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Abstract

A single-sign-on (SSO) is an authentication system that allows a user to log in with a single identity
and password to any of several related, yet independent, server applications. SSO solutions eliminate the
need for users to repeatedly prove their identities to different applications and hold different credentials
for each application. Token-based authentication is commonly used to enable an SSO experience on the
web, and on enterprise networks. A large body of work considers distributed token generation which
can protect the long-term keys against a subset of breached servers. A recent work (CCS’18) introduced
the notion of Password-based Threshold Authentication (PbTA) with the goal of making password-based
token generation for SSO secure against server breaches that could compromise both long-term keys and
user credentials. They also introduced a generic framework called PASTA that can instantiate a PbTA
system.

The existing SSO systems built on distributed token generation techniques, including the PASTA
framework, do not admit password-update functionality. In this work, we address this issue by proposing
a password-update functionality into the PASTA framework. We call the modified framework PAS-TA-U.

As a concrete application, we instantiate PAS-TA-U to implement in Python a distributed SSH key
manager for enterprise networks (ESKM) that also admits a password-update functionality for its clients.
Our experiments show that the overhead of protecting secrets and credentials against breaches in our
system compared to a traditional single server setup is low (average 119 ms in a 10-out-of-10 server
setting on Internet with 80 ms round trip latency).

1 Introduction

Password-based Authentication (PbA): One of the primary purposes of authentication is to facilitate
access control to a resource such as local or remote access to computer accounts; access to software appli-
cations, when an access privilege is linked to a particular identity. A typical scenario is when the remote
resource is a application server, and a user is using a client application to authenticate itself to the applica-
tion server. Password-based techniques are a very popular choice underlying most authentication systems.
In a password-based authentication (PbA) system, a user U creates its user credential record — a user identity
idU , and a hash of a secret password pwd, i.e. hash(pwd), with the application server through a one-time
registration process. Later, in order to gain access (log in) to the application server, U provides (idU, pwd) to
its client which then computes hash(pwd), and sends (idU, hash(pwd)) to the application server. The server
compares this to the stored record for the stated idU and gives access if it matches.

Token-based Single-sign-on (SSO): A single-sign-on is an authentication system that allows a user to
log in with a single identity and password to any of several related, yet independent, server applications.
SSO solutions eliminates the need for users to repeatedly prove their identities to different applications using
different credentials for each application. We make a distinction by calling one of the application servers as
the identity provider, i.e. IP, and the rest of the related application servers as AS. Token-based techniques
are currently very common for the implementation of an SSO system. In such a system, an IP generates a
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Figure 1: PbA: Login

one-time key pair of signing and verification keys (sk, vk), keeps the signing key sk with itself, and makes
the verification key vk available to all ASs. A one-time registration phase allows a user U to create and store
its credential (idU, pwd) with the IP. In order to gain access to any AS, the user U must reach out to IP

with its user credential (idU, hash(pwd)), and a payload pld that contains the user’s information/attributes,
expiration time and a policy that would control the nature of access. The IP verifies U’s credential by
matching it against a stored record before issuing an authentication token tkn which is produced for the
payload pld with the help of the secret singing key sk, i.e. tkn← Sign(pld, sk). The token so obtained is stored
by the user client in a cookie or the local storage, and can then be used for all future accesses to AS’s without
using the pwd, until it expires. In particular, when the user client presents the tkn to an AS requesting for an
access, the tkn is verified by the AS which holds the verification key vk, i.e. 1/⊥ ← Verify(tkn, vk). Popular
token-based SSO systems include JSON Web Token (JWT), SAML, OAuth, and OpenID.

Figure 2: SSO : Token-based

Password-based Threshold Authentication (PbTA): The basic PbA systems, and the more advanced
token-based SSO systems place greater responsibility on an identity provider IP of maintaining the confi-
dentiality of a large number of users credentials. Such an IP is a single point of failure that if breached,
enables an attacker to (1) recover the long term signing key sk and forge arbitrary tokens that enable access
to all application servers and (2) obtain hashed passwords of users to use as part of an offline dictionary
attack to recover their credentials. A large body of work considers distributed token generation through
threshold digital signatures and threshold message authentication codes which can protect the long term
signing key sk against a subset of breached servers [1, 2, 3, 4, 5, 6]. A separate line of work on thresh-
old password-authenticated key exchange (T-PAKE) aims to prevent offline dictionary attacks in standard
password-authenticated key exchange (PAKE) by employing multiple servers [7, 8, 9, 10].

A very recent work of Agrawal et al. [11] introduces the notion of Password-based Threshold Authenti-
cation (PbTA) for token-based SSO where they propose to distribute the role of identity provider IP among
n identity servers {S1, . . . , Sn} such that at any point a subset of these servers, any t of them, collectively
verify users’ passwords and generate authentication token for them. A PbTA system proposes a very strong
unforgeability and password-safety properties with the goal of making password-based token generation se-
cure against identity server breaches (up to t− 1 at a time) that could compromise both long-term keys and
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user credentials. This is enabled by requiring that any attacker who compromises at most t − 1 identity
servers cannot forge valid tokens or mount offline dictionary attacks. In [11] a generic framework called
PASTA which can instantiate a secure PbTA system was also proposed. The PASTA framework uses as building
blocks any threshold oblivious pseudorandom function (TOPRF) and any threshold token generation (TTG)
scheme, i.e., a threshold digital signature.

Figure 3: PbTA : 2-out-of-3 Token Generation

1.1 Our Contribution

The existing distributed token generation based SSO systems, including the PASTA framework, have so far
not addressed the issue of password update functionality in their designs. The password update mechanism
in a basic PbA is easy to implement and typically requires a user client to submit the hashes of both its
current and a newly selected password. The current password hash is used for authentication by the identity
provider before it replaces the current credentials with the updated credentials. Implementing password
update mechanism in the setting of distributed token generation is not easy for the obvious reason that the
identity provider is now split into several identity servers. This is particularly more problematic in the case
of PASTA framework where no identity server holds the hashed user-passwords. In this work we propose to
address this issue. The details are summarised as follows:

• We propose a password-update functionality to PASTA framework. The modified framework is now
referred to as PAS-TA-U.
• We show how PASTA framework can be used to implement a distributed SSH key manager for enterprise

networks (ESKM). The concept of an ESKM was first introduced by Harchol et al. in [12] and was
instantiated therein using threshold cryptographic primitives. ESKM is a secure and fault-tolerant
logically-centralised SSH key manager. The logically central key server of [12] was implemented in a
distributed fashion using n key servers (also know as control cluster (CC) nodes ) such that users in
the enterprise network must interact with a subset of these CC nodes for a successful SSH connection.
The problem of user authentication to CC nodes was also discussed in [12] and password-based variants
were proposed for the same.
The functionality of a password update mechanism for its users in an ESKM is an obvious requirement.
As a concrete application, we implement PAS-TA-U to instantiate an ESKM that admits password update
functionality for its users.
• The plain PASTA framework distributes the role of an identity provider IP among n identity servers
{S1, . . . , Sn}. Consequently, the registration phase in PASTA involves a direct interaction between a user
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and the n identity servers. We propose to keep only a user and the identity provider IP as primary
participants in the registration phase. It is during the registration phase that a user is provided with a
set of identity servers {S1, . . . , Sn} by the IP. The user consequently reaches out to all identity servers
with necessary information. In doing so we are keeping the identity provider in charge who may choose
to select different identity servers for different users.

1.2 Organization

In Section 2, preliminaries required for PAS-TA-U framework are given. In § 2.1 GapTOMDH problem is given;
the details on secret sharing are given in § 2.2; and the details on threshold token generation (TTG) and
threshold oblivious pseudo-random function (TOPRF) are given in § 2.3 and § 2.4 respectively. The details on
password-based threshold authentication (PbTA) are given in Section 3. The PAS-TA-U framework is given in
Section 4. The security definitions for the underlying primitives make the basis for PbTA security definitions
such as password-safety and unforgeability. As PAS-TA-U modifies PASTA frame directly to enhance it with
a password functionality, we define password-update safety in Definition 11. The password-update safety of
PAS-TA-U is directly reduced to the unforgeability requirement in § 4.1. In Section 5 we use PAS-TA-U to
construct a distributed SSH key manager for enterprise networks. The implementation details are given in §
5.1.

2 Preliminaries

Notations. N denotes the set of natural numbers. Zp denotes the finite field having elements {0, 1, , . . . , p−
1} with addition and multiplication modulo the prime p. For a natural number n, we let [n] = {1, 2, . . . , n}.
For a set S, a

$← S denotes that a is selected from S at random. We use PPT as a shorthand for probabilistic
polynomial time and negl to denote negligible functions. The GroupGen be a PPT algorithm that on input
a security parameter 1λ, outputs (p, g,G) where p is a λ bit prime, G is a multiplicative group of order p,
and g is a generator of G.

2.1 Hardness Assumption

For q1, . . . , qn ∈ N and t′, t ∈ N where t′ < t ≤ n, define

MAXt′,t = max{` | ∃ û1, . . . , û` ∈ {0, 1}n s.t. HW(ûi) = t− t′ and
∑̀
i=1

ûi ≤ (q1, . . . , qn)} (1)

where HW(û) denotes the number of 1’s in the binary vector û, and all operations on vectors are component-
wise integer operations.

Definition 1 (GapTOMDH) A cyclic group generator GroupGen satisfies the Gap Threshold One-More Diffie-
Hellman (GapTOMDH) assumption if for all t′, t, n, r where t′ < t ≤ n and for all PPT adversary A in
OneMoreA(1λ, t′, t, n, r) game as defined in Fig. 4, there exists a negligible function negl s.t.

Pr[1← OneMoreA(1λ, t′, t, n, r)] ≤ negl(λ)

2.2 Shamir Secret Sharing

In the following we recall Shamir secret sharing scheme [13] and related concepts.
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OneMoreA(1λ, t′, t, n, r)

– (p, g,G)
$← GroupGen(1λ)

– g1, . . . , gr
$← G

– ({(i, αi)}i∈B, st)← A(p, g,G, g1, . . . , gr), where B ⊆ [n], |B| = t′

– (k0, k1, . . . , kn)
$← GenShare(p, t, n, {(i, αi)}i∈B)

– qi := 0 for i ∈ [n]
– ((g′1, h1), . . . , (g′`, h`))← A〈O〉(st)

– output 1 ⇐⇒


` > MAXt′,t(q1, . . . , qn)

g′i ∈ {g1, . . . , gr} and hi = g′k0i ∀ i ∈ [`]

g′i 6= g′j ∀ 1 ≤ i 6= j ≤ `
• O(i, x)

– Input: i ∈ [n]\B, x ∈ G
– qi := qi + 1
– Output: return xki

• ODDH(x1, x2, y1, y2)

– Input: x1, x2, y1, y2 ∈ G
– Output: return 1 ⇐⇒ dlogx1x2 = dlogy1y2

Figure 4: OneMoreA(1λ, t′, t, n, r)

Definition 2 (Lagrange Interpolation) Let t be a positive integer and F be a field. Given any t pairs of
field elements (x1, y1), . . . , (xt, yt) with distinct xi’s, there exists a unique polynomial f(x) ∈ F[x] of degree
at most t − 1 such that f(xi) = yi for 1 ≤ i ≤ t. The polynomial can be obtained using the Lagrange
interpolation formula as follows,

f(x) = y1λ
S
x1(x) + · · ·+ ytλ

S
xt(x), (2)

where S = {x1, . . . , xt} and λSxi(x)’s (1 ≤ i ≤ t) are Lagrange basis polynomials, given by

λSxi(x) =

∏
1≤j≤t,j 6=i(x− xj)∏
1≤j≤t,j 6=i(xi − xj)

(3)

Definition 3 (Shamir Secret Sharing) Let t, n ∈ N such that 1 < t ≤ n. A (t, n)-threshold Shamir secret
sharing allows a dealer D to share a secret among n participants {P1, . . . , Pn} such that at t least of them
are required to reconstruct the secret back, and any set of less than t participants will have no information on
the secret. In particular, the scheme has two algorithms (ShamirShare,ShamirRec) and they work as follows:

• ShamirShare. On input a secret sk ∈ Fq where q > n, the share generation algorithm ShamirShare
outputs a list of n shares as follows.

– f(x)
$← Fq[x] s.t. f(0) = sk and degree(f) ≤ t− 1.

– ski = f(i) mod p, for i ∈ [n].

– Each Pi gets ski, the ith share of sk

• ShamirRec: The secret reconstruction algorithm ShamirRec requires any t shares for correct secret re-
construction.

1. Input: {ski}i∈S, where S ⊆ [n] and |S| = t

2. Output: sk =
∑

i∈S skiλ
S
i (0)
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2.3 Threshold Token Generation (TTG)

A threshold token generation scheme essentially refers to a threshold signature scheme. In a traditional
public-key signature scheme, we have a signer who holds a secret signing key and a verifier who holds a
public verification key. In a (t, n)-threshold signature scheme, where t ≤ n, the secret key is split into n
signers {P1, . . . ,Pn} such that at least t these parties must come together to sign a message. The collective
signing is done in a way such that at no stage the secret key is revealed.

Definition 4 (Threshold Token Generation (TTG)) A threshold token generation scheme Π is a tuple
(SetUp,PartSign,Combine,Verify) of four PPT algorithms and they work as follows:

• Setup(1λ, t, n) The inputs to the setup algorithm are: a security parameter λ, n signing parties P1, . . . , Pn,
and a number t ≤ n. It proceeds as follows:

– Generate a pair of singing and verification key (sk, vk) along with public parameters pp
– Generate n shares (sk1, . . . , skn) of the signing key sk
– Each signing party Pi receives (ski, pp)
– The pair (vk, pp) is made publicly available.

• PartSign(ski, x) This algorithm is run by individual signers. The ith signer Pi takes as input a message
x and its share ski. It returns a partial signature yi on x.

• Combine({yi}i∈S). This algorithm puts together t part signatures {yi}i∈S where |S| = t and combine
them to output a signature, also refer it as a token, tk on x.

• Verify(vk, tk, x) The verification algorithm takes as input the verification key vk, a token tk, and a
message x. It outputs 1 if and only if tk is a valid signature on x.

2.3.1 A TTG Construction

In the following we recall the famous TTG scheme due to Victor Shoup [6]. We begin by setting up a few
notations. Let t, n be positive integers such that 1 < t ≤ n. Define ∆ = n!. In the following we now define
modified Lagrange coefficients. The Lagrange coefficients are polynomials and the modified variants are
defined as follows.

Definition 5 (Modified Lagrange Coefficients [6]) Let S ⊂ {1, 2, . . . , n}. For any j ∈ {1, 2, . . . , n}\S,
define

λ̃Sj (x) = ∆λSj (x) = ∆ ·
∏
k∈S\{j}(x− k)∏
k∈S\{j}(j − k)

(4)

Clearly, λ̃Sj (x) ∈ Z[x] for all j ∈ {1, 2, . . . , n}\S. In the following, we recall Lagrange interpolation over
ZN where N is an RSA modulus, i.e. N = p× q where p, q are distinct primes.

Theorem 1 ([6]) Let f(x) =
∑t−1

k=0 akx
k ∈ ZN [X] be of degree at most t − 1, where N > n is an RSA

modulus. Let {
(
j, f(j)

)
}j∈S be t points over f(x), where S ⊆ {1, 2, . . . , n} and ∆ = n!. Then,

∆ · f(x) =
∑
j∈S

f(j) · λ̃Sj (x) mod φ(N) (5)

In the following we now recall Shoup’s [6] threshold signature, aka threshold token generation scheme.

• Setup(1λ, t, n): The setup algorithm generates necessary parameters for the n signers as follows:
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– Generate λ-bit primes p, q (p 6= q)
– N = pq

– e, d
$← ZN s.t. ed ≡ 1 (mod φ(N))

– (sk1, . . . , skn)←− ShamirShare(d, t, n)
– Verification key vk = (e,N,H(·)), where H : {0, 1}∗ → ZN is a secure hash function.
– Each signer Pi receives ski.

• PartSign: A signer Pi runs this algorithm. It produces a partial signature on a message m using its
secret share ski as follows:

– Output: yi = H(m)2∆ski mod N , where ∆ = n!

• Combine({yi}i∈S): The input to these algorithms are partial signatures {yi}i∈S received from t signers,
i.e. |S| = t where S ⊆ {P1, . . . ,Pn}. This algorithm combines these partial signatures to obtain a full
signature as follows.

– Compute w =
∏
i∈S y

2∆λ̃Si (0)
i mod N

– Find integers a, b such that a4∆2 + be = 1
– Compute σ = waH(m)b mod N
– Output (m,σ)

• Verify: The verification algorithm is used for checking signature validity. The input to this algorithm
is a tuple (m,σ, vk) and it works as follows:

– Output valid ⇐⇒ H(m)
?
= σe (mod N).

Correctness: Note that, w =
(
H(m)4∆2d

)
(mod N). Finally,

σ ≡ waH(m)b mod N

≡ (H(m)4∆2d)a(H(m)ed)b mod N

= (H(m)d)4∆2a+eb mod N

= H(m)d mod N

2.4 Threshold Oblivious Pseudo-Random Function (TOPRF)

A pseudo-random function (PRF) family is a keyed family of deterministic functions. A function chosen at
random from the family is indistinguishable from a random function. Oblivious PRF (OPRF) is an extension
of PRF to a two-party setting where a server S holds the key and a party P holds an input. S can help P
in computing the PRF value on the input but in doing so P should not get any other information and S
should not learn P ’s input. Jarecki et al. [14] extend OPRF to a multi-server setting so that a threshold
number t of the servers are needed to compute the PRF on any input. Furthermore, a collusion of at most
t− 1 servers learns no information about the input.

Definition 6 (Threshold Oblivious Pseudo-Random Function (TOPRF)) A threshold oblivious
pseudo-random function is a PRF TOP : K×X → Y along with a tuple of four PPT algorithms (Setup,Encode,
Eval, Combine) described below. The server S is split into n servers S1, . . . , Sn. The party P must reach out
to a subset of these servers to compute a TOP value.

– Setup(1λ, t, n) → (sk, {ski}ni=1, pp). It generates a secret key sk, n shares sk1, . . . , skn of sk, and public
parameters pp. Share ski is given to party Si. The public parameters pp will be an implicit input in
the algorithms below.
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– Encode(x, ρ). It is run by the party P . It generates an encoding c of x using randomness ρ.
– Eval(ski, c) It is run by a server Si. It uses ski to generate a share zi of TOPRF value TOP(sk, x) from

the encoding c.
– Combine(x, {(i, zi)}i∈S , ρ) It is run by the party P . It combines the shares received from any set of t

servers (|S| = t) using randomness ρ to generate a value h.

Correctness

For all λ ∈ N, and t, n ∈ N where t ≤ n, all (sk, {ski}ni=1, pp)
$← Setup(1λ, t, n), any value x ∈ X ,

any randomness ρ, ρ′, and any two sets S, S′ ⊆ [n] where |S| = |S′| ≥ t, if c = Encode(x.ρ), c′ =
Encode(x.ρ′), zi = Eval(ski, c) for i ∈ S, and z′j = Eval(skj , c

′) for j ∈ S′, then Combine(x, {(i, zi)}i∈S , ρ) =
Combine(x, {(i, z′j)}j∈S′ , ρ′).

2.4.1 Security

As given in [11], in the following we list the security properties that a TOPRF must satisfy.

Definition 7 (Unpredictability [11]) A TOPRF is unpredictable if for all t, n ∈ N where t ≤ n, and PPT
adversary A in UnpredictabilityTOP,A(1λ, t, n) game as defined in Fig. 5, there exists a negligible function
negl s.t.

Pr[1← UnpredictabilityTOP,A(1λ, t, n)] ≤
MAX|C|,t(q1, . . . , qn)

|X |
+ negl(λ)

UnpredictabilityTOP,A(1λ, t, n)

– ([[sk]], pp)
$← Setup(1λ, t, n)

– C ← A(pp)

– x∗
$← X

– qi := 0 for i ∈ [n]
– h∗ ← A〈O〉({ski}i∈C)
– output 1 ⇐⇒ TOP(sk, x∗) = h∗

• Oenc∧eval()

– c := Encode(x∗, ρ) for a randomness ρ
– zi ← Eval(ski, c) for i ∈ [n]\C
– return c, {zi}i∈[n]\C

• Oeval(i, c)

– require: i ∈ [n]\C
– qi = qi + 1
– return Eval(ski, c)

• Ocheck(h)

– return

{
1 if h = TOP(sk, x∗)

0 otherwise

Figure 5: UnpredictabilityTOP,A(1λ, t, n)
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Definition 8 (Obliviousness [11]) A TOPRF is unpredictable if for all t, n ∈ N where t ≤ n, and PPT
adversary A in ObliviousnessTOP,A(1λ, t, n) game as defined in Fig. 6, there exists a negligible function negl
s.t.

Pr[1← ObliviousnessTOP,A(1λ, t, n)] ≤
MAX|C|,t(q1, . . . , qn) + 1

|X |
+ negl(λ)

ObliviousnessTOP,A(1λ, t, n)

– ([[sk]], pp)
$← Setup(1λ, t, n)

– C ← A(pp)

– x∗
$← X

– qi := 0 for i ∈ [n]
– x∗∗ ← A〈O〉({ski}i∈C)
– output 1 ⇐⇒ x∗ = x∗∗

–

• Oenc∧eval()

– c := Encode(x∗, ρ) for a randomness ρ
– zi ← Eval(ski, c) for i ∈ [n]\C
– h := Combine(x∗, {(i, zi)}i∈[n], ρ)
– return c, h, {zi}i∈[n]\C

• Oeval(i, c)

– require: i ∈ [n]\C
– qi = qi + 1
– return Eval(ski, c)

Figure 6: ObliviousnessTOP,A(1λ, t, n)

2.4.2 A TOPRF Construction

In the following we recall a TOPRF construction called 2HashTDH [14] that PASTA uses. The underlying PRF
for 2HashTDH is H : X × Zp → {0, 1}λ, where X is the message space, and Zp the key space. To define H,

we require two hash functions: H1 : X × G → {0, 1}λ, and H2 : X → G, where (p, g,G)
$← GroupGen(1λ).

Finally, for x ∈ X , and key sk ∈ Zp, define

H(x, sk) = H1(x,H2(x)sk).

The TOPRF evaluation for H is described below, where P holds a message x ∈ X , and the secret key sk is
split between n servers.

– Setup(1λ, t, n).

– (p, g,G)
$← GroupGen(1λ)

– sk
$← Zp

– (sk1, . . . , skn)
$← ShamirShare(sk, t, n)

– Set pp = (p, g,G, t, n,H1, H2).
– Give (ski, pp) to each server Si

– Encode(x). This is run by P
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– ρ
$← Zp

– Output c = H2(x)ρ

– Eval(ski, c). This is run by a server Si

– Output zi = cski

– Combine(x, {(i, zi)}i∈S , ρ). This is run by P

– Output ⊥ if |S| ≤ t− 1 where S ⊆ [n]
– Compute z =

∏
i∈S z

λi
i , where λi are Lagrange coefficients computed over the set S (|S| = t)

– Output H1(x, zρ
−1

)

2HashTDH Security

In the work of [11], it was shown that 2HashTDH scheme as described above satisfies both Unpredictability
and Obliviousness properties.

3 Password-based Threshold Authentication with Password Update

A password-based threshold authentication scheme allows a set of related application servers to provide a
seamless single sign-on (SSO) service to its users. The system components include:

– a primary identity provider IP,

– n identity servers {S1, . . . , Sn} managing, between them, user’s credentials,

– application servers AS’s,

– users who want to gain access to all related yet independent applications servers ASs without the need
for them to repeatedly prove their identities to these servers and hold different credentials for each of
them, and

– a client application that facilitate user’s interaction with the IP, identity servers Si’s, and application
servers AS’s.

The algorithms for a PbTA system with password-update functionality are given below, along with their
workflow.

• GlobalSetup(1λ): In this phase the primary identity provider IP, on input a system wide security
parameter λ, number of identity servers n, and a threshold parameter t (1 < t ≤ n), generates a pair
of signing and verification key (sk, vk) along with system public parameters pp. The IP then chooses
and initialises n identity servers {S1, . . . , Sn} with the necessary parameters. In particular,

– each identity server Si is given a secret share ski of the signing secret key sk and the public
parameters pp,

– each application server AS is given the corresponding master verification key vk and the public
parameters pp.

The GlobalSetup phase also initialises user client application with the necessary public parameters.

• Registration: This one-time phase allows a user U to open an account and register its user credentials
with the n identity servers {S1, . . . , Sn} by interacting with the identity provider IP. It begins with the
U choosing a pair of identity and password (idU, pwd), and it ends with the each server Si receiving and
storing a distinct user record reci,U in its record database RECi.
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• TokenGeneration: The token generation algorithm is an interactive algorithm run between a user U’s
client application and a set of at t identity servers, say {S1, . . . , St}.

– TG.Request. Run by a client application.

∗ Input - (idU, pwd, pld, T ). As an input it takes a user identity idU, a user password pwd, a
payload pld, and a set T ⊆ [n].

∗ Output - (stpld, {(idU, pld, reqi)}i∈T ). It outputs a secret state stpld and request messages
{(reqi)}i∈T . For i ∈ T , (idU, pld, reqi) is sent to Si.

– TG.Respond. Run by an identity server Si.

∗ Input - (ski,RECi, (idU, pld, reqi)). As an input it takes a secret key share ski, a record set
RECi, a user identity idU, a payload pld and a request message reqi.

∗ Output - resi. The output is a response message resi which is sent back to the connecting
client.

– TG.Finalize. Run by a client application.

∗ Input - (stpld, {resi}i∈T ). As input it takes a secret state stpld and response messages
{resi}i∈T .

∗ Output - (tkpld). The output is a token (tkpld) for the payload pld. The token will be used
by U to gain access to AS services.

• Verification: The verification algorithm checks the validity of a tk. The inputs to the verification
algorithm are: the master verification key vk, a payload pld, and a token tkpld. The verification
algorithm is run by the AS services every time they receive a login request.

• PasswordUpdate It allows users to update their passwords. The interactive algorithm PasswordUpdate
is run between a user U and all identity servers, {S1, . . . , Sn}. U’s inputs are its current password pwd
and a new password pwd′. The algorithm ends with the each server Si updating their respective reci,U
for U. The updated records are now valid against the new password pwd′. It is important to note that
the PasswordUpdate is not run between U and the application server AS.

3.1 Security [11]

In the following we recall the security game SecGameΠ,A(1λ, t, n) for a password-based threshold authenti-
cation scheme Π with password update as given in [11].

SecGameΠ,A(1λ, t, n)

– (pp, vk, (sk1, . . . , skn))
$← GlobalSetup(1λ, t, n)

– (C, U∗, stA)
$← A(pp) # C : corrupt servers, U∗ : target user

– V := φ # set of corrupt users
– PwdList := φ # list of (idU, pwd) pairs, indexed by idU
– ReqListU,i := φ for i ∈ [n] # token requests U makes to Si
– ct := 0, LiveSessions = [] # LiveSessions is indexed by ct
– TokList := φ # list of tokens generated through Ofinal

– QU,i := 0 for all U and i ∈ [n]
– QU,pld := 0 for all U and pld
– out← A〈O〉({ski}i∈C , stA)

Ocorrupt(U)

– Input: idU
– V := V ∪ {idU}
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– Output: if (idU, ∗) ∈ PwdList, return PwdList[idU]

Oregister(U)

– Input: idU, such that PwdList[idU] = ⊥
– pwd

$← P
– PwdList := PwdList ∪ {(idU, pwd)}
– (rec1,U, . . . , recn,U)

$← Register(idU, pwd)
– RECi := RECi ∪ {reci,U} for i ∈ [n]

Oreq(U, pld, T )

– Input: User identity idU with PwdList[idU] 6= ⊥, payload pld, and a set T ⊆ [n].

– (stpld, {reqi}i∈T )
$← TG.Request(idU,PwdList[idU], pld, T )

– LiveSessions[ct] := stpld

– ReqListU,i = ReqListU,i ∪ {reqi} for i ∈ T
– ct = ct + 1
– Output: return {reqi}i∈T

Oresp(i, U, pld, reqi)

– Input: The ith identity server is provided with a user identity idU, payload pld, and a reqi for
token generation

– resi ← TG.Respond(ski,RECi, (idU, pld, reqi))
– QU,i := QU,i + 1 if reqi /∈ ReqListU,i
– QU,pld := QU,pld + 1
– Output: return resi

Ofinal(ct, {resi}S)

– Input: It is presented with a counter leading to a specific state, and identity server partial
responses to a token generation request

– stpld := LiveSessions[ct]
– tk := TG.Finalize(stpld, {resi}i∈S)
– TokList := TokList ∪ {tk}
– Output: return tk

Definition 9 (Password Safety[11]) A PbTA scheme Π i s password safe if all t, n ∈ N, (t ≤ n), all
password space P and all PPT adversary A in SecGameΠ,A(1λ, t, n), there exists a negligible function negl
such that

Pr[(U∗ /∈ V) ∧ (out = PwdList[idU∗ ] 6= ⊥)] ≤
MAX|C|,t(QU∗,1, . . . , QU∗,n) + 1

|P|
+ negl(λ)

Definition 10 (Unforgeability[11]) A PbTA scheme is unforgeable if for all t, n ∈ N, (t ≤ n), all password
space P and all PPT adversary A in SecGameΠ,A(1λ, t, n), there exists a negligible function negl such that

– if QU∗,pld∗ < t− |C|,
Pr[Verify(vk, idU∗ , pld∗, tk∗) = 1] ≤ negl(λ)

– else

Pr[(U∗ /∈ V) ∧ (tk∗ /∈ TokList) ∧ (Verify(vk, idU∗ , pld∗, tk∗) = 1)] ≤
MAX|C|,t(QU∗,1, . . . , QU∗,n)

|P|
+ negl(λ)

where A’s output ”out” in the SecGameΠ,A(1λ, t, n) is parsed as (pld∗, tk∗).
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Definition 11 (Password Update Safety) A PbTA scheme is password update safe if for all t, n ∈ N,
(t ≤ n), all password space P and all PPT adversary A in SecGameΠ,A(1λ, t, n), there exists a negligible
function negl such that

Pr[(U∗ /∈ V) ∧ (i ∈ [n]\C) ∧ (Fi is true)] ≤ negl(λ)

where A’s output ”out” in the SecGameΠ,A(1λ, t, n) is parsed as (i, rec∗i,U∗), and Fi denotes the event that
Si updates the existing record reci,U∗ by replacing it with rec∗i,U∗.

4 PAS-TA-U: PASTA with Password Update

In the following we present PAS-TA-U framework. It is obtained by providing a password update functionality
to the PASTA framework of [11]. Additionally, the registration phase in PAS-TA-U proposes, unlike the
registration phase in plain PASTA, to keep a user and an identity provider IP as the primary participants.
It is during the registration phase that a user is provided with a set of identity servers {S1, . . . , Sn} by the
IP. The user consequently reaches out to all identity servers with the necessary information. In doing so we
are keeping the identity provider in charge who may choose to select different identity servers for different
users. The user uses a client application for all its interactions with the IP, identity servers and application
servers.

The other algorithms in PAS-TA-U framework remain exactly as described in plain PASTA. The underlying
cryptographic primitives used are:

1. a threshold token generation scheme:

TTG = (TTG.Setup,TTG.PartSign,TTG.Combine,TTG.Verify),

2. a threshold oblivious pseudo-random function:

TOP = (TOP.Setup,TOP.Encode,TOP.Eval,TOP.Combine),

3. a symmetric-key encryption scheme: SKE = (SKE.Enc,SKE.Dec), and a hash function H.

• GlobalSetup: Both servers and clients are initialised with their respective setup parameters in the
GlobalSetup phase:

– TTG.Setup: Each server Si, 1 ≤ i ≤ n, receives (ski, ppttg), where

(ppttg, [[sk]] = (sk1, . . . , skn), vk, sk)
$← TTG.Setup(1λ1 , n, t)

The verification key vk (along with ppttg) is made available to all services managed by the AS.
The master signing key sk is discarded.

– TOP.Setup: A client generates and saves pptop, where

pptop = (p, g,G,P, H1 : P ×G→ {0, 1}λ2 , H2 : P → G)
$← TOP.Setup(1λ2)

• Registration: The registration phase is used by a user U to create its login credentials. This involves
a user client, an identity provider IP and n identity servers selected by the IP. The registration is
a three-step process: In step1, the user client reaches out to the identity provider IP; in step2, IP
responds to the client and also reaches out to all identity servers; and finally in step3, the user client
reaches out to all identity servers. The details for each of these steps are as follows:

– Step1 (U→ IP): The user credentials for a user client U is a pair of user identity and a password
(idU , pwd). The registration begins with U computing and sharing the following with the IP:
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∗ r $← Z∗p.
∗ reg.idU = H2(pwd)r

∗ Send (idU, reg.idU) to IP

– Step2 (IP→ {U, {Si}ni=1}): Upon receiving (idU, reg.idU) from U, the identity provider IP responds
as follows:

∗ IP→ U

· k $← Z∗p
· res.idU = (H2(pwd)r)k

· Sends back res.idU to U

∗ IP→ {Si}ni=1

· (k1, . . . , kn)
$← ShamirShare(k, t, n)

· Sends (idU, ki) to Si, 1 ≤ i ≤ n,

– Step3 (U → {Si}ni=1): Upon receiving the response res.idU from IP, U reaches out to identity
servers with the following to complete the registration.

∗ H2(pwd)k = (res.idU)
r−1

∗ h = TOPk(pwd) = H1(pwd, H2(pwdk))

∗ hi = H(h‖i), 1 ≤ i ≤ n
∗ Sends (idU, hi) to Si, 1 ≤ i ≤ n.

– Each Si, 1 ≤ i ≤ n, make a record of U’s registration credentials by storing [idU, (hi, ki)].

• TokenGeneration: This is run is by a user U to generate tokens (signed messages) used for accessing
application services. As an input it takes a payload pld on which a token (signature) will be generated
eventually and U’s pwd. Consequently, the user client reaches out to any t out of n identity servers
with the token generation request. Upon receiving all t responses, they are combined to produce a
valid token.

– TG.Request (U→ {Si}i∈T ):

∗ ρ ∈ Z∗p
∗ reqttg = TOP.Encode(pwd, ρ) = H2(pwd)ρ

∗ Sends (idU, pld, reqttg) to a set of t identity servers, without loss of generality, say S1, . . . St.

– TG.Respond (Si → U): Upon receiving (idU, pld, reqttg), the ith identity server Si retrieves the
corresponding record [idU, (hi, ki)] and responds as follows:

∗ zi = TOP.Eval(ki, reqttg) = (reqttg)
ki = H2(pwd)ρki

∗ yi = TTG.PartSign(ski, pld‖idU)
∗ vi = SKE.Enc(hi, yi)

∗ Return ttg.resi = (zi, vi) to U

– TG.Finalize: The received responses {ttg.resi = (zi, vi) | 1 ≤ i ≤ t} are combined by the user
client to produce a token on the payload pld as follows:

∗ θ = H2(pwd)kρ =
∏t
i=1 z

λi
i

∗ h = TOPk(pwd) = H1(pwd, H2(pwdk)) = H1(pwd, θρ
−1

)

∗ hi = H(h‖i), 1 ≤ i ≤ t
∗ yi = SKE.Dec(hi, vi), 1 ≤ i ≤ t
∗ tkpld = TTG.Combine({yi}ti=1)

• Verification: The token verification algorithm is run by application services every time they receive a

token tkpld on a payload pld. The access to the service is allowed only if 1
$← TTG.Verify(pld, tkpld, vk).
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• PasswordUpdate: This is run by a user U, every time it wants to update its current password pwd and
set it to a new password pwd′. The process requires U to run TOP evaluations twice: once on the input
pwd and later on pwd′. As TOP is implicitly built into the TokenGeneration algorithm, U therefore runs
the later twice (note that payload is not important here). In the final step U runs the TokenGeneration
algorithm for the third time on a special payload. This token is finally shared with all identity servers,
who then use it to update their respective records associated with U. The details are as follows:

– Step1:

∗ {ttg.resi = (zi, vi) | 1 ≤ i ≤ t} $← TG.Respond(TG.Request(pwd, pld1))

∗ Use {zi}ti=1 to compute h = H1(pwd, H2(pwd)k)

∗ Compute hi = H(h‖i), 1 ≤ i ≤ n
– Step2:

∗ {ttg.resi = (z′i, v
′
i) | 1 ≤ i ≤ t} $← TG.Respond(TG.Request(pwd′, pld2))

∗ Use {z′i}ti=1 to compute h′ = H1(pwd′, H2(pwd′)k)

∗ Compute h′i = H(h′‖i), 1 ≤ i ≤ n
– Step3:

∗ Set pld3 = SKE.Enc(h1, h1||h′1)‖ · · · ‖SKE.Enc(hn, hn||h′n)‖idU
∗ Compute tkpld3

$← TokenGeneration(pwd, pld3) (the current password is used)

– Step4: The user client for U finally sends (pld3, tkpld3
) to all identity servers for password update.

– PasswordUpdate: Upon receiving a token (pld3, tkpld3
) requesting password update, each identity

server Si proceeds as follows:

∗ Si ensures that TTG.Verify(pld3, tkpld3
, vk) returns 1

∗ Extract Li = SKE.Enc(hi, hi‖h′i) from pld3

∗ Compute hi‖h′i = SKE.Dec(hi, Li)

∗ Update the record for idU as [idU, h
′
i, ki] (replacing hi by h′i)

4.1 Security: Password Update

In the following we discuss password update security for PAS-TA-U as per the definition 11. A successful
password update in PAS-TA-U requires a user to obtain a valid token using the existing credentials. Con-
sequently, an unauthorised password update is directly reduced to token forgery. The following theorem
provides the necessary details.

Theorem 2 For all t, n ∈ N, (t ≤ n), all password space P and all PPT adversary A in SecGameΠ,A(1λ, t, n)
(as given in Section 3.1), there exists a PPT adversary B in SecGameΠ,A(1λ, t, n) such that

Pr[(U∗ /∈ V) ∧ (i ∈ [n]\C) ∧ (Fi is true)] ≤ AdvBUnforgreability(SecGameΠ,B(1λ, t, n)) (6)

where Π denotes PAS-TA-U, A’s output ”out” in the SecGameΠ,A(1λ, t, n) is parsed as (i, rec∗i,U∗), and Fi
denotes the event that Si updates the existing record reci,U∗ by replacing it with the new record rec∗i,U∗. The

AdvBUnforgreability(SecGameΠ,B(1λ, t, n)) denotes B’s advantage in forging a token in the SecGameΠ,B(1λ, t, n).

Proof: Assume, A = Apu be a PPT adversary who can make any identity server Si to update a target user
U∗’s existing record reci,U∗ by a record rec∗i,U∗ . We then construct a PPT adversary B = Af who can forge
token’s for arbitrary users. The Af runs Apu as a subroutine. The details are as follows.

Let U∗ be the target user for Af in the SecGameΠ,Af
(1λ, t, n). Let C ⊂ [n] be the subset of identity servers

that are corrupted by Af such that |C| = t − 1. Let pwde
U∗ be the existing password for U∗. Af chooses an
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identity server Si such that i ∈ [n]\C and a new password pwdn
U∗ for U∗. Af then makes a call to Apu and

present it with the input (i, pwdn
U∗ , h

∗
i , {rece

j,U∗}j∈C) where h∗i = H(h∗‖i), h∗ = H1(pwdn
U∗ , H2(pwdn

U∗)
k). The

h∗ can be computed by Af/Apu by reaching out to any t identity servers on inputs idU∗ , pwdn
U∗ .

The adversary Apu subsequently mounts an attack on the target identity server Si. If successful, Si
would update its existing record reci,U∗ = (idU∗ , hi, ki) with the new record rec∗i,U∗ = (idU∗ , h

∗
i , ki) where h∗i is

provided by Apu.

On the other hand, Af by itself could update the records of each of the t−1 corrupted identity servers Sj ’s,
j ∈ C, with the respective h∗j ’s where h∗j = H(h∗‖j), h∗ = H1(pwdn

U∗ , H2(pwdn
U∗)

k). Finally, let C′ = C ∪ {i}.
As |C′| = t, and as each identity server in C′ now have the valid h∗j ’s corresponding to the new password
pwdn

U∗ , Af can obtain valid tokens issued on identity idU∗ . As we see a direct reduction here in terms of the
problem instance for Af being directly reduced to the problem instance for Apu, this proves the claim of
equation 6.

5 A Concrete Application of PAS-TA-U: Practical SSH key manager for
enterprise networks

In the following We show how PAS-TA-U framework can be used to implement an SSH (Secure shell) key
manager (ESKM) - an enterprise level solution for managing SSH keys. The concept of an ESKM was first
introduced by Harchol et al. in [12] and was instantiated therein using threshold cryptographic primitives.
ESKM is a secure and fault-tolerant logically-centralised SSH key manager whose advantages include: (1) the
ability to observe, approve and log all SSH connections origination from the home network, and (2) clients do
not need to store secret keys and instead only need to authenticate themselves to the ESKM system. The ESKM
central key server of [12] was implemented in a distributed fashion using n key servers (also know as control
cluster (CC) nodes ) such that users in the enterprise network must interact with a subset of these CC
nodes for a successful SSH connection. The problem of user authentication to CC nodes was also discussed
in [12] and password-based variants were proposed for the same. The functionality of a password update
mechanism for its users in an ESKM is an obvious requirement. As a concrete application, we implement
PAS-TA-U to instantiate an ESKM that admits password update functionality for its users. The different
entities in PAS-TA-U are mapped to ESKM components as follows: (1) the key manager in ESKM play the role
of an identity provider IP, and n control nodes represent the identity servers {S1, . . . , Sn}, (2) enterprise
network has SSH key pairs (sk, vk) and SSH servers storing vk represent the application servers AS, and (3)
users in the enterprise network must obtain valid tokens by connecting to a subset of t (t ≤ n) identity
servers before they can gain access to these SSH servers. In the following we present a working flow of the
system.
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Figure 7: Distributed SSH key manager for enterprise networks

• Step 1 The key manager (IP) runs the PAS-TA-U GlobalSetup to obtain (sk, vk) and n shares of
{sk1, . . . , skn} of sk. It submits vk with the application servers AS’s (SSH servers). Finally, it sets up n
identity servers {S1, . . . , Sn} locally and initialises them with the respective shares: Si ← ski.

• Step 2 Users in the enterprise network run PAS-TA-U Registration with the IP to create and store
credentials with the identity servers {S1, . . . , Sn}.

• Step 3 This step shows how a registered user make an SSH connection into application servers. A
user client initiates an SSH connection in to an application server AS. As part of user authentication,
the SSH handshake phase presents to the client a challenge payload pld to be signed using the signing
key sk. Consequently, the client runs the PAS-TA-U TokenGeneration on payload pld by reaching out to
a set of t identity servers using U’s password pwd. A set of t correct responses are combined to produce
a signature token tk on the payload pld under the signing key sk. The generated tk is sent back to
the application server which then verifies it using the stored verification key vk. A correctly generated
token will give U an access to the application server.
• Step 4 Our password update mechanism allows any user to update its password by reaching out to a

set of any t identity servers directly. The updated matching user credentials are then uploaded to all
identity servers.

5.1 ESKM Implementation

In this section we provide implementation details and consequently report on the performance of our in-
stantiation of an ESKM using PAS-TA-U under practical network scenarios. We developed separate client
applications for (a) users (b) identity provider IP, and (c) identity servers Si’s. All client applications are
developed in Python. The entire source code for our implementation is hosted at https://anonymous.

4open.science/r/198222d4-a335-4b93-a219-5a0bf5a4ec23/.

The cryptographic algorithms implemented for client applications include a hash function, Shamir secret
sharing scheme, a symmetric-key encryption scheme, a TOPRF, and a TTG scheme. We used SHA-256 as
our hash function. For symmetric key encryption, we used AES-128 with OFB mode. Both SHA-256 and
AES-128 implementations were called from Python Cryptography library. For TOPRF, we implemented
2HashTDH scheme of Jarecki et al. [14]. For TTG, we implemented the scheme of Victor Shoup [6]. We used
openssl library for 2HashTDH TOPRF and Shoup’s TTG implementations.

The user client authentication in the SSH connection to the application server is done using public-key
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based method. We used RSA signature scheme to generate a 2048 bits key-pair (sk, vk) and configure the
application server with the vk. The openssh version used is 8.2p1 and it internally uses openssl version
1.1.1f. In the handshake phase of the SSH, the user client is presented with a challenge payload pld for it
to be RSA signed using the secret signing key sk. The signing part is handled by the libcrypto library of
openssl. In our case the secret key is not available with the client and instead it must reach out, using our
python user client, to t identity servers for a threshold RSA signature generation (token) on the pld. To
make this happen, we introduced a patch in libcrypto which can alter the usual signing flow. We replaced
the secret key with an equivalent dummy key. If the libcrypto’s signing routine detects a dummy key, it
calls our Python routine which computes signature by contacting t servers. Otherwise, the usual signing
flow continues.

Experimental Setup: In order to evaluate the performance, we implemented various network settings
described below. The experiments are run on a single laptop running Ubuntu 20.04 with 2-core 2.2 GHz
Intel i5-5200U CPU and 8 GB of RAM. All identity providers are run on the same machine. We simulate
the following network connections using the Linux tc command: (1) a local area network setting with 4 ms
round-trip latency, and (2) an Internet setting with 80 ms round-trip latency.

Token Generation Time: Table 1 shows the total run-time for a user client to generate a single token
in the TokenGeneration phase. We show experiments, both in the LAN and the Internet setting, for a
different set of (t, n) parameters where n is the total number of identity servers and t (t ≤ n) is the threshold
set of identity servers which are contacted by the user client. The reported time is an average of 100 token
requests. The Plain setting in the table corresponds to the direct peer-to-peer client-server SSH connection
(without the threshold token generation).

Setting (t, n) Time (ms)

Plain 15.1
(2,3) 22.8

LAN (3,6) 25.1
(5,10) 28.2
(10,10) 32.5

Plain 101.3
(2,3) 109.5

Internet (3,6) 112.4
(5,10) 115.8
(10,10) 119.9

Table 1: Token Generation Time for User Clients in ESKM

Password Update Time Table 2 shows the total run-time for the client to update password in our
PbTA protocol. The reported time is an average of 100 password change requests.

Setting (t, n) Time (ms)

(2,3) 65.3
Local (3,6) 74.4

(5,10) 82.7
(10,10) 95.1

(2,3) 325.5
Internet (3,6) 333.1

(5,10) 346.9
(10,10) 357.6

Table 2: Password Update Time for User Clients in ESKM
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6 Conclusion

We presented PAS-TA-U to propose a password-update functionality into PASTA - a generic framework for
password-based threshold authentication (PbTA) schemes. Secure password update is a practical require-
ment for PbTA applications such as single-sign-on systems. Existing PbTA schemes, including the PASTA

framework, do not admit password update functionality.

As a concrete application, we instantiated PAS-TA-U to implement a distributed enterprise SSH key
manager that features a secure password-update functionality for its clients. Our experiments show that
the overhead of protecting secret credentials against breaches in our system compared to a traditional single
server setup is low (average 119 ms in a 10-out-of-10 server setting on Internet with 80 ms round trip
latency). The entire source code for our implementation is hosted at https://anonymous.4open.science/
r/198222d4-a335-4b93-a219-5a0bf5a4ec23/.
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