
Halo Infinite: Proof-Carrying Data from Additive Polynomial
Commitments

Dan Boneh1 Justin Drake2 Ben Fisch1 Ariel Gabizon3

1Stanford University 2Ethereum Foundation 3AZTEC Protocol

Abstract

Polynomial commitment schemes (PCS) have recently been in the spotlight for their key role
in building SNARKs. A PCS provides the ability to commit to a polynomial over a finite field
and prove its evaluation at points. A succinct PCS has commitment and evaluation proof size
sublinear in the degree of the polynomial. An efficient PCS has sublinear proof verification.
Any efficient and succinct PCS can be used to construct a SNARK with similar security and
efficiency characteristics (in the random oracle model).

Proof-carrying data (PCD) enables a set of parties to carry out an indefinitely long dis-
tributed computation where every step along the way is accompanied by a proof of correct-
ness. It generalizes incrementally verifiable computation and can even be used to construct
SNARKs. Until recently, however, the only known method for constructing PCD required ex-
pensive SNARK recursion. A system called Halo first demonstrated a new methodology for
building PCD without SNARKs, exploiting an aggregation property of the Bulletproofs inner-
product argument. The construction was heuristic because it makes non-black-box use of a
concrete instantiation of the Fiat-Shamir transform. We expand upon this methodology to
show that PCD can be (heuristically) built from any homomorphic polynomial commitment
scheme (PCS), even if the PCS evaluation proofs are neither succinct nor efficient. In fact, the
Halo methodology extends to any PCS that has an even more general property, namely the
ability to aggregate linear combinations of commitments into a new succinct commitment that
can later be opened to this linear combination. Our results thus imply new constructions of
SNARKs and PCD that were not previously described in the literature and serve as a blueprint
for future constructions as well.

1 Introduction
A polynomial commitment scheme (PCS) enables a prover to commit to a polynomial f ∈ F[X] of
degree at most d. Later, given two public values x, y ∈ F, the prover can convince a verifier that
the committed polynomial f satisfies y = f(x) and that f has degree at most d. This is done using
a public coin evaluation protocol called Eval. The PCS is said to be efficient if the verifier runs
in time o(d log |F|), and is said to be succinct if the commitment string and the communication
complexity of Eval is o(d log |F|).

This important concept was first introduced by Kate, Zaverucha, and Goldberg (KZG) [KZG10],
and has emerged as a key tool for building succinct and efficient non-interactive argument systems
called SNARKs [BCCT12]. A succinct and efficient PCS can be used to compile an information
theoretic interactive proof system known as a Polynomial Interactive Oracle Proof [BFS20] (PIOP),

1

or equivalently Algebraic Holographic Proofs [CHM+20]), into a SNARK. There are many examples
of efficient PIOPs for NP languages, where the verifier complexity is logarithmic or even constant
in the size of the statement being proven. This construction paradigm led to several recent SNARK
systems with improved characteristics, including very efficient pre-processing SNARKs with a uni-
versal trusted setup [MBKM19, CHM+20, GWC19] or no trusted setup [BFS20, COS20, Set20,
KPV19].

The original PCS, called the KZG PCS [KZG10], is both efficient and succinct. It is based
on pairings and requires a linear size reference string generated by a trusted setup (a recent im-
provement shrinks the size of the reference string [BMV19]). Another PCS, called the Bulletproofs
PCS [BCC+16, BBB+18], does not require pairings or a trusted setup, and is succinct, but is
not efficient. Some schemes are both efficient and succinct and do not require a trusted setup:
DARK [BFS20] is based on groups of unknown order, and very recently Dory [Lee20] uses pairing-
based commitments and generalized inner-product arguments [BMV19]. A post-quantum efficient
and succinct PCS without trusted setup can be built using FRI [VP19, KPV19, BGKS19]. In
practice, these schemes all have very different performance profiles and properties.

A proof-carrying data (PCD) system [CT10, BCCT13] is a powerful primitive that is more
general than a SNARK. Consider a distributed computation that runs along a path of t ordered
nodes. The computation is defined by a function F : F`1 × F`2 → F`1 in which node i takes two
inputs: the output zi−1 ∈ F`1 of node (i − 1), and a local input loci ∈ F`2 . The node outputs
zi = F (zi−1, loci) ∈ F`1 . A PCD system enables each node to provide a proof to the next node
which attests not only to the correctness of its local computation, but also to the correctness of all
prior computations along the path. The work to produce/verify each local proof is proportional
to the size of the local computation and is independent of the length of the path. A PCD system
can be more generally applied to any distributed computation over a directed acyclic graph of
nodes. An important performance metric of a PCD system is its recursion threshold: the minimum
size complexity of F for which recursion is possible. PCD is currently being used in practice to
construct a “constant-size blockchain” system [Lab18, BMRS20], where the latest proof attests to
the validity of all state transitions (i.e., transactions) in the blockchain history.

PCD systems generalize incrementally verifiable computation (IVC), proposed by Valiant [Val08],
where a machine outputs a proof after each step of computation that attests to the correct his-
tory of computation steps. This can be used to construct SNARKs for succinct bounded RAM
programs, which captures many programs in practice that have a small memory footprint relative
to their running time. It is also theoretically sufficient for constructing preprocessing SNARKs for
arithmetic circuits [BCGT13].

1.1 Contributions

We define several abstract properties of a PCS and show that these abstract properties are sufficient
to construct powerful proof systems, including PCD and IVC. These abstract constructions give a
general and unified approach to understanding recent PCD constructions. We show that the PCS
schemes mentioned above satisfy some or all of our abstract properties. In some cases, instantiating
our abstract proof systems with these PCS schemes leads to new proof systems that were not
previously known. In fact, we could instantiate the PCS in two different ways from any collision-
resistant linear hash function h : Fd → G, one that optimizes for the size of proofs passed along
nodes of the PCD, and the other that optimizes for prover time (i.e., the size of the recursive

2

statement).1
We begin by defining an additive PCS as a simple refinement of a PCS, where the space

of commitment strings form a computational group G under some binary operation add. Group
elements must have representation size poly(λ) in terms of the security parameter λ of the PCS and
add must run in time poly(λ). This means that it is possible to efficiently compute integer linear
combinations of commitments. Moreover, a second requirement is that the prover can efficiently
derive a valid opening string to open the linear combination of commitments to the same linear
combination of the underlying committed polynomials. Because G is finite, the size of the linearly
combined commitments is bounded, independent of the number of summands or sizes of the integer
coefficients. A trivial way to impose a group structure on the commitment space of any PCS is to
define G as the group of formal linear combinations of commitment strings, however, this trivial
group is not bounded and therefore does not qualify the PCS as additive.

A useful property of an additive PCS is the ability to aggregate PCS evaluations, akin to
signature aggregation. We define two flavors of PCS aggregation schemes: private and public.
First, consider a tuple (C, x, y) ∈ G×F2, where C is a commitment to some polynomial f ∈ F(<d)[X].
We say that the prover has a witness for this tuple, if when the prover runs the Eval protocol with
the verifier on input (C, x, y), the verifier accepts with probability one. A (private) aggregation
scheme is an interactive protocol between a prover and a verifier where the public input known
to both is ` tuples (C1, x1, y1), . . . , (C`, x`, y`) ∈ G × F2, and the public output is a single tuple
(C∗, x∗, y∗) ∈ G × F2. At the end of the protocol, the verifier is convinced that if the prover
has a witness for (C∗, x∗, y∗), then it must also have witnesses for (Ci, xi, yi) for all i ∈ [`]. A
private aggregation scheme is non-trivial if it is more efficient than running the Eval protocol on
the `+1 tuples. It is efficient if the verifier complexity is sublinear in the degree of the committed
polynomials.

A public aggregation scheme enables a prover who does not know the witnesses for the
` input tuples to aggregate the non-interactive proofs for these tuples. This is also a two-party
protocol where, for each i ∈ [`], both parties receive a tuple (Ci, xi, yi) ∈ G×F2 and a corresponding
non-interactive proof πi. The common output is a tuple (C∗, x∗, y∗) ∈ G× F2 for which the prover
has a witness. The prover can subsequently produce a non-interactive proof for this output tuple.
Informally, a valid proof for the output tuple demonstrates the validity of each input proof for the
input tuples. As there is no information asymmetry between the two parties, the protocol is only
interesting if the verifier does significantly less work than the prover.

A key theorem of this paper is that every additive PCS has an efficient private aggregation
scheme. In fact, the theorem is more general. It is possible that a PCS is not additive, but there
is still an efficient algorithm that takes as input a list of ` commitments along with ` integer
coefficient weights, and outputs a new poly(λ)-size commitment in G to the linear combination of
the underlying committed input polynomials, along with a proof of correctness. We call this a
linear combination scheme (LCS). The LCS is efficient if the verifier is sublinear in the degree
of the committed polynomials. Moreover, if the LCS verifier complexity is asymptotically faster
than running the Eval verifier ` times, then we call the PCS linearly amortizable because it allows
for opening linear combinations of commitments with amortized efficiency gains. If the PCS is
additive it suffices to compute linear combinations of commitments over G and no additional proof
is required, hence every additive PCS is linearly amortizable. We prove that:

1A homomorphism h : Zd → G that is collision-resistant modulo p suffices, i.e. finding collisions where x 6= y mod p
is intractable.

3

Theorem 1 (informal). Every PCS that has an efficient linear combination scheme has an efficient
private aggregation scheme. Every succinct additive PCS has an efficient public aggregation scheme.

The formal statement of this result is in Theorem 3 and Theorem 6. As a concrete implication,
we can take any linear collision-resistant hash function h : Fd → G and build a trivial PCS where
the evaluation proof outputs the entire polynomial. Although this is not succinct, it is still additive
and thus, as the theorem states, it has an efficient private aggregation scheme. Additionally,
combining this hash function with a succinct protocol for proving pre-images of h would give a
succinct additive PCS, which has an efficient public aggregation scheme. In fact, there exists a
generic succinct protocol for proving pre-images of h (Section 5).

The first part of the result (private aggregation, Theorem 3) is based on a novel batched eval-
uation protocol for opening commitments to distinct polynomials at distinct points. Previously,
standard batched evaluation techniques for homomorphic polynomial commitments included: (1)
opening distinct commitments at the same point, and (2) opening a single commitment at multiple
points. The first is accomplished by opening a random linear combination of the original commit-
ments. The second is accomplished by interpolating a degree-n polynomial t over the n opening
points such that the committed polynomial f is equal to t over the domain H of these points, and
proving that f − t is divisible by the zero polynomial zH over this domain. The prover computes a
commitment Cq to the quotient polynomial q := f−t

zH
and proves that q ·ZH = (f− t) by opening Cq

and Cf at a random challenge point. Both of these standard batch evaluation protocols are single-
round. We elegantly compose these two approaches to get a two-round protocol for batch opening
multiple polynomials at multiple points. While the analysis of the standard batch evaluation proto-
col for a multiple commitments at a common point is based on the invertibility of a Vandermonde
matrix, the analysis of our protocol relies on the invertibility of the Hadamard product of a ran-
dom Vandermonde matrix with a square matrix of non-zero field elements (Lemma 8). The KZG
instantiation of this protocol was presented in an earlier manuscript of our work [BDFG20].

Our result for public aggregation (Theorem 6) leverages the generic private aggregation scheme
from Theorem 3 combined with a generic succinct proof of knowledge of the classical homomorphism
pre-image problem (Section 5), which has its roots in the Bulletproofs protocol. Public aggregation
is a factor O(log d) more costly (in communication size) than private aggregation.

Aggregation schemes have a number of important applications to constructing PCS-based
SNARKs. First, aggregation schemes can be used for batch evaluation of polynomial commit-
ments in order to reduce the work of the verifier (Section 4). Second, in Section 6 we discuss a
fascinating and powerful application of PCS aggregation to recursive proof systems. This applica-
tion generalizes a construction by Bowe, Grigg, and Hopwood called Halo [BGH19], which was also
formalized and generalized by Bünz et. al. [BCMS20].

PCD and IVC from PCS aggregation Suppose F : F` → F` and we wish to prove the
correctness of t iterations of F , i.e. that F (t)(z0) = zt. It turns out that given any succinct PCS
with an efficient aggregation scheme, it is possible to construct an efficient non-interactive proof
system for this type of statement whose proof size and verification complexity is proportional to the
size and verification complexity of the PCS on polynomials of degree |F |, completely independent
of t. As our results have shown, this includes any additive PCS and even non-additive schemes
that have an efficient linear combination scheme. Most significantly, the PCS itself does not need
to have efficient verification.

4

In fact, a PCS with an efficient aggregation scheme can be used to construct a PCD system.
Not only does this mean that PCD, IVC, and preprocessing SNARKs can be constructed from any
PCS with an efficient linear combination scheme, but we also expect this should lead to practical
improvements over the prior proof bootstrapping techniques [BCGT13, COS20] whenever the ver-
ification complexity of the private aggregation is smaller than the verification complexity of Eval.
We leave concrete performance analysis for future work, although follow up work [BCL+20] has
already shown that the instantiation of PCD based on our private aggregation scheme using a
simple Pedersen hash function achieves an order-of-magnitude reduction in the size of the recursive
statement (reducing the recursion threshold accordingly).

Theorem 2 (informal). PCD with proofs linear in the predicate size can be constructed from any
PCS that has an efficient linear combination scheme. PCD with sublinear proofs can be constructed
from any PCS with an efficient public aggregation scheme.

In summary, our results pave the way for novel constructions of PCD, IVC, and SNARKs with
new efficiency and security characteristics by directing the research effort towards PCS construc-
tions that have the simple abstract additivity properties formalized in this paper. The constructions
of PCD/IVC following this methodology do require a heuristic security assumption because they
involve instantiating random oracles (more specifically, the Fiat-Shamir transform) with concrete
hash functions. All known constructions of PCD/IVC require heuristic security (i.e., knowledge
assumptions or concrete instantiations of random oracles) and there is evidence that this is inher-
ent [CL20].

Zero-knowledge compiler In Appendix B we show that every additive PCS that additionally
satisfies a technical condition we call m-spanning, can be compiled into a hiding PCS with a
zero-knowledge Eval protocol. m-spanning means that commitments to polynomials of degree at
most m generate G. Our compilation is generic, relying only on the additive property. Four of
the aforementioned examples (Bulletproofs, Dory, KZG, and DARK) are 1-spanning. Our compiler is
a generalization of the technique used to make the DARK PCS zero-knowledge [BFS20], and also
has its roots in Zero-Knowledge Sumcheck [CFS17].

Batch evaluation for the KZG scheme and applications to pairing based zkSNARKs In
Appendix C, we focus specifically on the original PCS of Kate, Zaverucha and Goldberg [KZG10].
As our results apply to all additive schemes, one can naturally instantiate the batch evaluation
scheme described in Section 4 for KZG. We show that for KZG, a more efficient batch evaluation
in terms of prover communication in the Eval procedure is possible, at the expense of extra verifier
operations. This exploits the “multiplicative” nature of KZG that makes it possible to check, given
commitments to four polynomials f, g, h, z, whether f · g ≡ h · z. This check is done using a single
pairing computation over the given commitments. As an application of this batch evaluation, we
reduce the proof length and prover run time of the PLONK zk-SNARK [GWC19], at the expense of
one extra verifier pairing.

1.2 Related work

The construction of general purpose efficient SNARK systems is a hotly pursued topic. There
are many examples of such proof systems that work for any NP relation [Gro10, Lip12, BCCT13,

5

GGPR13, PHGR13, BCI+13, Gro16a, GM17, MBKM19, GWC19, CHM+20, BBHR19, BFS20,
COS20, BGH19, Set20]. In addition to the PCS constructions mentioned earlier, there is also
a scheme by Bootle et. al. [BCC+16] that achieves

√
n commitment size and Eval complexity

based on any additively homomorphic commitment, and a similar lattice-based construction by
Baum et. al. [BDLN16, BBC+18]. In Section 5 we describe a construction of a PCS from any
collision-resistant homomorphism based on our succinct proof of homomorphism pre-images (HPI)
that has constant size commitment, logarithmic size proofs and linear verification time.2 Attema
and Cramer [AC20] described a generalization of Bulletproofs to proving linear forms of Pedersen
committed vectors, which is a special case of our HPI protocol.

Constructions of IVC/PCD use recursive composition, which enables the prover to prove knowl-
edge of a proof that the verification algorithm would accept. Until recently, constructions follow-
ing this paradigm placed a complete description of the proof verifier inside the recursive state-
ment. Thus, PCD was limited to proof systems where the verifier description is sublinear in
the statement being proven (i.e., SNARKs) [Val08, BCCT13, BCTV14, COS20]. The Halo pro-
tocol [BGH19, BCMS20] was the first construction of PCD from an underlying inefficient proof
system (combining the Sonic PIOP [MBKM19] and the Bulletproofs PCS). There were two key
ideas. The first was, in our terminology, a public aggregation scheme for the Bulletproofs PCS.
The second was that the recursive statement can omit the inefficient portion of the proof system’s
verifier, i.e. the Eval verifier. The Eval proof inputs to a PCD step are aggregated along with the
output Eval proofs, and the recursive statement only checks that aggregation was done correctly.
This aggregates all Eval proofs into a single evaluation proof that is checked once at the end, amor-
tizing the cost of Eval verification over the distributed computation length (i.e., recursion depth).
Bünz et. al. [BCMS20] generalize this proof technique further using a primitive they call SNARK
accumulation schemes. They also define PCS accumulation schemes, which can be combined with
PIOP-based SNARKs to get a SNARK accumulation scheme. Our notion of public aggregation
coincides with PCS accumulation. A small tweak to the definition of PCS accumulation we call
private accumulation coincides with private aggregation and can be used to construct PCD with
larger proofs (linear in the predicate size). Our results are thus perfectly complementary.

2 Preliminaries
Basic notations For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For
any mathematical set S the notation |S| denotes the cardinality of S. Unless specified otherwise,
we use λ to denote the security parameter. We say a function f(λ) is negligible in λ, denoted by
negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say an algorithm is efficient if it runs in probabilistic
polynomial time in the length of its input. We use poly(λ) to denote a quantity whose value is
bounded by a fixed polynomial in λ. For a field F, we use F(<d)[X] for the set of polynomials in F[X]
of degree at most d. We use {0, 1}∗ to denote binary strings of arbitrary length and ε to denote
the empty string. We may use the notations Fp and Zp interchangeably to denote the unique prime
field of characteristic p. For modular arithmetic, we use the notation a ≡ b (mod n) to denote that
integers a, b ∈ Z are equivalent modulo n ∈ Z. The notation a mod n denotes the unique integer
b ∈ [0, n) such that a ≡ b (mod n).

2This can be combined with the technique of Bootle et. al. [BCC+16] to get a PCS with
√
n commitment size,√

n verification time, and logarithmic proof size based on any collision-resistant homomorphism. We do not include
the details in this work.

6

For an abstract group, G denotes the set of elements in the group, and for any g1, g2 ∈ G the
element g1 + g2 is the result of applying the binary operation to g1 and g2. The inverse of g ∈ G
is denoted −g and g1 − g2 := g1 + (−g2). For any n ∈ N and g ∈ G the element n · g is defined as
adding n copies of g. For n ∈ Z, n < 0, then n · g is defined as −(|n| · g). The group G is called a
computational group if there exist efficient algorithms for implementing the addition and inversion
operations.

See §A.1 for the formal definition.

2.1 Interactive proofs of knowledge

An NP relation R is a subset of strings x,w ∈ {0, 1}∗ such that there is a decision algorithm to
decide (x,w) ∈ R that runs in time polynomial in |x| and |w|. The language of R, denoted LR, is
the set {x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}. The string w is called the witness and x the
instance. An interactive proof of knowledge for an NP relation R is a special kind of two-party
interactive protocol between a prover denoted P and a verifier denoted V, where P has a private
input w and both parties have a common public input x such that (x,w) ∈ R. Informally, the
protocol is complete if P(w) always causes V(pp, x) to output 1 for any (x,w) ∈ R. The protocol is
knowledge sound if there exists an extraction algorithm E called the extractor such that for every x
and adversarial prover A that causes V(pp, x) to output 1 with non-negligible probability, E outputs
w such that (x,w) ∈ R with overwhelming probability given access3 to A.

See §A.3 for the formal definitions of interactive proofs of knowledge with efficient provers.

Fiat-Shamir tranform The Fiat-Shamir transform preserves knowledge soundness for any constant-
round public-coin interactive proof in the random oracle model, i.e. when the “hash function” is
modeled as a random oracle [GK96, PS96]. The interactive protocol must have a negligible sound-
ness error. More generally, Fiat-Shamir preserves knowledge soundness for multi-round interactive
proofs that satisfy a property called state restoration soundness [BCS16], also equivalent to round-
by-round soundness [CCH+19, Hol19]. There are also special classes of constant-round protocols
for which the Fiat-Shamir transform can be instantiated using correlation-intractable hash func-
tions [KRR17, CCRR18, CCH+19], or even simpler non-cryptographic hash functions [CLMQ20].
In general, the security of the Fiat-Shamir transform applied to a knowledge-sound interactive proof
system using a concrete hash function is heuristic. There are known examples where the transform
fails to preserve soundness.

Definition 1. A knowledge-sound interactive proof system (P,V) is FS compatible if there exists
a hash family H such that the non-interactive proof system (PFS,VFS) obtained from applying
Fiat-Shamir using an explicit hash sampled from H is knowledge-sound.

Zero Knowledge An interactive proof satisfies honest verifier zero-knowledge (HVZK) if
there exists a simulator that does not have access to the prover’s private witness yet can produce
convincing transcripts between the prover and an honest verifier that are statistically indistin-
guishable from real transcripts. The Fiat-Shamir transform compiles public-coin proofs that have

3The extractor can run A for any specified number of steps, inspect the internal state of A, and even rewind A to
a previous state.

7

HVZK into non-interactive proofs that have statistical zero-knowledge (for possibly malicious veri-
fiers). See §A.3 for the formal definition of HVZK and §A.2 for relevant background on probability
distributions.

2.2 Hash functions

Definition 2 (Collision-resistant hashing). A hash function family H = {Hλ}λ∈N is a collection
of functions such that Hλ : Kλ × Xλ → Tλ where |Tλ| < |Xλ|. Let A denote an algorithm that
takes inputs k ∈ Kλ and let CR[A,H](λ) denote the probability over k ←$ Kλ that A outputs a pair
(x, y) ∈ X 2

λ such that Hλ(k, x) = Hλ(k, y) and x 6= y. H is a collision-resistant hash function
(CRHF) family if CR[A,H](λ) is a negligible function of λ for all A with runtime polynomial in λ.

The above definition is asymptotic. As a more concrete way to define collision-resistance, we
may say that H : K × X → T is a “λ-bit secure CRHF” if |T | < |X | and there is no probabilistic
algorithm A that runs on input k ←$ K and returns a collision x 6= y such that h(x) = h(y) in
expected time 2λ steps. The probability is over the randomness of h and internal randomness of the
algorithm. This precludes attacks that always find a collision in less than 2λ steps, or that find a
collision with probability ε in less than ε · 2λ steps.

Whenever we informally refer to a hash function h : X → T as collision-resistant, it is under-
stood that h is sampled from a family of keyed hash functions, i.e. h := Hλ(k, ·) for k ←$ K and a
chosen security level λ ∈ N, where either {Hλ}λ∈N is a CRHF family as in Definition 2 or a concrete
λ-bit secure CRHF as defined above.

Definition 3 (Universal hashing). A family of keyed hash functions H : K×X → T is 2-universal
if for all (x, y) ∈ X 2 such that x 6= y, the probability over k ←$ K that H(k, x) = H(k, y) is 1

|T | .

The classical Leftover Hash Lemma [HILL99] expresses how a 2-universal hash family can be
used as randomness extractors to obtain an element distributed close to uniform over T from any
non-uniform random variable X over X that has more than log |T | bits of min-entropy. The min-
entropy of X is defined as H∞(X) := − log maxx∈XPr[X = x]. See §A.2 for relevant background
on probability distributions.

Lemma 1 (Leftover Hash Lemma). If H : K×X → T is a 2-universal hash family, X is a random
variable over X , Y := H(k,X) is the random variable over T for k ←$ K, and UT is the uniform
distribution over T , then SD((Y, k), (UT , k)) ≤ 1

2 ·
√

|T |
2H∞(X) .

2.3 Polynomial Commitment Scheme (PCS)

A polynomial commitment scheme, or PCS, is a triple of PPT algorithms, Setup, Commit, and
Verify along with an evaluation protocol Eval, where:

• Setup(λ, d) → pp a deterministic algorithm that outputs public parameters pp for commit-
ting to polynomials of degree d. The parameters pp include a specification of an abelian
commitment group G, as defined below.

• Commit(pp, f)→ (C, open) outputs a commitment C ∈ G to the polynomial f ∈ F(<d)[X] and
an opening “hint” open ∈ {0, 1}∗.

8

• Verify(pp, f, open,C) checks the validity of an opening hint open for a commitment C ∈ G to
the polynomial f ∈ F(<d)[X] and outputs 1 (accept) or 0 (reject).

• Eval
(
P(f, open),V(pp,C, z, y)

)
→ (⊥, b) is a public-coin interactive protocol between a prover

who has the private input (f, open) for f ∈ F(<d)[X] and a verifier who has the common public
input pp and (C, z, y) ∈ G×F2. The verifier outputs b ∈ {0, 1} and the prover has no output.
The purpose of the protocol is to convince the verifier that f(z) = y and deg(f) < d.

All the algorithms run in time polynomial in λ and d. Furthermore, a scheme is correct
if for all polynomials f ∈ F(<d)[X] and all points z ∈ F, with probability 1 the verification
Verify(pp, f, open,C) outputs 1 and likewise V outputs 1 in interaction with P in the Eval pro-
tocol on valid inputs. The formal correctness requirement is:

Pr

b1 ∧ b2 = 1 :

pp← Setup(λ, d)
(C, open)← Commit(pp, f)
b1 ← Verify(pp, f, open,C)
y ← f(z)
(⊥, b2)← Eval

(
P(f, open),V(pp,C, z, y)

)

 = 1 .

Commitment group A commitment group G is a computational group accompanied by two
PPT algorithms: if openf and openg are opening hints for commitments Cf and Cg to polynomials
f, g ∈ F(<d)[X], then add∗

(
openf , openg

)
outputs an opening for Cf + Cg to the polynomial f + g

and invert∗(openf) outputs an opening for −Cf to the polynomial −f . This is a non-standard part
of the PCS definition and may appear overly restrictive. However, it does not reduce the generality
of a PCS. The default way to define G is the space of formal linear combinations of commitments
to elements of F(<d)[X]. The default add∗ would simply be concatenation.

Explicit specification of G, add∗, and invert∗ is convenient for defining the additivity properties
of a PCS discussed in Section 3. This also serves to highlight how additivity is merely a refinement
on G. The existence of G, add∗, and invert∗ is not a distinguished property on its own.

Efficiency/Succinctness If the Eval verifier runs in time o(d), i.e. sublinear in the degree of
the committed polynomial, then the PCS is called efficient. If both the size of commitments and
communication complexity of the Eval protocol are o(d) then the scheme is called succinct.

A PCS could be succinct and not efficient. One example is a PCS based on the Bulletproofs
system [BCC+16, BBB+18]. Some PCS applications may have stricter efficiency/succinctness re-
quirements (e.g., polylog(d) length or run time). A non-succinct PCS is only interesting if it is
hiding, and only distinguished from a regular hiding commitment scheme if it has a zero-knowledge
evaluation protocol (defined below).

Non-interactive Eval An interactive PCS Eval protocol may be compiled into a non-interactive
Eval proof via the Fiat-Shamir transform. We use the notation π ← NI-Eval

(
pp, f, open, C, x, y

)
and b ← VEval(pp, π, C, x, y). The PCS Eval may already be non-interactive (e.g., KZG [KZG10])
in which case Fiat-Shamir is not needed.

9

Security properties The scheme’s algorithms (Setup,Commit,Verify) must be binding as a stan-
dard commitment scheme. Furthermore, the protocol Eval should be complete and a proof of
knowledge. Informally, this means that any successful prover in the Eval protocol on common input
(C, z, y) must know a polynomial f(X) ∈ F(<d)[X] such that f(z) = y and C is a commitment
to f(X). The two of these properties together also imply that the scheme is evaluation binding,
which means that no efficient adversary can output pp and two pairs (C, z, y) and (C, z, y′) where
y 6= y′, and then succeed in Eval on both pairs (C, z, y) and (C, z, y′). The requirement that Eval is
a proof of knowledge is stronger than evaluation binding alone, but is necessary for the application
to SNARKs.

Definition 4 (Binding PCS). A PCS is binding if for all PPT adversaries A:

Pr

b0 = b1 = 1 ∧ f0 6= f1 :

pp← Setup(λ, d)
(f0, open0,C0, f1, open1,C1)← A(pp)
b0 ← Verify(pp, f0, open0,C0)
b1 ← Verify(pp, f1, open1,C1)

 ≤ negl(λ)

Knowledge soundness Knowledge soundness means informally that any successful prover in the
Eval protocol on common input (C, z, y) must know a polynomial f ∈ F(<d)[X] such that f(z) = y
and C is a commitment to f . This is captured in the following definition.

Definition 5 (Knowledge soundness). A PCS has knowledge soundness if for all pp output by
Setup(λ, d) and d ∈ N, the interactive public-coin protocol Eval is a proof of knowledge for the NP
relation REval(pp, d) defined as follows:

REval(pp, d) =
{〈

(C, z, y), (f, open)
〉
:

f ∈ F(<d)[X] ∧ f(z) = y
Verify(pp, f, open,C) = 1

}

Hiding and Zero Knowledge A PCS scheme hiding if it satisfies the standard definition of
a hiding commitment, i.e. commitments to distinct polynomials are statistically indistinguishable.
Formally, for all probabilistic polynomial time adversaries A = (A0,A1),∣∣∣∣∣∣∣∣∣∣

1− 2Pr

b̂ = b :

pp← Setup(λ)
(st, f0, f1)← A0(pp)
b←$ {0, 1}
(C, open)← Commit(pp, fb)
b̂← A1(state,C)


∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

A PCS scheme is zero-knowledge if its Eval protocol is a public-coin HVZK interactive proof for
the relation REval(pp, d).

Bounded witness ZK Eval The regular definition of a zero-knowledge PCS scheme requires
that the Eval protocol is a zero-knowledge proof for the relation REval(pp, d). This means that Eval
cannot leak any information at all about the prover’s witness (f, open) for the commitment open,
other than the public statements f(z) = y, f ∈ F(<d)[X], and open is valid. Some schemes, such
as DARK [BFS20], do not satisfy this strongest definition of zero-knowledge, but rather satisfy
a weaker zero-knowledge PCS property that is generally sufficient in practice. Let H be a set
containing all possible opening hints and let N : H→ R be any non-negative efficiently computable
function. Let {Eval(B) : B ∈ R} denote a family of evaluation protocols that take an extra

10

parameter B ∈ R. A PCS satisfies bounded witness zero-knowledge for N if Eval(B) is a
public-coin HVZK interactive proof for the modified relation:

REval(pp, d,N , B) =

{〈
(C, z, y), (f, open)

〉
:

f ∈ F(<d)[X] ∧ f(z) = y ∧ N (open) ≤ B
Verify(pp, f, open,C) = 1

}

“Relaxed” PCS openings For any PCS scheme, the Verify function can be relaxed such that
it will accept an opening of the commitment t · Cf to the polynomial h = t · f for a integer t ∈ Z
as a valid opening of Cf to the polynomial f .

Lemma 2. Let PCS = (Setup,Commit,Verify,Eval) denote a PCS for polynomials over a field
F of characteristic p. If the algorithm Verify is replaced with an algorithm Verify∗ that accepts
(f, (t, open),C) if and only if t 6= 0 mod p and Verify accepts (h, open, t ·C) where h = t · f , then the
new PCS is still binding.

Proof. Suppose an adversary outputs openings (f1, (t1, open1)) and (f2, (t2, open2)) to a com-
mitment C such that Verify∗ accepts both and f1 6= f2. This implies that Verify accepts both
(h1, open1, t1 ·C) and (h2, open2, t2 ·C) where h1 = t1 · f1 and h2 = t2 · f2. Using the add∗ operation,
it would be possible to compute valid openings of t1t2 ·C to both t1h2 = t1t2 ·f2 and t2h1 = t1t2 ·f1.
Since f1 6= f2 it follows that t1h2 6= t2h1. Thus, this would contradict the binding property of the
original PCS. �

2.4 Module equations for PCS

The following lemmas are useful for knowledge soundness analysis (i.e., extraction) for protocols
involving a PCS. Let G denote an abelian group We first prove an elementary linear algebraic fact.

Lemma 3. Let G be a Z-module. Let p be a prime and F = Zp. Given two vectors x,y ∈ Gn and
a system of equations Ax = y for a matrix A ∈ Zn×n that is invertible over F, there is an efficient
algorithm to derive a diagonal integer matrix D with diagonal entries all non-zero modulo p and a
matrix L such that D · x = L · y. In particular, LA = D.

Proof. Since det(A) 6= 0, the matrix A is invertible over the rationals Q. Let A−1 denote the
inverse of A over Q and let I denote the identity matrix over Z. Set L to be the matrix obtained
by clearing the denominators of A−1, i.e. L = x ·A−1 where x 6= 0 is the least common multiple of
all denominators of the rational entries of A−1. The matrix L ·A = x ·A−1 ·A = x · I is a diagonal
integer matrix. �

The next lemma is a direct result of this fact. Suppose that G is the abelian group for a PCS.

Lemma 4. Given two vectors of commitments C,C∗ ∈ Gn, a system of equations AC = C∗ for
an integer matrix A ∈ Zn×n that is invertible over Fp, and a vector of openings of C∗ to a vector
of polynomials f∗ = (f∗

1 , ..., f
∗
n) ∈ (F(<d)[X])n, there is an efficient algorithm to derive polynomials

f = (f1, ..., fn) ∈ (F(<d)[X])n, integer vector t ∈ Zn such that ti 6= 0 mod p, and openings for each
ti ·Ci to the polynomial ti · fi mod p such that A · f ≡ f∗ (mod p).

Proof. By Lemma 3, there exists a diagonal matrix T with integer entries t1, ..., tn 6= 0 mod p and a
matrix L such that T ·C = L ·C∗ and L ·A = T. From each linear combination of C∗, we use add∗

11

to derive an opening of ti ·Ci to a polynomial gi = 〈Li, f
∗〉 ∈ F[X]. Let g = (g1, ..., gn). Finally,

solve for the vector of polynomials f such that A · f = f∗ by computing A−1 mod p. Note that
L ·A · f = T · f = L · f∗ where T is a diagonal matrix with entries ti 6= 0 mod p. Thus, tifi = gi,
for which we have a valid opening of ti ·Ci. �

3 Additive polynomial commitments
This section defines an additive PCS as a simple refinement of a PCS, where the group of com-
mitments is a computational group of bounded size. Recall that in our definition from Section 2.3,
a PCS includes a specification of a family of commitment groups indexed by the parameters (λ, d).
We remarked that this is without loss of generality.

Definition 6. A PCS is additive if every abelian commitment group Gλ,d determined by the public
parameters pp←$ Setup(λ, d) is a computational group of size at most 2poly(λ). An additive PCS for
polynomials in F(<d)[X] is additively succinct if the size of Gλ,d is o(|F|d).

There may be a group G that satisfies the size constraints of Definition 6 but does not qualify
as a commitment group but the add∗ operation only works for a bounded number of operations.
Examples include DARK and lattice-based schemes [BFS20, BBC+18]. We call them bounded
additive.

Definition 7. A PCS over a field F is homomorphic if for any λ, d ∈ N the parameters
pp← Setup(λ, d) determine two computational groups (G,H) and two polynomial time computable
homomorphisms φ : H → G and χ : H → F(<d)[X] such that the algorithm Verify(pp, f,C, open)
returns 1 if and only if φ(open) = C and χ(open) = f .

We call H the “hint” group. For a homomorphic PCS to be binding, the homomorphism
φ : H→ G must be collision resistant over equivalence classes in H/ker(χ) (i.e., finding x1, x2 ∈ H
such that χ(x1) 6= χ(x2) and φ(x1) = φ(x2) must be hard).

An additive PCS gives a homomorphic PCS. Any additive PCS over a prime field F = Fp

and commitment group G, can be efficiently transformed into a non-hiding homomorphic PCS
with the same commitment group G. The transformation maintains succinctness if the PCS is
additively succinct. The new commitment algorithm will give a homomorphism φ : Zd → G. This
is described in Appendix B. In fact, we further show how an additive PCS may be transformed into
a hiding homomorphic PCS provided that commitments to the first m < d monomials generate G.

Definition 8. A PCS is called m-spanning if for any λ, d ∈ N and pp ← Setup(λ, d) the com-
mitments (Ci, openi) ← Commit(pp, Xi−1) for i ∈ [1,m] generate G, i.e. 〈C1, ...,Cm〉 = G. A
spanning PCS is m-spanning for some m > 0.

3.1 Linear combination schemes

It is possible that a PCS is not additive, yet there is still an efficient scheme to linearly combine
polynomial commitments into a succinct aggregate commitment and later open this at points.

12

Definition 9 (Linear Combination Scheme). A linear combination scheme for a PCS with com-
mitment group G is a public-coin interactive protocol LinCombine defined as follows. Given any
f ∈ F(<d)[X]`, α ∈ F`, ~C ∈ G`, and a vector of openings open = (open1, ..., open`) such that
Verify(pp, fi, openi,Ci) = 1 for all i ∈ [`], the protocol LinCombine does:

LinCombine
(
P(f , ~open),V(pp, ~C,α)

)
→ (open∗, (C∗, b)

)
.

The public output is (C∗, b) ∈ G× {0, 1} where b ∈ {0, 1} indicates success or failure. The private
output is an opening open∗ for C∗ to the polynomial

∑`
i=1 αi · fi. As for the security, LinCombine

composed with Eval on the output C∗ is a proof of knowledge for the relation:

RLinComb(pp, d) =

〈
(~C,C∗,α), (f, open, open∗)

〉
:

(C∗, (f, open∗)) ∈ REval(pp, d)
(C, (f, open)) ∈ REval(pp, d)
C =

∑
i αi · Ci


The trivial linear combination scheme simply returns the linear combination of the input com-

mitments over the commitment group. This clearly satisfies the security definition because C∗ = C
in this case. When a scheme is additively succinct then the trivial linear combination scheme is
the most natural to use. The purpose of a non-trivial LinCombine is to return a C∗ that is more
succinct than C. We call the scheme size-optimal if the aggregate commitment size is bounded
by the worst case size of commitments to polynomials of degree d.

We remark that every PCS has a relatively uninteresting generic size-optimal linear combination
protocol. The prover can simply compute a fresh commitment C∗ to f =

∑`
i=1 αi · fi and run `+1

instances of Eval on C∗ and each Ci at a common random point ρ selected by the verifier. The
verifier can check the linear relation between the opening value of C∗ at ρ and opening values of the
list of Ci at ρ. This satisfies the security definition simply because the LinCombine protocol itself
is a proof of knowledge of an opening of C∗ to f and each Ci to fi such that f =

∑
αi · fi. A linear

combination scheme is interesting when it is more efficient than this generic one.
We say that a linear combination scheme is efficient if the verifier complexity in the protocol

LinCombine is sublinear in the maximum degree of the input polynomials.

3.2 PCS examples and their additive properties

The table below summarizes the properties of several schemes. All major PCS constructions have
efficient linear combination schemes, which beat the generic one. The linear combination scheme
(LCS) amortization ratio (column 3) indicates the ratio of the communication/verification com-
plexity of using the LCS to prove the evaluation of a linear combination (i.e. run Eval on the
output of the LCS) versus the generic protocol of running ` separate instances of Eval. This ratio
is most relevant for the efficiency of batch evaluation (Section 4). The complexity ratio of the LCS
verifier to the Eval verifier (column 5) is most relevant for the efficiency4 of proof recursion (i.e.,
IVC/PCD) discussed in Section 6. The parameter ` is the number of polynomial commitments
being linearly combined and d is their maximum degree.

4The asymptotic ratio for KZG hides the fact that VEval involves a pairing operation while VLinCombine has only ` · λ
curve additions and thus is cheaper for small `.

13

additive LCS amortization |VLinCombine| |VLinCombine|
|VEval|

Bulletproofs yes 1/` Oλ(`) `/Ω(d)
Dory yes 1/` Oλ(`) `/Ω(log d)
KZG yes 1/` Oλ(`) `/Ω(1)
DARK bounded 1/` Oλ(`) `/Ω(log d)

See §A.4 for an overview of the schemes.

FRI: a non-additive PCS The Fast Reed-Solomon IOP of Proximity (FRI) [BBHR18] is a
protocol for proving that a committed vector in Fn is δ-close (in relative Hamming distance) to a
Reed-Solomon (RS) codeword. FRI can be used to construct a PCS that is post-quantum. See
§A.5 for more background on FRI.

The FRI PCS is not additive by Definition 6, but it does have a protocol for opening a ran-
dom linear combination that achieves amortized efficiency ratio of 1

` +
1

Ω(log d) over ` commitments,
which can also be extended to achieve amortized batch evaluation (e.g., Algorithm 8.2 of Au-
rora [BCR+19]).

4 Batch Evaluation and Private Aggregation
For the purpose of this section F := Fp, for some prime number p. It may be possible to generalize
our results to work over extension fields, but that is beyond scope.

The batch evaluation problem Let f1, . . . , f` ∈ F(<d)[X] and let Ci be a commitment to fi for
i ∈ [`]. The verifier has pp and C1, . . . ,C`. For each i ∈ [`] the verifier also has (zi,1, yi,1), . . . , (zi,`i , yi,`i) ∈
F2. The prover wants to convince the verifier that fi(zi,j) = yi,j for all i ∈ [`] and j ∈ [`i].

An alternative formulation of the batch evaluation problem is as follows. For each i ∈ [`]:

• let Ωi = {zi,1, . . . , zi,`i} ⊆ F, and

• let ti be the unique degree-(`i − 1) polynomial that satisfies ti(zi,j) = yi,j for all j ∈ [`i].

The verifier has (Ci,Ωi, ti) for i ∈ [`]. The batch evaluation problem is for the prover to convince
the verifier that fi(x) = ti(x) for all i ∈ [`] and x ∈ Ωi. We will use this formulation of the problem
from now on.

When all the polynomials ti in the batch evaluation problem are identically zero (i.e., ti ≡ 0 for
all i ∈ [`]) then the problem is called batch zero testing.

We will present a black-box protocol for batch evaluation that saves on communication and
verification complexity when the PCS has a linear combination protocol with an amortization ratio
less than 1. The protocol invokes the evaluation protocol Eval of the PCS only once, no matter
the number of input commitments k. Before presenting this protocol, we define a more powerful
primitive that we call PCS aggregation.

Aggregation scheme We define PCS proof aggregation, akin to signature aggregation. The
aggregation of tuples (C1, x1, y1), ..., (C`, x`, y`) is a single tuple (C∗, x∗, y∗) such that running Eval
to open C∗ ∈ G at point x∗ ∈ F to y∗ ∈ F suffices to open each Ci ∈ G at xi ∈ F to yi ∈ F.
Aggregation enables batch evaluation, as shown in Figure 1.

14

Figure 1: A batch evaluation protocol for multiple commitments at multiple points based on a PCS
aggregation scheme.

P(C, z,y, ~open, f) V(C, z,y)

((open∗, f∗), (C∗, z∗, y∗, b1))← Aggregate
(
P(f , ~open),V(C, z,y)

)
Reject if b1 = 0

(⊥, b2)← Eval
(
P(f∗, open∗),V(pp, C∗, z∗, y∗)

)
Accept if b2 = 1

Definition 10 (Aggregation). Let PCS = (Setup,Commit,Verify,Eval) denote a PCS with com-
mitment group G. An aggregation scheme for PCS is a public-coin interactive protocol Aggregate
with public inputs C = (C1, ..., C`) ∈ G`, x ∈ F`, y ∈ F`, and private inputs f ∈ F(<d)[X]` and
open = (open1, ..., open`) such that Verify(pp, fi, openi,Ci) = 1 for all i ∈ [`]:

Aggregate
(
P(f , ~open),V(C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

The public output is a tuple in G×F2×{0, 1} and |C∗| = poly(λ) independent of `. The security
requirement is that the batch evaluation protocol shown in Figure 1 is a proof of knowledge for the
relation:

RBatchEval(pp, d) =
{〈

(C,x,y), (f , open)
〉
: ((Ci, xi, yi), (fi, openi)) ∈ REval(pp, d)

}
As for correctness, if the inputs to P satisfy RBatchEval(pp, d) then V outputs b = 1 and the

private output (open∗, f∗) satisfies Verify(pp, f∗, open∗, C∗) = 1.

Theorem 3. Any PCS that has a linear combination scheme LinCombine (Definition 9) also has
an aggregation scheme Aggregate (Definition 10) that on ` input commitments makes a single call
to LinCombine on `+2 commitments with λ-bit integer coefficients. Both the prover and verifier do
an additional O(` log `) operations in F, and the prover makes one call to Commit on a polynomial
of degree maxi{deg(fi)}. The additional communication is one G element and two F elements.

Corollary 1. Every additive PCS (Definition 6) has an aggregation scheme with prover complex-
ity O(` log `) operations in F plus one Commit to a polynomial of degree maxi{deg(fi)}, verifier
complexity O(` log `) operations in F plus O(` · λ) operations in G, and communication of one G
element plus two F elements.

We will say that an aggregation scheme is efficient if the verifier complexity of the protocol
Aggregate is sublinear in the maximum degree of the input polynomials. By Corollary 1, every
additive PCS, and more generally any PCS with an efficient linear combination scheme, has an
efficient aggregation scheme.

Corollary 2. If a PCS has an efficient linear combination scheme then it has an efficient aggre-
gation scheme.

15

4.1 A Protocol for Batch Zero Testing

We first construct a general protocol for batch zero testing. Batch evaluation is a simple general-
ization. The entire protocol is shown in Figure 2. The communication is comprised of one extra
commitment and one evaluation protocol, independent of the number of input polynomials k. In
Theorem 4 we show that the protocol is knowledge-sound.

The protocol preserves zero-knowledge. The zero-knowledge simulator for this protocol samples
ρ̃, r̃ ← F, computes an integer representative ẑ ∈ [0, p) for z(r̃)−1, sets C̃q :=

∑k
i=1 ρ̃

i−1zi(r̃) · ẑ · Ci,
and sets C̃g :=

∑k
i=1 ρ̃

i−1zi(r̃) · Ci − z(r̃) · C̃q. If there exists an opening for each Ci then there
exists an opening of Ci − z(r̃) · (ẑ · Ci) to the zero-polynomial, and thus there exists an opening of
C̃g to the zero-polynomial. The simulator calls the Eval simulator on public input (C̃g, r̃, 0) to get
a simulated transcript π̃. It output the final simulated transcript (ρ̃, C̃q, r̃, π̃).

Figure 2: A zero test for multiple polynomials on distinct sets:
(Ci, openi) ← Commit(pp, fi) and Ωi is a non-empty subset of F for all i ∈ [k]. The prover computes openg
from ρ, r, open1, . . . , openk (not shown).

P
(
(f1, open1,Ω1), . . . , (fk, openk,Ωk)

)
V
(
(C1,Ω1), . . . , (Ck,Ωk)

)
Ω :=

⋃k
i=1Ωi Ω :=

⋃k
i=1Ωi

z(X) :=
∏

ω∈Ω(X − ω) z(X) :=
∏

ω∈Ω(X − ω)
∀i Ω̄i := Ω \ Ωi ∀i Ω̄i := Ω \ Ωi

∀i zi(X) :=
∏

ω∈Ω̄i
(X − ω) ∀i zi(X) :=

∏
ω∈Ω̄i

(X − ω)

ρ←−−−−−−−−−−−− ρ←$ [0, p)

q(X) :=
∑k

i=1 ρ
i−1zifi/z

(Cq, openq)← Commit(pp, q) Cq−−−−−−−−−−−−→
r←−−−−−−−−−−−−

r ←$ [0, p)

g(X) :=
∑k

i=1 ρ
i−1zi(r)fi(X)− z(r)q(X) ∀i compute zi(r) ∈ F

(if all is valid then g(r) = 0)
C′ :=

∑k
i=1 ρ

i−1zi(r) · Ci

Cg := C′ − z(r) · Cq

Eval
(
P(g, openg),V(Cg, r, 0)

)
←−−−−−−−−−−−−−−−→

Theorem 4. If Eval is knowledge sound, then the protocol in Figure 2 is a proof of knowledge for
the relation:

RZTest(pp, d) :=

〈
(C,Ω), (f , ~open)

〉
:

f = (f1, ..., fk) s.t.fi ∈ F(<d)[X]
∀i ∈ [k]∀ω∈Ωi

fi(ω) = 0
∀i ∈ [k]Verify(pp,Ci, openi, fi) = 1


See §A.6 for the proof.

16

4.2 Batch evaluation protocol

The protocol for batch evaluation is a small generalization of the zero-testing protocol in Figure 2.
Here, for i ∈ [k], the verifier has (Ci,Ωi, ti) where ti ∈ F(<d)[X], and needs to be convinced that
fi(x) = ti(x) for all i ∈ [k] and all x ∈ Ωi. This is the same as proving that every polynomial
f̂i := fi − ti is zero on all of Ωi. Thus, we can apply the protocol in Figure 2 to f̂1, . . . , f̂k.

Naively, the verifier would need to compute a commitment to each f̂i, which it can do from
Ci and ti. However, we can optimize the verifier by observing that the verifier only uses ti(X) to
compute ti(r) for some random r ∈ F. Hence, we can replace the verifier’s computation of C′ in
Figure 2 by instead computing C′ :=

∑k
i=1 ρ

i−1zi(r) · (Ci − ti(r) · C(1)) where C(1) is a commitment
to the polynomial f ≡ 1. In doing so, we save the verifier the work to compute commitments to
f̂1, . . . , f̂k.

Theorem 5. If Eval is knowledge sound, then the batch evaluation protocol based on Figure 2 is a
proof of knowledge for the relation RBatchEval(pp, d).

See §A.6 for the proof.
The protocol is still zero-knowledge if the PCS is hiding and Eval is zero-knowledge. The

description of the simulator is nearly identical to the simulator for the protocol in Figure 2 so we
will not repeat the details.

4.3 Aggregation scheme (proof of Theorem 3)

When the PCS has a linear combination scheme (Definition 9), then the protocol from Section 4.2
together with the linear aggregation protocol LinCombine results in an aggregation scheme for the
PCS. Concretely, the protocol on public inputs C = (C1, ..., Ck) ∈ Gk, x = (x1, ..., xk) ∈ Fk,
and y = (y1, ..., yk) ∈ Fk with prover private inputs f = (f1, ..., fk) ∈ F(<d)[X]k and open =
(open1, ..., openk) operates as follows:

Aggregate
(
P(f , ~open),V(C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

1. Let Ωi = {xi} for i ∈ [1, k], and let ti := yi.

2. Run the protocol in Section 4.2 with public inputs {(Ci,Ωi, ti)}i∈[k] and prover private inputs
{(fi, openi)}i∈[k] up until the point that P and V derive Cg, the prover P has privately derived
g(X), and the verifier V has sent the challenge r ∈ F. Note that Cg is a linear combination of
the input commitments C , the Cq sent during the protocol, and C(1) (the commitment to 1).

3. The prover and verifier will run LinCombine to produce a succinct commitment C∗ to the
same polynomial as Cg:

• Let C′ := (C1, ...,Ck,C
(1),Cq)

• Let f ′ := (f1, ..., fk, 1, q) and let ~open′ = (open1, ..., openk, open
(1), openq)

• For i ∈ [k] let αi := ρi−1·zi(r)·fi, let αk+1 := −
∑k

i=1 ρ
i−1·zi(r)·yi, and let αk+2 := −z(r).

Let α := (α1, ..., αk+2).
• Run the protocol LinCombine

(
P(f ′, open′),V(pp,C′,α)→ (open∗, (C∗, b)

)
.

• The prover’s private output is (open∗, g) and the verifier’s public output is (C∗, r, 0, b).

17

In the case that (C∗, open∗) = (Cg, openg), i.e. the PCS is additive, then composing this
protocol with an Eval on Cg is a special case of the batch evaluation protocol in Section 4.2, which
by Theorem 5 is a proof of knowledge for relation RBatchEval(pp, d). More generally, by the security
property of the linear combination scheme LinCombine, composing the protocol with an Eval on
(C∗, r, 0) is equivalent to running Eval on (Cg, r, 0), i.e. it is a proof of knowledge of an opening for
Cg at the pair (r, 0). Thus, this provides the extractor from Theorem 5 with the same information
it needs to extract an RBatchEval(pp, d) witness.

The prover complexity in the aggregation protocol is O(k log k) operations in F using FFTs
plus the complexity of a single call to Commit on a polynomial of degree at most d. The verifier
complexity is O(k log k) operations in F and O(k · λ) operations in G.

5 Homomorphic PCS Public Aggregation
The aggregation scheme in Definition 10 requires the aggregator, who plays the role of a prover, to
know openings of all the input commitments. In a public aggregation scheme, the aggregator isn’t
required to know the openings of the input commitments but performs more work than the verifier.
We define public aggregation only for a PCS with a non-interactive evaluation protocol NI-Eval.

The verifier in the Aggregate protocol receives NI-Eval proofs πi for each (Ci, xi, yi) input tuple.
The prover’s output is (open∗, f∗) and the verifier’s output is (C∗, x∗, y∗, b). If the prover succeeds
in the aggregation protocol (i.e., the verifier outputs b = 1) and the verifier separately verifies the
membership of (C∗, x∗, y∗) in REval(pp, d) then it should be convinced that each input tuple is also
in REval(pp, d) with overwhelming probability.

Definition 11 (Public Aggregation). Let PCS = (Setup,Commit,Verify,NI-Eval) denote a PCS
with commitment group G and a non-interactive evaluation protocol. A public aggregation scheme
for PCS is a public-coin interactive protocol Aggregate that has public inputs C = (C1, ..., C`) ∈ G`,
x ∈ F`, y ∈ F`, and π = (π1, ..., π`):

Aggregate
(
P,V(pp,π,C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

In a correct scheme, if the inputs satisfy VEval(πi, Ci, xi, yi) = 1 for all i ∈ [`], then the outputs
satisfy b = 1 and Verify(pp, f∗, open∗, C∗) = 1. The soundness requirement is that the following
probability is negligible:

Pr

 b ∧ VEval(π
∗, C∗, x∗, y∗) = 1

∃iVEval(pp, πi, Ci, xi, yi) 6= 1
:

pp← Setup(λ, d)
(C,x,y,π)← A(pp)
((open∗, f∗), (C∗, x∗, y∗, b))← Aggregate

(
P,V(pp,π,C,x,y)

)
π∗ ← NI-Eval

(
pp, f∗, open∗, C∗, x∗, y∗

)


A public aggregation scheme is efficient if the verifier complexity of the protocol Aggregate is
sublinear in the maximum degree of the input polynomials.

Theorem 6. There is a black-box compilation from any additive PCS over a prime field F = Fp and
commitment group G into a publicly aggregatable homomorphic PCS with the same commitment
group G. The overhead of the new Eval is:

• Communication: O(log d) additional elements of G× F

18

• Prover: O((log p+ λ) · n) additional operations in G

• Verifier: O(log d) additional operations in G× F

The public aggregation scheme complexity for ` commitments is:

• Communication: One G element and two F elements.

• Prover: O(` log `) operations in F, O(log p · n) operations in G, and O(` · n) multiplications
of λ-bit integers

• Verifier: O(` log `) operations in F and O(` · λ) operations in G.

Theorem 6 is proven in two parts. First, there is a simple transformation from any additive
PCS into a homomorphic PCS with the same commitment group and opening group H = Zn.
Second, we present a compiler from any homomorphic PCS with opening group H = Zn into a
new homomorphic PCS together with a public aggregation scheme that meets the performance
requirements of the theorem. A key ingredient is a protocol for succinct proof of knowledge of
homomorphism pre-image, which we present next.

5.1 A Succinct PoK for Homomorphism Pre-image
Let φ : Zn → G be any homomorphism where G is an abelian computational group. We will present
a succinct public-coin interactive proof of knowledge for the following relation:

R∗
HPI(φ,G, p) = {((x ∈ Zn, t ∈ Z), y ∈ G) : φ(x) = t · y ∧ t 6= 0 mod p}

In the special case that pZ ⊆ ker(φ), e.g. when G has order p or is an Fp-vector space, a proof
of knowledge for this relation is equivalent to a proof of knowledge for the standard homomorphism
pre-image relation. In this case, given a witness (x, t) for R∗

HPI it is possible to efficiently compute
an integer vector x′ such that φ(x′) = y by computing t̂ ∈ Z such that t̂ ≡ t−1 mod p and setting
x′ := t̂ · x.

Let {ei}i∈[n] denote the standard basis of Zn and define gi := φ(ei). The homomorphism φ may
be rewritten as the Z-linear map φ(x) = 〈x,g〉 =

∑n
i=1 xi · gi. We will use [[x]]g as a shorthand

notation for 〈x,g〉 give x ∈ Zn and g ∈ Gn.
Note the following two properties of [[·]]:

1. Decomposition If x = (xL,xR) for xL ∈ Zn1 and xR ∈ Zn2 such that n1 + n2 = n and
g = (gL,gR) for gL ∈ Gn1 and gR ∈ Gn2 , then [[x]]g = [[xL]]gL + [[xR]]gR .

2. Bilinearity If α, β ∈ Z, x ∈ Zn,and g,h ∈ Gn then α[[x]]g + β[[x]]h = [[αx]]g + [[βx]]h =
[[x]]αg+βh

The public coin interactive proof is illustrated in Figure 3. The verifier’s public-coin challenges
are sampled uniformly from the set X := [0, 2λ).

19

Figure 3: A succinct interactive protocol for HPI. For simplicity n is a power of 2.

PHPI(n,x ∈ Zn, y ∈ G,g ∈ Gn) VHPI(n, y ∈ G,g ∈ Gn)

If n = 1 send x−−−−−−−−−−−−→ [[x]]g
?
= y

If yes accept, else reject

Else n′ ← dn2 e

x = (xL,xR);g = (gL,gR)
yL ← [[xL]]gR , yR ← [[xR]]gL

yL, yR−−−−−−−−−−−−→

α←−−−−−−−−−−−−
α←$ [0, 2λ)

x′ ← xL + αxR

y′ ← [[x′]]gR+αgL

y′ ← yL + α2yR + αy
g′ ← gR + αgL

PHPI(n
′,x′, y′,g′)

recurse←−−−−−−−−−−−−−−−→ VHPI(n
′, y′,g′)

Correctness If the prover follows the protocol honestly, then [[x]]g = [[xL]]gL + [[xR]]gR , and:

y′ = yL + α2yR + αy = [[xL]]gR + [[α2xR]]gL + [[αxL]]gL + [[αxR]]gR

= [[x′]]gR + [[αx′]]gL = [[x′]]gR+αgL

Thus, in each recursive round, if x is a valid witness for (y, n,g) then x′ is a valid witness for
(y′, n′,g′).

We include in Appendix A.8 a detailed discussion of the proof communication size, prover
complexity, verifier complexity, and in particular, the capability for batch verification.

Theorem 7. The protocol in Figure 3 is a proof of knowledge for the relation R∗
HPI(φ,G, p).

Proof. Our analysis will show the protocol is a proof of knowledge for the relation R∗
HPI([[·]],G, p).

For simplicity we assume n is a power of 2. We define a knowledge extractor E that runs with an
adversary A who succeeds for public input (x, y,g) with probability ε = 1/poly(λ). E begins by
invoking the forking lemma (Lemma 6)to generate a tree of accepting transcripts with the following
characteristics:

• The tree has depth log n and branching factor 3. We will index nodes by v ∈ [0, nlog 3).

• The root is labeled with the verifier’s input (y,g).

• Each non-leaf node v distinct from the root is labeled with a challenge αv and a prover
message (yv,0, yv,1).

• Each non-leaf node v has three children each labeled with three distinct verifier challenges.
αv,1 6= αv,2 6= αv,3.

20

• Each leaf node v is labeled with a prover message xv ∈ Z.

Since the probability of collision on a pair of challenges sampled uniformly from X is 1/2λ,
by the forking lemma (Lemma 6) this tree-finding algorithm runs for time polynomial in λ and
succeeds excepts with negligible probability in λ.

For any non-leaf node v with parent w and message pair (yv,0, yv,1) and challenge αv define
yv := yw,0 + α2

v · yw,1 + αv · yw. For any leaf node v the value of yv is already defined by the
transcript. For the root node rt define yrt := y, where y is the input. We also define a value gv for
every node v as follows: if v is the root then gv := g, else if v has a parent w then gv := gw,0+αv ·gw,1

where gw = (gw,0,gw,1) is the concatenation of equal length vectors gw,0,gw,1. If v is a node on
the ith level up from the leaves then gv ∈ G2i . Every component of gv is a linear combination of
the elements in g derived from challenges along a path up the tree. Thus, for each gv the extractor
also knows a matrix Uv ∈ Z2i×n such Uv · g = gv. By construction, for every root to leaf path of
nodes v1, ..., vlogn the sequence of values (αvi , yvi,0, yvi,1) form an accepting transcript between the
prover and verifier where (gvi , yvi) are the verifier’s local inputs in the ith round. Moreover, the
leaf node labels satisfy xv · gv = yv.

We will show that given this tree, the extractor can compute (tv,xv) ∈ Z× Zn for each node v
such that [[xv]]g = tv · yv. In particular, this means that the extractor obtains a witness (trt,xrt) ∈
Z × Zn for y ∈ G such that [[xrt]]g = trt · y. This is a valid pair for the relation R∗

HPI([[·]],Zn,G).
The extractor begins at the leaves. Every leaf node is already labeled with xv ∈ Z such that
xv · gv = xv · Uv · g = yv where Uv ∈ Z1×n. The extractor sets xv := xv · Uv. Next, suppose
the extractor has already successfully computed an (tv,xv) pair for all children nodes of a node
w. For ease of notation, temporarily let y1, y2, y3 denote the yv values for the three children and
α1, α3, α3 denote their respective challenge labels. Similarly, let (xi, ti) ∈ Zn × Z for i ∈ [3] denote
the extracted labels for the children nodes. By construction, yi = yw + α2

i yw,0 + αiyw,1 for i ∈ [3].
Defining A ∈ Z3×3 to be the matrix with rows (1, α2

i , αi), T the diagonal matrix with diagonal
entries t1, t2, t3 6= 0 mod p, and X ∈ Z3×n the integer matrix with rows x1, x2,x3, we can summarize
the relations:

A ·

 yw
yw,0

yw,1

 =

y1y2
y3

 T ·

y1y2
y3

 =

[[x1]]g
[[x2]]g
[[x3]]g

 = X · g

T is invertible over F. Since A is Vandermonde it is also invertible over F. Therefore T ·A is
invertible over both F and Q. Setting d to be the least common multiple of the denominators of all
entries in (T ·A)−1 over Q, there exists an integer matrix P such that P ·T ·A = d · I, where I is
the identity matrix. In particular, we obtain d · yw = 〈P1,X · g〉. The extractor sets xw := 〈P1,X〉
and tw := d, which now satisfies [[xw]]g = 〈xw,g〉 = tw · yw. �

5.2 Zero knowledge
The protocol in Figure 3 is not zero-knowledge. There is a simple transformation that compiles
any interactive proof for R∗

HPI into a zero-knowledge proof while preserving knowledge-soundness.
Technically, the transformed protocol constrains the max norm of the prover’s witness. For x ∈ Zn

define N (x) := ||x||∞. The transformed protocol is an HVZK interactive proof for the modified
relation:

RBounded-HPI(φ,G, B) = {(x ∈ Zn, y ∈ G) : φ(x) = y ∧N (x) < B}

The transformation adds one extra round and increases communication by just O(λ) bits.

21

1. The prover samples random r←$ [−23λ−1, 23λ−1]n and sends h := [[r]]g to the verifier.

2. The verifier samples a challenge c←$ [0, 2λ)

3. The prover and verifier run the proof of knowledge protocol for R∗
HPI where the prover’s

witness is r+ c · x and the common input is h+ c · y.

Lemma 5. The transformed protocol is an n ·2−λ-statistical HVZK interactive protocol for relation
RBounded-HPI(φ,G, 2λ), and a proof of knowledge for relation R∗

HPI(φ,G, p).

See §A.7 for the proof.

HPI proof aggregation It is possible to aggregate k non-interactive HPI proofs (i.e., FS trans-
form of Figure 3) for k HPI instances into a single HPI instance and aggregate proof, without
knowing the witnesses for the k initial HPI statements. Verifying the aggregate proof convinces a
verifier of the k initial proofs. It is knowledge-sound in the sense that there is an extractor that
gets the states of both the initial provers and the aggregation prover and can extract witnesses
for the k initial statements. Computing the aggregate proof costs O(kn) work. The aggregate
proof incurs only O(log n) extra communication and combined with the initial proofs requires only
O(k log n+ n) work to verify. The amortized verification time per proof is thus O(log n+ n/k).

Verification of the HPI protocol in Figure 3 is dominated by the cost of deriving the final base
element g′ ∈ G as an integer linear combination of the input bases g ∈ Gn in order to check
x′ · g′ = y′ (see discussion of batch verification in Appendix A.8). The key observation behind the
aggregation protocol is that the verifier does not actually need to compute g′ as long as it is given a
proof of knowledge that y′ is some linear combination of g. The protocol is presented in Figure 4.

The aggregation protocol in Figure 4 is also compatible with the zero-knowledge HPI protocol
(Section 5.2). The zero-knowledge protocol reduces the HPI statement about a pre-image of y ∈ G
to an HPI statement about a pre-image of some y + c · h ∈ G. The aggregation verifier must check
the first round of the protocol to verify the reduction is correct, but otherwise the protocol in
Figure 4 is used to aggregate the reduced statements.

Theorem 8. For any φ : Zn → G given by φ(x) = [[x]]g, the composed protocol in which (PHPI,VHPI)
run the protocol in Figure 3 on k instances to generate k (unchecked) transcripts and (Pagg,Vagg)
run the protocol in Figure 4 on these transcripts, is a proof of knowledge for the relation:

R∗
MultiHPI(φ,G, p) =

{
((X ∈ Zn×k, t ∈ Zk),y ∈ Gk) : ∀i∈[k]((ti,Xi), yi) ∈ R∗

HPI(φ,G, p)
}

Proof Sketch We only provide a sketch of this proof. First, observe that in the analysis of
Theorem 7 the extractor does not strictly need the labels (xv, gv) such that xv · gv = yv at the
leaves of the tree, which corresponds to the final round HPI instance for the normal HPI protocol
in Figure 3. Rather, it simply uses these values as a way to derive a pre-image xv of yv such that
φ(xv) = yv. In fact, the extractor succeeds assuming it has any labels (tv,xv, yv) at the leaves of the
tree such that φ(xv) = tv ·yv. By the standard forking analysis, if Pagg succeeds with non-negligible
probability in the PHPI subroutine on HPI instance y∗ =

∑k
i=1 τ

i−1yi, then assuming knowledge-
soundness of this subroutine there is an extractor that obtains witnesses (ti,wi) for each yi such
that φ(wi) = ti · yi. (This is based on the invertibility of a Vandermonde matrix). These are fed to
the extractor for PHPI instead of (x′i, g′i) for each i ∈ [k], because the verifier Vagg never checks that
x′i · g′i = y′i.

22

Figure 4: Public aggregation for HPI with amortized verifier efficiency. The HPI instance is
defined by y ∈ G and g ∈ Gn. The public inputs are proof transcripts (π1, ..., πk) where πi

consists of r = log n prover messages {(y(ij)L , y
(ij)
R)}rj=1 and the prover’s final message x′i ∈ Z. The

algorithm (y′, b)← V∗HPI(n, yi, πi) denotes a modification of the non-interactive verifier VHPI which
only partially verifies the transcript πi. It derives the FS simulated challenges {αij}rj=1 for each
round, checks the correctness of the prover messages {(y(ij)L , y

(ij)
R)}rj=1, and derives the final round

y′i. It does not derive the final round g′i nor check that x′i · g′i = y′i. It returns (y′i, 1) if these checks
pass and (⊥, 0) otherwise.

Pagg
(
y ∈ Gk, (π1, ..., πk),g

)
Vagg

(
y ∈ Gk, (π1, ..., πk),g

)
∀i∈[k] ui(X) :=

∏logn
j=1 (αij +X2j−1

) ∀i∈[k](y′i, bi)← V∗HPI(n, yi, πi)

ui ∈ Zn coeff. of ui(X) If ∃i bi = 0 fail
τ←−−−−−−−−−−−− τ ←$ [0, 2λ)

u∗ :=
∑k

i=1 τ
i−1 · xi · ui y∗ :=

∑k
i=1 τ

i−1 · y′i

PHPI(n,u
∗, y∗)

Protocol in Figure 3
←−−−−−−−−−−−−−−−→ VHPI(n, y

∗,g)

5.3 Homomorphic PCS from any Collision-Resistant Homomorphism

A collision-resistant homomorphism h : Zd → G and a succinct proof of knowledge for R∗
HPI(h,G, p)

can be used to construct a homomorphic PCS over Fp. The homomorphism h can only be collision
resistant if the order of |G| is computationally difficult to find. In the case that p = |G| is known
and h : Zd

p → G is collision-resistant then the resulting PCS commits to polynomials over Fp[X].
Additionally, in the case that |G| = q is known, the resulting PCS can still be used to commit

to polynomials over Fp for p < q, however, the PCS will not be strictly homomorphic. It will
still satisfy the property that there is a homomorphism mapping open 7→ C, but no surjective
homomorphism χ : Zd

q → Fp exists for p 6= q. A PCS of this kind may still have interesting
additivity properties, such as supporting a bounded number of commitment additions using the
group operations in G. This category also includes constructions from a homomorphism that is only
collision-resistant over a constrained subset of Zd

q that includes [0, p)d, such as lattice constructions
based on Integer SIS [BBC+18]. A study of somewhat homomorphic PCS schemes is beyond the
scope of this work.

More precisely, this section shows how to construct a homomorphic PCS for polynomials over
a field Fp given a homomorphism h : Zd → G that is collision reistant (i.e., sampled from a
CRHF family) for any group such that |G| ≥ p, and a proof of knowledge for R∗

HPI(h,Zd,G).
The construction is the same for the case that |G| = p and h : Zd

p → G is collision-resistant.
The commitment is a single element in G and the evaluation protocol inherits the communication
complexity of the HPI proof of knowledge protocol.

For a point α ∈ F, let α := (1, α, α2, ..., αd−1) and define the homomorphism φα : Zd → G× F
as φα(x) = (h(x), 〈x,α〉 mod p). The following is a construction of a non-hiding PCS over Fp[X]:

• Setup(λ, d)→ pp: output the group G and the λ-bit secure CRHF h.

23

• Commit(pp, f)→ (C, open): For f ∈ F(<d)[X] with coefficient vector f ∈ Zd, set open := (1, f)
and output the commitment C := h(f).

• Verify(pp, f, open,C): parse open = (t, f∗) ∈ Z×Zd, check that t 6= 0 mod p, h(f∗) = t ·C, and
f∗ mod p is the coefficient vector of t · f ∈ F(<d)[X].

• Eval
(
P(f, open),V(C, α, β)

)
: Run the HPI protocol for relation R∗

HPI(φα,Zd,G). This shows
knowledge of a witness (t,x) ∈ Z × Zd such that φα(x) = (t · C, t · β) and hence that
Verify(pp, f, (t,x),C) = 1 and f(α) = β.

To see that this is homomorphic, every opening string is in the group H := Z × Zd, every
(C, open) pair is related by the homomorphism φ : H→ G that maps (t,x) 7→ h(x), and χ : H→ Fp

maps (t,x) 7→ t−1 · f mod p where f ∈ F(<d)[X] is the unique polynomial with coefficient vector
t · x mod p. In the case that |G| = p and h : Zd

p → G the scheme can be simplified to omit t from
the opening string: any valid opening (t, f∗) can be converted to (1, t−1 · f∗ mod p), which satisfies
h(t−1 · f∗) = C.

5.4 Publicly aggregatable PCS (proof of Theorem 6)

The Halo [BGH19] protocol contains a public aggregation protocol for the Bulletproofs PCS. In-
spired by this idea, we show how the HPI protocol of Figure 3 can be used to compile any homo-
morphic PCS with opening group H = Zn and commitment group G into a publicly aggregatable
homomorphic PCS with the same commitment group G. Compared with the commitment size and
Eval complexity of the original PCS, the commitment size of the transformed PCS is the same,
the new Eval communication has an extra O(log d) elements of G, and the verification overhead is
O(log d) operations in G. Running the public aggregation protocol on k commitments and evalua-
tion points together with an Eval on the aggregate commitment achieves an amortized verification
complexity of O(log k + λ + VEval(λ,d)

k) where VEval(λ, d) is the Eval verifier complexity. Any addi-
tive/homomorphic scheme can first be compiled into a homomorphic PCS with opening group Zn,
using the simple compiler described next.

Compiler 1: From Additive to Homomorphic Given a non-hiding5 additive PCS (Setup,
Commit, Verify, Eval) the new homomorphic non-hiding PCS uses the same Setup,Verify, and Eval
protocols, but commits to polynomials using the pre-computed “basis” commitments (Ci, openi)←
Commit(pp,Xi−1) for i ∈ [1, d]. The commitment to f ∈ F(<d)[X] with coefficient vector represen-
tation f = (f̂0, ..., f̂d−1) ∈ [0, p)d is the group element C :=

∑d−1
i=0 f̂i · Ci. The opening string open

for C is the coefficient vector f .
By definition, C is a valid commitment to the polynomial f under the original scheme with

opening string open′ derived from the “basis” openings openi using add∗ and the coefficients f .
The evaluation protocol runs the original Eval using open′. For some schemes (e.g., KZG and
Bulletproofs) that are already homomorphic, the linear combination C would be identical to a fresh
commitment to f and thus open′ = open. In other words, the transformation described above would
have no effect.

5Since the PCS is non-hiding we may assume, without loss of generality, that the commitment algorithm Commit
is a deterministic function.

24

The transformed scheme is a homomorphic PCS because C = φ(open) where φ : Zd → G is
the homomorphism that maps v ∈ Zd to

∑d
i=1 vi · Ci and χ(open) = open mod p is the unique

coefficient vector of f ∈ F(<d)[X]. The new scheme is also binding: given a collision f ′ 6= f mod p
such that C = φ(f) = φ(f ′), the algorithm add∗ could be used to derive openings of C to either f
or f ′ from the openi values, which contradicts the binding property of Commit.

Compiler 2: Homomorphic to publicly aggregatable Denote the input homomorphic PCS
by PCS = (Setup,Commit,Verify,Eval). The output of the compiler will be a scheme denoted
PCS∗ = (Setup∗,Commit∗,Verify∗,Eval∗) that will support public aggregation. Let H = Zn for
some n > d. By definition, there are efficiently computable homomorphisms φ : Zn → G and
χ : Zn → F(<d)[X] such that the output (C, open) ← Commit(pp, f) for any f ∈ F(<d)[X] satisfies
C = φ(open) and f = χ(open).

For any v ∈ Zn let fv := χ(v). Let Ĝ := G× F. For a point x ∈ F, define the homomorphism
φx : Zn → Ĝ as φx(v) := (φ(v), fv(x)). The new PCS algorithms (Setup∗,Commit∗) are identical
to (Setup,Commit). The algorithm Verify∗ is the standard “relaxation” of Verify from Section 2.3:
it accepts tuples (f, (t, open)) such that φ(open) = t ·C and χ(open) = t ·f where t 6= 0 is an integer.
The protocol Eval∗ is transformed as follows:

Eval∗
(
P(f, open),V(C, x, y)

)
:

1. The prover/verifier run a modification of the HPI protocol from Figure 3 with PHPI(n, open, (C, y))
and VHPI(n, (C, y)) for the homomorphism φx : Zn → Ĝ. The verifier stores the out-
put (x′, (C′, y′)) ∈ Z × Ĝ and performs all verification steps except for deriving g′ ∈ Ĝ or
checking x′ · g′ = (C′, y′). The prover derives the coefficient vector u of the polynomial
u(X) =

∏logn
i=1 (αi +X2i−1

) defined by the verifier challenges, which satisfies φx(u) = g′ and
φx(x

′ · u) = x′ · g′ = (C′, y′).

2. Run Eval
(
P(fx′·u, x

′ ·u),V(C′, x, y′)
)
, where C′ is interpreted as a polynomial commitment to

fx′·u with opening x′ · u.

We provide only a sketch of the knowledge soundness analysis. Recall that the extractor in the
analysis of Theorem 7 succeeds assuming it has any labels (tv,xv, yv) at the leaves of the tree such
that [[xv]]g = tv · yv, i.e. φs(xv) = tv · yv in this case. The knowledge extractor for Eval∗ begins by
running the usual extractor for PHPI, but calls the extractor for Eval to obtain a φx homomorphism
pre-image of (C′, y′). This is passed to the extractor for PHPI, which in turn outputs a witness
(t,v) ∈ Z×Zn such that ((v, t), (C, y)) ∈ R∗

HPI(φx,Zn, Ĝ), i.e. φx(v) = (t ·C, t · y) and t 6= 0. Thus,
φ(v) = t · C and fv(x) = t · y, so Verify∗ accepts (t−1fv, (t,v)) and t−1fv(x) = y, i.e. (t−1fv, (t,v))
is an REval witness for (C, x, y).

The compiled PCS has the same commitment size since the commitment algorithm is unchanged.
The overhead in the Eval∗ communication is O(log d) elements of Ĝ = G × F and the overhead in
verification is O(log d) operations in Ĝ (from Step 1). The prover overhead is O((λ + logB) · n)
operations in Ĝ assuming ||open||∞ < B (in Step 1) and O(n) integer multiplications to derive u
(also from Step 1). In the case that |G| = p the integer multiplications become field multiplication
modulo p.

If the input PCS Eval protocol is zero-knowledge and the prover/verifier run the zero-knowledge
variation of the HPI protocol between Pinit and Vinit then Eval∗ is also zero-knowledge. If Eval is
already non-interactive (or public-coin and FS compatible) then Eval∗ is still public-coin and can be

25

made non-interactive by applying the Fiat-Shamir transform. We conjecture that the transformed
protocol is sound, which is true in the random oracle model for constant n [GK96].:

Conjecture 1. If Eval is FS compatible then protocol Eval∗ is FS compatible.

Comparison to Halo aggregation The Halo aggregation protocol for the Bulletproofs PCS uses
the fact that the expensive part of verification is deriving g′ = φ(u) and u(X) can be evaluated
in time O(log d). The aggregator proves correctness of g′ (interpreted as a commitment to u)
by running the Bulletproofs Eval to open it to u(s) at a random point s chosen by the verifier.
Multiple instances can be batched using private Eval aggregation. This works only because u ∈ Zp

and φ : Zn
p → G is collision-resistant. In a more general homomorphic PCS with u ∈ Zn, φ might

only be collision-resistant over Zn/ker(χ) and it may be possible to open g′ to u(X) even when
φ(u) 6= g′. The key observation that allows us to generalize the aggregation protocol for any PCS
is our novel analysis of the HPI protocol (Theorem 7) which shows that the verifier does not need
to compute g′; it only needs a proof of knowledge that y′ is some linear combination of g.

Public aggregation scheme Each non-interactive proof returned by NI-Eval∗ has the form
(πHPI, x

′, y′, πeval) where πHPI is the transcript from the first step, (x′, y′) = (x′, (C′, t′)) ∈ Z×(G×F)
is the verifier’s intermediate output in the first step, and πEval is the non-interactive Eval proof from
the second step for the commitment C′ to the polynomial fx′·u. The vector x′ · u can be computed
from the transcript πHPI.

The public aggregation scheme Aggregate takes public inputs C = (C1, ...,Ck) ∈ Gk, s ∈ Fk,
t ∈ Fk, and a vector of NI-Eval∗ proofs π = (π1, ..., πk) where πi = (π

(i)
HPI, x

′
i, y

′
i, π

(i)
eval):

Aggregate
(
P,V(pp,π,C, s, t)

)
→ ((open∗, f∗), (C∗, s∗, t∗, b))

The verifier does not check π
(i)
Eval for each i ∈ [k], and therefore is not yet convinced that

φsi(x
′
i ·ui) = y′i. Instead, the aggregation prover/verifier run the private aggregation protocol from

Section 4.3 where the prover has private inputs {fx′·ui
}ki=1 and opening strings {x′ ·ui}ki=1 for each

commitment C′
i such that fx′·ui

(si) = t′i. The output of this private aggregation protocol determine
the prover’s outputs (open∗, f∗) and the verifier’s outputs (C∗, s∗, t∗, b).

By the soundness definition of the private aggregation scheme, if the prover can succeed in
the Eval protocol on public inputs (C∗, s∗, t∗) with non-negligible probability then there exists
a polynomial time knowledge extractor that obtains an REval witness for each (C′

i, si, t
′
i), which

includes a φsi pre-image of y′i = (C′
i, t

′
i). These witnesses are then used to extract REval witnesses

for each (Ci, si, ti) as described above in the knowledge-soundness analysis for Eval∗.
The public aggregation scheme verification and communication inherits the same complexity

as the private aggregation protocol. From Theorem 3, the generic scheme from Section 4.3 has
verifier complexity O(k log k) operations in F plus O(k · λ) operations in G and communication of
one G element plus two F elements. The prover complexity of the private aggregation subprotocol
is O(k log k) operations in F plus one Commit to a polynomial of degree at most d. In addition, the
prover must derive each integer vector ui, which requires O(k · n) integer multiplications. In the
case that |G| = p the integer multiplications become field multiplication modulo p.

26

6 SNARKs and IVC from PCS Aggregation
Bünz et. al. [BCMS20] formally show how a concept they define called PCS accumulation schemes
can be used to construct a PCD system, generalizing the Halo protocol [BGH19]. We show that a
PCS public aggregation scheme satisfies the definition of a PCS accumulation scheme [BCMS20].

A PCS accumulation scheme enables PCD from plain-model “predicate-efficient” SNARKs,
defined as a SNARK with a polylogarithmic verifier that is given an oracle for checking PCS Eval
proofs. The PCD transformation does not work if the SNARK involves calls to a random oracle,
as it would require concretely instantiating the random oracle. Unfortunately, we only know how
to construct “predicate-efficient” SNARKs in the random oracle model (e.g., [CHM+19, GWC19]).
Hence, this result gives a heuristic construction of PCD from PCS accumulation.

PCS accumulation scheme We show that a public aggregation scheme for a PCS (Definition 11)
satisfies the definition of an accumulation scheme for a non-interactive PCS from [BCMS20]. We
first review the definition of an accumulation scheme. The definition has small syntactic differences
from [BCMS20] due to syntactic differences in our PCS definition.

Definition 12 (PCS accumulation). Let PCS = (Setup,Commit,Verify,Eval) denote a PCS with
a non-interactive Eval protocol given by a prover algorithm PEval and verifier algorithm VEval. An
accumulation scheme for PCS has algorithms (G, I, P, V,D) with the syntax:

G(λ)→ ppac
I(ppac, pppc)→ (apk, avk, dk)

D(dk, acc)→ bD

P (apk, [{Xi}ki=1, {acci}`i=1)→ (acc, πV)
V (avk, {Xi}ki=1, {acci}`i=1, acc, πV)→ bV

The scheme is complete if for any pppc and (apk, avk, dk)← I(ppac, pppc) and inputs ({Xi}ki=1, [acci]
`
i=1)

that satisfy VEval(pppc, Xi) = 1 for i ∈ [k] and D(dk, acci) = 1 for all i ∈ [`], the accumu-
lation scheme prover P (apk, {Xi}ki=1, {acci}`i=1) outputs (acc, πV) such that D(dk, acc) = 1 and
V (avk, {Xi}ki=1, {acci}`i=1, acc, πV) = 1. For soundness, the following probability is negligible in λ:

Pr

 V (avk, {Xi}ki=1, {acci}`i=1, acc, πV) = 1
D(dk, acc) = 1
∃i∈[k]VEval(pppc, Xi) 6= 1 ∨ ∃i∈[`]D(dk, acci) 6= 1

:
pppc ← Setup(λ, d), ppac ← G(λ)
(apk, avk, dk)← I(ppac, pppc)
{Xi}ki=1, {acci}`i=1, acc, πV ← A(ppac, pppc)



The fact that a non-interactive public aggregation scheme gives an accumulation scheme is
an immediate consequence of the definitions. The algorithms G and I are trivial, setting all
parameters to pppc. Each acc = (C, x, y, π) is an Eval tuple. The prover P (pppc, {Xi}ki=1, {acci}`i=1)

first sets C ∈ Gk+` so that Ci = Xi for i ∈ [k] and Ci = acci−k for i > k, sets π so that the
ith and (i + k)th components are the Eval proofs in Xi and acci respectively, and sets (s, t) ∈
Fk+` × Fk+` so that (si, ti) = (xi, yi) from Xi for i ∈ [k] and from acci for i > k. It runs
Aggregate(pppc,π,C, s, t) to get (open∗, f∗,C∗, s∗, t∗, πagg) and Eval(open∗, f∗,C∗, s∗, t∗) to get π∗.
It returns πV := πagg and acc := (C∗, s∗, t∗, π∗). D(pppc, acc) calls the Eval verifier. Finally,
V (pppc, {Xi}ki=1, {acci}`i=1, acc, πagg) derives the tuples (π,C, s, t), parses acc = (C∗, s∗, t∗, π∗), and
runs the aggregation verifier VAggregate(pppc,π,C, s, t,C∗, s∗, t∗, πagg).

27

Private accumulation A small tweak to Definition 12 would make it compatible with private
aggregation. The accumulation prover is additionally given as inputs a vector of private states
{sti}k+`

i=1 and outputs (st, acc, πV). The other algorithms and the security definition are unchanged.
Constructing this from a private aggregation scheme, the state st will contain the prover’s private
outputs (open∗, f∗) and each sti contains an (openi, fi) pair.

The PCD compiler of [BCMS20] can be adapted to work with private aggregation schemes as
well. This only affects the proof size which has size O(N) because it includes the “private” states
(openings for polynomials of degree N). Intuitively, the construction of PCD from [BCMS20] is not
materially affected by using private accumulation because each prover node in the DAG distributed
computation simply passes its private state to its target nodes as “advice”. The advice does not
impact the size of the recursive statement, which is only dependent on the size of the accumulation
verifier. This variation of the compiler was formally proven in follow-up work [BCL+20]. To do so
they formally define a “split-accumulation” scheme, which coincides with our informal tweak.

Acknowledgments
This work was funded by NSF, DARPA, a grant from ONR, and the Simons Foundation. Opinions,
findings and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of DARPA.

References
[AC20] Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical

application to plug & play secure algorithmics. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 513–543.
Springer, Heidelberg, August 2020.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
STOC, pages 99–108, 1996.

[Bab91] László Babai. Local expansion of vertex-transitive graphs and random generation in
finite groups. In 23rd ACM STOC, pages 164–174. ACM Press, May 1991.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer So-
ciety Press, May 2018.

[BBC+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and
Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for arith-
metic circuits. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 669–699. Springer, Heidelberg, August 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages
14:1–14:17. Schloss Dagstuhl, July 2018.

28

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg,
August 2019.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 327–357. Springer, Heidelberg, May 2016.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Shafi Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM
Press, June 2013.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reduc-
tions from RAMs to delegatable succinct constraint satisfaction problems: extended
abstract. In Robert D. Kleinberg, editor, ITCS 2013, pages 401–414. ACM, January
2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

[BCL+20] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. Cryptology ePrint Archive,
Report 2020/1618, 2020. https://eprint.iacr.org/2020/1618.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data from accumulation schemes. Cryptology ePrint Archive, Report
2020/499, 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 103–128. Springer, Heidelberg, May 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 31–60. Springer, Heidelberg, October / November 2016.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidelberg,
August 2014.

29

https://eprint.iacr.org/2020/1618

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial commit-
ment schemes for multiple points and polynomials. Cryptology ePrint Archive, Report
2020/081, 2020. https://eprint.iacr.org/2020/081.

[BDLN16] Carsten Baum, Ivan Damgård, Kasper Green Larsen, and Michael Nielsen. How to
prove knowledge of small secrets. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 478–498. Springer, Heidelberg,
August 2016.

[BEG+91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. In 32nd FOCS, pages 90–99. IEEE Computer
Society Press, October 1991.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brick-
ell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidelberg,
August 1993.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition
without a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https:
//eprint.iacr.org/2019/1021.

[BGKS19] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
Sampling outside the box improves soundness. Cryptology ePrint Archive, Report
2019/336, 2019. https://eprint.iacr.org/2019/336.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-
SNARK parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050, 2017. http://eprint.iacr.org/2017/1050.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decen-
tralized cryptocurrency at scale. Cryptology ePrint Archive, Report 2020/352, 2020.
https://eprint.iacr.org/2020/352.

[BMV19] Benedikt Bünz, Mary Maller, and Noah Vesely. Efficient proofs for pairing-based
languages. Cryptology ePrint Archive, Report 2019/1177, 2019. https://eprint.
iacr.org/2019/1177.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 91–122. Springer, Heidelberg, April / May 2018.

30

https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/336
http://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177

[CFS17] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero knowledge
sumcheck and its applications. Cryptology ePrint Archive, Report 2017/305, 2017.
http://eprint.iacr.org/2017/305.

[CHM+19] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
Cryptology ePrint Archive, Report 2019/1047, 2019. https://eprint.iacr.org/
2019/1047.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[CL20] Alessandro Chiesa and Siqi Liu. On the impossibility of probabilistic proofs in rela-
tivized worlds. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 57:1–57:30.
LIPIcs, January 2020.

[CLMQ20] Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. Does fiat-shamir require a
cryptographic hash function? Cryptology ePrint Archive, Report 2020/915, 2020.

[Coo02] Gene Cooperman. Towards a practical, theoretically sound algorithm for random gen-
eration in finite groups, 2002.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793. Springer,
Heidelberg, May 2020.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from
signature cards. In Andrew Chi-Chih Yao, editor, Innovations in Computer Science -
ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings, pages
310–331. Tsinghua University Press, 2010.

[Dix08] John Dixon. Generating random elements in finite groups. The Electronic Journal of
Combinatorics [electronic only], 15, 07 2008.

[Dra] J. Drake. https://ethresear.ch/t/slonk-a-simple-universal-snark/6420.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications.
In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, pages
33–62, 2018.

[Gab19] Ariel Gabizon. AuroraLight: Improved prover efficiency and SRS size in a sonic-like
system. Cryptology ePrint Archive, Report 2019/601, 2019. https://eprint.iacr.
org/2019/601.

[GGH96] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from lattice
problems. IACR Cryptology ePrint Archive, 1996.

31

http://eprint.iacr.org/2017/305
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/601
https://eprint.iacr.org/2019/601

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 9:169–192, 1996.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Up-
datable and universal common reference strings with applications to zk-SNARKs. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 698–728. Springer, Heidelberg, August 2018.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–612. Springer, Heidelberg,
August 2017.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, Heidelberg, December 2010.

[Gro16a] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Heidelberg, May 2016.

[Gro16b] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint
Archive, Report 2016/260, 2016. http://eprint.iacr.org/2016/260.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[Hol19] Justin Holmgren. On round-by-round soundness and state restoration attacks. Cryptol-
ogy ePrint Archive, Report 2019/1261, 2019. https://eprint.iacr.org/2019/1261.

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent
SNARKs from list polynomial commitment IOPs. Cryptology ePrint Archive, Report
2019/1400, 2019. https://eprint.iacr.org/2019/1400.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 224–251. Springer, Heidelberg,
August 2017.

32

http://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/1261
https://eprint.iacr.org/2019/1400

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[Lab18] O(1) Labs. Coda protocol, 2018. https://codaprotocol.com/.

[Lee20] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments. Cryptology ePrint Archive, Report 2020/1274, 2020.
https://eprint.iacr.org/2020/1274.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 169–189. Springer, Heidelberg, March 2012.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society Press, May 2013.

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal on
Computing, 9:230–250, 1980.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M.
Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer,
Heidelberg, May 1996.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 704–737. Springer, Heidelberg, August 2020.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
1–18. Springer, Heidelberg, March 2008.

[VP19] Alexander Vlasov and Konstantin Panarin. Transparent polynomial commitment
scheme with polylogarithmic communication complexity. Cryptology ePrint Archive,
Report 2019/1020, 2019. https://eprint.iacr.org/2019/1020.

A Appendices

A.1 Computational group

Definition 13. A computational group is a finite group G whose elements are represented as
bit strings of length poly(log |G|), where the identity element has a special string id, together with
polynomial time algorithms add, invert, and equal:

33

https://codaprotocol.com/
https://eprint.iacr.org/2020/1274
https://eprint.iacr.org/2019/1020

• add
(
g1, g2

)
→ g3 takes as input the bit string representations of two group elements g1, g2 ∈ G

and outputs the bit string representation of the element g1 + g2, or ⊥ if either input is not a
representation of a group element.

• invert(g) → −g takes as input the bit string representation of an element g ∈ G and outputs
the bit string representation of its inverse −g ∈ G, or ⊥ if the input is not a representation
of a group element.

• equal(g1, g2) takes as input two bit strings, it outputs 1 if they are both valid representations
of the same element in G, and otherwise outputs 0.

Our definition is not explicit about how group elements are sampled in the first place, other
than the bit string id that is part of the definition of the group. Clearly, a computational group is
only useful if there is a way to generate at least one initial group element other than the identity.
However, this can be specified by the application. For example, our definition of polynomial com-
mitments (Section 2.3) includes a commitment algorithm that outputs elements in a computational
group.

A.2 Probability distributions

For a distribution D, we write x ←$ D to denote that x is sampled from D; for a finite set S, we
write x←$ S to denote that x is sampled uniformly from S.

For two discrete random variables X and Y that take on values in the same set U , we denote by
SD(X,Y) the statistical distance between X and Y , also known as the total variation distance
defined as follows:

SD(X,Y) := maxS⊆U
∣∣Pr[X ∈ S]− Pr[Y ∈ S]

∣∣ = 1

2

∑
u∈U

∣∣Pr[X = u]− Pr[Y = u]
∣∣

Two random variables X and Y over U are δ-close if SD(X,Y) ≤ δ.

Fact 1. If X = (X1, ..., Xn) and Y = (Y1, ..., Yn) are each vectors of n independent discrete random
variables, then X and Y are random variables such that SD(X,Y) ≤

∑n
i=1 SD(Xi, Yi).

Fact 2. If X is a random variable uniformly distributed over the interval [−A,A] for A ∈ Z and
Y = X + z for a fixed z ∈ Z with bounded absolute value |z| < B, then SD(X,Y) < B

2A .

A.3 Interactive proofs of knowledge

Definition 14 (Interactive Proof with Efficient6 Prover). Let Setup(λ) denote a non-interactive
setup algorithm that outputs public parameters pp given a security parameter λ. Let Π

(
P(w),V(pp, x)

)
denote a two-party interactive protocol between P and V, where P has private input w and V has
the common public input (pp, x). Let 〈P(w),V(pp, x)〉 be a random variables that is the output of V.
All algorithms run in time poly(λ, |pp|, |x|, |w|). The pair (Setup,Π) is called a proof of knowledge
for relation R if for all non-uniform adversaries A the following properties hold:

6A classical interactive proof does not require the prover to be efficient. However, our definition of an interactive
proof with efficient prover should also not be confused with an interactive argument, which only requires soundness
against efficient adversaries. In our definition, the prover is required to be efficient for correctness, but soundness
must hold against adversaries with unbounded running time.

34

• Perfect Completeness.

Pr

[
(x,w) 6∈ R or

〈P(w),V(pp, x)〉 = 1
:

pp← Setup(λ)
(x,w)← A(pp)

]
= 1

• Knowledge soundness [BG93] There exists a probabilistic oracle machine E called the extractor
such that for every adversarial interactive prover algorithm A that is only given the public
inputs (pp, x) and every x ∈ LR the following holds: if 〈A(·),V(pp, x)〉 = 1 with probability
ε(x) > negl(λ) then EA(pp, x) with oracle access to A runs in time poly(|x|, λ) and outputs w
such that (x,w) ∈ R with probability 1− negl(λ).

Forking lemmas The following “forking lemma” is helpful for proving knowledge soundness of
multi-round public coin interactive protocols over an exponentially large challenge space (i.e., where
each verifier message is a uniform sample from a space X that has size at least 2λ). It says that if
the adversary succeeds with non-negligible probability ε = 1/poly(λ), then there is an O(poly(λ))-
time algorithm for generating a tree of accepting transcripts defined as follows. For an r-round
protocol, an (n1, ..., nr)-tree of accepting transcripts for ni ≥ 0 is a tree where (i) every node
v of the tree corresponds to a partial transcript trv, (ii) every level-i node v has ni children nodes
that correspond to continuations of trv with distinct ith round challenges, and (iii) every leaf node
corresponds to a full transcript in which the verifier accepts. More generally, the property that each
pair of challenges on sibling nodes are distinct can be replaced with any property π : X 2 → {0, 1}
which outputs 1 on a random pair of challenges with overwhelming probability.

Lemma 6 (Forking Lemma). Let (P,V) be an r-round public-coin interactive proof system and
A an adversary that runs in expected time tA such that 〈A(·),V(pp, x)〉 = 1 with probability ε on
public input x and public parameters pp. Let {πi}ri=1 be a set of properties πi : X 2 → {0, 1} such
that ∀i Pr[π(x1, x2) = 1 : x1, x2 ←$ X] > 1 − negl(λ). If r ∈ O(log λ) then for any constants
n1, ..., nr ∈ N there exists an algorithm T that runs in time poly(λ) · (tA/ε) and with probability at
least 1 − negl(λ)/ε2 outputs an (n1, ..., nr)-tree of accepting transcripts such that for i ∈ [1, r] all
pairs of sibling-node challenges x1, x2 ∈ X at level i satisfy πi(x1, x2) = 1.

The forking lemma is used to prove knowledge soundness of (P,V) in combination with a
deterministic extraction algorithm that outputs a witness given an (n1, ..., nr)-tree of accepting
transcripts satisfying properties π1, . . . , πr. The proof of our Lemma 6 is nearly identical to the
proof in [BCC+16]. The tree-finding algorithm in [BCC+16] is an adaptive rejection sampling
algorithm which samples at most poly(λ)/ε challenges overall from the uniform distribution over
X , and outputs a subset of these challenges. They show that all sibling challenges are unique with
overwhelming probability by a union bound over the probability of a collision between any pair of
challenges sampled by the algorithm. This union bound argument can be extended to any property
of challenge pairs that holds with overwhelming probability 1 − negl(λ) for a randomly sampled
pair.

Lemma 7 provides another helpful fact about partial transcripts in the tree returned by the
algorithm of Lemma 6. If tr is a partial transcript of the protocol interaction between A and a
verifier on the first i round challenges (x1, ..., xi) and st is the internal state of A after generating tr,
then “running A on partial transcript tr” means that the internal state of A is restored to st, and
the protocol is continued on uniform random challenges for the remaining rounds. A “succeeds”
on tr if it causes the verifier to accept when it is run on tr.

35

Lemma 7. Fix any δ ∈ [0, 1]. With probability at least 1− δ
ε · poly(λ), every partial transcript tr in

the transcript tree output by the algorithm T in Lemma 6 with adversary A has the property that
A succeeds on tr with probability at least δ.

This lemma holds because the transcripts that appear in the tree are the result of rejection
sampling. In the course of the tree finding algorithm, at most poly(λ)/ε partial transcripts are
“tested” and the probability a given partial transcript is not rejected is bounded by the probability
A succeeds on it. By a union bound, there is a probability at most poly(λ) · δ/ε that the output
tree contains a partial transcript that A succeeds on it with probability less than δ.

Definition 15 (HVZK for interactive proofs). Let View〈P(x,w),V(x)〉 denote the view of the verifier
in an interactive protocol described in Definition 14 on common input x and prover witness input w.
It is a random variable over the randomness of P and V. The interactive protocol has δ-statistical
honest verifier zero-knowledge (HVZK) if there exists a probabilistic polynomial time algorithm
S such that for every (x,w) ∈ R, the random variable S(x) is δ-close to the random variable
View〈P(x,w),V(x)〉. The protocol has perfect HVZK when δ = 0.

A.4 Additive PCS examples

Bulletproofs The polynomial commitment is a Pedersen hash function over a prime order group
Gp. The setup parameters includes d randomly sampled generators g0, ..., gd−1. In additive group
notation, the commitment to f ∈ F with coefficient vector (f0, ..., fd−1) is Cf :=

∑d−1
i=0 fi−1 · gi.

There is no special opening string. The commitment function is a group homomorphism from Fd →
Gp. The evaluation protocol is based on the inner-product argument of Bootle et. al. [BCC+16],
improved upon by Bünz et. al. [BBB+18]. The PCS evaluation requires opening a linear form,
and therefore is slightly simpler than the original version for inner-products (e.g., see [AC20] or our
homomorphism pre-image protocol in Section 5). The communication complexity of Eval is O(log d)
group elements and the verification complexity is O(d) group operations. Neither communication
nor verification complexity increase when applied to a linear combination of two commitments.

KZG The KZG [KZG10] polynomial commitment uses a triple of groups (G1,G2,Gt) that have
an efficiently computable non-degenerate bilinear pairing e : G1 × G2 → Gt. The groups have the
same prime order p as the field F over which the polynomials are defined. A trusted setup generates
additional public parameters (g, g1, ..., gd−1, h, h1) where g ∈ G1 and h ∈ G2 are generators, s ∈ F
is sampled uniformly, gi = si · g and h1 = s · h. The value of s must remain secret. Similar to
the Bulletproof PCS, a commitment to a polynomial f ∈ F with coefficient vector (f0, ..., fd−1) is
Cf :=

∑d−1
i=0 fi−1 · gi. Note that Cf = gf(s). There is no special opening string. The commitment

function is a group homomorphism from Fd → G1. To prove that f(z) = y, the prover simply
outputs a commitment Cq to the quotient polynomial q := f−y

X−z . A correctly generated Cq = gq(s)

will satisfy e(Cq, h1 · h−z) = e(gq(s), hs−z) = e(gf(s), h). The proof is accepted by the verifier if and
only if e(Cf , h) = e(Cq, h1 ·h−z). Neither communication nor verification complexity increase when
applied to a linear combination of two commitments.

DARK The DARK [BFS20] polynomial commitment uses a cyclic group of unknown order G
with a generator g. If G can be instantiated without trusted setup (e.g., the class group of a
quadratic number field), then the scheme does not require trusted setup. To support commitments

36

to F(<d)[X], an integer q of size O(log d · log p) bits is fixed. A commitment to the integer coefficient
vector (f0, ..., fd−1) ∈ [0, p)d is Cf :=

∑d−1
i=0 fi−1 · qi−1 · g. Equivalently, Cf = f(q) · g where f(q)

is evaluated over Z. This commitment function is a homomorphism from Zd → G. However, since
the commitment is only binding as long as q > p/2, the scheme only supports a bounded number of
homomorphic additions of commitments. The evaluation proof is a recursive protocol that has the
same flavor as Bulletproofs, but additionally requires the verifier to check an integer bound on the
final message sent by the prover. The extracted witness are the integer coefficients of a polynomial
f∗ such that Cf = f∗(q) · g. Due to technicalities of the analysis, the extracted coefficients may
have size pO(log d). This is the reason why q must be substantially larger than p.

A.5 FRI

Reed-Solomon codes over F are parametrized by a rate parameter ρ and subset D ⊆ F of size n
and are defined as the set RS[D, ρ] := {f(D) : f ∈ F(<ρn)[X]}. The notation f(D) denotes the
vector of evaluations of f on all points in D in some canonical order. Two vectors u,v ∈ Fn are
considered δ-close if their relative Hamming distance, denoted ∆(u,v), is at most δ. (The relative
Hamming distance between vectors in Fn is defined as the number of components in which u and v
are different divided by n). For any u ∈ Fn and δ ∈ [0, 1], let Bδ(u) denote the ball of vectors that
are δ-close to u. If u ∈ RS[D, ρ], then the unique decoding radius of u is δ0 := 1−ρ

2 . This is due
to the fact that the evaluations of any two distinct polynomials of degree less than ρn agree in less
than ρn points of D. Equivalently, if u,v ∈ RS[D, ρ] are distinct codewords then ∆(u,v) > 1− ρ.
Thus, by the triangle inequality no w can simultaneously have distance less than or equal to 1−ρ

2
to both u and v. Given w ∈ Bδ0(u) for u ∈ RS[D, ρ] with δ = δ0, the Berlekamp-Welch algorithm
can be used to recover u in time O(n3). More generally, for δ < 1 − √ρ, the Guruswami-Sudan
algorithm may be used to recover from w ∈ Fn all u ∈ RS[D, ρ] such that ∆(w,u) ≤ δ in time
O(n3).

Setting d = dρne, the FRI protocol requires only O(log d) oracle queries to locations of a vector
in order to prove with overwhelming probability that the vector is in Bδ(u) for some u ∈ RS[D, ρ].
The value of δ affects the concrete efficiency (a smaller δ requires more queries to maintain the
same error probability). Equating vectors in Fn with polynomials F(<n)[X], given an oracle for
f ∈ F(<n)[X] the FRI protocol with δ set to the unique decoding radius δ0 proves that f has degree
at most d. The FRI protocol can also be applied to rational functions implicitly defined by several
oracles. For example, if the verifier has oracle access to f, g, h ∈ F(<n)[X] then FRI can be used to
prove that f+g

h has degree at most d.
FRI can be used as the evaluation protocol for a polynomial commitment scheme [VP19, KPV19,

BGKS19]. The commitment Cf to f ∈ F(<d)[X] is a vector commitment to the codeword f(D) ∈
RS[D, ρ]. An opening is simply an opening of the vector commitment. To open an evaluation of
Cf to f(z) = y for z 6∈ D, the prover runs FRI for the codewords f(D) and q(D) for q := f−y

X−z ,
simulating oracle access to f(D) and q(D) by opening locations of the vector commitment Cf .
Abusing notation, we may denote the “virtual” commitment to q(D) as a rational polynomial over
formal group element variables: Cf−y

X−z . In fact, it suffices to run FRI on a random linear combination
of f(D) and q(D). For z ∈ D the prover runs FRI just on f(D) and opens the appropriate location
of the commitment to f(D).

FRI batch evaluation FRI can be applied directly to a linear combination codeword commit-
ments (i.e., virtual codeword commitment) with additive as opposed to multiplicative overhead

37

(see Protocol 8.2 of Aurora [BCR+19]). FRI involves 2 log d codewords in addition to the input
codeword and κ queries to each codeword, where κ depends on both the decoding radius δ0 and a
statistical security parameter. The total number of queries is 2κ log d+ κ, however only κ of these
queries are made to the input codeword. Thus, the number of queries in FRI applied to a formal
linear combination of ` committed codewords of equal rate is only κ · (`− 1) larger than applying
FRI to a single codeword. As a result, the communication/verification complexity of FRI Eval on
a linear combination of ` equal rate commitments is less than a factor 1 + `

2 log d larger than on
a single commitment. Moreover, to simultaneously demonstrate proximity of multiple committed
vectors to RS codewords it suffices to run FRI on a random linear combination of the commitments
(see Section 8 of Aurora [BCR+19]). This means that ` commitments may be opened at ` distinct
points with complexity similar to a single Eval.

A.6 Batch evaluation protocol

A.6.1 Proof of Theorem 4

If Eval is knowledge sound, then the protocol in Figure 2 is a proof of knowledge for the
relation:

RZTest(pp, d) :=

〈
(C,Ω), (f , ~open)

〉
:

f = (f1, ..., fk) s.t.fi ∈ F(<d)[X]
∀i ∈ [k]∀ω∈Ωi

fi(ω) = 0
∀i ∈ [k]Verify(pp,Ci, openi, fi) = 1


Proof. Let A be an adversary that succeeds in the protocol with non-negligible probability. We
define a knowledge extractor E which will call the knowledge extractor EEval for Eval as a black box.

Step 1: E runs with an adversary A and begins by using the tree-finding algorithm of Lemma 6
to generate a tree of 2k accepting transcripts that has the following properties:

1. There are k distinct first-round challenges ρ1 6= · · · 6= ρk 6= 0 mod p

2. For all i ∈ [k], two transcripts share the first-round challenge ρi and have distinct second-
round challenges ri and r′i such that z(ri) 6= z(r′i) 6= 0.

3. Let V ∈ Zk×k denote the Vandermonde matrix with jth row (1, ρj , ..., ρ
k−1
j) and let R ∈ Zk×k

be the matrix with (i, j)th coordinate zi(rj). The Hadamard product of these matrices
A := V ◦R is invertible over Fp.

We will first show that the property z(r) 6= z(r′) 6= 0 holds with overwhelming probability over
r, r′ ←$ F. Let |Ω| = m > 0. Since z 6= 0 for non-empty Ω and deg(z) ≤ m, by the fundamental
theorem of algebra the probability that z(r) = 0 is at most m

|F| . Similarly, define the non-zero
polynomial z′(X) := z(X) − z(r), then r′ is a root of z′(X) with probability at most m

|F| . By a
union bound z(r) 6= z(r′) 6= 0 with probability at least 1− 3m

|F| .
Next, we will show that the third property holds with overwhelming probability. By Lemma 8,

if every entry of R is non-zero over Fp, then for {ρj} sampled uniformly and independently the
matrix A is invertible except with probability k2

|F| . Moreover, for {rj} sampled uniformly and
independently, zi(rj) 6= 0 mod p except with probability k

|F| . Thus, A is invertible for random
{ρj , rj} with overwhelming probability.

38

Having established these facts, by Lemma 6 there is an algorithm that runs in time poly(λ)/ε
and with overwhelming probability generates a transcript tree satisfying the three properties above.

Step 2: For j ∈ [k] let C∗
j :=

∑k
i=1 ρ

i−1
j zi(rj) · Ci and let Cqj denote the commitment sent by the

prover in the transcript starting with ρj . The next step is to show that there exists a deterministic
extraction algorithm that is given the transcript tree from Step 1 and succeeds with non-negligible
probability to extract:

• Valid openings of C∗
1, ...,C

∗
k to a vector of polynomials f∗ = (f∗

1 , ..., f
∗
k) ∈ F(<d)[X]k

• Valid openings of Cq1 , ...,Cqk to polynomials q = (q1, ..., qk) ∈ F[X]k such that f∗
i (ri) =

qi(ri)z(ri) for all i ∈ [k]

The success probability of the deterministic extractor will be over the randomness of the tran-
script tree output. By repeating the transcript tree generation poly(λ) times we can amplify the
probability of success to 1− negl(λ).

We will describe the algorithm to extract f∗
1 and q1 such that f∗

1 (r1) = q1(r1) · z(r1); the
algorithm will be symmetric for all other j ∈ [k]. Let Cg := C∗

1−z(r1)·Cq1 and Cg′ := C∗
1−z(r′1)·Cq1 .

Set any non-negligible δ < ε/poly(λ). By Lemma 7, with probability at least 1 − δ
εpoly(λ), if A

is rerun on partial transcripts in the tree it succeeds with probability at least δ. In particular,
this means there is an Eval adversary AEval that uses A to succeed in the evaluation protocol on
public inputs (Cg, r1, 0) and (Cg, r

′
1, 0) with probability at least δ. Therefore, with probability

1 − δ
εpoly(λ), there exists EEval that runs for time poly(λ)/δ and with overwhelming probability

succeeds in extracting valid openings of Cg and Cg′ to polynomials g(X) and g′(X) such that
g(r1) = g′(r′1) = 0.

Assuming these steps have succeeded, let M be the 2×2 integer matrix with columns (1,−z(r1))
and (1,−z(r′1)) so that (Cg,Cg′) ·M = (C∗

1,Cq1). Applying Lemma 4, the extractor obtains poly-
nomials f∗

1 , q1 ∈ F(<d)[X] such that f∗
1 − z(r1)q1 = g mod p and f∗

1 − z(r′1)q1 = g′ mod p, integers
t, t′ 6= 0, and openings of t ·C∗

1 to t · f∗
1 mod p and of t′ ·Cq1 to t′ · q mod p. These are valid openings

of C∗
1 to f∗

1 and Cq1 to q1. Moreover, f∗
1 (r1) = z(r1)q(r1) mod p and f(r′1) = z(r′1)q(r

′
1) mod p.

Step 3: Finally, we show there is an algorithm that takes the information extracted in Step
2 and with overwhelming probability outputs valid openings of C1, ...,Ck to a list of polynomials
f1, ..., fk ∈ F(<d)[X] such that z divides zi · fi for each i ∈ [k]. This implies that fi(Ωi) = 0 for each
i ∈ [k].

Let C∗ = (C∗
1, ...,C

∗
k) and C = (C1, ...,Ck). We have that A · C = C∗ for A = V ◦ R. If A

is invertible, then by Lemma 4 there is an efficient algorithm to compute valid openings of the
components of C to a vector of polynomials f = (f1, ..., fk) ∈ (F(<d)[X])k such that Af = f∗. This
implies that

∑k
i=1 ρ

i−1
j zi(rj)fi(rj) = f∗

j (rj) = qj(rj) · z(rj) for each j ∈ [k]. We can now argue that
if
∑k

i=1 ρ
i−1
j zi · fi 6= qi · z then this contradicts the binding property of the PCS.

Let hj :=
∑k

i=1 ρ
i−1
j zi · fi − qj · z. If h 6= 0 for j ∈ [k], then based on Lemma 7 and Lemma 6,

there is an efficient algorithm to generate a fresh transcript tree with the same fixed challenges
ρj but fresh subtrees with new challenges {r′j} with the property that hj(r

′
j) 6= 0. Repeating

the extraction process above, with non-negligible probability this algorithm succeeds in computing
openings of each Cqj to a polynomial q′j and an opening of each Ci to a polynomial f ′

i such that

39

∑k
i=1 ρ

i−1
j zi(r

′
j)f

′
i(r

′
j) = q′j(rj) · z(r′j). Yet, since hj(r

′
j) 6= 0 for all j, this implies that either f ′

i 6= fi
for some i ∈ [k], or q′j 6= qj for some j ∈ [k]. This would contradict the binding property of the
PCS.

We conclude that with overwhelming probability hj = 0 for all j ∈ [k]. Setting z := (z1, ..., zk)
so that z ◦ f = (z1 · f1, ..., zk · fk), we have V · (z ◦ f) = z ·q mod p. Since V is invertible, this shows
that z ◦ f = z ·V−1q. Therefore, every zi · fi is a multiple of z. �

Lemma 8. Let M be an n × n matrix over F×
p . Let V be a random Vandermonde matrix over

Fp, sampled uniformly and independent of A. Their Hadamard product V ◦M is invertible with
probability at least 1− n2

|F| .

Proof. Let V(X) denote the Vandermonde matrix over formal variables X1, ..., Xn. Using the
Leibnitz formula, det(V(X)) is an n-variate polynomial, which is an alternating sum of n! distinct
monomials. The determinant of the Hadamard product, det(V(X) ◦M) is also an alternating sum
of n! distinct monomials where the coefficient on each distinct monomial is a distinct summand
of the Leibnitz formula for det(M). All coefficients are non-zero since all entries of A are non-
zero. Therefore, this n-variate polynomial is not identically zero. Let p(X1, ..., Xn) denote this
polynomial, which has total degree less than n2. A random Vandermonde matrix V is a random
assignment x = (x1, ..., xn) to the n variables X1, ..., Xn and thus det(V ◦M) = p(x1, ..., xn). By
the Schwartz-Zippel lemma, the probability that p(x1, ..., xn) = 0 is at most n2

|F| . �

A.6.2 Proof of Theorem 5

If Eval is knowledge sound, then the batch evaluation protocol in Figure 5 is a proof of
knowledge for the relation RBatchEval(pp, d).

Proof. The extractor requires only a one line change to the extractor in the analysis of Theorem 4.
Once the extractor obtains an opening for C∗

j to f∗
j ∈ F(<d)[X] for each j ∈ [k] such that

• C∗
j =

∑k
i=1 ρ

i−1
j zi(rj) · (Ci − ti(rj)) · C1

• f∗
j (rj) = qj(rj) · z(rj)

it derives the commitments C̃j := C∗
j +

∑k
i=1 ρ

i−1
j zi(rj) · ti(rj) · C1 and an opening of each C̃j to

the polynomial f̃ := f∗ +
∑k

i=1 ρ
i−1
j zi(rj) · ti(rj). Since C̃j =

∑k
i=1 ρ

i−1
j zi(rj) · Ci, the extractor

can proceed in exactly the same way replacing each C∗
j with C̃j . The extractor obtains f1, ..., fk

such that
∑k−1

i=1 ρi−1
j zi(rj)fi(rj) = f̃j(rj). Since f̃j = qj(rj) · z(rj) +

∑k
i=1 ρ

i−1
j zi(rj) · ti(rj), the

remainder of the analysis shows that
∑k

i=1 ρ
i−1
j zi · (fi − ti) = qi · z with overwhelming probability.

Finally, this implies that each zi · (fi − ti) is a multiple of z, by inverting the Vandermonde matrix
defined by the challenges ρj . In conclusion, fi(Ωi) = ti(Ωi) for all i ∈ [k]. �

A.7 Zero knowledge HPI protocol

Lemma 5 stated:

The transformed protocol is an n ·2−λ-statistical HVZK interactive protocol for relation
RBounded-HPI(φ,G, 2λ), and a proof of knowledge for relation R∗

HPI(φ,G, p).

40

Figure 5: A protocol for simultaneously proving equality of multiple committed polynomials with multiple
public polynomials on distinct sets: Ci = Commit(pp, fi), Ωi is a non-empty subset of F, and ti ∈ F(<d)[X]
for all i ∈ [k]. The protocol shows that fi(Ωi) = ti(Ωi). The pair (C(1), open(1)) ← Commit(pp, 1) is a
deterministic commitment to the constant polynomial f ≡ 1 that can be publicly derived. The prover’s
derivation of the opening string open for Cf from o1, ..., ok, openq and open(1) using add∗ is not shown.

P({fi, oi, ti,Ωi}i∈[k]) V({Ci, ti,Ωi}i∈[k])

Ω :=
⋃k

i=1Ωi Ω :=
⋃k

i=1Ωi

z :=
∏

ω∈Ω(X − ω) z :=
∏

ω∈Ω(X − ω)
∀i Ω̄i := Ω \ Ωi ∀i Ω̄i := Ω \ Ωi

∀i zi :=
∏

ω∈Ω̄i
(X − ω) ∀i zi :=

∏
ω∈Ω̄i

(X − ω)

ρ←−−−−−−−−−−−−
ρ←$ F

q(X) :=
∑k

i=1 ρ
i−1zi(fi − ti)/z

(Cq, openq)← Commit(pp, q) Cq−−−−−−−−−−−−→
r←−−−−−−−−−−−−

r ←$ F

gi := zi(r) · (fi − ti(r))

g :=
∑k

i=1 ρ
i−1gi − z(r) · q ∀i compute zi(r)

(if all is valid then g(r) = 0)
C′
i := Ci − ti(r) · C(1)

C∗ :=
∑k

i=1 ρ
i−1zi(r) · C′

i

Cg := C∗ − z(r) · Cq

Eval
(
P(g, openg, r),V(Cg, r, 0)

)

Proof. The simulator samples an element z̃ of G by sampling a uniform random vector z←$ [0, 22λ)n

and setting z̃ ← [[z]]g. It samples c̃←$ [0, 2λ). It sets h̃← z̃− c̃·y. It generates a simulated transcript
π̃ of the honest protocol for R∗

HPI playing the roles of both prover/verifier on witness z and verifier
input z̃. It outputs the simulated transcript (h̃, c̃, z̃, π̃).

The challenges c̃ and c are identically distributed and sampled independently from all other
components of the transcripts. If the prover’s witness x is in the bounded set (−2λ, 2λ)n then by
Fact 1 and Fact 2 the statistical distance between z and r+c ·x is at most n ·2−λ. The distributions
of the transcripts π and π̃ are fully determined by witnesses r+ c · x and z respectively, and thus
(z, π̃) and (r+ c ·x, π) have distance at most n · 2−λ. Finally, since z̃ = φ(z), h+ c · y = φ(r+ c ·x),
and h̃ = z̃ − c̃ · y, it follows that (h̃, c̃, z̃, π̃) and (h, c, h+ c · y, π) have distance at most n · 2−λ.

As for soundness, the extractor E invokes the tree-finding algorithm (Lemma 6) to get two
accepting transcripts that share the same first message h but have distinct challenges c, c′, which
define z = h + c · y and z′ = h + c′ · y. By Lemma 7, with high probability the transcript has the
property that the adversary succeeds in the subroutine for R∗

HPI on both partial transcripts with
non-negligible probability. In this case, the extractor E ′ for the R∗

HPI subprotocol outputs witnesses
(t, s) ∈ Z×G1 such that φ(s) = t ·z and (t′, s′) ∈ Z×G2 such that φ(s′) = t′ ·z′, where t 6= 0 mod p

41

and t′ 6= 0 mod p. If it does not succeed this step is repeated up to λ times. The probability none
succeed is negligible in λ.

Let T ∈ Z2×2 be the diagonal matrix with entries t and t′. Let A ∈ Z2×2 be the matrix
with rows (1, c) and (1, c′) so that 〈TA, (h, y)〉 = 〈T, (z, z′)〉. Since det(T) = t · t′ 6= 0 mod p and
det(A) = c− c′ 6= 0 mod p, both T ·A is invertible over F. There is a matrix L ∈ Z2×2 such that
L · T ·A = D is diagonal with entries d1, d2 such that d1 6= 0 mod p and d2 6= 0 mod p. Let L2

denote the second row of L, let s := (s, s′), and let φ(s) := (φ(s), φ(s′)). The extractor obtains the
witness (d2, 〈L2, s〉) ∈ Z×G2, which satisfies d2 · y = 〈L2 ·T, (z, z′)〉 = 〈L2, φ(s)〉 = φ(〈L2, s〉) . �

A.8 HPI protocol performance

Proof communication size The proof size is two G elements per round for log n rounds, and
then additionally a single integer x′ ∈ Z sent in the final round. In the case that pZ ⊆ ker(φ) then
only the value x′ mod p needs to be communicated. More generally, if all coordinates of the witness
x have absolute value at most 2λ then x′ is an integer of absolute value at most 2λ(logn+1). Letting
∆ denote the size (in bit-length) of the final integer sent and SG ∈ O(log |G|) the representation
size of group elements, then the total communication size is 2 log n · SG +∆.

Prover complexity Suppose that the prover’s witness x ∈ Zn has bounded norm ||x||∞ ≤ B.
In the ith round of the protocol, for i ∈ [1, log n], the prover’s work is dominated by computing two
linear combinations over G each of length n/2i with integer coefficients of size at most 2(i−1)λ ·B.
In total, these linear combinations naively cost at most 2(λ + logB) · n operations in G. Fast
algorithms for linear combinations over groups (e.g., Pippenger [Pip80]) may give up to a factor
log n speedup. In the case that G has known order q, then the coefficients do not exceed q as they
can first be reduced modulo q. In this case the total number of group operations is O(log q · n).

Verifier complexity The verifier’s work is O(λ · n) operations in G overall. The main cost is
deriving the group vectors g′ ← gR + αgL for each round. As an optimization, since the g vectors
are not used explicitly by the verifier until the last round where d′ = 1, the verifier does not need
to output the intermediate values of g′ for rounds where d′ > 1. It may derive the final g′ ∈ G
as a single linear combination of n group vectors in G with coefficients of size O(λ log n)-bits from
Z. The verifier additionally computes a linear combination of 3 elements in G with scalars at most
2λ-bits per round to derive the final round y′ ∈ G and check that x′ · g′ = y′.

Batch verification Extending ideas from Bulletproofs [BBB+18] and Halo [BGH19], there is a
way to amortize the cost of verifying proofs in a batch. The g vectors are not used explicitly by the
verifier until the last round. Moreover, the final g′ = [[u]]g = φ(u) where each u = (u1, ..., un) ∈ Zn

is defined as follows. Given challenges {αi} for an execution of the protocol, for each i ∈ [d] let
ui =

∏logn
j=1 vij where the value vij = αj if the jth bit of i is 0 and vij = 1 if the jth bit of i is 1.

Equivalently, u is the coefficient vector of the degree n− 1 polynomial u(X) =
∏logn

i=1 (αi +X2i−1
).

Suppose the verifier receives k proofs with final round pre-images x′1, .., x′k and targets y′1, ..., y′k.
Let ui be defined by the challenges of the ith proof as described above. Rather than computing
g′i ← φ(ui) for each i ∈ [k] and checking that y′i = x′i · g′i individually, the verifier instead samples
r1, ..., rk ←$ [0, 2λ), computes u∗ :=

∑k
i=1 ri · x′i · ui, y∗ =

∑k
i=1 y

′
i, and checks that y∗ = φ(u∗).

42

While deriving u∗ still requires Ω(kn) integer multiplications7, the verifier evaluates φ only once.
This is advantageous when evaluating φ is more expensive than computing linear combinations of
vectors in Zn (e.g., when operations in G are slower than integer multiplications). There are also
algorithms to amortize the cost of large linear combinations of group elements (such as Pippenger’s
“multiexponentiation” algorithms [Pip80]), which may help for speeding up the evaluation of φ.
Moreover, when the verifier knows |G| = q then all the scalar multiplications can be taken over Zq,
which is more efficient.

A.9 Halo proof recursion from PCS aggregation

Proof bootstrapping The construction we will describe is based on the recursive proving
paradigm of Bitansky et. al. [BCCT13], also known as “proof bootstrapping”, combined with
a generalization of a technique described in the Halo protocol [BGH19]. A recursive proof sys-
tem (S, P, V) for a path distributed computation with predicate F : F`1 × F`2 → F`1 (informally)
provides the ability to prove the statements φ(i, z0, zi) defined recursively, given loc1, ..., loci, as:

“there exists zi−1 ∈ F`1 , loci ∈ F`2 , and a proof πi−1 such that F (zi−1, loci) = zi and
the verification V (φ(i− 1, z0, zi−1), πi−1) accepts”

Bitansky et. al. showed that starting from a SNARK system that has sublinear time verification
it is possible to build a recursive proof system for path distributed computations, where the size
and verification time of proofs, as well as the complexity of generating a proof for the incremental
statement φ(i, z0, zi) given wi and πi−1 are all independent of the recursion depth. Recently, Chiesa
et. al. [COS20] improved upon this construction for the case of preprocessing SNARKs. A prover
can use the recursive proof system to incrementally generate proofs for each step of the path
distributed computation and publish only the last proof. This not only achieves a proof size and
verification time independent of the depth, but also the prover’s space complexity is independent of
the depth t and its time complexity is linear in t. Bitansky et. al. call this a complexity-preserving
SNARK, which was a primary motivation behind their recursive proof system. The system is
used to “bootstrap” a normal SNARK (which may have expensive preprocessing, inefficient space
complexity proportional to t, or a superlinear proving time) into a complexity-preserving one.

The main significance of the construction we will describe, which is based on the Halo protocol,
is that we do not even start from an efficiently verifiable SNARK. Rather, we start with a succinct
PCS, an efficient aggregation scheme for the PCS, and a Polynomial IOP (PIOP) for general pro-
grams (i.e., NP languages). Any PCS that is both succinct and efficient can be combined with any
Polynomial IOP (PIOP) to build a SNARK [BFS20, CHM+20], in which case the classical boot-
strapping method works. However, in our case, it is ok for the PCS to have inefficient verification
as long as it has an efficient aggregation scheme (i.e., with a good amortization ratio). Thus, the
construction can be used to “bootstrap” this special class of PIOP-based SNARKs with inefficient
verification into complexity-preserving SNARKs with efficient verification. Furthermore, in addi-
tion to enabling bootstrapping for a wider class of proof systems, the technique is also a practical
improvement on the classical proof recursion method of Bitansky et. al. applied to PIOP-based
SNARKs, when the underlying PCS has an efficient aggregation scheme. Based on the results of
the prior sections, this includes any additive PCS, and even some non-additive schemes such as the
FRI-based PCS.

7Computing all ui naively requires O(n logn) multiplications, but due to the overlapping structure of the vector
components it is possible to derive all ui with O(n) multiplications overall using dynamic programming.

43

Proof carrying data A recursive proof system has applications beyond bootstrapping. For ex-
ample, it can be used inside the path distributed computation itself so that each node receives a
proof along with the output of the previous node that attests to the correctness of all prior computa-
tions along the distributed path. Each node verifies this proof, performs its local computation, and
produces an output along with a proof that it both verified the previous proof and performed the
local computation correctly. This is called a proof carrying data (PCD) [CT10, BCCT13] system
and generalizes to any DAG distributed computation. PCD systems also generalize incrementally
verifiable computation (IVC), proposed by Valiant [Val08], where a machine outputs a proof after
each step of computation that attests to the correct history of computation steps.

Private vs public aggregation An important distinction between the needs of proof bootstrap-
ping and IVC versus PCD is that in the former the prover can retain an additional private state that
helps it produce the next incremental proof whereas in the latter it cannot. In PCD any additional
state must be included as a part of the proof because the next node/prover must be able to produce
the next proof. In other words, PCD is sufficient but not necessary for proof bootstrapping, while
a bootsrapping system is insufficient for PCD. This is relevant to our generalized Halo protocol:
we present two variations of the protocol, one that uses public PCS aggregation and one that uses
private PCS aggregation. Public PCS aggregation achieves a smaller communication between nodes
of the PCD computation compared with private PCS aggregation. However, in our general con-
structions public aggregation is computationally more expensive than private aggregation. Private
aggregation is superior for the purpose of constructing efficient SNARKs or IVC.

Bounded RAM programs A bounded RAM program is specified as a tuple (P, `,m, t), where
P is a program with a fixed-size read/write memory array of length `, called the work tape, and t
is an upper bound on the maximum number of steps for which P runs any input. The program is
modeled as having a separate read-only memory array of length at most m that holds the inputs,
called the input tape. In the context of a proof system, the input may be split into m1 public inputs
x and m2 private inputs w, where m1 + m2 = m. The verifier only receives x and the prover
demonstrates existence/knowledge of w (also called the witness) such that the RAM program has
a specified output (included as part of x).

Bounded RAM computational reduction A proof system for bounded RAM programs (P, `,m, t)
that achieves verification time poly(m1, |P |, `, log t) for m1 public inputs is sufficient to construct a
computationally-sound proof system that achieves verification time poly(m1, |P |, log t) regardless of
the memory bound [BEG+91, BCGT13]. Moreover, it is sufficient if the proof system assumes the
bounded RAM program reads sequentially from the witness portion of the input. This construction
uses Merkle trees. Any RAM computation P that runs for t steps using O(t) space can be verified
by a RAM program P ′, which uses only O(log t) space and runs for O(t log t) steps, provided a
witness that contains Merkle proofs for the authenticated read/write operations of P .

Path distributed computation The iterated function F : F` → F` corresponds to a special case
of a bounded RAM program that initially copies ` inputs to its work tape, and iterates for t steps on
the work tape, never reading any more inputs. A more general bounded RAM program that reads
sequentially from its input tape may be represented as a path distributed computation where each

44

node along the path has `1 local inputs (coming from the input tape), `2 inputs that were outputs
of the prior node, and `2 outputs. Each node computes the same function F : F`1+`2 → F`2 .

Preprocessing arithmetic circuits Theoretically, a proof system with these characteristics for
bounded RAM programs making sequential witness reads is also sufficient to construct a prepro-
cessing SNARK for arithmetic circuits. The preprocessing step produces a Merkle tree commitment
to the wiring description of the circuit. A satisfying assignment to the circuit wires can be veri-
fied by a bounded RAM program that is provided an additional witness containing authenticated
descriptions of each gate, which it verifies against the Merkle tree commitment.

Preprocessing SNARKs in the URS Model A preprocessing SNARK in the URS model
consists of three algorithms (S, P, V). The URS is first sampled uniformly urs ←$ {0, 1}poly(λ).
This urs is an implicit input to S, P , and V , but we will drop it to avoid notational clutter.
The setup algorithm S takes as input the description of any circuit C and outputs a verification
key vkC , a proving key pkC . The prover algorithm P receives pkC , x, and w as input such that
C(x,w) = 1 and outputs a proof π. The verification algorithm V receives vkC , x, and π as inputs
and returns a binary output. There are two security properties, completeness and knowledge-
soundness. The system is complete if with overwhelming probability in λ, over the randomness of
the urs and keys returned by S, P will always succeed in creating a valid proof that V will accept
when run on valid inputs. The system is knowledge-sound if for any circuit C, the non-interactive
proof with the setup procedure that calls S on C is a proof of knowledge (Definition 14) for the
relation of pairs (x,w) accepted by C. Technically, a SNARK is only required to be an argument of
knowledge, which means that soundness holds only against efficient adversaries. We refer the reader
to [COS20, BCI+13] for formal definitions of preprocessing SNARK completeness and knowledge-
soundness properties. Preprocessing SNARKs also have complexity requirements. The algorithms
S, P, and V are polynomial time. Let |C| denote the length of the description of the circuit C that
is an input to S, which returns (pkC , vkC). The size of proofs returned by the prover algorithm P
running with pkC must be o(|C|). Some authors also require that the verifier algorithm V running
with vkC runs in time o(|C|). However, we will distinguish such systems as efficient preprocessing
SNARKs.

Proof recursion with preprocessing SNARKs Formally describing the proof system and a
circuit that itself calls the code of the verifier requires care, especially since the setup procedure
may need to preprocess the circuit. Proving the statements φ(i, z0, zi) for a path distributed com-
putation, which were described informally in the introduction to this section, can be realized via a
proof system for the following recursive program defined with respect to an efficient preprocessing
SNARK (S, P, V) [COS20]:

Program R(x,w):

Public Input: Tuple x = (vk, i, zi, z0) where vk is a verification key and i is a counter.

Private Input: Tuple w = (zi−1, πi−1, loci) where πi−1 is a SNARK proof.

Code: Output 1 if i = 1 and z1 = F (z0, loc1), or if i > 1 and zi = F (zi−1, loci) and
V (vk,xi−1, πi−1) = 1, where xi−1 = (vk, i− 1, zi−1, z0). Otherwise output 0.

45

The recursive proof system (S′, P ′, V ′) for t steps8 of the path distributed computation F
with local inputs (loc1, ..., loct) operates as follows. S′ runs S to preprocess a circuit description of
R(x,w) to generate (pkR, vkR). The prover P ′ starts by computing π0 ← P (pkR, (vkR, 1, z1, z0),⊥).
Then, given a valid proof πi−1 for the input (vkR, i − 1, zi−1), and local input loci, P runs
P (pkR, (vkR, i, zi, z0), (zi−1, πi−1, loci)), which outputs a proof πi. It does this for i = 2, ..., t. To
verify the proof πt, V ′ runs V (vkR, (vkR, t, z0, zt), πt). In the special case with no local inputs, the
proof πt attests to F (t)(z0) = zt.

There remains a subtle catch. The circuit description of R requires a circuit description of the
programs F and V . As the program V accepts arbitrarily large inputs, it cannot be described as a
single circuit. Rather, V may be represented as a family of circuits {VN : N ∈ N} where VN runs
on verification keys for circuits of size as most N . (The circuit size bound N also implicitly places
an upper bound on the sizes of the verification key, input x, and proof π). Finally, in order to
successfully implement the proof recursion method above, S′ must preprocess a circuit description
of R using some VN (for sufficiently large N ∈ N) such that the resulting circuit size is smaller
than N . Otherwise, VN would not accept vkR as input. The size of R is approximately |F | + |VN |
and |R| < N only if |VN | < N − |F |. Since the size of VN is asymptotically o(N), there exists
sufficiently large N such that |VN | < N − |F |.

This is captured in the following theorem.9 Let VN,λ,` denote the verification circuit of the proof
system (S, P, V) for security parameter λ, which accepts verification keys for circuits of size at most
N and input instances of size at most `. Given F : F2` → F`, define the binary relation PDC(F, t)
over instances x = (z0, zt) ∈ F2` paired with witnesses w = ((z1, w1), ..., (zt−1, wt−1)) ∈ F2`(t−1)

satisfying ∀i>0 F (zi−1, wi) = zi. Given a preprocessing SNARK (S, P, V) in the URS model, let
(S′, P ′, V ′)← T(S, P, V) denote the transformed proof system described above.

Theorem 9 ([COS20]). If (S, P, V) is a preprocessing SNARK for binary relations in the URS model
then for any function F : F2` → F` and constant t ∈ N the proof system (S′, P ′, V ′) = T(S, P, V)
is a preprocessing non-interactive argument of knowledge for the binary relation PDC(F, t). If
|VN,λ,`| < N1−ε · poly(λ, `) for some ε ∈ (0, 1), then S′, P ′, and V ′ run in time equal to S, P , and
V respectively on circuits of size |F |+O(poly(λ, `)1/ε) with inputs of size O(λ+ `).

In particular, if the preprocessing SNARK has a polylogarithmic verifier, i.e., |VN,λ,`| < logcN ·
poly(λ, `), then for any δ > 0 the running times of S′, P ′, and V ′ are upper bounded by the running
times of S, P , and V respectively on circuits of size |F |+o(poly(λ, `)1+δ) with inputs of size O(λ+`).

We are now ready to describe how the Halo construction may be generalized to combine any
Polynomial IOP (PIOP) with any aggregatable PCS.

There are two essential building blocks to Halo proof recursion. The first building block is a
PIOP-based preprocessing SNARK (S,P,V). This SNARK must be succinct, but is not strictly
required to have efficient verification as we will see. A PIOP-based preprocessing SNARK compiles

8Technically, for the proof system described here to be provably secure, the number of steps t must be a constant
independent of the security parameter. This restriction comes from the security analysis in which the extractor
requires a number of transcripts from the prover that grows exponentially in the recursion depth. This issue can
be sidestepped by constructing a binary (or constant-arity) tree of recursive proofs where the leaves correspond to
steps of the path distributed computation [BCCT13]. This way the recursion depth grows as O(log t), and is secure
against sub-exponential adversaries (the extractor runs in superlinear time poly(λ,N)log t). No known attacks exist
on arbitrary depth recursion.

9The theorem quoted here is a special case of the more general theorem by Chiesa et. al. [COS20] for proof carrying
data (PCD) systems.

46

a preprocessing PIOP with a non-interactive polynomial commitment scheme PCS. Let G denote
the commitment group of PCS. The SNARK proofs of (S,P,V) have the form (ρ, π = (C,u,v, α))
where C ∈ Gk is a vector of polynomial commitments for a PCS scheme with commitment group
G to polynomials f1, ..., fk ∈ F(<d)[X], u ∈ Fk, v ∈ Fk, fi(ui) = vi for all i ∈ [k], ρ = (ρ1, ..., ρk) is a
vector of non-interactive evaluation proofs for PCS where ρi is an evaluation proof opening Ci at
ui ∈ F to vi ∈ F, and finally α is additional auxiliary content. Moreover, the verifier V = (V1,V2)
running on a public input x, an input polynomial commitment vk called the verification key, and
a proof π consists of two parts:

1. V1(vk,x, π) runs in time sublinear in the size of the circuit corresponding to the preprocessed
verification key vk. It may also run in time linear in the size of the inputs (vk,x, π).

2. V2(ρ,C,u,v) verifies each NI-Eval proof ρi with (Ci, ui, vi) for each i ∈ [k].

The second building block is a non-interactive efficient aggregation scheme for PCS (Defini-
tions 10-11). We will discuss the implications of using a private vs public aggregation scheme later.
Given that we require an aggregation scheme, we may actually assume that the proofs of (S,P,V)
consist of only one NI-Eval at a single point (i.e., k = 1) because otherwise the aggregation scheme
can first be applied to achieve this. Letting open = (open1, ..., openk) denote P’s opening strings
for commitments C, the new prover P ′ would do the following:

1. Run P to get the original proof (ρ, π = (C,u,v, α)).

2. Run ((open′, f ′), (C ′, u′, v′), tr)← NI-Aggregate(f , open,C,u,v)

3. Compute the aggregate opening ρ′ ← NI-Eval((open′, f ′), (C ′, u′, v′)).

4. Modify the SNARK proof by replacing the original commitments/openings with the aggregate
commitment C ′ and opening ρ′, and appending the original commitments, openings, along
with the aggregation transcript to the auxiliary string. The new proof is (ρ′, π′) where π′ =
(C ′, u′, v′, α′) where α′ = (α,C,u,v, tr).

The new verification algorithm V ′1 would still run V1(vk,x, (C,u,v, α)) and additionally run the
aggregation protocol verification of (C ′, u′, v′, tr). V ′2 receives (ρ′, C ′, u′, v′) and verifies the single
NI-Eval proof ρ′.

Protocol overview Given these two building blocks, the main idea in Halo is to only include V1,
the sublinear component of V, inside the recursion circuit, and to pass the “unverified” polynomial
commitment evaluation tuple (C, pt) ∈ G×F2 as an additional public input to the external verifier.
Let us revisit the task of proving the iterated function F (t)(z0) = zt where F : F` → F`. Consider
first a strawman construction: at each ith step in the recursion chain the prover generates a new
proof (ρi, πi) = (ρi, (Ci, pti, αi)) attesting to the next incremental step of the computation and
knowledge of the last recursive proof (ρi−1, πi−1) = (ρi−1, (Ci−1, pti−1, αi−1)) such that V1 accepts
the proof component (Ci−1, pti−1, αi−1). This proof alone is not a sound proof of the computation’s
integrity. However, if the verifier were additionally provided (ρi−1, Ci−1, pti−1), then it could run
V1 verification of πi along with the Eval verifications V2(ρi−1, Ci−1, pti−1) and V2(ρi, Ci, pti). This
would complete verification of the inner proof that is part of the witness and also the incremental

47

step. Moreover, the two required Eval verifications could be combined using the aggregation scheme.
Let pti = (ui, vi) for each i ∈ N, the prover runs:

NI-Aggregate((fi−1, fi), (openi−1, openi), (Ci−1, Ci), (ui−1, ui), (vi−1, vi))

The output to the prover is (open∗, f∗) and the public output is (C∗, pt∗, tr). If the prover
includes (C∗, pt∗, tr) in its incremental proof and additionally provides an NI-Eval proof ρ∗ for
(C∗, pt∗), then the verifier could check that V1 accepts (Ci, pti, αi), check that V2 accepts (ρ∗, C∗, pt∗),
and run the aggregation verification given tr. This leads to the following strategy. The tuple
(C∗, pt∗), which is necessary for completing the verification of the ith computation transition, will
be a public input to the proof for the (i+1)st transition. The next proof πi+1 will also prove (i.e.,
include as a part of the circuit) the verifier Vagg of the aggregation step that produces the tuple
(C∗, pt∗). The values tr, Ci, Ci−1, pti, and pti−1 are witnesses. The circuit for πi+1 also includes the
V1 verification of (Ci, pti, αi). This requires the prover to save (Ci−1, pti−1) as part of the witness
in addition to πi. Likewise, both (C∗, pt∗) and πi+1 will become part of the witness for the next
proof, and so on and so forth.

Efficiency If V1 and Vagg are together sublinear in the size of circuits preprocessed by S, then by
Theorem 9 the recursion circuit is well defined. This is guaranteed by the efficiency requirements
on V1 and the aggregation scheme so long as the PIOP-based SNARK commits to polynomials of
maximum degree linear in the size of the preprocessed circuit. (This is the case in all practical
PIOP constructions as otherwise the prover time is impractical). Moreover, if |V1|+ |Vagg| is poly-
logarithmic in the size of preprocessed circuit then the recursion circuit has size approximately
|F |+O(poly(λ, `)).

The prover only needs to derive the NI-Eval proof for the last polynomial commitment output
at the end of the recursive proof chain. This commitment is a single element in G. The NI-Eval
proofs for other intermediate commitments are never actually used. The verifier only needs to
check this one final NI-Eval proof for the entire proof recursion, which is for a polynomial of
degree proportional to N = |F | + |V1| + |Vagg|. The verifier also runs V1 once on the recursion
circuit. Let Sagg(λ, d, k) denote the worst case size complexity of the aggregation protocol’s output
commitment given k input commitments to polynomials of degree d with PCS security parameter
λ. This is at most the maximum representation size of a single group element in G. In the special
case that |V1| + |Vagg| is poly-logarithmic, the final proof size is polylog(λ, |F |, `) + Sagg(λ, d, 2).
For any PCS that has a size-optimal linear combination scheme, there is an aggregation scheme
with Sagg(λ, d, k) ≤ SEval(λ, d), where SEval(λ, d) denotes the maximum size of commitments to
polynomials of degree d (Theorem 3).

When does Halo help? The generalized Halo technique we have described improves over the
standard method of proof recursion, reducing the circuit complexity of the recursive statement,
when Vagg is smaller than V2 (i.e., the NI-Eval verifier). As a special case, in the case that V2 is
inefficient (i.e, is not sublinear in the statement size) any efficient aggregation scheme will have this
property. In such cases the classical proof recursion method does not work.

Halo without succinct Eval Since the evaluation proofs are not included inside the recursion
and only produced in the last step, the protocol still works if PCS does not have a succinct
evaluation protocol. The prover only needs to open the coefficients of one degree N polynomial

48

for the entire proof chain. The final proof size will be both asymptotically and concretely larger
than with a succinct PCS, but still proportional to |F |+O(poly(λ, `)) rather than the depth of the
recursion.

Detailed construction In more detail, can rewrite the recursive program R(x,w) for the pro-
gram F : F2` → F` as follows:

Program R′(x,w):

Public Input: Tuple x = (vk, i, tri, C∗
i , pt∗i , zi, z0) where vk is a verification key (a

polynomial commitment), i ∈ N is a counter, C∗
i is a polynomial commitment,

pt∗i = (ui, vi) ∈ F2, and tri is a NI-Aggregate transcript. Missing components of x are allowed
and are indicated with ⊥.

Private Input: Tuple w = (C∗
i−1, pt∗i−1, zi−1, πi−1, loci) where πi−1 = (Ci−1, pti−1, αi−1) is a

SNARK proof, C∗
i−1 is a polynomial commitment, and pt∗i−1 ∈ F2. Missing components of w

are indicated with ⊥.

Code: Output 1 if:

• i = 1 and z1 = F (z0, loc1)

• i = 2 and z2 = F (z1, loc2) and (C∗
2 , pt∗2) = (C1, pt1), and

V1(vk, (vk, 1,⊥,⊥,⊥, z2, z0), (C1, pt1, α1)) = 1.

• i = 3 and z3 = F (z2, loc3) and Vagg(tr3, C∗
3 , pt∗3, C2, pt2, C1, pt1) = 1, and

V1(vk, (vk, 2,⊥, C1, pt1, z2, z0), (C2, pt2, α2)) = 1.

• i > 3 and zi = F (zi−1, loci) and V1(vk,xi−1, πi−1) = 1, where
xi−1 = (vk, i− 1, tri−1, C

∗
i−1, pt∗i−1, zi−1, z0), and

Vagg(tri, C∗
i , pt∗i , C∗

i−1, pt∗i−1, Ci−1, pti−1) = 1.

Otherwise output 0.

The proof system (S ′,P ′,V ′) operates as follows. S ′ runs S to preprocess a circuit description
of R(x,w) and outputs (pkR, vkR). The prover proceeds according to the following steps:

1. P ′ starts by computing z1 ← F (z0, loc1) and (C1, pt1, α1) ← P (pkR,x1,w1) where x1 =
(vkR, 1,⊥,⊥,⊥, z1, z0) and w1 = (⊥,⊥,⊥,⊥, loc1). It sets π1 := (C1, pt1, α1).

Intermediate verification: Given additionally a NI-Eval proof ρ1 for (C1, pt1), the proof π0 for
the public inputs (z1, z0) could be verified using V1(vkR,x1, π1) and V2(ρ1, C1, pt1).

2. P ′ computes z2 ← F (z1, loc2) and (C2, pt2, α2)← P (pkR,x2,w2) where x2 = (vkR, 2,⊥, C1, pt1, z2, z0)
and w2 = (⊥,⊥, z1, π1, loc2). It sets π2 = (C2, pt2, α2).

Intermediate verification: Given additionally an aggregate NI-Eval tuple (C∗
3 , pt∗3, ρ∗3) and

aggregation transcript tr3, the proof π2 for public inputs (C1, r1, z2, z0) may be verified by
running Vagg(tr, C∗

3 , pt∗3, C2, pt2, C1, pt1), running V1(vkR,x2, π2), and running V2(ρ
∗
3, C

∗
3 , pt∗3).

49

3. P ′ computes the aggregation:

(open∗3, f
∗
3 , C

∗
3 , pt∗3, tr3)← NI-Aggregate(f1, f2, open1, open2, C1, C2, u1, u2, v1, v2)

where pti = (ui, vi) and openi is an opening of Ci to fi such that fi(ui) = vi for i ∈
{1, 2}. It also computes z3 ← F (z2, loc3) and (C3, pt3, α3) ← P (pkR,x3,w3) where x3 =
(vkR, 3, C

∗
3 , r

∗
3, z3, z0) and w3 = (C1, pt1, z2, π2, loc3)). It sets π3 := (C3, pt3, α3).

Intermediate verification: Given (C∗
4 , pt∗4, ρ∗4, tr4), the verifier checks the proof π3 for public

inputs (C∗
3 , pt∗3, z3, z0) by running Vagg(tr4, C∗

4 , pt∗4, C∗
3 , pt∗3, C3, pt3), running V1(vkR,x3, π3),

and running V2(ρ
∗
4, C

∗
4 , pt∗4).

4. For i ≥ 4: given πi−1 = (Ci−1, ri−1, αi−1) for the public input (vkR, i−1, C∗
i−1, pt∗i−1, zi−1, z0),

P ′ computes:

(open∗i , f
∗
i , C

∗
i , pt∗i , tri)← NI-Aggregate(f∗

i−1, fi−1, open
∗
i−1, openi−1, C

∗
i−1, Ci, u

∗
i−1, ui, v

∗
i−1, vi)

where pti = (ui, vi) and openi is an opening of Ci to fi such that fi(ui) = vi. It also
computes zi = F (zi−1, loci) and πi ← P (pkR,xi,wi) where xi = (vkR, i, C

∗
i , pt∗i , zi, z0) and

wi = (C∗
i−1, pt∗i−1, zi−1, πi−1, loci).

Intermediate verification: Given (C∗
i+1, pt∗i+1, ρ

∗
i+1, tri+1), the verifier checks the proof πi

with public inputs (C∗
i , pt∗i , zi, z0) by running Vagg(tri+1, C

∗
i+1, pt∗i+1, C

∗
i , pt∗i , Ci, pti), running

V1(vkR, xi, πi) and V2(ρ∗i+1, C
∗
i+1, pt∗i+1).

5. Final proof: P outputs both πt = (Ct, ptt, αt) and (C∗
t , pt∗t) along with a batch evaluation

proof for both Ct and C∗
t , i.e. a NI-Eval proof ρ∗t+1 for the aggregate tuple:

(open∗t+1, f
∗
t+1, C

∗
t+1, pt∗t+1, trt+1)← NI-Aggregate(f∗

t , ft, open
∗
t , opent, C

∗
t , Ci, u

∗
t , ut, v

∗
t , vt)

Final verification: Run V1(vkR,xt, πt), run Vagg(trt+1, C
∗
t+1, pt∗t+1, C

∗
t , pt∗t , Ct, ptt), and lastly

run V2(ρ∗t+1, C
∗
t+1, pt∗t+1).

Stateless Halo for Proof Carrying Data In the original Halo protocol the prover was stateless.
In other words, the prover could output the proof πi for i < t, and another prover could produce πi+1

without knowing anything about the first prover’s internal state. This property is not critical when
applying this protocol to obtain SNARKs for bounded RAM programs. However, this property is
critical for PCD and its many applications.

The simplest solution is to include the prover’s private state as part of the proof. This consists
of two polynomial commitment openings. Specifically, the prover for the ith incremental statement
receives the proof πi−1 = (Ci−1, pti−1, αi−1), the values (C∗

i−1, pt∗i−1, zi−1, loci), and additionally the
previously private polynomials and opening strings (f∗

i−1, fi−1, open
∗
i−1, openi−1) for the commit-

ments C∗
i−1 and Ci−1 respectively.

The proof sizes are now linear in the predicate F , but still independent of the computation
depth. This achieves the same proof size as implementing Halo without a succinct PCS (i.e., a
PCS with succinct commitments but linear size evaluation proofs). In fact, there is little benefit
to using a PCS with a sublinear evaluation proof when employing this trivial method for stateless
proving. An PCS with an efficient aggregation protocol would suffice (e.g., using any homomorphic
hash function).

However, there is a more efficient method of achieving stateless proving, which uses a public
aggregation scheme instead of a private aggregation scheme.

50

Public aggregation method Recall (from Theorem 6) that if the PCS is additively succinct
then its private aggregation scheme can be efficiently compiled into a public aggregation scheme with
only a small additive overhead, logarithmic in the maximum degree of the committed polynomials.
This includes all the additive schemes in Section 3.2, but excludes FRI.

Replacing the private non-interactive aggregation scheme with a public non-interactive aggre-
gation scheme in the protocol described above is straightforward. The main difference is that the
public aggregation algorithm requires as input NI-Eval proofs instead of commitment openings.
Instead of running the private aggregation algorithm, which requires (f∗

i−1, fi−1, open
∗
i−1, openi−1),

at each step i ∈ N the ith prover runs the public aggregation algorithm:

(open∗i , f
∗
i , C

∗
i , pt∗i , tri)← NI-Aggregate(C∗

i−1, Ci, u
∗
i−1, ui, v

∗
i−1, vi, ρ

∗
i−1, ρi)

where ρ∗i−1 is an NI-Eval proof for the tuple (C∗
i−1, u

∗
i−1, v

∗
i−1) and ρi−1 is an NI-Eval proof for the

tuple (Ci−1, ui−1, vi−1). The value ρi−1 is already part of πi−1 and ρ∗i−1 is included in the output of
the i− 1st prover. The ith prover uses (open∗i , f

∗
i) to produce the evaluation proof ρ∗i for (C∗

i , pt∗i).
The public output of the ith prover is (ρ∗i , C

∗
i , pt∗i , zi, πi). Crucially, the prover does not need to

include (open∗i , f
∗
i) as part of the public output.

B Zero knowledge compiler for an additive PCS over Fp

In this section we describe a generic compiler for transforming any m-spanning additive PCS over
Fp (Definition 8) into a hiding PCS with a zero-knowledge Eval. For the remainder of this section
F := Fp, for some prime number p. It may be possible to generalize our results to work over
extension fields, but that is beyond scope.

Theorem 10. There is a generic compiler that takes any m-spanning additive PCS over Fp

and transforms it into a statistically-hiding homomorphic PCS whose evaluation protocol satis-
fies bounded witness zero-knowledge. The new PCS commitment group G on setup parameters
(λ, d) is equal to the original input PCS group for parameters (λ, d + m). The new evaluation
protocol has the following efficiency, with ∆ := max(m,λ+ log |G|):

• The communication overhead is O(∆), consisting of an integer vector of size at most ∆ bits
and a constant number of elements in G and F.

• The verification overhead is O(∆) group operations in G.

• The prover overhead is O(∆ + d) group operations in G and a constant number of field
operations in F.

The proof of Theorem 10 is covered by Lemma 9 and Lemma 10.

B.1 Compiler I: From Additive to Homomorphic

The first step is to transform the non-hiding additive PCS into a homomorphic PCS. The steps of
this transformation were explained briefly in Section 3. Let (Setup, Commit, Verify, Eval) denote
the protocols of the non-hiding additive PCS. Since the PCS is non-hiding we assume (without
loss of generality) that the commitment algorithm Commit is a deterministic function. The new

51

homomorphic non-hiding PCS has the same Setup,Verify, and Eval protocols and only modifies the
commitment algorithm Commit∗ as follows:

Commit∗(pp, f) → (C, open): on inputs pp and f ∈ F(<d)[X], finds the integer coefficient vector
representation (f̂0, ..., f̂d−1) ∈ [0, p)d of f and

1. Runs (Ci, openi)← Commit(pp,Xi−1) for i ∈ [1, d]

2. Sets C :=
∑d−1

i=0 f̂i · Ci and open := (f̂0, ..., f̂d−1).

By definition, C is also a valid commitment to the polynomial f under the original scheme.
The prover uses the algorithm add∗ to derive a valid opening string open′ for C to f , i.e. such
that Verify(pp, f, open′,C) = 1. For the evaluation protocol, the prover uses open′ and runs the
Eval protocol of the original scheme. Note that open′ may not be the same as open, but can
always be computed from open using add∗. For some schemes (e.g., KZG and Bulletproofs) that
are already homomorphic, the linear combination C would be identical to a fresh commitment to
f and open′ = open. In other words, the transformation described above has no effect.

The transformed scheme is a homomorphic PCS because C = φ(open) where φ : Zd → G is the
homomorphism that maps v ∈ Zd to

∑d
i=1 vi ·Ci and χ(open) = open mod p is the unique coefficient

vector of f ∈ F(<d)[X]. If the additive PCS is m-spanning then the homomorphism φm : Zm → G
given by v 7→

∑m
i=1 vi · Ci is surjective. The new scheme is binding: given a collision f̂ ′ 6= f̂ mod p

such that C = φ(f̂) = φ(f̂ ′), the algorithm add∗ could be used to derive openings of C to either f
or f ′ from the openi values, which contradicts the binding property of Commit.

B.2 Compiler II: From Homomorphic to Hiding

The parameters of the compilation are (m,κ) ∈ N. The input to the compiler is a non-hiding
m-spanning homomorphic PCS with the following characteristics for any pp← Setup(λ, d):

• Commit(pp, f) is deterministic (w.l.o.g., since it is non-hiding).

• H = Zd and χ(f) returns the unique polynomial in F(<d)[X] with coefficient vector f mod p.

• (gi, ei) ← Commit(pp, Xi) where ei is the ith standard basis vector in ZD. For all f ∈ Zd,
φ(f) =

∑d
i=1 fi · gi.

Any m-spanning additive PCS that is first passed through Compiler I has these characteristics.

Hiding: 1-spanning case As a warm-up, we first describe a simple transformation that works
when G is cyclic, m = log |G|/κ, and g1, ..., gm are each generators of G. The new setup Setup∗(λ, d)
will run Setup(λ, d + m), which defines φ : Zd+m → G. The new hiding commitment to f =
(f0, ..., fd−1) ∈ [0, p)d samples a random degree m blinding polynomial r ∈ F(<m)[X] and outputs a
non-hiding commitment to the polynomial f ′ := r+Xmf using the original commitment algorithm.
More precisely, it samples a random integer vector r ∈ [0, 2κ)m, sets open := (r, f) ∈ Zd+m,
and returns C := φ(open). The new scheme is still homomorphic with H = Zd+m, the same
homomorphism φ, and a new homomorphism χ∗ : H→ Fd such that χ(x1,x2) = x2 mod p for any
x1 ∈ Zm and x2 ∈ Zd.

The commitment is hiding if the random variable Z(r1, ..., rm) =
∑m

i=1 ri ·gi is indistinguishable
from uniform G when r is sampled uniformly from [0, 2κ)m. By a classical theorem, when gi

52

are generators of G and ri ←$ [0, 2κ], the random variable Z(r1, ..., rm) converges to uniform for
m ∈ O(log |G|/κ) [Bab91, Coo02, Dix08]. This is the case in all the examples of additive schemes
from Section 3.2.

Hiding: m-spanning case In the more general case of an m-spanning scheme (i.e., where gi are
not necessarily generators but 〈g1, ..., gm〉 = G), it suffices to use commitments to a random poly-
nomial basis of F(<m)[X] to generate the blinding factor instead of commitments to the monomial
basis. Let D := d +m and suppose G has order10 q. A matrix A ←$ [0, q)m is randomly sampled
and included in the setup parameters or generated from a seed. With overwhelming probability
A ∈ GLm(F). The new commitment algorithm to f ∈ F(<d)[X] with coefficient vector f ∈ Zd

samples r←$ [0, 2κ)m, sets open := (A · r, f) and returns φ(open). This is interpreted as the sum of
a commitment to Xm · f ∈ F(<D)[X] and a commitment to the blinding polynomial

∑m
i=1 ri · ai(X)

where ai(X) ∈ F(<m)[X] has coefficients equal to the ith column of A. To avoid the O(m2) computa-
tion A ·r for each new commitment, the setup parameters may also include the preprocessed group
elements g̃j =

∑m
i=1 aij · gi for i ∈ [m] so that C =

∑m
i=1 ri · g̃i +

∑d
i=1 fi · gi+m. This commitment

is statistically hiding for m · κ ≥ λ+ log |G| based on the Leftover Hash Lemma [HILL99].

Evaluation We give a succinct non-ZK evaluation protocol for the transformed hiding commit-
ment where the increase in communication over the original protocol is O(mκ).11 The next section
gives a compilation from a hiding PCS with a non-ZK evaluation protocol into one with a ZK
evaluation protocol. Given open = (r, f), the prover first sends r to the verifier, who can then
derive C′ := C−

∑m
i=1 ri · g̃i, which is a valid non-hiding commitment to Xm · f under the original

PCS. The prover additionally sends a non-hiding commitment Cf to f . The verifier samples ρ ∈ F
and they run the evaluation protocol of the original PCS to open Cf at ρ to f(ρ) and C′ to the
value ρm · f(ρ). Finally, they also run Eval on Cf at z to open f(z) = y. The three evaluations can
be batched.

Lemma 9. The PCS returned by the hiding compiler in Figure 6 is binding, knowledge-sound, and
statistically hiding for mκ ≥ λ+ log |G|.

Proof.

Binding If Verify∗ accepts distinct openings open1 = (r1, f1) and open2 = (r2, f2) of C to distinct
f1 6= f2 then f1 6≡ f2 mod p yet φ((A ·r1, f1)) = φ(A ·r2, f2)). This contradicts the binding property
of the input scheme.

Knowledge soundness An adversary that succeeds with non-negligible probability in the eval-
uation protocol succeeds with non-negligible probability in the three Eval subprotocols. Hence, the
extractor can run the Eval extractors to obtain openings (f, openf) of Cf , (f ′, open′) of C′ = C−Cr

such that f(z) = y, f ′(ρ) = ρm ·f(ρ), deg(f) < D, and deg(f ′) < D. Moreover, there exists at least
D +m distinct ρ1, ..., ρD+m such that the adversary would succeed in all three Eval subprotocols

10If the order q of the group G is unknown, an upper bound on q may be derived from the element representation
size, and the matrix A can still be sampled using integers from a sufficiently large range such that A mod q is
statistically indistinguishable from random over Zq.

11To reduce the communication overhead, the prover could send Cr = φ(A·r,0m) instead of r and run the evaluation
protocol to prove this is a commitment to a polynomial of degree at most m.

53

Figure 6: Compiler III (hiding) Parameters m = m(λ) and κ = κ(λ) are functions. The compiler
uses a sampling algorithm A ← Sample(λ,m) that returns a matrix in Zm×m. By default A is
sampled uniformly over [0, q)m×m where q = |G|. When q is unknown A may be sampled such that
A mod q is statistically close to uniform. In special cases A may be the identity matrix.

Setup∗(λ, d) → pp sets κ = κ(λ), m = m(λ), D ← d +m, pp′ ← Setup(λ,D), A ← Sample(λ,m) and
outputs (pp′,A). For all j ∈ [1, D], compute (gj , ej) ← Commit(pp′, Xj) and for i ∈ [1,m] compute
g̃j ←

∑m
i=1 aij · gi where aij is the (i, j)th entry of A. For x ∈ ZD let φ(x) =

∑D
i=1 xi · gi.

Commit∗(pp, f)→ (C, open) receives the coefficient vector f of f ∈ F(<d)[X], samples r←$ [0, 2κ)m, sets
open := (r, f) and C :=

∑m
i=1 ri · g̃i +

∑d
i=1 fi · gi+m.

Verify∗(pp, f, open,C) returns 1 iff open = (r, f) ∈ Zm × Zd, f mod p is the coefficient vector of f , and
φ((A · r, f)) = C.

Eval∗
(
P(f, open),V(pp,C, z, y)

)
→ (⊥, b)

The prover parses open = (r, f) ∈ Zm × Zd, computes the non-hiding commitment (Cf , openf) ←
Commit(pp′, f), and sends (Cf , r) to the verifier. Both parties derive Cr :=

∑m
i=1 ri · g̃i and C′ := C−Cr.

The prover also sets open′ := (0m, f). The verifier samples ρ ←$ F and sends this to the prover. The
prover sends f(ρ). Finally, the parties run the following interactive proofs. The verifier outputs 1 iff V
outputs 1 in each subprotocol:

1. Eval
(
P(f, openf),V(pp′,Cf , z, y)

)
2. Eval

(
P(f, openf),V(pp′,Cf , ρ, f(ρ))

)
3. Eval

(
P(Xm · f, open′),V(pp′,C′, ρ, ρm · f(ρ)

)
All evaluation protocols can be batched using the protocol in Figure 1.

54

with non-negligible probability on each of these evaluation points. By evaluation binding of the
PCS, this implies that f ′(ρi) = ρmi · f(ρi) for each i ∈ [1, D +m]. Since deg(f ′ −Xm · f) < D +m
this implies f ′ = Xm · f and deg(f) < d. Finally, using the additive property of the PCS the
extractor can derive from r and open′ an opening of C to the polynomial with coefficient vector
(r, f).

Hiding Let q = |G|. Let φm : Zm → G be defined as φm(x) =
∑m

i=1 xi · gi. It suffices prove that
Cr = φ(A · r) for r ←$ [0, 2κ)m has negligible distance to uniform over G. The min-entropy of r is
mκ. Due to the fact that the PCS is m-spanning φm is surjective. We will show that φm(A · r) is
a good randomness extractor using the Leftover Hash Lemma.

Define the keyed hash family H : Zm×m
q ×Zm → G such that H(A,x) = φm(A ·x). For uniform

y ∈ Zm
q the element φm(y) is uniformly distributed over G. Moreover, for A sampled uniformly

and x 6= 0 the vector y = A · x mod q is uniformly distributed over Zm
q . Thus, H is 2-universal

(Definition 3) because for any x 6= y and uniformly distributed A the element H(A,x)−H(A,y) is
uniformly distributed in G and the probability of a collision is 1/|G|. Let UG denote an independent
random variable from the uniform distribution over G. Since H∞(r) ≥ mκ and A is independently
uniform over G, by the Leftover Hash Lemma (Lemma 1):

SD((H(A, r),A), (UG,A)) ≤ 1

2

√
2log q−mκ

Thus, for mκ ≥ λ+ log q, the distribution of Cr has negligible distance at most 2−λ from uniform
over G. �

Examples The following examples of this transformation cover the common cases of homomor-
phic commitment schemes. In all these examples, no basis transformation is necessary (i.e., the
matrix A is the identity matrix).

• G is any group of order p = |F|. In this case the scheme is perfectly hiding for m = 1 and
2κ = p because g1 is a generator and r1 · g1 is uniformly distributed in G. This is the case for
several PCS schemes including Bulletproofs and KZG [BCC+16, BBB+18, KZG10].

• In general, when G is a cyclic group of known order q and g1 is a generator of |G| then the
scheme is perfectly hiding for m = 1 and 2κ = q.

• If G is a group of unknown order, g1 is a generator of G, and 2κ > 2λ · |G|, then the scheme
is statistically hiding for m = 1. This is the case in DARK.

• If G is the group Zn
q for q > p and all gi are sampled independently from the uniform

distribution over Zn
q then the scheme is statistically hiding for m = n logp q and 2κ = p by

the leftover hash lemma. This is known as Ajtai’s hash function [Ajt96, GGH96] and is the
commitment function for a PCS based on the Integer-SIS problem [BBC+18].

B.3 Compiler III: From Hiding to Zero Knowledge Eval

Lastly, we describe a generic compiler that takes any homomorphic hiding PCS with an Eval
that is not zero-knowledge and transforms it into a PCS with a zero-knowledge Eval∗. The idea

55

is similar to the sigma protocol for homomorphism pre-images and is a generalization of known
techniques [CFS17, BCC+16, BFS20].

Let PCS = (Setup,Commit,Verify,Eval) denote the input PCS. By definition there are efficiently
computable homomorphisms φ : ZD → G and χ : ZD → F(<d)[X] such that the output (C, open)←
Commit(pp, f) for any f ∈ F(<d)[X] satisfies C = φ(open) and f = χ(open). The output of the
compiler is a bounded witness zero-knowledge evaluation protocol for the max norm ||·||∞ : ZD → Z.
Let κ denote a security parameter of the compiler. Given the prover witness inputs (f, openf) and
public inputs (pp,Cf , z, y) for the claim that f(z) = y mod p, the protocol ZKEval(B) takes an
additional parameter B ∈ Z and works as follows:

1. The prover chooses a random integer vector α ←$ [−2κ · B,B · 2κ]D, computes Cα ← φ(α),
which is a commitment to α ← χ(α) ∈ F(<d)[X]. The prover sends both yα := α(z) and Cα

to the verifier.

2. The verifier sends a random challenge c←$ [0, 2λ) to the prover.

3. The prover derives s := α+ c · openf . The prover and verifier each derive Cs := Cα + c · Cf ,
which is a commitment to the polynomial s := α + c · f ∈ F(<d)[X], and the prover sets
opens := s. They run the Eval protocol on public inputs (Cs, z, yα + c · y), where the prover
has private input (s, opens), to open Cs at z to the value s(z) = yα + c · y.

The transformed protocol is still public-coin and thus can be made non-interactive via Fiat-
Shamir.

Lemma 10. For any B ∈ R such that B ≥ p, ZKEval(B) is an honest-verifier statistical zero-
knowledge proof for the bounded witness PCS relation REval(pp, d, B, || · ||∞) when κ > 2λ+ logD.
If Eval is knowledge-sound then ZKEval(B) is also knowledge-sound.

Proof.
The relation REval(pp, d, B, || · ||∞), defined in Section 3, contains all commitment/witness pairs

(C, open) ∈ REval(pp, d) such that ||open||∞ ≤ B, where || · ||∞ : RD → R is the standard infinity
norm. This is well defined for the PCS returned by the compiler because open ∈ ZD.

Let |G| = q (not necessarily known to the simulator). The simulator samples c∗ ←$ [0, 2λ) and
t←$ [−2κ ·B, 2κ ·B]D. It sets yβ := β(z) where β = χ(β) and defines f∗ ∈ [0, p)D such that χ(f∗) = y
is the constant polynomial y ∈ [0, p). It sets s∗ := β + c∗ · f∗. It sets open∗s := s∗ and C∗

s := φ(s∗).
It also sets Cβ := C∗

s − c∗ · Cf . It generates a transcript π∗ for Eval with prover input (s∗, open∗s)
and verifier input (C∗

s, z, yβ + c∗ · y). It outputs the full simulated transcript (Cβ, yβ, c
∗,C∗

s, π
∗).

We will argue that the tuples real = (Cα, yα, c, s, s) and sim = (Cβ, yβ, c
∗, s∗, s∗) have statistical

distance at most D · 2−κ+λ. This implies that the conditional distributions of π|real and π∗|sim
also have statistical distance bounded by D · 2−κ+λ because these tuples fully determine the inputs
to the Eval subprotocol. The values c∗ and c are sampled identically. The vectors β and α are
identically distributed, hence yβ and yα are also identically distributed. Assuming ||openf ||∞ ≤ B,
the random variables s∗ = β + c∗ · f∗ and s = α+ c · openf each have statistical distance at most
D · 2−κ+λ−1 from uniform over [−2κ ·B, 2κ ·B]d (Fact 1 and Fact 2) and therefore at most distance
D · 2−κ+λ from each other by the triangle inequality. Furthermore, χ(α + c · f)(z) − yα = c · y is
identically distributed to χ(s∗)(z)−yβ = c∗ ·y. The values Cα = φ(s)−c ·Cf and C∗

α = φ(s∗)−c∗ ·Cf

are identically determined by the other components of the tuple. Similarly, s = χ(s) and s∗ = χ(s∗)
are identically determined.

56

As for soundness, the extractor E invokes tree-finding algorithm (Lemma 6) to get two accepting
transcripts that share the same first message Cα, α(z) but have distinct challenges c, c′, which define
Cs,C

′
s. E then invokes EEval for (Cs, z, α(z)) and (C′

s, z, α(z)) respectively. By Lemma 7, with high
probability the transcript has the property that the adversary succeeds in Eval on both (Cα, c) and
(Cα, c

′) with non-negligible probability. In this case, EEval outputs openings of Cs to s ∈ F(<d)[X]
such that s(z) = α(z) + c · y and of C′

s to s′ ∈ F(<d)[X] such that s′(z) = α′(z) + c′ · y with
overwhelming probability. If it does not succeed this step is repeated up to λ times, and the
probability none succeeds is negligible.

Let A ∈ Z2×2 be the matrix with rows (1, c) and (1, c′), which is invertible over Fp because
c 6= c′. Since Cα+c·Cf = Cs and Cα+c′ ·Cf = C′

s, by Lemma 4 the extractor can efficiently compute
openings of Cα to α and Cf to f such that 〈A, (α, f)〉 = (s, s′)ᵀ. This implies α(z) + c · f(z) =
s(z) = α(z) + c · y mod p, i.e. f(z) = y mod p.
�

C Our results for the KZG scheme and applications to pairing-
based SNARKs

In this section, we focus on batch evaluation for the original PCS of Kate, Zaverucha and Goldberg
[KZG10] and its implications for the PLONK zk-SNARK [GWC19]. [KZG10] presented a pairing-
based scheme where an opening proof π consists of a single G1 group element.

Related previous results [MBKM19], who introduced the use of [KZG10] for universal and
updatable SNARKs, modified the PCS of [KZG10] in the random oracle model, so that a single
G1 element can be an opening proof for several polynomials at the same point z ∈ F. [Gab19,
CHM+20, GWC19] followed and used similar single-point multi-polynomial batching protocols.

[KZG10] give in their paper a less known version of their scheme allowing for a one G1 element
opening proof for one polynomial at several evaluation points.

For the case of multiple polynomials and evaluation points, [CHM+20, GWC19] use randomized
techniques for batching pairing equations to improve verification efficiency; however opening proof
size and prover computation still grow linearly with the number of distinct points.

Our results In this section, we give two extensions of KZG for multiple evaluation points and
polynomials.

• In our first scheme the opening proof is only a single G1 element, but verifier operations
are considerably heavier than previous variants of [KZG10] when the number of distinct
evaluation points is large (cf. Lemma 16).

• In our second scheme the opening proof is two G1 elements, and the verifier complexity is
somewhat better than previous multipoint variants of [KZG10] (cf. Lemma 17). This scheme
is simply the instantiation for KZG of our private aggregation for any additive PCS; however,
we give a simplified proof for this instance using the algebraic group model of [FKL18] (which
is needed in any case to prove the basic PCS of [KZG10] is secure).

We compare the performance of our PCS to a more straightforward batched version of the
[KZG10] scheme as in [GWC19]. For simplicity, we look at the restricted case where we want to

57

open t polynomials all with the same degree bound n, each at one distinct point. See Lemma 16
and 17 for the more detailed efficiency properties in the general case (where each polynomial is
opened at a subset of points, and the subsets may repeat).

Table 1: Comparison of opening complexity for t polynomials on t distinct points. In prover/verifier
work columns Gi means scalar multiplication in Gi, F means addition or multiplication in F, and
P means pairing.

SRS size prover work proof
length verifier work

KZG as in [GWC19] n G1, 2 G2 t · n G1, O(t · n log n) F t G1 3t− 2 G1, 2 P
This work, ver. 1 n G1, t+ 1 G2 n G1, O(t · n+ n log n) F 1 G1 t− 1 G1, t2 G2, t+ 1 P
This work, ver. 2 n G1, 2 G2 2n G1, O(t · n+ n log n) F 2 G1 t+ 3 G1, 2 P

Application to PLONK: The PLONK proving system [GWC19] allows generating proofs of knowl-
edge for assignments to fan-in two arithmetic circuits with a universal and updatable SRS (see the
paragraph on this topic in Section C.1.1). Most of the prover computation involves committing to
several polynomials and opening them at two distinct evaluation points. Plugging in our first PCS
to PLONK allows saving in proof length and prover work related to the opening proof of the second
evaluation point (we do not give full details, but all that is needed is repreating the transformation
of Lemma 4.7 in [GWC19] using the PCS of Lemma 16 instead of the PCS used there to obtain
the new result).

We compare the PLONK scheme when using the [KZG10]-based PCS in [GWC19] and the first
PCS of this paper in Table 2. As in [GWC19] we present two versions of PLONK where one optimizes
fast proving, and the other small proof length.

Table 2: Comparison of PLONK efficiency for fan-in two circuit with n gates.

SRS size prover
group exponentations

proof
length verifier work

[GWC19] (fast) n G1, 2 G2 9n G1 exp 9 G1, 7 F 18 G1, 2 P
This work (fast) n G1, 3 G2 8n G1 exp 8 G1 7 F 18 G1, 4 G2, 3 P
[GWC19] (small) 3n G1, 2 G2 11n G1 exp 7 G1, 7 F 16 G1, 2 P
This work (small) 3n G1, 3 G2 10n G1 exp 6 G1 7 F 16 G1, 4 G2, 3 P

SHPLONK? Our second PCS does not give interesting tradeoffs for PLONK as two evaluation points
are not enough for its advantages to “kick in”. However, in a scenario where constraints between
more than two evaluation points are used, e.g. [Dra], the advantages of both of our new schemes will
become more prominent. Thus, the PCS of this paper encourage designing constraint systems using
multiple SHifts and Permutations over Largange bases for Oecumenical Noninteractive arguments
of Knowledge.

58

C.1 Additonal Preliminaries

We introduce additional terminology and material convenient for our analysis in the algebraic group
model.

C.1.1 Terminology and conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate polynomials
over F of degree smaller than d. In expressions involving both polynomials and constants, we will
write f(X) instead of f for to help distinguish the two; but in contexts where it is clear f is a
polynomial, we will simply write f for brevity.

We assume all algorithms described receive as an implicit parameter the security parameter λ.
Whenever we use the term “efficient”, we mean an algorithm running in time poly(λ). Further-

more, we assume an “object generator” O that is run with input λ before all protocols, and returns
all fields and groups used. Specifically, in our protocol O(λ) = (F,G1,G2,Gt, e, g1, g2, gt) where

• F is a prime field of super-polynomial size r = λω(1) .

• G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate pairing
e : G1 ×G2 → Gt.

• g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1 and G2

additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p for “except with

probability”; i.e. e.w.p γ means with probability at least 1− γ.

Universal SRS-based public-coin protocols We describe public-coin (meaning the verifier
messages are uniformly chosen) interactive protocols between a prover and verifier; when deriving
results for non-interactive protocols, we implicitly assume we can get a proof length equal to the
total communication of the prover, using the Fiat-Shamir transform/a random oracle. Using this
reduction between interactive and non-interactive protocols, we can refer to the “proof length” of
an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that can be derived
in deterministic poly(λ)-time from an “SRS of monomials” of the form

{[
xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

,
for uniform x ∈ F, and some integers a, b, c, d with absolute value bounded by poly(λ). It then
follows from Bowe et al. [BGM17] that the required SRS can be derived in a universal and updatable
setup[GKM+18] requiring only one honest participant; in the sense that an adversary controlling
all but one of the participants in the setup does not gain more than a negl(λ) advantage in its
probability of producing a proof of any statement.

For notational simplicity, we sometimes use the SRS srs as an implicit parameter in protocols,
and do not explicitly write it.

C.1.2 Analysis in the AGM model

For security analysis we will use the Algebraic Group Model of Fuchsbauer, Kiltz and Loss [FKL18].
In our protocols, by an algebraic adversary A in an SRS-based protocol we mean a poly(λ)-time
algorithm which satisfies the following.

59

• For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v over F such
that A =< v, srsi >.

Idealized verifier checks for algebraic adversaries We introduce some terminology to cap-
ture the advantage of analysis in the AGM.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈ F<Q[X]
and uniform x ∈ F. In the following discussion let us assume we are executing a protocol with a
degree Q SRS, and denote by fi,j the corresponding polynomial for the j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic adversary A
outputs during a protocol execution; e.g., the j’th G1 element output by A is [aj]1.

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0

for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently given the
encoded elements and the pairing function e : G1 ×G2 → Gt.

Given such a “real pairing check”, and the adversary A and protocol execution during which the
elements were output, define the corresponding “ideal check” as follows. Since A is algebraic when
he outputs [aj]i he also outputs a vector v such that, from linearity, aj =

∑
v`fi,`(x) = Ri,j(x)

for Ri,j(X) :=
∑

v`fi,`(X). Denote, for i ∈ {1, 2} the vector of polynomials Ri = (Ri,j)j . The
corresponding ideal check, checks as a polynomial identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

The following lemma is inspired by [FKL18]’s analysis of [Gro16b], and tells us that for soundness
analysis against algebraic adversaries it suffices to look at ideal checks. Before stating the lemma
we define the Q-DLOG assumption similarly to [FKL18].

Definition 11. Fix an integer Q. The Q-DLOG assumption for (G1,G2) states that given

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).

The following lemma is proved in [GWC19]-based on the arguments of [FKL18].

Lemma 12. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A participating in
a protocol with a degree Q SRS, the probability of any real pairing check passing is larger by at most
an additive negl(λ) factor than the probability the corresponding ideal check holds.

Knowlege soundness in the Algebraic Group Model We say a protocol P between a prover
P and verifier V for a relation R has Knowledge Soundness in the Algebraic Group Model if there
exists an efficient E such that the probability of any algebraic adversary A winning the following
game is negl(λ).

1. A chooses input x and plays the role of P in P with input x.

2. E given access to all of A’s messages during the protocol (including the coefficients of the
linear combinations) outputs ω.

60

3. A wins if

(a) V outputs acc at the end of the protocol, and
(b) (x, ω) /∈ R.

C.1.3 Polynomial commitment schemes in the algebraic group model

For a simple presentation of our schemes in the context of KZG, it will be convenient to define
polynomial commitment schemes similarly to [GWC19]. Specifically

• We define the open procedure analogously to the Eval procedure from the definition in Section
2.3, and it directly deals with the batch evaluation setting.

• We define knowledge soundness specfically against “algebraic” adversaries.

On advantage of using the same definition as in [GWC19], is that it enables directly pluggin in our
batch evaluation result into the machinery of [GWC19] to obtain the improved prover time stated
above. In the context of multiple points, it will be more convenient to assume the alleged evaluations
of a polynomial f on a set S ⊂ F are given as a polynomial r ∈ F<|S|[X] with r(z) = f(z) for each
z ∈ S. Under this convention, the condition that the evaluations are correct; i.e. r(z) = f(z) for
each z ∈ S, is equivalent to f(X)− r(X) being divisble by ZS(X); where ZS(X) :=

∏
z∈S(X − z).

Definition 13. A polynomial commitment scheme is a triplet S = (gen, com, open) such that

• gen(d) - is a randomized algorithm that given positive integer d outputs a structured reference
string (SRS) srs.

• com(f, srs) - is an algorithm that given a polynomial f ∈ F<d[X] and an output srs of gen(d)
returns a commitment cm to f .

• open is a public coin protocol between parties PPC and VPC. PPC is given f1, . . . , fk ∈ F<d[X].
PPC and VPC are both given

1. positive integers d, t = poly(λ),
2. srs = gen(d),
3. a subset T = {z1, . . . , zt} ⊂ F,
4. subsets S1, . . . , Sk ⊂ T ,
5. cm1, . . . , cmk - the alleged commitments to f1, . . . , fk,
6.

{
ri ∈ F<|Si|[X]

}
i∈[k] - the polynomials describing the alleged correct openings, i.e. having

ri(z) = fi(z) for each i ∈ [k], z ∈ Si.

At the end of the protocol VPC outputs acc or rej; such that

– Completeness: Fix any k, t = poly(λ), T = {z1, . . . , zt} ⊂ F, S1, . . . , Sk ⊂ T ,
f1, . . . , fk ∈ F<d[X],

{
ri ∈ F<|Si|[X]

}
i∈[k]. Suppose that for each i ∈ [k], cmi = com(fi, srs),

and for each i ∈ [k] we have ZSi |(fi − ri). Then if PPC follows open correctly with these
values, VPC outputs acc with probability one.

61

– Knowledge soundness in the algebraic group model: There exists an efficient E
such that for any algebraic adversary A and any choice of d = poly(λ) the probability of
A winning the following game is negl(λ) over the randomness of A, VPC and gen.
1. Given d and srs = gen(d), A outputs cm1, . . . , cmk ∈ G1.
2. E, given access to the messages of A during the previous step, outputs f1, . . . , fk ∈

F<d[X].
3. A outputs T = {z1, . . . , zt} ⊂ F, S1, . . . , Sk ⊂ T,

{
ri ∈ F<|Si|[X]

}
i∈[k].

4. A takes the part of PPC in the protocol open with the inputs cm1, . . . , cmk, T, S1, . . . , Sk,
{ri}.

5. A wins if
∗ VPC outputs acc at the end of the protocol.
∗ For some i ∈ [k], ZSi - (fi − ri).

C.2 Our first scheme

We first state the following straightforward claim that will allow us to efficiently “uniformize” checks
on different evaluation points.

Claim 14. Fix subsets S ⊂ T ⊂ F, and a polynomial g ∈ F<d[X]. Then ZS(X) divides g(X) if
and only if ZT (X) divides ZT\S(X) · g(X).

We also use the following claim, which is part of Claim 4.6 in [GWC19] where a proof of it can
be found.

Claim 15. Fix F1, . . . , Fk ∈ F<n[X]. Fix Z ∈ F<n[X] that decomposes to distinct linear factors
over F. Suppose that for some i ∈ [k], Z - Fi. Then, e.w.p k/|F| over uniform γ ∈ F, Z does not
divide

G :=
k∑

j=1

γj−1 · Fj .

We present our first PCS.

1. gen(d) - choose uniform x ∈ F. Output srs = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 , [x]2 , . . . ,

[
xt
]
2
).

2. com(f, srs) := [f(x)]1.

3. open
(
d, t, {cmi}i∈[k] , T = {z1, . . . , zt} ⊂ F, {Si ⊂ T}i∈[k] , {ri}i∈[k]

)
:

(a) VPC sends a random γ ∈ F.
(b) PPC computes the polynomial

h(X) :=
∑
i∈[k]

γi−1 · fi(X)− ri(X)

ZSi(X)

and using srs computes and sends W := [h(x)]1.
(c) VPC computes for each i ∈ [k], Zi :=

[
ZT\Si

(x)
]
2
.

62

(d) VPC computes
F :=

∏
i∈[k]

e
(
γi−1 · (cmi − [ri(x)]1), Zi

)
.

(e) VPC outputs acc if and only if

F = e(W, [ZT (x)]2).

We argue knowledge soundness for the above protocol. More precisely, we argue the existence
of an efficient E such that an algebraic adversary A can only win the KS game described in
Section C.1.3 w.p. negl(λ).
Let A be such an algebraic adversary.
A begins by outputting cm1, . . . , cmk ∈ G1. Each cmi is a linear combination

∑d−1
j=0 ai,j

[
xj
]
1
.

E, who is given the coefficients {ai,j}, simply outputs the polynomials

fi(X) :=

d−1∑
j=0

ai,j ·Xj .

A now outputs T = {z1, . . . , zt} ⊂ F, {Si ⊂ T}i∈[k] , {ri}i∈[k]. Assume that for some i∗ ∈ [k],,
we have ZSi∗ - (fi∗ − ri∗). We show that for any strategy of A from this point, Vpoly outputs
acc w.p. negl(λ).
In the first step of open, Vpoly chooses a random γ ∈ F. Let

f(X) :=
∑
i∈[t]

γi−1 · ZT\Si
(X) · (fi(X)− ri(X)).

We know from Claim 14 that Fi∗ := ZT\Si∗ ·(fi∗−ri∗) is not divisible by ZT . Thus, using Claim
15, we know that e.w.p k/|F| over γ, f is not divisble by ZT . Now A outputs W = [H(x)]1
for some H ∈ F<d[X]. According to Lemma 12, it suffices to upper bound the probability
that the ideal check corresponding to the real pairing check in the protocol passes. It has the
form

f(X) ≡ H(X)ZT (X).

The check passing implies that f(X) is divisible by ZT . Thus the ideal check can only pass
w.p. k/|F| = negl(λ) over the randomness of Vpoly, which implies the same thing for the real
check according to Lemma 12.

We summarize the efficiency properties of the scheme.

Lemma 16. There is a PCS S = (gen, com, open) such that

1. For positive integer d, srs = gen(d) consists of d G1 elements and t+ 1 G2 elements.

2. For integer n ≤ d and f ∈ F<n[X], computing com(f, srs) requires n G1-exponentiations.

3. Given T := (z1, . . . , zt) ∈ Ft, f1, . . . , fk ∈ F<d[X], {Si}i∈[k], denote by k∗ the number of
distinct subsets {S∗

1 , . . . , S
∗
k∗} in {Si}; and let K := t +

∑
i∈[k∗] (t− |S∗

i |). and denote
n := max {deg(fi)}i∈[k]. Let cmi = com(fi). Then open ({cmi} , {fi} , T, {Si ⊂ T} , {ri} , srs)
requires

63

(a) A single G1 element to be passed from Ppoly to Vpoly.
(b) At most n G1-exponentiations of Ppoly.
(c) k − 1 G1-exponentiations, K G2-exponentiations and k∗ + 1 pairings of Vpoly.

C.3 Reducing verifier operations at the expense of proof length

We describe a variant of the scheme of Section C.2 where we eliminate the verifier’s G2 operations
and reduce the number of pairings to two. This comes at the cost of an extra G1 element sent by
the prover. Roughly speaking, while in Section C.2 VPC used G2 and pairing operations to compute
the evaluation of a certain polynomial f encoded in the target group Gt, in this protocol PPC gives
VPC this evaluation encoded in G1, accompanied by a proof that it is correct. As mentioned, this is
simply an instantiation of our general private aggregation scheme in the context of the KZG PCS.
However, we will take advantage of the algebraic group model to simplify the security proof. We
first describe the PCS, and end the section by stating the obtained final result.

1. gen(d) outputs srs = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 , [x]2) for a random x ∈ F.

2. com(fi) = [fi(x)]1.

3. We describe the open procedure twice below. First, in a way that will be convenient for the
security analysis, and later in an equivalent more concise way that also optimizes verifier
operations, .e.g. moves operations from G2 into G1 when possible.

open({cmi} , T, {Si} , {ri}):

1. VPC sends random γ ∈ F.

2. PPC computes the polynomial

f(X) :=
∑
i∈[k]

γi−1 · ZT\Si
(X) · (fi(X)− ri(X)).

Recall that f is divisible by ZT according to Claim 15, and define h(X) := f(X)/ZT (X).
Using srs, PPC computes and sends W := [h(x)]1.

3. VPC sends random z ∈ F.

4. PPC computes the polynomial

L(X) := fz(X)− ZT (z) · h(X),

where
fz(X) :=

∑
i∈[k]

γi−1 · ZT\Si
(z) · (fi(X)− ri(z))

Note that L(z) = f(z)−ZT (z)·h(z) = 0, and thus (X−z) divides L. PPC sends W ′ :=
[
L(x)
x−z

]
1
.

5. VPC computes:

F :=
∑
i∈[k]

γi−1 · ZT\Si
(z) · (cmi − [ri(z)]1)− ZT (z) ·W

64

6. VPC outputs acc if and only if

e(F, [1]2) = e(W ′, [x− z]2).

We argue knowledge soundness for the above protocol. More precisely, we argue the existence
of an efficient E such that an algebraic adversary A can only win the KS game w.p. negl(λ). The
proof begins identically to the previous one.

Let A be such an algebraic adversary.
A begins by outputting cm1, . . . , cmk ∈ G1. Each cmi is a linear combination

∑d−1
j=0 ai,j

[
xj
]
1
.

E, who is given the coefficients {ai,j}, simply outputs the polynomials

fi(X) :=

d−1∑
j=0

ai,j ·Xj .

A now outputs T = {z1, . . . , zt} ⊂ F, {Si ⊂ T}i∈[k] , {ri}i∈[k]. Assume that for some i∗ ∈ [k], we
have ZSi∗ - (fi∗ − ri∗). We show that for any strategy of A from this point, Vpoly outputs acc w.p.
negl(λ).

In the first step of open, Vpoly chooses a random γ ∈ F. Let

f(X) :=
∑
i∈[k]

γi−1 · ZT\Si
· (fi(X)− ri(X)).

We know from Claim 14 that Fi∗ := ZT\Si∗ (fi∗ − ri∗) is not divisible by ZT . Thus, using Claim
15, we know that e.w.p k/|F| over γ, f is not divisble by ZT . Assume we are in this case. Now
A outputs W = [H(x)]1 for some H ∈ F<d[X], followed by VPC sending uniform z ∈ F. Since
we are in the case that f is not divisble by ZT , we know there are at most 2d values z ∈ F such
that f(z) = H(z) · ZT (z); and thus z chosen by VPC is of this form only w.p. negl(λ). Assume we
are in the case that z sent by VPC is not of this form. PPC now outputs W ′ = [H ′(x)]1 for some
H ′ ∈ F<d[X]. According to Lemma 12, it suffices to upper bound the probability that the ideal
check corresponding to the real pairing check in step 6 passes. Denoting

L′(X) :=
∑
i∈[k]

γi−1ZT\Si
(z) · (fi(X)− ri(z))− ZT (z) ·H(X),

the ideal check has the form
L′(X) ≡ H ′(X) · (X − z),

and thus can pass for some H ′ ∈ F<d[X] only if L′ is divisible by (X − z), which means L′(z) = 0.
However

L′(z) =
∑
i∈[k]

γi−1ZT\Si
(z) · (fi(z)− ri(z))− ZT (z) ·H(z) = f(z)− ZT (z) ·H(z),

and we are in the case where f(z) 6= ZT (z) ·H(z). In summary, the ideal check can only pass w.p.
negl(λ) over the randomness of VPC, which implies the same thing for the real check according to
Lemma 12.

65

C.4 The open procedure, “cleaned up” and optimized

open({com(fi)} , {Si} , {ri}):

1. VPC sends a random challenge γ ∈ F.

2. PPC sends W := [(f/ZT)(x)]1 where

f :=
∑
i∈[k]

γi−1 · ZT\Si
(fi − ri).

3. VPC sends a random evaluation point z ∈ F

4. PPC sends W ′ := [(L(x)/(x− z)]1 where

L :=
∑
i∈[k]

γi−1ZT\Si
(z) · (fi − ri(z))− ZT (z) · (f/ZT).

5. VPC outputs acc iff e(F + zW ′, [1]2) = e(W ′, [x]2), where

F :=
∑
i∈[k]

γi−1ZT\Si
(z) · cmi −

∑
i∈[k]

γi−1ZT\Si
(z)ri(z)


1

− ZT (z)W.

From the description and analysis we obtain

Lemma 17. There is a PCS S = (gen, com, open) such that

1. For positive integer d, srs = gen(d) consists of d G1 elements and 2 G2 elements.

2. For integer n ≤ d and f ∈ F<n[X], computing com(f, srs) requires n G1-exponentiations.

3. Given T := (z1, . . . , zt) ∈ Ft, f1, . . . , fk ∈ F<d[X], {Si}i∈[k] and denote n := max {deg(fi)}i∈[k].
Let cmi = com(fi). Then open ({cmi} , {fi} , T, {Si ⊂ T} , {ri} , srs) requires

(a) 2 G1 elements sent from PPC to VPC.
(b) at most 2n+ 1 G1-exponentiations of PPC.
(c) k + 3 G1-exponentiations and 2 pairings of VPC.

66

	Introduction
	Contributions
	Related work

	Preliminaries
	Interactive proofs of knowledge
	Hash functions
	Polynomial Commitment Scheme (PCS)
	Module equations for PCS

	Additive polynomial commitments
	Linear combination schemes
	PCS examples and their additive properties

	Batch Evaluation and Private Aggregation
	A Protocol for Batch Zero Testing
	Batch evaluation protocol
	Aggregation scheme (proof of Theorem 3)

	Homomorphic PCS Public Aggregation
	A Succinct PoK for Homomorphism Pre-image
	Zero knowledge
	Homomorphic PCS from any Collision-Resistant Homomorphism
	Publicly aggregatable PCS (proof of Theorem 6)

	SNARKs and IVC from PCS Aggregation
	Appendices
	Computational group
	Probability distributions
	Interactive proofs of knowledge
	Additive PCS examples
	FRI
	Batch evaluation protocol
	Proof of Theorem 4
	Proof of Theorem 5

	Zero knowledge HPI protocol
	HPI protocol performance
	Halo proof recursion from PCS aggregation

	Zero knowledge compiler for an additive PCS over Fp
	Compiler I: From Additive to Homomorphic
	Compiler II: From Homomorphic to Hiding
	Compiler III: From Hiding to Zero Knowledge Eval

	Our results for the KZG scheme and applications to pairing-based SNARKs
	Additonal Preliminaries
	Terminology and conventions
	Analysis in the AGM model
	Polynomial commitment schemes in the algebraic group model

	Our first scheme
	Reducing verifier operations at the expense of proof length
	The open procedure, ``cleaned up'' and optimized

