𝑚 𝑗

as the database and P𝑖 using 𝑞 𝑗 as the
query for the 𝑗-th instance for 𝑗 ∈ [𝜏]. The result obtained by P𝑖 from the 𝑗-th F 2S

pir instance is denoted by res𝑗 .

– P𝑖 locally computes

∑𝜏
𝑗=1 res𝑗 to obtain the desired result.

The details for instantiating F 2S
pir using the standard linear summation PIR approach [33] are provided in §C. The

approach requires P𝑖 to communicate 𝑁 · 𝜏 bits to the servers, which is further reduced in RIPPLEPIR as shown in §5.3.

10
These masks are sampled for each participant.

16

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Malicious participants. Recall from our threat model (cf. §3.1) that a malicious participant may deviate from the

protocol to gain additional knowledge but does not try to harm correctness. For example, it could use the same query,

say 𝑞 𝑗 , in all 𝜏 instances and retrieve only the block corresponding to 𝑞 𝑗 by dividing the result by 𝜏 . We use a simple

verification scheme over the F 2S
pir functionality to prevent these manipulations. Its details are presented next.

For malicious participants, we want to ensure that P𝑖 used a distinct vector
®b (representing a PIR query 𝑞 𝑗 , cf. §C)

during the 𝜏 parallel instances. One naive approach is to have S1 and S2 compute the bitwise-OR of all the 𝜏 bit query

vectors
®b1, . . . , ®b𝜏 , and then run a secure two-party computation protocol to compare the number of ones in the resultant

vector to 𝜏 . We use the additional server S0 to further optimize this step. S1 and S2 send randomly shuffled versions of

their secret shared bit vectors to S0, who reconstructs the shuffled vectors and performs the verification locally. This

approach leaks no information to S0 because it has no information about the underlying database D. The verification

procedure is as follows:

– S1 and S2 non-interactively agree on a random permutation, denoted by 𝜋 .

– S𝑢 sends 𝜋 ([®b 𝑗]𝑢) to S0 for 𝑗 ∈ [𝜏] and 𝑢 ∈ {1, 2}.
– S0 locally reconstructs 𝜋 (®b 𝑗) = 𝜋 ([®b 𝑗]1) ⊕ 𝜋 ([®b 𝑗]2), for 𝑗 ∈ [𝜏]. If all the 𝜏 bit vectors are correctly formed and

distinct, it sends Accept to S1 and S2. Else, it sends abort.

Note that the verification using P0 will incur a communication of 2𝜏𝑁 bits among the servers. Furthermore, the

above verification method can be applied to any instantiation of F 2S
pir that generates a boolean sharing of the query bit

vector among the PIR servers and computes the response as described above, e.g., the PIR schemes of [17, 18, 33].

5.2 Instantiating Fpirsum
The formal protocol for PIRsum in the case of malicious participants is provided in Fig. 10 and is based on a variant

of the standard 2-server PIR functionality F 2S
pir (as will be discussed in HYB2 below). In PIRsum, the servers S1, S2 and

the participant P𝑖 run 𝜏 instances of F 2S
pir in parallel, one for each query 𝑞 ∈ Q. Following the execution, P𝑖 receives

D[𝑞] + r𝑞 whereas S𝑢 receives r𝑞, [𝑞]𝑢 , for 𝑢 ∈ {1, 2} and 𝑞 ∈ Q. P𝑖 then adds up the received messages to get a masked

version of the desired output, i.e,

∑
𝑞∈Q D[𝑞] +maskQ withmaskQ =

∑
𝑞∈Q r𝑞 . S1, S2 computemaskQ in the same way.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞] for distinct queries, else res = ⊥.

Computation

1. For each 𝑞 ∈ Q,

a. S1, S2 and P𝑖 invoke F2Spir (cf. HYB2 in proof of Lemma 5.1) with the inputs D, 𝑞.

b. Let r𝑞, [𝑞]𝑢 denote the output of S𝑢 , for 𝑢 ∈ {1, 2} and D[𝑞] + r𝑞 denote the output of P𝑖 .

2. P𝑖 computes res′ =
∑
𝑞∈Q (D[𝑞] + r𝑞) , while S1, S2 computes maskQ =

∑
𝑞∈Q r𝑞 .

3. S1, S2 and S0 invokes Fvrfy on the secret shares of queries, denoted by { [𝑞]𝑢 }𝑞∈Q,𝑢∈{1,2} , to check the distinctness of the

queries in Q.

4. If Fvrfy returns Accept, S1, S2 sends maskQ to P𝑖 , who computes res = res′ − maskQ . Otherwise, abort.

Protocol PIRsum

Fig. 10. PIRsum Protocol.

17

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

The protocol could be completed by S1 and S2 sending maskQ to P𝑖 , then P𝑖 unmasking its value to obtain the

desired output. However, before communicating the mask, the servers must ensure that all queries in Q are distinct, as

shown in Fpirsum (Fig. 11). For this, S1, S2 use their share of the queries 𝑞 ∈ Q and participate in a secure computation

protocol with S0. We capture this with an ideal functionality Fvrfy, which takes the secret shares of 𝜏 values from S1
and S2 and returns Accept to the servers if all of the underlying secrets are distinct. Otherwise, it returns abort.

5.2.1 Security of PIRsum Protocol. Fig. 11 presents the ideal functionality for PIRsum in the context of malicious

participants. In this case, Fpirsum first checks whether all the queries made by the participant P𝑖 are distinct. If yes, the
correct result is sent to P𝑖 ; otherwise, ⊥ is sent to P𝑖 .

Fpirsum interacts with servers in C, and participant P𝑖 ∈ P.

Input: Fpirsum receives 𝜏 indices denoted by Q = {𝑞1, . . . , 𝑞𝜏 } from P𝑖 and a database D from C.
Computation: Fpirsum sets 𝑦 =

∑𝜏
𝑗=1 D[𝑞 𝑗] if all the queries in Q are distinct. Else, it sets 𝑦 = ⊥.

Output: Fpirsum sends 𝑦 to P𝑖 .

Functionality Fpirsum

Fig. 11. PIR-SUM functionality (malicious participants).

Lemma 5.1. Protocol PIRsum (Fig. 10) securely realises the Fpirsum ideal functionality (Fig. 11) for the case of malicious

participants in the {F 2S
pir , Fvrfy}-hybrid model.

Proof. The proof follows with a hybrid argument based on the three hybrids HYB0, HYB1, and HYB2 discussed

below. Furthermore, any secure three-party protocol can be used to instantiate Fvrfy in RIPPLE.

We use a standard 2-server PIR functionality, denoted by F 2S
pir , to instantiate Fpirsum. The guarantees of F

2S
pir , however,

are insufficient to meet the security requirements of Fpirsum, so we modify F 2S
pir as a sequence of hybrids, denoted by

HYB: The modification is carried out in such a way that for a malicious participant P𝑖 , each hybrid is computationally

indistinguishable from the one before it. F 2S
pir is equal to the first hybrid HYB0. We use the hybrid HYB2 instead of

F 2S
pir , and we omit introducing a different notation for the same for simplicity.

HYB0: Let F 2S
pir denote a 2-server PIR ideal functionality for our case, with servers S1 and S2 acting as database holders

and P𝑖 acting as the client. For a database D held by S1 and S2 and a query 𝑞 held by P𝑖 , F 2S
pir returns D[𝑞] to P𝑖 , but S1

and S2 receive nothing.

HYB1: We modify F 2S
pir so that it returns D[𝑞] + r to P𝑖 , and S1, S2 receive r, where r is a random value from the domain

of database block size, such that addition of r to the database blocks respects the underlying distribution. In other words,

the modification can be thought of as the standard F 2S
pir being executed over a database Dr = D + r rather than the

actual database D. This modification leaks no additional information regarding the query to the servers because they

will receive random masks that are independent of the query 𝑞. Furthermore, from the perspective of P𝑖 with no prior

knowledge of the database D, HYB1 will be indistinguishable from HYB0 because the values it sees in both cases are

from the same distribution. As a result, HYB0 ≈ HYB1.

HYB2: Looking ahead, in PIRsum, the servers S1, S2 and the participant P𝑖 run 𝜏 instances of F 2S
pir in parallel, one for

each query 𝑞 ∈ Q. As shown in Fpirsum (Fig. 11), the servers must ensure that all of the queries in Q are distinct. For

this, we modify F 2S
pir in HYB1 to additionally output a secret share of the query 𝑞 to each of S1 and S2. Because the

servers S1 and S2 are assumed to be non-colluding in our setting, this modification will leak no information about the

query 𝑞 to either server. Since the output to P𝑖 remains unchanged, HYB1 ≈ HYB2 from P𝑖 ’s perspective. □

18

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

5.3 Reducing participant’s communication

PIRsum in RIPPLEPIR can be implemented using two approaches with different trade-offs to minimize participants’ com-

munication and computation. PIRIsum (Fig. 12) prioritizes low communication over computation, while PIRIIsum (Fig. 13)

reduces both the computational and communication overhead of the participant by involving an additional server S0 ∈ C.

5.3.1 PIRIsum (Fig. 12). In this approach, we instantiate F 2S
pir using PIR techniques based on Function Secret Sharing

(FSS) [17, 18, 36]. To retrieve the 𝑞-th block from the database, P𝑖 uses FSS on a Distributed Point Function (DPF) [58]

that evaluates to a 1 only when the input 𝑞 is 1 and to 0 otherwise. P𝑖 generates two DPF keys 𝑘1 and 𝑘2 that satisfy

the above constraint and sends one key to each of the servers S1 and S2. The servers S1 and S2 can then locally expand

their key share to obtain their share for the bit vector
®b and the rest of the procedure proceeds similarly to the naive

linear summation method discussed in §5.1 (more details on Linear Summation PIR are given in §C). The key size for

a database with 𝑁 blocks using the optimised DPF construction in [18] is about 𝜆 log
2
(𝑁 /𝜆) bits, where 𝜆 = 128 for

an AES-based implementation. Fig. 12 provides the formal details of the PIRIsum protocol.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞]

Computation S1 and S2 sample 𝜏 randommask values {𝑚1, . . . ,𝑚𝜏 } ∈ Z𝜏
2
ℓ such that

∑𝜏
𝑗=1𝑚 𝑗 = 0. For each𝑞 ∈ Q, execute:

1. S1, S2 locally compute D𝑚𝑞 = D +𝑚𝑞 .

2. Execute DPF protocol [18] (verifiable DPF for malicious participants) with P𝑖 as client with input 𝑞. Server S𝑢 obtains [®b𝑞]𝑢
with b𝑗𝑞 = 1 for 𝑗 = 𝑞 and b𝑗𝑞 = 0 for 𝑗 ≠ 𝑞, for 𝑢 ∈ {1, 2}.

Verification Let {®b𝑞1 , . . . , ®b𝑞𝜏 } denote the bit vectors whose XOR-shares are generated during the preceding steps.

3. Servers verify correctness of 𝑞 𝑗 , 𝑗 ∈ [𝜏], by executing the Ver algorithm of the verifiable DPF protocol [18] (cf. §B.4). It

outputs Accept to S1 and S2 if 𝑞 𝑗 has exactly 1 one and (𝑁 − 1) zeroes. Else, it outputs abort.

4. S𝑢 computes [®b𝑐]𝑢 = ⊕𝑞∈Q [®b𝑞]𝑢 , for 𝑢 ∈ {1, 2}.

5. S1 and S2 non-interactively agree on random permutation 𝜋 .

6. S𝑢 sends 𝜋 ([®b𝑐]𝑢) to S0, for 𝑢 ∈ {1, 2}.

7. S0 locally reconstructs 𝜋 (®b𝑐) = 𝜋 ([®b𝑞]1) ⊕𝜋 ([®b𝑞]2) , sends Accept to S1 and S2, if 𝜋 (®b𝑐) has exactly 𝜏 ones, abort otherwise.

Output Transfer Send ⊥ to P𝑖 if verifiable DPF or S0 generated abort during verification. Otherwise, proceed as follows:

8. S𝑢 sends [𝑦𝑞]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D𝑚𝑞 [𝑗] to P𝑖 , for 𝑞 ∈ Q,𝑢 ∈ {1, 2}.

9. P𝑖 locally computes res =
∑
𝑞∈Q ([𝑦𝑞]1 ⊕ [𝑦𝑞]2) .

Protocol PIRIsum

Fig. 12. PIRIsum Protocol.
Security. For semi-honest participants, the security of protocol PIRIsum directly reduces to that of the 2-server PIR

protocol in [18]. However, as mentioned in [18], a malicious participant could generate incorrect DPF keys, compromising

the scheme’s security and correctness. To prevent this type of misbehaviour, Boyle et al. [18] present a form of DPF

called “verifiable DPF”, which can assure the correctness of the DPF keys created by P𝑖 at the cost of an increased

constant amount of communication between the servers.

19

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

Input(s): i) S1, S2 : D; |D | = 𝑁 , ii) P𝑖 : Q = {𝑞1, . . . , 𝑞𝜏 }, and iii) S0 : ⊥.
Output: P𝑖 : res =

∑
𝑞∈Q D[𝑞]

Computation S1 and S2 sample 𝜏 random mask values {𝑚1, . . . ,𝑚𝜏 } ∈ Z𝜏
2
ℓ such that

∑𝜏
𝑗=1𝑚 𝑗 = 0. For each 𝑞 ∈ Q, execute

the following:

1. S1, S2 locally compute D𝑚𝑞 = D +𝑚𝑞 , i.e., D𝑚𝑞 [𝑗] = D[𝑗] +𝑚𝑞 , for 𝑗 ∈ [𝑁].

2. P𝑖 , S1, S2 sample random 𝜃𝑞 ∈ [𝑁].

3. P𝑖 computes and sends 𝑞′ = 𝑞 − 𝜃𝑞 to S0.

4. Servers execute DPF protocol [18] with S0 as client with input 𝑞′. Server S𝑢 obtains [®b𝑞′]𝑢 with b𝑗
𝑞′ = 1 for 𝑗 = 𝑞′ and

b𝑗
𝑞′ = 0 for 𝑗 ≠ 𝑞′ , for 𝑢 ∈ {1, 2}.

5. S𝑢 locally applies 𝜃𝑢 on [®b𝑞′]𝑢 to generate [®b𝑞]𝑢 , for 𝑢 ∈ {1, 2}.

Verification Let {®b𝑞1 , . . . , ®b𝑞𝜏 } denote the bit vectors whose XOR-shares are generated during the preceding steps:

6. S𝑘 computes [®b𝑐]𝑘 = ⊕𝑞∈Q [®b𝑞]𝑘 , for 𝑢 ∈ {1, 2}.

7. S1 and S2 non-interactively agree on random permutation 𝜋 .

8. S𝑢 sends 𝜋 ([®b𝑐]𝑢) to S0, for 𝑢 ∈ {1, 2}.

9. S0 locally reconstructs 𝜋 (®b𝑐) = 𝜋 ([®b𝑞]1) ⊕ 𝜋 ([®b𝑞]2) . It sends Accept to S1 and S2, if 𝜋 (®b𝑐) has exactly 𝜏 ones. Else, it

sends abort.

Output Transfer Send ⊥ to P𝑖 if S0 generated abort during verification. Otherwise, proceed as follows:

10. S𝑢 sends [𝑦𝑞]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D𝑚𝑞 [𝑗] to P𝑖 , for 𝑞 ∈ Q,𝑢 ∈ {1, 2}.

11. P𝑖 locally computes res =
∑
𝑞∈Q ([𝑦𝑞]1 ⊕ [𝑦𝑞]2) .

Protocol PIRIIsum

Fig. 13. PIRIIsum Protocol.

While using verifiable DPFs in PIRIsum ensures that the 𝜏 bit vectors generated by P𝑖 are valid, it does not ensure that
the bit vectors

®b1, . . . , ®b𝜏 correspond to 𝜏 distinct locations in the database D. However, we leverage the correctness

guarantee of verifiable DPFs to reduce the communication cost for verification, as discussed in §5.1, §B.4, and §C. In

detail, all 𝜏 bit vectors ®b1, . . . , ®b𝜏 , i.e., the PIR queries, that are available in a secret-shared form among S1 and S2 are

now guaranteed to have exactly one 1 in them, with the remaining bit positions being 0. To ensure distinctness, S1 and

S2 XOR all their respective 𝜏 shares locally to obtain the secret-share of a single vector
®b𝑐 = ⊕𝜏

𝑘=1
®b𝑘 . The problem now

boils down to determining whether or not
®b𝑐 has exactly 𝜏 bit positions set to 1. This can be accomplished by servers

S1 and S2 agreeing on a random permutation 𝜋 and reconstructing 𝜋 (®b𝑐) to S0 and allowing S0 to perform the check,

as in the naive approach (cf. §5.1).

Computation Complexity (#AES operations). In PIRIsum, the participant P𝑖 must perform 4 · log
2
(𝑁 /𝜆) AES operations

as part of the key generation algorithm for each of the 𝜏 instances of F 2S
pir over a database of size 𝑁 , where 𝜆 = 128 for

an AES-based implementation. Similarly, S1 and S2 must perform log
2
(𝑁 /𝜆) AES operations for each of the 𝑁 DPF

evaluations. We refer to Table 1 in [18] for more specifics.

20

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

5.3.2 PIRIIsum (Fig. 13). In this approach, we use the server S0 to reduce the computation and communication of the

participant P𝑖 in PIRIsum. The idea is that S0 plays the role of P𝑖 for the PIR protocol in PIRIsum. However, P𝑖 cannot
send its query 𝑞 to S0 in clear because it would violate privacy. As a result, P𝑖 selects random values 𝑞′, 𝜃𝑞 ∈ [𝑁] such
that 𝑞 = 𝑞′ +𝜃𝑞 . In this case, 𝑞′ is a shifted version of the index 𝑞, and 𝜃 is a shift correction for 𝑞. P𝑖 sends 𝑞′ to S0 and 𝜃𝑞
to both S1 and S2. The remainder of the computation until output retrieval will now take place solely among the servers.

The servers run a DPF instance [18] with S0 acting as the client and input query 𝑞′. At the end of the computation,

S1 and S2 obtain the bit vector
®b𝑞′ , which corresponds to 𝑞′. However, as discussed in PIRIsum, the servers require an

XOR sharing corresponding to the actual query 𝑞 in order to continue the computation. S1 and S2 do this by using the

shift correction value 𝜃𝑞 received from P𝑖 . Both S1 and S2 will perform a right cyclic shift of their
®b𝑞′ shares by 𝜃𝑞

positions. A negative value for 𝜃𝑞 indicates a cyclic shift to the left.

It is easy to see that the XOR shares obtained after the cyclic shift correspond to the bit vector
®b𝑞 . To further optimise

P𝑖 ’s communication, P𝑖 and servers S1, S2 non-interactively generate a random shift correction values 𝜃𝑞 using the

shared-key setup (cf. §B.1), and only the corresponding 𝑞′ values are sent to S0. The rest of the protocol is similar to

PIRIsum, and the formal protocol is shown in Fig. 13. In terms of malicious participants, PIRIIsum has an advantage over

PIRIsum as there is no need to use a verifiable DPF to protect against malicious P𝑖 , because the semi-honest server S0
generates the DPF key instead of P𝑖 .

Improving Verification Costs in PIRIIsum. A large amount of communication is used in both PIRsum protocols to protect

against malicious participants. More specifically, in Step 8 of Fig. 13 (resp., Step 8 of Fig. 12), 2𝑁 bits are sent to S0 to

ensure the distinctness of the queries made by the participant P𝑖 . We note that allowing a small amount of leakage to

S0 could improve this communication and is discussed next.

Consider the following modification to the PIRIIsum protocol. Instead of sampling 𝜃𝑞 for each query 𝑞 ∈ Q (cf. Step 2

in Fig. 13), P𝑖 , S1, and S2 sample only one random shift value 𝜃 and use it for all 𝜏 instances. Since the queries must be

distinct, P𝑖 is forced to send distinct 𝑞′ values to S0 in Step 3 of Fig. 13. If not, S0 can send abort to S1 and S2 at this

step, eliminating the need for communication-intensive verification. The relative distance between the queried indices

would be leaked to S0 as a result of this optimization. In concrete terms, if we use the same 𝜃 value for any two queries

𝑞𝑚, 𝑞 𝑗 ∈ Q, then 𝑞𝑚 − 𝑞𝑛 = 𝑞′𝑚 − 𝑞′𝑛 . Because S0 sees all 𝑞′ values in the clear, it can deduce the relative positioning

of P𝑖 ’s actual queries. However, since S0 has no information about the underlying database D, this leakage may be

acceptable for some applications.

Stage PIRIsum PIRIIsum

P𝑖 to servers in C 2𝜏 (𝜆 + 2) log
2
(𝑁 /𝜆) + 4𝜏𝜆 𝜏 log

2
𝑁

Server to server 0 2𝜏 (𝜆 + 2) log
2
(𝑁 /𝜆) + 4𝜏𝜆

Servers in C to P𝑖 𝜏 · 2ℓ 𝜏 · 2ℓ

+ Verification (mal.) 2𝑁 + 2 + 𝛿 2𝑁 + 2

Table 2. Summary of communication costs in bits between participants P𝑖 and a
server S𝑗 ∈ C for PIRsum. 𝜆 denotes the AES key size (𝜆 = 128 in [17]), ℓ denotes
the block size in bits (ℓ = 128 in this work), and 𝛿 denotes the constant involved
in the verifiable DPF approach enabling malicious security [18] (cf. §C).

5.3.3 Summary of communication costs. Tab. 2

summarises the communication cost for our

two PIRsum approaches for instantiating

Fpirsum over a database of size 𝑁 with 𝜏 PIR

queries per client.

6 EVALUATION

In this section, we evaluate and compare the

computation and communication efficiency of

our two RIPPLE protocols presented in §4. A

fully-fledged implementation, similar to exist-

ing contact tracing apps, would necessitate collaboration with industry partners to develop a real-world scalable system

21

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§4.1) 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

RIPPLEPIR: PIRIsum (§5.3.1) 51.63 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

RIPPLEPIR: PIRIIsum (§5.3.2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

RIPPLETEE (§4.1) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00

RIPPLEPIR (§5) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

Entities Protocol

Population (p)

Participants in P
(in KB)

Servers in C
(in GB)

Table 3. Communication costs per simulation step in our RIPPLE instantiations.

for national deployment. Instead, we provide a proof-of-concept implementation and micro benchmark results for all

major building blocks.
11

Moreover, we do not measure the speed of the communication link between the participants

and the servers. We focus on the simulation phase for benchmarking, which is separate from the token generation phase.

The simulations can ideally be done overnight while mobile phones are charging and have access to a high-bandwidth

WiFi connection. According to studies [129, 131], sleeping habits in various countries provide a time window of several

hours each night that can be used for this purpose.

Setup and Parameters. We run the benchmarks on the server-side with three servers (two for FSS-PIR and one

as a helper server as discussed in §5.3) with Intel Core i9-7960X CPUs@2.8 GHz and 128 GB RAM connected with

10 Gbit/s LAN and 0.1 s RTT. The client is a Samsung Galaxy S10+ with an Exynos 9820@2.73 GHz and 8GB RAM.

As Android does not allow third-party developers to implement applications for Android’s TEE Trusty [7], we use

hardware-backed crypto operations already implemented by Android instead. We use the code of [73] to instantiate

FSS-PIR. We implement the AGCT in C++ and follow previous work on cuckoo hashing [112] by using tabulation

hashing for the hash functions.

We instantiate our protocols in RIPPLE with 𝜅 = 128 bit security. We use RSA-2048 as the encryption scheme in

RIPPLETEE since Android offers a hardware-backed implementation. We omit the overhead of remote attestation for the

sake of simplicity. For RIPPLEPIR, we use the FSS-PIR scheme of [18, 73] as the baseline and the addresses are hashed

with SHA-256 and trimmed to 40− 1 + log
2
(p · 𝐸avg) bits, where p is the number of participants and 𝐸avg represents the

average number of encounters per participant per simulation step. We set 𝐸avg = 100 while benchmarking based on

numbers provided by research on epidemiological modeling [43, 98]. To avoid cycles when inserting 𝑛 messages into

the AGCT (cf. §4.2.3), we set its size to 10𝑛. This can be further improved as discussed in §4.2.3 [109, 111, 112]. A typical

simulation step corresponds to one day, such that 14 simulation steps can simulate two weeks.

6.1 Communication Complexity

In this section, we look at the communication costs that our protocols incur. To analyse the scalability of our protocols,

we consider p participants ranging from thousand (1K) to twenty million (20M). Tab. 3 summarises the communication

costs of each participant as well as the communication servers (C) for one simulation step in a specific simulation. One

simulation step includes all protocol steps, beginning with participants locally computing their infection likelihood 𝛿

and ending with them obtaining their cumulative infection likelihood Δ for that step.

11
Note that we are not attempting to create the most efficient instantiation. More optimizations will undoubtedly improve efficiency, and our protocols

can be heavily parallelized with a large number of servers. Instead, our goal here is to demonstrate the viability of RIPPLE protocols for large-scale

deployment.

22

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

5
0

1
0
0

2
5
0

5
0
0

100

200

300

400

500

𝐸avg

Comm. (in KB)
RIPPLETEE

PIRI
sum

PIRII
sum

Fig. 14. Participant’s communication with varying
𝐸avg for a population of p =10M.

6.1.1 Participant Communication. As shown in Tab. 3, a participant

in RIPPLETEE requires just 16KB of total communication in every sim-

ulation step, and this is independent of the population size. This is

because each participant will only send and receive infection likeli-

hood messages related to its encounters. While the value in the table

corresponds to an average of 100 encounters (𝐸avg = 100), we depict

the participants’ communication in Fig. 14 with varied average number

of encounters 𝐸avg ranging from 10 to 500 for a population of 10M.

Note that a 2-week simulation with 𝐸avg = 500 can be completed by

a participant in RIPPLETEE with roughly 1MB communication.

Unlike RIPPLETEE, participant communication in both PIRIsum and

PIRIIsum increases for larger populations as the corresponding database

size increases. The communication, however, is only sub-linear in the database size
12
.

In particular, the participant’s communication in PIRIsum ranges from 51.63KB to 98.06KB, with the higher cost

over RIPPLETEE attributed to the size of DPF keys used in the underlying FSS-PIR scheme [18], as discussed in §5.

The communication in PIRIIsum, on the other hand, is about 3.5KB for all participant sizes we consider. This reduced

communication is due to the optimization in PIRIIsum, which offloads the DPF key generation task to the helper server S0
(cf. §5.3.2). A participant in PIRIsum send approximately 7MB of data for a 2-week simulation for a 10M population with

𝐸avg = 500, whereas it is only 0.25MB in the case of PIRIIsum.

10 50 100 250 500

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.3.1) 6.24 34.99 73.22 193.79 403.83

RIPPLEPIR: PIRIIsum (§5.3.2) 0.35 1.76 3.53 8.87 17.81

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.3.1) 7.32 40.38 84.02 220.78 457.81

RIPPLEPIR: PIRIIsum (§5.3.2) 0.35 1.78 3.57 8.98 18.01

RIPPLETEE (§4.1) 1.60 8.00 16.00 40.00 80.00

RIPPLEPIR: PIRIsum (§5.3.1) 8.40 45.78 94.81 247.77 511.79

RIPPLEPIR: PIRIIsum (§5.3.2) 0.36 1.80 3.62 9.08 18.22

Population p Protocol

𝐸avg

100K

1M

10M

Table 4. Communication (in KB)/participant/simulation step for varying average
numbers of encounters 𝐸avg and population sizes p.

Tab. 4 provides the communication cost for

a participant for multiple population sizes in

RIPPLETEE, PIRIsum, and PIRIIsum, while vary-

ing the average number of encounters 𝐸avg per

simulation step from 10 to 500. The commu-

nication cost in RIPPLETEE is independent of

the population size and grows linearly in 𝐸avg.

A similar trend can be seen in RIPPLEPIR

with the exception that the cost increases sub-

linearly with the population size due to the

use of FSS-based PIR scheme in RIPPLEPIR.

6.1.2 Server Communication. The servers’

communication is primarily attributed to the

anonymous communication channel that they

have established, which provides unlinkability

and, thus, privacy to the messages of the participants. As discussed in §B.3, in order to communicate 𝑀 messages

through the channel, the servers must communicate 2𝑀 messages in RIPPLETEE, and 3𝑀 messages in RIPPLEPIR. When

it comes to concrete values, however, the server communication in RIPPLEPIR is half that of RIPPLETEE, as shown in

Tab. 3. This is due to the larger message size in RIPPLETEE as a result of the use of public-key encryption.

12
DB size of 10𝑛, where 𝑛 is the number of messages, and communication costs of RIPPLEPIR can be reduced by optimizing the database size by

extending the database by only 𝑑 + 𝜆 bins, where 𝑑 is the upper bound of double collisions and 𝜆 is an error parameter (cf. §4.2.3 and [109]).

23

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

1K 10K 50K 100K 500K 1M 2M 5M 10M 20M

RIPPLETEE (§4.1)
a

12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80 12.80

RIPPLEPIR: (§4.2) 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20

RIPPLEPIR: G# (§4.2) 2.30 2.34 2.38 2.39 2.41 2.43 2.44 2.45 2.46 2.48

RIPPLETEE (§4.1) 0.02 0.19 0.96 1.92 9.60 19.20 38.40 96.00 192.00 384.00

RIPPLEPIR - (§4.2) 0.01 0.10 0.48 0.96 4.80 9.60 19.20 48.00 96.00 192.00

RIPPLEPIR - G# (§4.2) 0.01 0.07 0.36 0.72 3.62 7.28 14.63 36.75 73.88 148.50

RIPPLETEE (§4.1) 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40

PIRIsum - (§5.3.1) 51.36 62.42 69.97 73.22 80.77 84.02 87.27 91.56 94.81 98.06

PIRIsum - G# (§5.3.1) 26.48 32.64 37.69 39.82 44.77 47.05 49.38 52.33 54.77 57.26

PIRIIsum (§5.3.2) 3.45 3.49 3.52 3.53 3.56 3.57 3.59 3.60 3.62 3.63

Stages of RIPPLE Protocol

Population (p)

Message Generation

by P𝑖 ∈ P
(in KB)

Secure Shuffle by C
(in GB)

Output Computation

by P𝑖 ∈ P
(in KB)

b

 - 128-bit address for RIPPLEPIR and G# - 40 − 1 + log
2
(p · 𝐸avg) bit address for RIPPLEPIR.

a
Includes registration of public keys with the exit nodeNexit.

b
includes message download, decryption/PIR queries, summation.

Table 5. Detailed communication costs per simulation step in RIPPLE.

2
M

5
M

1
0
M

2
0
M

100

200

300

Population (p)

Comm. (in GB)

RIPPLETEE
RIPPLEPIR

RIPPLEPIR
★

Fig. 15. Communication costs for servers per simulation step
for varying population. ★ denotes the results for optimized
bit addresses in RIPPLEPIR (cf. Tab. 5).

For a population of 10M, the servers in RIPPLETEE must com-

municate 192GB of data among themselves, whereas RIPPLEPIR

requires 96GB. Setting the proper bit length for the address field

in the messages can further reduce communication. For example,

a population of 20M with 𝐸avg = 100 can be accommodated

in a 70-bit address field. Using this optimization will result in

an additional 23 % reduction in communication at the servers,

as shown in Tab. 5. Fig. 15 captures these observations better,

and Tab. 5 and Tab. 4 in the next subsection provide a detailed

analysis of the concrete communication costs.

6.1.3 Communication Micro Benchmarks. Tab. 5 details the com-

munication costs per simulation step at various stages in our

instantiations of RIPPLE. We find that a participant’s commu-

nication costs are very low compared to the overall costs. In RIPPLETEE, a participant communicates at most 268 KB

and incurs a runtime of 92 seconds over a two-week simulation over a population of one million. In PIRIIsum, the cost is

reduced to 100 KB and 40 seconds of runtime. Communication increases to 1.2 MB in PIRIsum due to the participant’s

handling of DPF keys.

Finally, Tab. 5 does not include costs for verification against malicious participants since they can be eliminated

using server S0 (cf. §5.3.2) or sketching algorithms similar to those in [18].

6.2 Computation Complexity

This section focuses on the runtime, which includes time for computation and communication between entities. Tab. 6

summarizes the computation time with respect to a participant P𝑖 for a two-week simulation over a population of

half a million. The longer computation time in RIPPLETEE, as shown in Tab. 6, is due to the public key encryption

24

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1K 10K 50K 100K 500K 1M

RIPPLETEE (§4.1) 1.12 1.12 1.12 1.12 1.12 1.12

RIPPLEPIR: (§4.2) 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3 4.26e-3

RIPPLETEE (§4.1) 0.70 5.20 25.38 60.77 211.47 493.33
★a

RIPPLEPIR (§4.2) 0.78 6.65 32.36 71.17 386.68 1542.30
★

RIPPLETEE (§4.1) 44.66 44.66 44.66 44.66 44.66 44.66

PIRIsum (§5.3.1) 32.31 32.33 32.34 32.35 32.36 32.37

PIRIIsum (§5.3.2) 32.20 32.20 32.20 32.20 32.20 32.20

Stages of RIPPLE Protocol

Population (p)

Message Generation

by P𝑖 ∈ P (in sec)

Secure Shuffle by C
(in sec)

Output Computation
b

(in sec)

a★
denotes system crash due to memory.

b
includes message download, decryption/PIR queries,

summation.

Table 7. Detailed computation costs per simulation (𝑁step = 14, i.e., 14 days) in RIPPLE.

and decryption that occurs within the mobile device’s TEE. This cost, however, is independent of population size

and scales linearly with the average number of encounters, denoted by 𝐸avg. In particular, for a 14-day simulation

with a population of half a million, P𝑖 in RIPPLETEE needs approximately 43.7 seconds to perform the encryption and

decryption tasks and may require additional time for the remote attestation procedure, which is not covered in our

benchmarks. P𝑖 ’s computation time in RIPPLEPIR, on the other hand, is significantly lower and is at most 5milliseconds

for PIRIIsum, while it increases to around 165 milliseconds for PIRIsum. The increased computation time in PIRIsum is due

to DPF key generation, which scales sub-linearly with population size.

RIPPLETEE 80.00 - 3040.00 1.12 - 42.56

PIRIsum 0.30 11.73 4.8e-2 4.26e-3 0.16 6.72e-4

PIRIIsum 0.30 3.0e-3 4.8e-2 4.26e-3 4.2e-5 6.72e-4

Per Simulation Step Per Simulation (𝑁step = 14)

Message

Generation

(in ms)

PIR

Queries

(in ms)

Output

Computation

(in ms)

Message

Generation

(in sec)

PIR

Queries

(in sec)

Output

Computation

(in sec)

Table 6. Average participant computation times per simulation step distributed across various tasks. Values are obtained using a
mobile for a population of p = 500K with 𝐸avg = 100.

In Fig. 16, we plot the overall runtime of our two instantiations in RIPPLE for a full simulation of 2 weeks over

various populations ranging from 1K to 500K. After a population of 100K, the runtime of RIPPLEPIR begins to exceed

that of RIPPLETEE due to an increase in database size, which results in longer data transfer times. More details regarding

computation time are presented in Tab. 7. Note that the runtimes in Fig. 16 include runtime for computation and

communication of the secure shuffle among the servers for anonymous communication and among servers and clients

for the PIR in RIPPLEPIR.

6.2.1 Computation Micro Benchmarks. Tab. 7 contains the computation costs per simulation at the different stages of

our instantiations of RIPPLE’s. As visible, data transfer time as part of anonymous communication through servers

accounts for the majority of computation time and begins to affect overall performance as the population grows. Our

system crashed due to memory constraints after a population of 500K while running the experiments, which is due to

25

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

the fact that our implementation requires to store the whole PIR database in the memory and its size increases linearly

with the number of participants. This will not be the case in a real-world deployment of powerful servers, which are

equipped with more internal memory and additionally can store parts of the database on hard disks. Similar as w.r.t.

communication, participants’ computation costs are very low in comparison to the overall costs.

1
0
K

5
0
K

1
0
0
K

5
0
0
K

100

200

300

400

Population (p)

Time. (in sec)

RIPPLETEE
RIPPLEPIR

Fig. 16. Runtime per simulation in RIPPLE (14 days).

6.2.2 Battery Usage. The token generation phase in RIP-

PLE consumes the most amount of mobile battery as this

phase is active throughout the day. This usage could be op-

timized by mobile OS providers like Apple and Google, as

discussed by Vaudenay et al. [126] and Avitabile et al. [12]

in the context of contact tracing apps. Their technology

enables an app to run in the background, thus, significantly

improving battery life, which is otherwise not possible for

a standard third-party mobile application. Additionally,

RIPPLE could offer users the choice to only participate

in simulations while charging in order to not cause any

unwanted battery drain.

6.2.3 Comparison to Related Work. Note that no experi-

mental comparison to related work is (and can be) done, as RIPPLE is the first distributed privacy-preserving epidemio-

logical modeling system. Established contact tracing apps, such as the SwissCovid
13
, the German Corona-Warn-App

14
,

or the Australian COVIDSafe
15

only record contacts for notifying contacts of infected people. Concretely, contact

tracing basically relates to RIPPLE’s token generation phase, while the other three phases (simulation initialization,

simulation execution, and result aggregation, cf. §3.2) are not covered by any contact tracing system. Crucially, the

main contribution of our work is how to realize the simulation execution, which has never been done before. Hence,

due to differences in the fundamental functionalities, no meaningful comparison between the systems is possible.

6.2.4 Code availability. Available at DOI: 10.5281/zenodo.6599225.

Summmary. Our benchmarking using the proof-of-concept implementation demonstrated the RIPPLE framework’s

viability for real-world adaptation. One of the key benefits of our approaches is that participants have very little work

to do. The system’s efficiency can be further improved with appropriate hardware and optimized implementations.

ACKNOWLEDGMENTS

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation program (grant agreement No. 850990 PSOTI). It was co-funded by the Deutsche Forschungs-

gemeinschaft (DFG) within SFB 1119 CROSSING/236615297 and GRK 2050 Privacy & Trust/251805230.

REFERENCES
[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder: MPC Based Scalable and Robust Anonymous Committed Broadcast. In ACM CCS.
[2] David Adam. 2020. Special report: The simulations driving the world’s response to COVID-19. Nature (2020).
[3] Nadeem Ahmed, Regio A Michelin, Wanli Xue, Sushmita Ruj, Robert Malaney, Salil S Kanhere, Aruna Seneviratne, Wen Hu, Helge Janicke, and

Sanjay K Jha. 2020. A Survey of COVID-19 Contact Tracing Apps. IEEE Access (2020).

13
https://github.com/SwissCovid

14
https://www.coronawarn.app/en/ 15

https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

26

https://doi.org/10.5281/zenodo.6599225
https://github.com/SwissCovid
https://www.coronawarn.app/en/
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[4] Fadi Al-Turjman and Bakkiam David Deebak. 2020. Privacy-Aware Energy-Efficient Framework Using the Internet of Medical Things for COVID-19.

IEEE Internet Things Mag. 3, 3 (2020).
[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. 2017. MCMix: Anonymous Messaging via Secure Multiparty

Computation. In USENIX Security.
[6] Yaniv Altshuler, Nadav Aharony, Micky Fire, Yuval Elovici, and Alex Pentland. 2012. Incremental Learning with Accuracy Prediction of Social and

Individual Properties from Mobile-Phone Data. In International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on
Social Computing.

[7] Android. 2020. Third-party Trusty applications. https://source.android.com/security/trusty.

[8] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Compressed Queries and Amortized Query Processing. In IEEE S&P.
[9] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin, and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In

ACM CCS.
[10] ARM. 2009. ARM security technology building a secure system using TrustZone technology. https://developer.arm.com/documentation/

genc009492/c.

[11] Yonatan Aumann and Yehuda Lindell. 2010. Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. Journal of Cryptology
(2010).

[12] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti. 2020. Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2

Fully Decentralized Automatic Contact Tracing System. https://eprint.iacr.org/2020/493

[13] Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales, Christian Rechberger, and Roman Walch. 2022. Privately Connecting

Mobility to Infectious Diseases via Applied Cryptography. PETs (2022).
[14] Paolo Barsocchi, Antonello Calabrò, Antonino Crivello, Said Daoudagh, Francesco Furfari, Michele Girolami, and Eda Marchetti. 2021. COVID-19

& privacy: Enhancing of indoor localization architectures towards effective social distancing. Array 9 (2021).

[15] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and

Christian Weinert. 2020. Offline Model Guard: Secure and Private ML on Mobile Devices. DATE (2020).

[16] Joshua Blumenstock, Gabriel Cadamuro, and Robert On. 2015. Predicting poverty and wealth from mobile phone metadata. Science (2015).
[17] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. 2021. Lightweight Techniques for Private Heavy Hitters. In IEEE S&P.
[18] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improvements and Extensions. In ACM CCS.
[19] Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Helen Möllering, Melek Önen, and Thomas Schneider. 2021. Privacy-preserving Density-based

Clustering. In ASIACCS.
[20] Fred Brauer. 2008. Compartmental models in epidemiology. In Mathematical Epidemiology.
[21] Fred Brauer, Carlos Castillo-Chavez, and Zhilan Feng. 2019. Simple Compartmental Models for Disease Transmission. In Mathematical Models in

Epidemiology.
[22] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH: Fast and Robust Framework for Privacy-preserving Machine Learning.

PETS (2020).
[23] Clea Caulcutt. 2022. Belgium introduces quarantine for monkeypox cases. Politico (2022). https://www.politico.eu/article/belgium-introduce-

quarantine-monkeypox-case/.

[24] Justin Chan, Dean Foster, Shyam Gollakota, Eric Horvitz, Joseph Jaeger, Sham Kakade, Tadayoshi Kohno, John Langford, Jonathan Larson, Puneet

Sharma, Sudheesh Singanamalla, Jacob Sunshine, and Stefano Tessaro. 2020. PACT: Privacy Sensitive Protocols and Mechanisms for Mobile Contact

Tracing. https://arxiv.org/pdf/2004.03544.pdf.

[25] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and Akash Shah. 2022. SIMC: ML Inference Secure Against Malicious Clients at

Semi-Honest Cost. In USENIX Security.
[26] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. ASTRA: High Throughput 3PC over Rings with Application to Secure

Prediction. In ACM CCSW@CCS.
[27] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning. In NDSS.
[28] David Chaum. 1985. Security without Identification: Transaction Systems to Make Big Brother Obsolete. Commun. ACM (1985).

[29] David Chaum. 1988. The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology (1988).

[30] David L Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun. ACM (1981).

[31] Guoxing Chen, Yinqian Zhang, and Ten-Hwang Lai. 2019. OPERA: Open Remote Attestation for Intel’s Secure Enclaves. In ACM CCS.
[32] Yi-Cheng Chen, Ping-En Lu, Cheng-Shang Chang, and Tzu-Hsuan Liu. 2020. A Time-Dependent SIR Model for COVID-19 With Undetectable

Infected Persons. Transactions on Network Science and Engineering (2020).

[33] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private Information Retrieval. In FOCS.
[34] Adam Durbin Christy Cooney. 2022. High-risk monkeypox contacts advised to isolate. BBC (2022). https://www.bbc.com/news/uk-61546480.

[35] Matteo Ciucci and Frédéric Gouardères. 2020. National COVID-19 contact tracing apps. EPRS: European Parliamentary Research Service (2020).
[36] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An Anonymous Messaging System Handling Millions of Users. In IEEE

S&P.
[37] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval with Sublinear Online Time. In EUROCRYPT.

27

https://source.android.com/security/trusty
https://developer.arm.com/documentation/genc009492/c
https://developer.arm.com/documentation/genc009492/c
https://eprint.iacr.org/2020/493
https://www.politico.eu/article/belgium-introduce-quarantine-monkeypox-case/
https://www.politico.eu/article/belgium-introduce-quarantine-monkeypox-case/
https://arxiv.org/pdf/2004.03544.pdf
https://www.bbc.com/news/uk-61546480

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

[38] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest

Majority – Or: Breaking the SPDZ Limits. In ESORICS.
[39] George Danezis and Len Sassaman. 2003. Heartbeat Traffic to Counter (n-1) Attacks: Red-Green-Black Mixes (WPES’03).
[40] Nicholas G Davies, Adam J Kucharski, Rosalind M Eggo, Amy Gimma, W John Edmunds, Thibaut Jombart, Kathleen O’Reilly, Akira Endo, Joel

Hellewell, Emily S Nightingale, et al. 2020. Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital

services in the UK: a modelling study. The Lancet Public Health (2020).

[41] Leo de Castro and Anitgoni Polychroniadou. 2022. Lightweight, Maliciously Secure Verifiable Function Secret Sharing. In EUROCRYPT.
[42] Roberta De Viti, Isaac Sheff, Noemi Glaeser, Baltasar Dinis, Rodrigo Rodrigues, Jonathan Katz, Bobby Bhattacharjee, Anwar Hithnawi, Deepak

Garg, et al. 2022. CoVault: A Secure Analytics Platform. (2022). https://arxiv.org/pdf/2208.03784.pdf.

[43] Sara Y Del Valle, James M Hyman, Herbert W Hethcote, and Stephen G Eubank. 2007. Mixing patterns between age groups in social networks.

Social Networks (2007).
[44] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party Computation.

In NDSS.
[45] Odo Diekmann, Hans Heesterbeek, and Tom Britton. 2012. Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University

Press.

[46] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection meets big data: an efficient and scalable protocol. In ACM CCS.
[47] Wenliang Du. 2001. A study of several specific secure two party computation problems. USA: Purdue University (2001).

[48] W John Edmunds, CJ O’callaghan, and DJ Nokes. 1997. Who mixes with whom? A method to determine the contact patterns of adults that may

lead to the spread of airborne infections. Proceedings of the Royal Society of London. Series B: Biological Sciences (1997).
[49] J. Ekberg, K. Kostiainen, and N. Asokan. 2014. The Untapped Potential of Trusted Execution Environments on Mobile Devices. In IEEE S&P.
[50] Z. Erkin, J. R. Troncoso-pastoriza, R. L. Lagendijk, and F. Perez-Gonzalez. 2013. Privacy-Preserving Data Aggregation in Smart Metering Systems:

An Overview. In Signal Processing Magazine.
[51] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous Communication from Multiparty Shuffling Protocols. In NDSS.
[52] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza

Sadeghi, Thomas Schneider, Hossein Yalame, et al. 2021. SAFELearn: secure aggregation for private federated learning. In IEEE Security and Privacy
Workshops (SPW).

[53] Neil Ferguson. 2005. What would happen if a flu pandemic arose in Asia? Nature (2005).
[54] Neil M Ferguson, Derek AT Cummings, Christophe Fraser, James C Cajka, Philip C Cooley, and Donald S Burke. 2006. Strategies for mitigating an

influenza pandemic. Nature (2006).
[55] Jesús Fernández-Villaverde and Charles I Jones. 2022. Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Citie.

Journal of Economic Dynamics and Control (2022).
[56] European Centre for Disease Prevention and Control. 2022. Epidemiological update: Monkeypox outbreak. (2022). https://www.ecdc.europa.eu/

en/news-events/epidemiological-update-monkeypox-outbreak.

[57] Craig Gentry and Shai Halevi. 2019. Compressible FHE with Applications to PIR. In TCC.
[58] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applications. In EUROCRYPT.
[59] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro Di Filippo, Angela Di Matteo, and Marta Colaneri. 2020. Modelling

the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine (2020).
[60] Oded Goldreich. 2009. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press.

[61] Alison Gray, David Greenhalgh, Liangjian Hu, Xuerong Mao, and Jiafeng Pan. 2011. A Stochastic Differential Equation SIS Epidemic Model. SIAM
J. Appl. Math. (2011).

[62] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider. 2022. GPU-accelerated PIR with Client-Independent Preprocessing for

Large-Scale Applications. In USENIX Security.
[63] Thomas Haines and Johannes Müller. 2020. SoK: Techniques for Verifiable Mix Nets. In CSF.
[64] Tiberiu Harko, Francisco SN Lobo, and MK3197716 Mak. 2014. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic

model and of the SIR model with equal death and birth rates. Appl. Math. Comput. (2014).
[65] Gary F Hatke, Monica Montanari, Swaroop Appadwedula, Michael Wentz, John Meklenburg, Louise Ivers, Jennifer Watson, and Paul Fiore. 2020.

Using Bluetooth Low Energy (BLE) Signal Strength Estimation to Facilitate Contact Tracing for COVID-19. https://arxiv.org/ftp/arxiv/papers/

2006/2006.15711.pdf.

[66] Shaobo He, Yuexi Peng, and Kehui Sun. 2020. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dynamics (2020).
[67] Yan Huang, David Evans, and Jonathan Katz. 2012. Private Set Intersection: Are Garbled Circuits Better than Custom Protocols?. In NDSS.
[68] Inria and Fraunhofer AISEC. 2020. ROBust and privacy-presERving proximity Tracing protocol. https://github.com/ROBERT-proximity-tracing/

documents.

[69] Intel. 2014. Intel® Software Guard Extensions Programming Reference. https://software.intel.com/sites/default/files/managed/48/88/329298-

002.pdf.

[70] Intel. unk. Attestation Service for Intel Software Guard Extensions. https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf.

28

https://arxiv.org/pdf/2208.03784.pdf
https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak
https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak
https://arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf
https://arxiv.org/ftp/arxiv/papers/2006/2006.15711.pdf
https://github.com/ROBERT-proximity-tracing/documents
https://github.com/ROBERT-proximity-tracing/documents
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[71] Kimmo Järvinen, Helena Leppäkoski, Elena-Simona Lohan, Philipp Richter, Thomas Schneider, Oleksandr Tkachenko, and Zheng Yang. 2019.

PILOT: Practical Privacy-Preserving Indoor Localization Using OuTsourcing. In EuroS&P.
[72] P. Jauernig, A. Sadeghi, and E. Stapf. 2020. Trusted Execution Environments: Properties, Applications, and Challenges. In IEEE S&P.
[73] Daniel Kales, Olamide Omolola, and Sebastian Ramacher. 2019. Revisiting User Privacy for Certificate Transparency. In EuroS&P.
[74] W. O. Kermack and A. G. McKendrick. 1991. Contributions to the mathematical theory of epidemics—I. In Bulletin of Mathematical Biology.
[75] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2010. More Robust Hashing: Cuckoo Hashing with a Stash. Journal on Computing (2010).

[76] Petra Klepac, Adam J Kucharski, Andrew JK Conlan, Stephen Kissler, Maria L Tang, Hannah Fry, and Julia R Gog. 2020. Contacts in context:

large-scale setting-specific social mixing matrices from the BBC Pandemic project. MedRxiv (2020). https://www.medrxiv.org/content/10.1101/

2020.02.16.20023754v2.full.pdf.

[77] Victor I. Kolobov, Elette Boyle, Niv Gilboa, and Yuval Ishai. 2022. Programmable Distributed Point Functions. In CRYPTO.
[78] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning. In USENIX

Security.
[79] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively Secure 4PC for Secure Training and Inference. In NDSS.
[80] Kai Kupferschmidt. 2020. Case clustering emerges as key pandemic puzzle. https://www.science.org/doi/full/10.1126/science.368.6493.808.

[81] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. 2011. Privacy-friendly aggregation for the smart-grid. In PETS.
[82] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is NOT Needed: SINGLE Database, Computationally-Private Information Retrieval. In

FOCS.
[83] Sven Laur, JanWillemson, and Bingsheng Zhang. 2011. Round-Efficient Oblivious Database Manipulation. In International Conference on Information

Security.
[84] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada Popa. 2021. MUSE: Secure Inference Resilient to Malicious Clients. In

USENIX Security.
[85] Dyani Lewis. 2020. Where Covid contact-tracing went wrong. Nature (2020).
[86] F. Li, B. Luo, and P. Liu. 2010. Secure Information Aggregation for Smart Grids Using Homomorphic Encryption. In International Conference on

Smart Grid Communications.
[87] Yehuda Lindell and Benny Pinkas. 2007. An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In

EUROCRYPT.
[88] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. 2015. Efficient Constant Round Multi-Party Computation Combining BMR and

SPDZ. In CRYPTO.
[89] Wouter Lueks, Seda F. Gürses, Michael Veale, Edouard Bugnion, Marcel Salathé, Kenneth G. Paterson, and Carmela Troncoso. 2021. CrowdNotifier:

Decentralized Privacy-Preserving Presence Tracing. PETs (2021).
[90] Shaojun Luo, Flaviano Morone, Carlos Sarraute, Matías Travizano, and Hernán A Makse. 2017. Inferring personal economic status from social

network location. Nature Communications (2017).
[91] Dominika Maison, Diana Jaworska, Dominika Adamczyk, and Daria Affeltowicz. 2021. The challenges arising from the COVID-19 pandemic and

the way people deal with them. A qualitative longitudinal study. PloS One (2021).
[92] Robert M. May and Alun L. Lloyd. 2001. Infection dynamics on scale-free networks. Physical Review E (2001).

[93] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep

Networks from Decentralized Data. In International Conference on Artificial Intelligence and Statistics.
[94] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service

for Neural Networks. In USENIX Security.
[95] PaymanMohassel and Saeed Sadeghian. 2013. How to Hide Circuits in MPC an Efficient Framework for Private Function Evaluation. In EUROCRYPT.
[96] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable Privacy-Preserving Machine Learning. In IEEE S&P.
[97] Yves-Alexandre de Montjoye, Jordi Quoidbach, Florent Robic, and Alex Sandy Pentland. 2013. Predicting Personality Using Novel Mobile

Phone-Based Metrics. In International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction.
[98] Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba,

Jacco Wallinga, et al. 2008. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Medicine (2008).
[99] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference

attacks against centralized and federated learning. In IEEE S&P.
[100] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. 2016. TrustZone Explained: Architectural Features and Use Cases. In International

Conference on Collaboration and Internet Computing.
[101] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Kapil Vaswani, and Manuel Costa. 2016. Oblivious Multi-Party Machine Learning

on Trusted Processors. In USENIX Security.
[102] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. Journal of Algorithms (2004).
[103] Christian Paquin and Greg Zaveruch. 2013. U-Prove Cryptographic Specification V1.1 (Revision 3). http://www.microsoft.com/uprove.

[104] Romualdo Pastor-Satorras and Alessandro Vespignani. 2002. Immunization of complex networks. Physical Review E (2002).

[105] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation. In

USENIX Security.

29

https://www.medrxiv.org/content/10.1101/2020.02.16.20023754v2.full.pdf
https://www.medrxiv.org/content/10.1101/2020.02.16.20023754v2.full.pdf
https://www.science.org/doi/full/10.1126/science.368.6493.808
http://www.microsoft.com/uprove

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

[106] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving Machine Learning. In NDSS.
[107] Matthias Pezzutto, Nicolás Bono Rosselló, Luca Schenato, and Emanuele Garone. 2021. Smart Testing and Selective Quarantine for the Control of

Epidemics. Annual Review of Control, Robotics, and Autonomous Systems 51 (2021), 540–550.
[108] Benny Pinkas and Eyal Ronen. 2021. Hashomer–Privacy-Preserving Bluetooth Based Contact Tracing Scheme for Hamagen. Real World Crypto

and NDSS Corona-Def Workshop (2021).

[109] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS Fast, Malicious Private Set Intersection. In EUROCRYPT.
[110] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing: Private Set Intersection Using Permutation-based Hashing. In

USENIX Security.
[111] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018. Efficient Circuit-Based PSI via Cuckoo Hashing. In EUROCRYPT.
[112] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable Private Set Intersection based on OT Extension. TOPS (2018).
[113] Leonie Reichert, Samuel Brack, and Björn Scheuermann. 2021. Poster: Privacy-Preserving Contact Tracing of COVID-19 Patients. In IEEE S&P.
[114] Reinhard Schlickeiser and Martin Kröger. 2021. Analytical Modeling of the Temporal Evolution of Epidemics Outbreaks Accounting for Vaccinations.

(2021).

[115] Thomas Schneider and Oleksandr Tkachenko. 2019. EPISODE: Efficient Privacy-PreservIng Similar Sequence Queries on Outsourced Genomic

DatabasEs. In ASIACCS.
[116] Vivek K Singh, Laura Freeman, Bruno Lepri, and Alex Sandy Pentland. 2013. Predicting Spending Behavior Using Socio-mobile Features. In

International Conference on Social Computing.
[117] Michael Small and Chi K Tse. 2005. Small World and Scale free Model of Transmission of SARS. In International Journal of Bifurcation and Chaos.
[118] Hallam Stevens and Monamie Bhadra Haines. 2020. TraceTogether: Pandemic Response, Democracy, and Technology. https://

www.tracetogether.gov.sg.

[119] Amanda Taub. 2020. A New Covid-19 Crisis: Domestic Abuse Rises Worldwide. The New York Times (2020).
[120] Robin N. Thompson. 2020. Epidemiological models are important tools for guiding COVID-19 interventions. BMC Medicine 18, 1 (2020), 152.
[121] Oleksandr Tkachenko, Christian Weinert, Thomas Schneider, and Kay Hamacher. 2018. Large-Scale Privacy-Preserving Statistical Computations

for Distributed Genome-Wide Association Studies. In ASIACCS.
[122] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé, James R. Larus, Wouter Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele

Antonioli, Ludovic Barman, Sylvain Chatel, Kenneth G. Paterson, Srdjan Capkun, David A. Basin, Jan Beutel, Dennis Jackson, Marc Roeschlin,

Patrick Leu, Bart Preneel, Nigel P. Smart, Aysajan Abidin, Seda Gurses, Michael Veale, Cas Cremers, Michael Backes, Nils Ole Tippenhauer, Reuben

Binns, Ciro Cattuto, Alain Barrat, Dario Fiore, Manuel Barbosa, Rui Oliveira, and José Pereira. 2020. Decentralized Privacy-Preserving Proximity

Tracing. IEEE Data Engineering Bulletin (2020).

[123] Paul Tupper, Sarah P. Otto, and Caroline Colijn. 2021. Fundamental Limitations of Contact Tracing for COVID-19. FACETS (2021).
[124] Christopher van der Beets, Raine Nieminen, and Thomas Schneider. 2022. FAPRIL: Towards Faster Privacy-Preserving Fingerprint-Based Localization.

In SECRYPT.
[125] Serge Vaudenay. 2020. Centralized or Decentralized? The Contact Tracing Dilemma. Cryptology ePrint Archive, Report 2020/531. https:

//ia.cr/2020/531.

[126] Serge Vaudenay and Martin Vuagnoux. 2020. Analysis of SwissCovid. Technical Report.
[127] Meilof Veeningen, Supriyo Chatterjea, Anna Zsófia Horváth, Gerald Spindler, Eric Boersma, Peter van der SPEK, Onno Van Der Galiën, Job

Gutteling, Wessel Kraaij, and Thijs Veugen. 2018. Enabling Analytics on Sensitive Medical Data with Secure Multi-Party Computation. In Medical
Informatics Europe.

[128] Nina Vindegaard and Michael Eriksen Benros. 2020. COVID-19 pandemic and mental health consequences: Systematic review of the current

evidence. Brain, Behavior, and Immunity (2020).

[129] Olivia J Walch, Amy Cochran, and Daniel B Forger. 2016. A global quantification of “normal” sleep schedules using smartphone data. Science
Advances (2016).

[130] Guan Wang, Tongbo Luo, Michael T Goodrich, Wenliang Du, and Zutao Zhu. 2010. Bureaucratic protocols for secure two-party sorting, selection,

and permuting. In ASIACCS.
[131] Victoria Woollaston. 2015. Sleeping habits of the world revealed: The US wakes up grumpy, China has the best quality shut-eye and South Africa gets

up the earliest. https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-

shut-eye-South-Africa-wakes-earliest.html.

[132] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets. In FOCS.
[133] Tijana Šušteršič, Andjela Blagojević, Danijela Cvetković, Aleksandar Cvetković, Ivan Lorencin, Sandi Baressi Šegota, Dragan Milovanović,

Dejan Baskić, Zlatan Car, and Nenad Filipović. 2021. Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and

Implementation on the Population of the Benelux Union. Frontiers in Public Health 9 (2021).

A CRYPTOGRAPHIC PRIMITIVES USED

In the following, we provide an overview about the (cryptographic) primitives and other techniques used in this work.

30

https://www.tracetogether.gov.sg
https://www.tracetogether.gov.sg
https://ia.cr/2020/531
https://ia.cr/2020/531
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html
https://www.dailymail.co.uk/sciencetech/article-3042230/Sleeping-habits-world-revealed-wakes-grumpy-China-best-quality-shut-eye-South-Africa-wakes-earliest.html

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Anonymous Communication. To simulate the transmission of the modelled disease, RIPPLE requires anonymous

messaging between participants. Mix-nets [30] and protocols based on the dining cryptographer (DC) problem [29] were

the first approaches to anonymous messaging. A fundamental technique underlying mix-nets is the execution of an

oblivious shuffling algorithm that provides unlinkability between the messages before and after the shuffle. In a mix-net,

so-called mix servers jointly perform the oblivious shuffling so that no single mix server is able to reconstruct the

permutation performed on the input data. Past research established a wide variety of oblivious shuffle protocols based

on garbled circuits [47, 67, 130], homomorphic encryption [67], distributed point functions [1], switching networks [95],

permutation matrices [83, §4.1], sorting algorithms [83, §4.2], and re-sharing [83, §4.3+4.4]. Recently, the works of [9]

and [51] proposed efficient oblivious shuffling schemes using a small number of mix net servers.

Trusted Execution Environment (TEE). RIPPLETEE (§4.1) requires a TEE on the mobile devices of participants. TEEs

are hardware-assisted environments that provide secure storage and execution of code on sensitive data which is isolated

from the normal execution environment. Data stored in a TEE is secure even if the operating system is compromised,

i.e., it offers confidentiality, integrity, and access control [49, 72]. Widely adopted TEEs are Intel SGX [69] and ARM

TrustZone [10] (often used on mobile platforms [100]). Using TEEs for private computation has been extensively

investigated, e.g., [15, 101]. A process called remote attestation allows external parties to verify that its private data

sent via a secure channel is received and processed inside the TEE using the intended code [31, 70].

Private Information Retrieval (PIR). The first computational single-server PIR (cPIR) scheme was introduced by

Kushilevitz and Ostrovsky [82]. Recent cPIR schemes [8, 57] use homomorphic encryption (HE). However, single-server

PIR suffers from significant computation overhead since compute intensive HE operations have to be computed on each

of the database block for each PIR request. In contrast, multi-server PIR relies on a non-collusion assumption between

multiple PIR servers and uses only XOR operations [17, 18, 33, 36, 37] making it significantly more efficient than cPIR.

Cuckoo Hashing. In RIPPLEPIR (§4.2), messages of participants have to be stored in a database 𝐷 . To do so, a hash

function 𝐻 can be used to map an element 𝑥 into bins of the database: 𝐷 [𝐻 (𝑥)] = 𝑥 . However, as we show in §4.2,

RIPPLEPIR requires that at most one element is stored in every database location which renders simple hashing

impracticable [110]. Cuckoo hashing uses ℎ hash functions 𝐻1, . . . , 𝐻ℎ to map elements into bins. It ensures that each

bin contains exactly one element. If a collision occurs, i.e., if a new element is to be added into an already occupied bin,

the old element is removed to make space for the new one. The evicted element, then, is placed into a new bin using

another of the ℎ hash functions. If the insertion fails for a certain number of trials, the element is inserted into a special

bin called stash which is allowed to hold more than one element. Pinkas et al. [110] show that for ℎ = 2 hash functions

and 𝑛 = 2
20

elements inserted to 2.4𝑛 bins, a stash size of 3 is sufficient to have a negligible error probability.

Garbled Cuckoo Table (GCT). As RIPPLEPIR uses key-value pairs for the insertion into the database, a combination

of garbled Bloom filters [46] with cuckoo hashing [75, 102], called Garbled Cuckoo Table [109], is needed. Instead of

storing 𝑥 elements in one bin as in an ordinary cuckoo table, in a GCT, ℎ XOR shares of 𝑥 are stored at the ℎ locations

determined by inputting 𝑘 into all ℎ hash functions. E.g., with ℎ = 2, if one of these two locations is already in use, the

XOR share for the other (free) location is set to be the XOR of 𝑥 and the data stored in the used location. In §4.2.3, we

introduce a variant of GCT called arithmethic garbled cuckoo table (AGCT) that uses arithmetic sharing over the ring

Z
2
ℓ instead of XOR sharing. For a database with 2.4𝑛 entries where 𝑛 is the number of elements inserted, Pinkas et

al. [109] show that the number of cycles is maximally log
2
𝑛 with high probability.

SecureMulti-Party Computation (MPC).MPC [132] allows a set of mutually distrusting parties to jointly compute an

arbitrary function on their private inputs without leaking anything but the output. In the last years, MPC techniques in

various securitymodels have been introduced, extensively studied, and improved, e.g., in [38, 44, 88]. These advancements

31

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

significantly enhance the efficiency of MPC making it more and more practical for real-world applications. Due to the

practical efficiency it can provide, various works [9, 22, 27, 78, 79, 106] have recently concentrated on MPC for a small

number of parties, especially in the three and four party honest majority setting tolerating one corruption. In RIPPLE,

we employ MPC techniques across three servers to enable an anonymous communication channel (cf. §B.3) and to

develop efficient PIRsum protocols (cf. §5).

Anonymous Credentials. To protect against sybil attacks (cf. §3.3), i.e., to hinder an adversary from creating multiple

identities that can collect encounter information to detect correlations among unconscious encounters, we suggest

to use anonymous credentials such that only registered participants can join RIPPLE. In this manner, the registration

process can, for example, be linked to a passport. Such a registration system increases the cost to create (fake) identities.

Chaum [28] introduced anonymous credentials where a client holds the credentials of several unlinkable pseudonyms.

The client can then prove that it possesses the credentials of pseudonyms without the service provider being able to

link different pseudonyms to the same identity. Additionally, anonymous credentials allow to certify specific properties

like the age. Several instantiations for anonymous credentials have been proposed, e.g., Microsoft U-Prove [103].

B BUILDING BLOCKS IN RIPPLE

This section contains details about the building blocks used in the RIPPLE framework, such as shared-key setup,

collision-resistant hash functions, anonymous communication channels, and Distributed Point Functions.

B.1 Shared-Key Setup

Let 𝐹 : {0, 1}𝜅 ×{0, 1}𝜅 → 𝑋 be a secure pseudo-random function (PRF), with co-domain𝑋 being Z
2
ℓ and C′ = C∪{P𝑖 }

for a participant P𝑖 ∈ P. The following PRF keys are established among the parties in C′ in RIPPLE:

– 𝑘𝑖 𝑗 among every 𝑃𝑖 , 𝑃 𝑗 ∈ C′ and 𝑖 ≠ 𝑗 .

– 𝑘𝑖 𝑗𝑘 among every 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 ∈ C′ and 𝑖 ≠ 𝑗 ≠ 𝑘 .

– 𝑘C′ among all the parties in C′.

To sample a random value 𝑟𝑖 𝑗 ∈𝑅 Z2ℓ non-interactively, each of 𝑃𝑖 and 𝑃 𝑗 can invoke 𝐹𝑘𝑖 𝑗 (𝑖𝑑𝑖 𝑗). In this case, 𝑖𝑑𝑖 𝑗 is a

counter that 𝑃𝑖 and 𝑃 𝑗 maintain and update after each PRF invocation. The appropriate sampling keys are implied by

the context and are, thus, omitted.

B.2 Collision Resistant Hash Function

A family of hash functions {H : K × L → Y} is said to be collision resistant if, for all probabilistic polynomial-

time adversaries A, given the description of H𝑘 , where 𝑘 ∈𝑅 K , there exists a negligible function 𝑛𝑒𝑔𝑙 () such that

Pr[(𝑥, 𝑥 ′) ← A(𝑘) : (𝑥 ≠ 𝑥 ′) ∧ H𝑘 (𝑥) = H𝑘 (𝑥 ′)] = 𝑛𝑒𝑔𝑙 (𝜅), where 𝑥, 𝑥 ′ ∈𝑅 {0, 1}𝑚 and𝑚 = poly(𝜅).

B.3 Anonymous Communication Channel

This section describes how to instantiate the Fanon functionality used by RIPPLE for anonymous communication, as

discussed in §4. We start with the protocol for the case of RIPPLEPIR and then show how to optimize it for the use in

the RIPPLETEE protocol. Recall from §4.2 that in RIPPLEPIR, participants in P upload a set of messages from which a

database D must be constructed at the end by S1 and S2. The anonymous communication is required to ensure that

neither S1 nor S2 can link the source of the message even after receiving all messages in clear, which may not be in

32

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

the same order. To tackle this problem, we use an approach based on oblivious shuffling inspired by [9, 51], which is

formalised next.

Problem Statement. Consider the vector ®𝑚 = {𝑚1, . . . ,𝑚𝜏 } of 𝜏 messages with𝑚 𝑗 ∈ Z2ℓ for 𝑗 ∈ [𝜏]. We want servers

S1 and S2 to obtain 𝜋 (®𝑚), where 𝜋 () denotes a random permutation that neither S1 nor S2 knows. Furthermore, an

attacker with access to a portion of the network and, hence, the ability to monitor network data should not be able to

gain any information about the permutation 𝜋 ().
In RIPPLEPIR, the vector ®𝑚 corresponds to the infection likelihoodmessages of the form (𝑎𝑖, 𝑗 , 𝑐𝑒𝑖, 𝑗) that each participant

P𝑖 ∈ P sends over the network (cf. §4.2). W.l.o.g., we let P𝑖 have the complete ®𝑚 with them. The protocol makes use of

the third server S0 in our setting and proceeds as follows:

1. P𝑖 generates an additive sharing of ®𝑚 among S0 and S1:

a) P𝑖 , S0 sample random
®⟨𝑚⟩1 ∈𝑅 Z𝜏

2
ℓ .

b) P𝑖 computes and sends
®⟨𝑚⟩2 = ®𝑚 − ®⟨𝑚⟩1 to S1.

2. S0 and S1 agree on a random permutation 𝜋01 and locally apply 𝜋01 to their shares. Let 𝜋01 (®𝑚) = 𝜋01 (®⟨𝑚⟩1) +
𝜋01 (®⟨𝑚⟩2).

3. S0, S1 perform a re-sharing of 𝜋01 (®𝑚), denoted by ®𝑚01, by jointly sampling a random ®𝑟01 ∈𝑅 Z𝜏
2
ℓ and setting

®⟨𝑚01⟩1 = 𝜋01 (®⟨𝑚⟩1) + ®𝑟01 and ®⟨𝑚01⟩2 = 𝜋01 (®⟨𝑚⟩2) − ®𝑟01.
4. S1 sends ®⟨𝑚01⟩2 to S2. Now, (®⟨𝑚01⟩1, ®⟨𝑚01⟩2) forms an additive sharing of ®𝑚01 among S0 and S2.

5. S0 and S2 agree on a random permutation 𝜋02 and apply 𝜋02 to their shares. Let 𝜋02 (®𝑚01) = 𝜋02 (®⟨𝑚01⟩1) +
𝜋02 (®⟨𝑚01⟩2).

6. S0 sends 𝜋02 (®⟨𝑚01⟩1) to S2, who reconstructs 𝜋02 (®𝑚01).
7. S2 generates an additive-sharing of 𝜋02 (®𝑚01), denoted by ®𝑚02, among S1 and S2, by jointly sampling

®⟨𝑚02⟩1 ∈𝑅 Z𝜏
2
ℓ

with S1 and locally setting
®⟨𝑚02⟩2 = 𝜋02 (®𝑚01) − ®⟨𝑚02⟩1.

8. S2 sends ®⟨𝑚02⟩2 to S1, who locally compute the output as ®𝑚02 = ®⟨𝑚02⟩1 + ®⟨𝑚02⟩2.

Anonymous Communication in RIPPLETEE. As discussed in §4.1, the server S2 is only required to have the complete set

of messages in the clear but in an unknown random order. As a result, in the case of RIPPLETEE, only the first permutation

(𝜋01 in Step 2) is sufficient and steps 5-8 are no longer required. Furthermore, in addition to the communication by S1 in

step 4, S0 sends its share of ®𝑚01 to S2, who can then reconstruct ®𝑚01 = 𝜋01 (®𝑚).

Security Guarantees. As discussed in §3.1, we assume that the MPC servers S𝑖 , 𝑖 ∈ [2], that also instantiate the

anonymous communication channel are semi-honest. We claim that the protocol described above will produce a random

permutation of the vector ®𝑚 that neither S1 nor S2 is aware of. To see this, note that ®𝑚02 = 𝜋02 (®𝑚01) = 𝜋02 (𝜋01 (®𝑚))
and both S1 and S2 know only one of the two permutations 𝜋01 and 𝜋02, but not both. Furthermore, the re-sharing

performed in step 3 and the generation of additive shares in step 6 above ensures that an attacker observing the traffic

cannot relate messages sent and received.

As we also consider a client-malicious security model [25, 84], where some clients might deviate from the protocol to

gain additional information, we also have to take into consideration how the clients could manipulate the communication

to break anonymity. For RIPPLETEE, this is trivial: The TEE ensures that clients’ messages are correctly generated and

uploaded. For RIPPLEPIR, a malicious client could manipulate how many messages it uploads. However, messages with

addresses that are already used will be dropped by the exit servers, i.e., effectively removing the malicious client from

the system. A receiver will never fetch messages with unknown, random addresses. Furthermore, the servers use secure

33

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

communication channels and even send freshly re-shared shares. Hence, considering the discussed aspects/assumptions,

classical attacks on anonymous communication such as flooding [39] are not relevant for our model.

B.4 Distributed Point Functions (DPF)

Consider a point function 𝑃𝛼,𝛽 : Z
2
ℓ → Z

2
ℓ ′ such that for all 𝛼 ∈ Z

2
ℓ and 𝛽 ∈ Z

2
ℓ ′ , 𝑃𝛼,𝛽 (𝛼) = 𝛽 and 𝑃𝛼,𝛽 (𝛼 ′) = 0 for all

𝛼 ′ ≠ 𝛼 . That is, when evaluated at any input other than 𝛼 , the point function 𝑃𝛼,𝛽 returns 0 and when evaluated at 𝛼 it

returns 𝛽 .

An (𝑠, 𝑡)-distributed point function (DPF) [36, 58] distributes a point function 𝑃𝛼,𝛽 among 𝑠 servers in such a way that

no coalition of at most 𝑡 servers learns anything about 𝛼 or 𝛽 given their 𝑡 shares of the function. We use (2, 1)-DPFs in
RIPPLE to optimize the communication of PIR-based protocols, as discussed in §5.3. Formally, a (2, 1)-DPF comprises of

the following two functionalities:

– Gen(𝛼, 𝛽)→ (𝑘1, 𝑘2). Output two DPF keys 𝑘1 and 𝑘2, given 𝛼 ∈ Z
2
ℓ and 𝛽 ∈ Z

2
ℓ ′ .

– Eval(𝑘, 𝛼 ′) → 𝛽′. Return 𝛽′ ∈ Z
2
ℓ ′ , given key 𝑘 generated using Gen, and an index 𝛼 ′ ∈ Z

2
ℓ .

A (2, 1)-DPF is said to be correct if for all 𝛼, 𝑥 ∈ Z
2
ℓ , 𝛽 ∈ Z

2
ℓ ′ , and (𝑘1, 𝑘2) ← Gen(𝛼, 𝛽), it holds that

Eval(𝑘1, 𝑥) + Eval(𝑘2, 𝑥) = (𝑥 = 𝛼) ? 𝛽 : 0.

A (2, 1)-DPF is said to be private if neither of the keys 𝑘1 and 𝑘2 leaks any information about 𝛼 or 𝛽 . That is, there exists

a polynomial time algorithm that can generate a computationally indistinguishable view of an adversary A holding

DPF key 𝑘𝑢 for 𝑢 ∈ {1, 2}, when given the key 𝑘𝑢 .

As mentioned in [18, 36], a malicious participant could manipulate the Gen algorithm to generate incorrect DPF keys

that do not correspond to any point function. While [36] used an external non-colluding auditor to circumvent this

issue in the two server setting, [18] formalised this issue and proposed an enhanced version of DPF called Verifiable

DPFs. In addition to the standard DPF, a verifiable DPF has an additional function called Ver that can be used to ensure

the correctness of the DPF keys. In contrast to Eval, Ver in a (2, 1)-verifiable DPF is an interactive protocol between the

two servers, with the algorithm returning a single bit indicating whether the input DPF keys 𝑘1 and 𝑘2 are valid.

A verifiable DPF is said to be correct if for all 𝛼 ∈ Z
2
ℓ , 𝛽 ∈ Z

2
ℓ ′ , keys (𝑘1, 𝑘2) ← Gen(𝛼, 𝛽), the verify protocol Ver

outputs 1 with probability 1. Ver should ensure that no additional information about 𝛼 or 𝛽 is disclosed to the party in

possession of one of the DPF keys. Furthermore, the probability that Ver outputs 1 to at least one of the two servers for

a given invalid key pair (𝑘′
1
, 𝑘′

2
) is negligible in the security parameter 𝜅.

Recent results in the area of (verifiable) DPFs [41, 77] might be an interesting direction for future work to further

enhance the efficiency of our RIPPLEPIR construction.

Communication Complexity. Using the protocol of Boyle et. al. [18], a (2, 1)-DPF protocol for a point function with

domain size 𝑁 has key size (𝜆+2) · log(𝑁 /𝜆) +2 ·𝜆 bits, where 𝜆 = 128 for an AES based implementation. The additional

cost in the case of verifiable DPF is for executing the Ver function, which has a constant number of elements in [18].

Furthermore, as stated in [18], the presence of additional non-colluding servers can improve the efficiency of Ver, and

we use S0 in the case of PIRIsum, as discussed in §5.3.1. We refer to [18] for more details.

34

Privacy-Preserving Epidemiological Modeling on Mobile Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

C PIR-SUM PROTOCOL DETAILS

This section provides additional details of our PIRsum protocols introduced in §5.1. We begin by recalling the security

guarantees of a 2-server PIR for our setting [33, 62]. Informally in a two-server PIR protocol, where the database D is

held by two non-colluding servers S1 and S2, a single server S𝑢 ∈ {S1, S2} should not learn any information about the

client’s query. The security requirement is formally captured in Definition C.1.

Definition C.1. (Security of 2-server PIR) A PIR scheme with two non-colluding servers is called secure if each of the

servers does not learn any information about the query indices.

Let 𝑣𝑖𝑒𝑤 (S𝑢 ,Q) denote the view of server S𝑢 ∈ {S1, S2} with respect to a list of queries, denoted by Q. We require

that for any database D, and for any two 𝜏-length list of queries Q = (𝑞1, . . . , 𝑞𝜏) and Q′ = (𝑞′
1
, . . . , 𝑞′𝜏), no algorithm

whose run time is polynomial in 𝜏 and in computational parameter 𝜅 can distinguish the view of the servers S1
and S2, between the case of participant P𝑖 using the queries in Q ({𝑣𝑖𝑒𝑤 (S𝑢 ,Q)}𝑢∈{1,2}), and the case of it using Q′

({𝑣𝑖𝑒𝑤 (S𝑢 ,Q′)}𝑢∈{1,2}).

Linear Summation PIR for F 2S
pir with optimized Communication. This section describes Chor et al.’s 2-server

linear summation PIR protocol [33], as well as how to optimize communication using DPF techniques discussed

in Appendix B.4. To retrieve the 𝑞-th block from database D of size 𝑁 , the linear summation PIR proceeds as follows:

• Participant P𝑖 prepares an 𝑁 -bit string
®b𝑞 = {b1𝑞, . . . , b𝑁𝑞 } with b𝑗𝑞 = 1 for 𝑗 = 𝑞 and b𝑗𝑞 = 0 and 𝑗 ≠ 𝑞, for 𝑗 ∈ [𝑁].

• P𝑖 generates a Boolean sharing of
®b𝑞 among S1 and S2, i.e., P𝑖 and S1 non-interactively sample the random [®b𝑞]1 ∈𝑅

{0, 1}𝑁 and P𝑖 sends [®b𝑞]2 = ®b𝑞 ⊕ [®b𝑞]1 to S2.

• S𝑢 , for 𝑢 ∈ {1, 2}, sends [𝑦]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D[𝑗] to P𝑖 .

• P𝑖 locally computes D[𝑞] = [𝑦]1 ⊕ [𝑦]2.
The linear summation PIR described above requires communication of 𝑁 + 2ℓ bits, where ℓ denotes the size of each
data block in D.

Optimizing Communication using DPFs. Several works in the literature [18, 36, 58, 62] have used DPFs (cf. Appen-

dix B.4) as a primitive to improve the communication in multi-server PIR. The idea is to use a DPF to allow the servers

S1 and S2 to obtain the XOR shares of an 𝑁 -bit string
®b that has a zero in all positions except the one representing the

query 𝑞. Because DPF keys are much smaller in size than the actual database size, this method aids in the elimination of

𝑁 -bit communication from P𝑖 to the servers, as in the aforementioned linear summation PIR.

To query the 𝑞-th block from a database D of size 𝑁 ,

– Participant P𝑖 executes the key generation algorithm with input 𝑞 to obtain two DPF keys, i.e., (𝑘1, 𝑘2) ← Gen(𝑞, 1).

– P𝑖 sends 𝑘𝑢 to S𝑢 , for 𝑢 ∈ {1, 2}.
– S𝑢 , for 𝑢 ∈ {1, 2}, performs a DPF evaluation at each of the positions 𝑗 ∈ [𝑁] using key 𝑘𝑢 and obtains the XOR

share corresponding to bit vector
®b𝑞 .

– S𝑢 expands the DPF keys as [b𝑗𝑞]𝑢 ← Eval(𝑘𝑢 , 𝑗) for 𝑗 ∈ [𝑁].

– S𝑢 , for 𝑢 ∈ {1, 2}, sends [𝑦]𝑢 =
𝑁⊕
𝑗=1

[b𝑗𝑞]𝑢D[𝑗] to P𝑖 .

– P𝑖 locally computes D[𝑞] = [𝑦]1 ⊕ [𝑦]2.

For the case of semi-honest participants, we use the DPF protocol of [18] and the key size is 𝑂 (𝜆 · log(𝑁 /𝜆)) bits,
where 𝜆 = 128 is related to AES implementation in [18].

35

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Günther and Holz, et al.

To prevent a malicious participant from sending incorrect or malformed keys to the servers, we use the verifiable

DPF construction proposed in [18] for the case of malicious participants. This results only in a constant communication

overhead over the semi-honest case. Furthermore, as noted in [18], we use the additional server S0 for a better

instantiation of the verifiable DPF, removing the need for interaction with the participant P𝑖 for verification. We provide

more information in Appendix B.4 and refer the reader to [18] for all details.

36

	Abstract
	1 Introduction
	2 Related Work & Preliminiaries
	2.1 Privacy-preserving Solutions in the Context of Infectious Diseases
	2.2 Epidemiological Modeling

	3 The RIPPLE Framework
	3.1 System and Threat Model
	3.2 Phases of RIPPLE
	3.3 Privacy Requirements

	4 Instantiating Fesim
	4.1 RIPPLETEE
	4.2 RIPPLEPIR

	5 PIR-SUM: Instantiating Fpirsum
	5.1 Overview of PIRsum protocol
	5.2 Instantiating Fpirsum
	5.3 Reducing participant's communication

	6 Evaluation
	6.1 Communication Complexity
	6.2 Computation Complexity

	Acknowledgments
	References
	A Cryptographic Primitives Used
	B Building Blocks in RIPPLE
	B.1 Shared-Key Setup
	B.2 Collision Resistant Hash Function
	B.3 Anonymous Communication Channel
	B.4 Distributed Point Functions (DPF)

	C PIR-SUM Protocol Details

