
Flexible and Efficient Verifiable Computation on Encrypted Data?

Alexandre Bois1??, Ignacio Cascudo2, Dario Fiore2, and Dongwoo Kim3? ? ?

1 CentraleSupelec, University of Paris-Saclay, Gif-sur-Yvette, France
alexandre.bois-verdiere@student.ecp.fr
2 IMDEA Software Institute, Madrid, Spain
{ignacio.cascudo, dario.fiore}@imdea.org

3 Western Digital Research, Milpitas, USA
Dongwoo.Kim@wdc.com

Abstract. We consider the problem of verifiable and private delegation of computation [Gennaro et
al. CRYPTO’10] in which a client stores private data on an untrusted server and asks the server to
compute functions over this data. In this scenario we aim to achieve three main properties: the server
should not learn information on inputs and outputs of the computation (privacy), the server cannot
return wrong results without being caught (integrity), and the client can verify the correctness of the
outputs faster than running the computation (efficiency). A known paradigm to solve this problem is
to use a (non-private) verifiable computation (VC) to prove correctness of a homomorphic encryption
(HE) evaluation on the ciphertexts. Despite the research advances in obtaining efficient VC and HE,
using these two primitives together in this paradigm is concretely expensive. Recent work [Fiore et al.
CCS’14, PKC’20] addressed this problem by designing specialized VC solutions that however require
the HE scheme to work with very specific parameters; notably HE ciphertexts must be over Zq for a
large prime q.
In this work we propose a new solution that allows a flexible choice of HE parameters, while staying
modular (based on the paradigm combining VC and HE) and efficient (the VC and the HE schemes
are both executed at their best efficiency). At the core of our new protocol are new homomorphic
hash functions for Galois rings. As an additional contribution we extend our results to support non-
deterministic computations on encrypted data and an additional privacy property by which verifiers
do not learn information on the inputs of the computation.

1 Introduction

We address the problem of verifiable computation on encrypted data. This problem arises in situ-
ations where a client wants to compute some function over private data on an untrusted machine
(a cloud server for example) and is concerned about three issues. The first one is efficiency: the
client wants to take advantage of the machine’s computing power and to do many fewer operations
than those needed to execute the computation. The second one is privacy—the client wants to keep
the data hidden to the server—and the third one is integrity—the client wants to ensure that the
results provided by the untrusted machine are correct.

If the goal is to solve privacy (and efficiency), then fully homomorphic encryption (FHE) is the
answer. With FHE the server can receive data encrypted and compute any function on it. The first
FHE scheme was proposed in 2009 by Gentry [Gen09], and since then we have several families of
more efficient schemes, e.g., [BV11, BGV12, FV12, CKKS17, GSW13, DM15, CGGI16, CGGI17].

If the goal is to solve integrity (and efficiency), then the problem is in the scope of verifiable
computation (VC) [GGP10]. In a nutshell, with a VC protocol the server can produce a proof

? This article is the full version of the paper that appears in the proceedings of PKC 2021, © IACR 2021.
?? Work done while at IMDEA Software Institute.

? ? ? Work done while at IMDARC, Seoul National University, Korea.

about the correctness of a computation, and this proof can be checked by the client faster than
recomputing the function. As of today, there exist several solutions to this problem based on
different approaches, such as doubly-efficient interactive proofs [GKR08], FHE and garbled circuits
[GGP10], functional/attribute-based encryption [PRV12, GKP+13], and succinct (interactive and
non-interactive) arguments for NP, e.g., [Kil92, GGPR13, AHIV17, WTs+18, BCR+19].

When it comes to solving both privacy and integrity (while retaining efficiency), there exist fewer
solutions. Gennaro et al. [GGP10] proposed a VC scheme with privacy based on combining garbled
circuits and FHE, and Goldwasser et al. [GKP+13] proposed a VC scheme with privacy of inputs
(but not outputs) based on succinct single-key functional encryption . Unfortunately, the concrete
efficiency of these two solutions is not satisfactory, e.g. [GGP10] require the full FHE power, and
[GKP+13] needs attribute-based encryption for expressive predicates and works for functions with
single-bit outputs.

A third approach is that of Fiore et al. [FGP14] who proposed a generic construction of VC
with privacy, obtained by combining an FHE scheme and a VC scheme: the basic idea is to use
VC to prove the correctness of the FHE evaluations on ciphertexts. Efficiency-wise this approach is
promising as it tries to reconcile the best of the two lines of work that individually address privacy
(FHE) and integrity (VC) and that have advanced significantly in terms of efficiency.

The efficiency challenges of proving correctness of FHE evaluation. The instantiation of
[FGP14] generic construction still faces two challenges related to efficiency:

1. When executing a function g, the VC scheme must prove the FHE evaluation of g, whose
representation is typically much larger than g, as it acts over FHE ciphertexts.

2. The FHE ciphertext space may not match the message space natively supported by the VC
scheme. Although in theory this is not an issue for general-purpose VCs, in practice it would
require expensive conversions that can significantly affect the cost of generating the VC proof.
For example, many succinct arguments work for arithmetic circuits over a field Zp = Z/pZ where
p is a large prime (e.g., the order of bilinear groups), whereas the FHE ciphertext spaces may
be polynomial rings Zq[X]/(f), f ∈ Zq[X], where q is not necessarily a prime of exponential
size (in the security parameter).

Fiore et al. [FGP14] proposed a concrete instantiation of their generic construction that, though
supporting only the evaluation of quadratic functions, addresses both the two challenges above as
follows. First, they use the HE scheme from [BV11], where a ciphertext consists of two polynomials
in Zq[X]/(f), and “force it” to work with q = p, where p is the prime order of bilinear groups used
by their VC scheme. Second, they reduce the dependency of their VC scheme on the size of the
ciphertexts (i.e., the degree df of the polynomial f) via a technique called homomorphic hashing.
When executing a function g on n inputs, a strawman solution would require the VC to prove g’s
homomorphic evaluation, of size more than O(df · |g|). By using homomorphic hashing, they can
have proofs generated in time O(df · n + |g|). Essentially, the ciphertext size impacts the cost of
proof generation only on the number of inputs, which is unavoidable.

Recently, [FNP20] extended the approach of [FGP14] to support public verifiability and the
evaluation of more than quadratic functions (still of constant degree) via the use of specialized
zkSNARKs for polynomial rings. However, the scheme of [FNP20] still requires to instantiate the
[BV11] HE scheme with a specific q order of the bilinear groups used by the zkSNARK.

To summarize, existing solutions [FGP14, FNP20] manage to avoid expensive conversions and
achieve efficient proof generation, but pay the price of imposing specific values to the parameters of

2

Scheme Delegation Verification Max degree HE modulus q

[FGP14] priv priv 2 prime > 2λ

[FNP20] pub pub const prime > 2λ

Ours pub pub const any

Table 1. Comparison of efficient VC schemes with privacy of inputs/outputs based on homomorphic encryption.

the HE scheme. This choice has several drawbacks. One problem is the efficiency of the HE scheme:
the size of the modulus q mainly depends on the complexity of the computations to be supported
(for correctness) and there are many cases where it can be as small as 50–60 bits and not necessarily
a prime. Forcing it to be a prime of, say, 256 bits (because of discrete log security in bilinear groups)
not only makes it unreasonably larger but also requires, due to security of the RingLWE problem,
to increase the size of the polynomial ring, i.e., the degree of f . Similarly, in cases where for HE
correctness q would be larger than 256 bits, then one must instantiate the bilinear groups at a
security level higher than necessary. So, all in all, the techniques of [FGP14, FNP20] do not allow
flexible choices of HE parameters.

1.1 Our Contributions

In this paper we provide new VC schemes with privacy of inputs and outputs that solve the two
aforementioned efficiency challenges while staying modular (based on VC and FHE used indepen-
dently) and flexible (no need to tweak the HE parameters).

Our VC schemes support HE computations of constant multiplicative depth, offer public dele-
gation and public verifiability, and are multi-function, i.e., one can encode inputs with a function-
independent key and delegate the execution of multiple functions on these inputs (see [PRV12]).
These features are similar to those of the recent work [FNP20].

In contrast to previous works [FGP14, FNP20], we can use the [BV11] somewhat homomorphic
encryption scheme (where ciphertexts are in Zq[X]/(f)) instantiated with any choice of the cipher-
text modulus q.4 This flexibility enables better and faster instantiations of the HE component than
in [FGP14, FNP20].

For instance, in applications where q can be of about 50 bits we can set deg(f) = 211, which
makes ciphertexts 40× shorter than using a 250-bits prime q, which would require deg(f) = 214.
Furthermore, the fact that our modulus q does not have to be prime may lead to use optimized
circuits and thus to faster executions in practice (an example is the lowest-digit-removal polynomial
in [CH18], that has a lower degree for a modulus pe than for a close prime modulus).

As a key technique to achieve flexibility and to gain efficiency by working on smaller spaces,
we define and construct new, more general, homomorphic hash functions for Galois rings. Briefly
speaking, these functions can compress a ciphertext element from a polynomial ring Zq[X]/(f),
where q = pe for a prime p and f is arbitrary, into a smaller Galois ring (i.e., a polynomial ring
Zq[X]/(h) such that h is monic and its reduction modulo p is irreducible in Zp[X]). Next, thanks
to the homomorphic property, we can use any VC scheme for proving arithmetic circuits over
Zq[X]/(h). As a concrete example, we show how to use the efficient GKR protocol [GKR08] for
this task. In terms of efficiency, h ∈ Zq[X] is a polynomial whose degree governs the soundness of

4 Precisely, our basic scheme in Section 3 works for a q that is a prime power; in Section 6 we generalize it to any
(possibly composite) integer q.

3

the proofs (we need that 1/pdeg(h) is negligible) and is concretely smaller than the degree of f , e.g.,
deg(h) can be between 24× (when p = 2) and 211× (when p = q) smaller.

We stress that previous homomorphic hash functions from [FGP14, FNP20] only map from
Zq[X]/(f) to Zq and need q be a large prime. So they would not allow flexible choices of parameters.
Our constructions instead have no restriction on q and can fine-tune the output space according to
the desired soundness.

At the core of our result is a technique to speed up the prover costs in verifiable computation
over polynomial rings. Given that polynomial rings are common algebraic structures used in many
lattice-based cryptographic schemes, our methods and analysis might be easily reusable in other
contexts different from FHE. As an example, in Section 3.2 we show how our technique can be used
to obtain a verifiable computation scheme for parallel, single-instruction multiple-data (SIMD)
computations where the proof generation costs are minimally dependent on the number of parallel
inputs.

Extensions for non-deterministic computations and context-hiding. As an additional con-
tribution, we generalize the notion of private VC to support non-deterministic computations along
with context-hiding.

In brief, supporting nondeterministic computations means to consider functions of the form
g(x,w) in which the untrusted worker receives an encryption of the input x, holds an additional
input w and can produce an encoding of g(x,w). In this case, the security property becomes
analogous to the one we have in proof systems for NP, namely the untrusted worker can produce
an encoding y that is accepted only if there exists a w such that y = g(x,w). Nondeterminism is
useful to handle more complex computations, such as ones that use random coins, non-arithmetic
operations (e.g., bit-decompositions) or (secret) computation parameters. For instance, with this
we can prove re-randomization of ciphertexts, or evaluate polynomials with coefficients provided
by the server.

To provide privacy against verifiers, we consider the notion of context hiding of [FNP20], which
guarantees that the verifier learns no information about the input x beyond what can be inferred
from the output y = g(x). In our work, we extend context-hiding to the non-deterministic set-
ting to ensure that the verifier learns nothing about (x,w). This includes both verifiers that only
receive computation’s results, and those who generated the input and the corresponding cipher-
text/encoding (in which case x is already known).

Next, we extend our flexible VC constructions to support non-deterministic computations and
achieve context-hiding. In particular, we show a scheme that is based on proving correctness of
[BV11] HE evaluations and in which we address the two efficiency challenges mentioned earlier using
our homomorphic hashing technique, thanks to which we keep the cost of proof generation O(df ·n+
|g|). To achieve context-hiding, however, instead of a verifiable computation for arithmetic circuits
over the Galois ring Zq[X]/(h), we use a commit-and-prove succinct zero-knowledge argument for
circuits over this Galois ring. The latter could be instantiated by using existing schemes for Zp
(recall p is the prime such that q = pe). The design of efficient ZK arguments that can directly and
efficiently handle Galois rings is an interesting open problem for future research.

1.2 Organization

In Section 2, we introduce notation and preliminary definitions. Section 3 presents our generic VC
scheme on encrypted data. In Section 4, we discuss an instantiation of our VC scheme and present

4

our homomorphic hash functions. In Section 5, we further develop our scheme to handle nondeter-
ministic computations with context-hiding. Finally, in Section 6, we discuss how to generalize our
techniques to a modulus q that is not a prime-power.

2 Preliminary Definitions

In this section, we recall notation and basic definitions.

2.1 Notation

Let λ ∈ N be the security parameter. We say that a function F is negligible in λ and denote it by
negl(λ) if F (λ) = o(λ−c) for all c > 0. A probability is said to be overwhelming if it is 1− negl(λ).

Let D be a probability distribution and S be a set. The notation r
$← D means that r is randomly

sampled from the distribution D, while r
$← S means that r is sampled uniformly randomly from

the set S. All adversaries A and entities (a prover P and a verifier V) in this paper are probabilistic
polynomial-time (PPT) Turing machines. In this paper, a ring is always a commutative ring with
a multiplicative identity 1.

2.2 Verifiable Computation

We recall the definition of a verifiable computation (VC) scheme [GGP10]. We use the notion of
Multi-Function VC scheme from [PRV12], with a slight modification to handle public delegatability
and verifiability (we will simply call this a VC scheme in the rest of this work). A multi-function
VC scheme allows the computation of several functions on a single input and satisfies an adaptive
security notion where the adversary can see many input encodings before choosing the function
(similarly as the definition of a Split Scheme in [FGP14]).

Definition 1 (Verifiable Computation). A verifiable computation scheme VC consists of a
tuple of algorithms (Setup,KeyGen,ProbGen,Compute,Verify,Decode):

Setup(1λ)→ (PK,SK) : produces the public and private parameters that do not depend on the
functions to be evaluated.

KeyGenPK(g)→ (PKg, SKg) : produces a keypair for evaluating a specific function g.

ProbGenPK(x)→ (σx, τx) : The problem generation algorithm uses the public key PK to encode the
input x as a value σx that is given to the server to compute with, and a public value τx which
is given to the verifier.

ComputePKg(σx)→ σy : Using a public key for a function g and the encoded input σx, the server
computes an encoded version σy of the function’s output y = g(x).

VerifyPKg(τx, σy)→ acc : Using the public key for a function g, and a verification token τx for an
input x, the verification algorithm converts the server’s output σy into a bit acc. If acc = 1
we say the client accepts (which means that σy decodes to y = g(x) – see below), otherwise if
acc = 0 we say the client rejects.

DecodeSK,SKg(σy)→ y : using the secret keys, this algorithm decodes an output encoding σy to some
value y.

5

Remark 1. In our definition we did not include PK among the inputs of Compute and Verify; this
can be done without loss of generality as in any scheme one can include PK into PKg. Also, note
that ProbGen takes only PK (and not PKg) as an input; this highlights the fact that inputs can
be encoded independently of the functions g that will be executed on them. Finally, we could have
included SK among the inputs of KeyGen; in this case, however, one would partially lose the public
delegation property.

A VC scheme satisfies correctness, security, privacy, and outsourceability whose definition is as
follows:

Correctness. For any function g and input x,

Pr

 VerifyPKg(τx, σy) = 1

∧ DecodeSK,SKg(σy) = g(x)

∣∣∣∣∣∣∣∣
(PK,SK)← Setup(1λ)

(PKg, SKg)← KeyGenPK(g)
(σx, τx)← ProbGenPK(x)
σy ← ComputePKg(σx)

 = 1.

To define security and privacy, we first describe the following experiments:

Experiment ExpV erifA [VC, λ]
(PK,SK)← Setup(1λ);

(x, st)← AOKeyGen(·)(PK);
(σx, τx)← ProbGenPK(x);

(g, σ̂y)← AOKeyGen(·)(st, σx, τx);
acc← VerifyPKg(τx, σ̂y);

if acc = 1 and DecodeSK,SKg(σ̂y) 6= g(x)
output 1;

else output 0;

Experiment ExpPrivA [VC, g, λ]
b← {0, 1};
(PK,SK)← Setup(1λ);

(x0, x1, st)← AOKeyGen(·)(PK);
(σb, τb)← ProbGenPK(xb);

b̂← AOKeyGen(·)(st, σb, τb);

if b = b̂ output 1;
else output 0;

In the experiments above,OKeyGen(g) is an oracle that can be called only once, it runs PKg←KeyGenPK(g)
and returns PKg. The one-time use of the oracle is done for simplicity. Indeed, consider an exper-
iment in which the adversary is allowed to query this oracle multiple times: an adversary playing
in such an experiment can be reduced to one playing in the experiment above in a straightforward
way, as the KeyGen algorithm uses only a public key and thus can be easily simulated. Similarly,
this is why it is enough to give to the adversary only one specific encoding using ProbGen.

Security. For any PPT adversary A,

Pr[ExpV erifA [VC, λ] = 1] ≤ negl(λ).

Note that this is an adaptive notion of security, as defined in [FGP14].

Privacy. For any PPT adversary A and for any function g,

Pr[ExpPrivA [VC, g, λ] = 1] ≤ 1

2
+ negl(λ).

Remark 2. Our definition of verifiable computation has public verifiability (anyone can use Verify
only with public keys and τx) and public delegatability (anyone can run ProbGen and KeyGen). This
immediately implies the notion of privacy in the presence of verification queries given in [FGP14],
namely the scheme stays private even if the adversary learns whether its results are accepted or
not.

6

Outsourceability. For any x and any honestly produced σy, the time required for ProbGenPK(x),
VerifyPKg(τx, σy), and DecodeSK,SKg(σy) is o(T) where T is the time required to compute g(x), i.e.,
it allows efficient problem generation and verification followed by decoding.

The VC constructions we present in this paper are first built as public-coin interactive protocols
which can be made non-interactive using the Fiat-Shamir heuristic. Therefore, we also consider
interactive versions of Compute and Verify. Also, our constructions work in a simpler model in
which KeyGen only outputs a public key without SKg.

2.3 Fully Homomorphic Encryption

We recall the definition of fully homomorphic encryption (FHE).

Definition 2 (Fully Homomorphic Encryption). A (public-key) fully homomorphic encryp-
tion scheme FHE is a tuple of algorithms (FHE.ParamGen,FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval)
defined as follows:

FHE.ParamGen(λ) : generates the public parameters of the scheme, such as descriptions of plaintext
space M, ciphertext space, keyspace, randomness distributions, etc. The output of ParamGen is
assumed to be input to any subsequent algorithm.

FHE.KeyGen(λ)→ (pk, evk, dk) : outputs a public encryption key pk, a public evaluation key evk,
and a secret decryption key dk.

FHE.Encpk(m)→ c : encrypts a message m ∈M under public key pk, and outputs ciphertext c.
FHE.Decdk(c)→ m∗ : decrypts a ciphertext c using dk, and outputs a plaintext m∗ ∈M.
FHE.Evalevk(g, c1, . . . , cn)→ c∗ : Given the evaluation key evk, a circuit g :Mn →M, and a set of

n ciphertexts c1, . . . , ct, it computes an output ciphertext c∗.

A FHE scheme satisfies correctness and security as follows:

Correctness. For all (mi)
n
i=1 ∈Mn and any (admissible) circuit g :Mn →M, we have:

Pr

[
(pk, evk, dk)

$← FHE.KeyGen(λ)

ci
$← FHE.Encpk(mi) (i ∈ {1, 2, . . . , n})

:
FHE.Decdk(FHE.Evalevk(g, c1, . . . , cn))

= g(m1,m2, . . . ,mn)

]
= 1.5

Semantic Security. For any PPT adversary A and m0 6= m1 ∈M, it holds that:

Pr

 (pk, evk, dk)
$← FHE.KeyGen(λ)

b
$← {0, 1}

cb
$← FHE.Encpk(mb)

: A(pk, evk, cb) = b

 ≤ 1

2
+ negl(λ).

Compactness. The ciphertext size is bounded by some fixed polynomial in the security parameter,
and is independent of the size of the evaluated circuit or the number of inputs it takes. Formally,

there exists some polynomial p such that, for any (pk, evk, dk)
$← FHE.KeyGen(λ), the output size

of FHE.Encpk and of Evalevk is bounded by p, for any choice of their inputs.

In our work, we mainly consider a restricted notion of SHE scheme (a.k.a. somewhat homomor-
phic) that guarantees correctness only if the circuit g is of a bounded degree which is fixed a-priori
in SHE.ParamGen. The notion of compactness is also relaxed so that the size of ciphertexts depends
on the degree bound.

5 Most FHE schemes have 1− negl(λ) probability, but we assume the probability 1 for ease of exposition.

7

2.4 Succinct Argument Systems

We recall the definition of (succinct) argument system.

Definition 3 (Argument System for R). Let R be an NP relation. An argument system Π for
R comprises three algorithms (Π.Setup,P,V) as follows:

Π.Setup(λ)→ crs : on input a security parameter λ, outputs a common reference string crs.
P(crs, x, w) : an algorithm called prover takes as input crs, a statement x, and a witness w, then

interacts with a verifier (in the following).
V(crs, x) : an algorithm called verifier takes crs and the statement x, then outputs 0 (reject) or 1

(accept) after interacting with the prover.

An execution between the prover P and verifier V is denoted by 〈P(crs, x, w),V(crs, x)〉Π = b,
where b ∈ {0, 1} is the output of the verifier after the interaction. If V uses public randomness only,
we say that the protocol is public-coin. An argument system is interactive with dk2e rounds if P
and V exchange k ≥ 2 messages before V accepts or rejects (otherwise, it is called non-interactive).

An argument system Π satisfies completeness, soundness, and succinctness as defined below.

Completeness. For all (x,w) such that R(x,w) = 1, we have

Pr [crs← Π.Setup(λ) : 〈P(crs, x, w),V(crs, x)〉Π = 1] = 1.

Soundness. For all PPT prover P∗ = (P∗0 ,P∗1) we have

Pr

[
〈P∗1 (crs, x, st),V(crs, x)〉Π = 1
∧@w s.t. R(x,w) = 1

∣∣∣∣crs← Π.Setup(λ)
(x, st)← P∗0 (crs)

]
≤ δ.

Note that the above soundness condition corresponds to the adaptive soundness of [FGP14] in
which the adversary is allowed to choose the statement x after seeing the reference string crs.

Succinctness. The communication cost and the running time of a verifier V in the protocol exe-
cution are asymptotically dominated by the size of w and the time required to compute R(x,w),
respectively (considering the security parameter λ as a constant).

Note, in above definitions, that the algorithm Π.Setup must be performed by a trusted party
(or a verifier) and is necessary in non-interactive case.

Preprocessing Arguments with Universal CRS. In our VC construction, we also consider a
variant that uses a preprocessing succinct argument with a universal CRS (we refer to [CHM+20] for
formal definitions). In brief, these are argument systems in which the algorithm Π.Setup generates
a universal reference string CRS that works for a family of NP relations, as opposed to a single
one. In there, a deterministic algorithm Preprocess, on input the universal CRS and a relation R,
outputs a crsR which substitutes the crs in the above definition. Notably, the crsR comprises a
succinct encoding of the relation (e.g., a circuit representation) and is useful to boost efficiency for
the verifier.

3 Our VC Scheme - Generic Solution

In this section, we present our generic VC scheme for private verifiable computation. The high-level
idea is to apply a succinct argument system on the image of evaluation process (SHE.Evalevk(g, c1, . . . , ct))
of SHE under a homomorphic hash function.

8

3.1 Building Blocks and Assumptions

Our generic VC scheme consists of three building blocks: SHE, Homomorphic Hash Functions, and
a Succinct Argument System for deterministic polynomial-time computations. We first describe the
assumptions on each building block necessary for the construction of the generic VC scheme. It will
be shown, in Section 4, that these assumptions can be met to provide an instantiation of the VC
scheme.

Notation. Let R = Z[X]/(f) denote a quotient polynomial ring with f ∈ Z[X], a monic polynomial
of degree df . For a positive integer t, Rt := R/tR = Zt[X]/(f). We use q to denote a power of some
prime p, i.e., q = pe.

Somewhat Homomorphic Encryption. We assume that the ciphertext space of given SHE is
RDq = (Zq[X]/(f))D where q = pe is a power of prime p, and D is a positive integer. We also assume
that the evaluation algorithm SHE.Evalevk can be represented by an arithmetic circuit6 over the
ring Rq (or RDq).

Homomorphic Hash Functions. To gain efficiency in proving (and verification), we exploit a
homomorphic hash function defined by a ring homomorphism H : Zq[X]D → DH to a ring DH . Let
H be a family of hash functions {H} where each H is as described above and the uniform sampling
of H ∈ H can be done with a public-coin process. We assume that H, when the domain is restricted
to a subset D ⊂ Zq[X]D, is ε-universal whose definition follows.

Definition 4 (ε-Universal Hash Functions). A family H of hash functions is ε-universal if for
all c, c′ ∈ D such that c 6= c′, it holds that

Pr[H
$← H : H(c) = H(c′)] ≤ ε.

We additionally assume that the set D in the above definition is large enough so that all
ciphertexts arising can be embedded into it.

Succinct Argument System. We assume a public-coin succinct argument system Π (Definition 3)
that works for the relations represented by a (polynomial-size) arithmetic circuit over the rings DH
for all H ∈ H.

3.2 The Generic Scheme

We now give a description of the generic private VC scheme using the building blocks and notation
from Section 3.1. Our scheme follows the VC syntax from Section 2.2, except for Compute and Verify
that we describe as a public-coin interactive protocol for two main reasons. First, we make use of
a succinct argument system that can be interactive. Second, for security reasons, a homomorphic
hash function must be sampled uniformly at random, unpredictably by a prover, e.g., a verifier
samples and notifies a homomorphic hash function after a prover claimed an output. Note that
a non-interactive version of our VC can be obtained in the random oracle model by applying the
Fiat-Shamir transform.

In our VC scheme, a verifier V encrypts the input x = (x1, x2, . . . , xn) (with SHE) and sends the
encrypted inputs (ci)

n
i=1 = (SHE.Enc(xi))

n
i=1 ∈ (RDq)n = ((Zq[X]/(f))D)n to a prover P. We remark

that P performs the homomorphic evaluation SHE.Evalevk(g, c1, . . . , cn) without reduction modulo

6 It is composed of gates performing addition or multiplication.

9

f , and then proves this computation. Namely, P computes the function ĝ : (RDq)n → Zq[X]D (not

RDq) that describes SHE.Evalevk(g, ·) without reduction modulo f . In other words, ĝ is such that:

ĝ(c1, ..., cn) mod f = SHE.Evalevk(g, c1, ..., cn) ∈ RDq .

The VC scheme consists of a tuple of algorithms (Setup,KeyGen,ProbGen,Compute,Verify,Decode)
as follows.

Setup(1λ)→ (PK,SK):
– Run (pk, evk, sk)← SHE.KeyGen(1λ) to generate keys for SHE.
– Set PK = (pk, evk) and SK = sk.

KeyGenPK(g)→ (PKg, SKg):
– Run crs ← Π.Setup(1λ) to generate the common reference string of Π for the circuit ĝ :

(RDq)n → Zq[X]D over the ciphertexts.
– Set PKg = (PK, ĝ, crs) and SKg = ∅.

ProbGenPK(x)→ (σx, τx):
– Parse x as (x1, x2, . . . , xn).
– Run ci ← SHE.Encpk(xi) for i ∈ {1, 2, . . . , n} to get ciphertexts cx = (c1, c2, . . . , cn) ∈

(
RDq
)n

.
– Set σx = τx = cx.

〈ComputePKg(σx),VerifyPKg(τx)〉: prover and verifier proceed as follows.
– Compute computes cy = ĝ(cx) (without reduction modulo f)and sends it to Verify.

– Verify samples and sends a homomorphic hash function H
$← H.

– Compute and Verify both compute γ1 = H(c1), . . . , γn = H(cn), γy = H(cy).
– Compute and Verify run the argument system 〈P(crs, ĝ, γ1, . . . , γn, γy),V(crs, ĝ, γ1, . . . , γn, γy)〉Π

in the roles of prover and verifier respectively. This is for P to convince V that γy =
ĝ(γ1, . . . , γn) over the ring DH .

– Let σy include cy and the transcript of the interactive argument.
– Let b be the bit returned by V. Verify accepts if and only if b = 1.

DecodeSK(σy)→ y: Compute y = SHE.Decsk(cy mod f).

Notice that if Π is a k-round public-coin interactive protocol, then the VC protocol described
above is a (k + 1)-round public-coin protocol. By applying Fiat-Shamir to such a protocol, we
obtain a non-interactive VC scheme in which the random oracle is used to derive the homomorphic
hash function H and all the random challenges of V in Π. Then, Compute can be described as a
non-interactive algorithm that on input σx outputs σy = (cy, π) where π are all the messages of P,
while Verify(τx, σy) is the algorithm that returns the acceptance bit of the non-interactive verifier
on the hashed inputs, i.e., V(PKg, H(c1), . . . ,H(cn), H(cy)).

The application of Fiat-Shamir may incur a security loss, which mainly boils down to its appli-
cation to the k-round Π protocol. As shown in [BCS16], if Π satisfies the notion of state-restoration
soundness this loss is only polynomial in the number of rounds. Notably, Canetti et al. [CCH+18]
proved that the GKR protocol (that we consider in Section 4 to instantiate Π) satisfies this property.

Remark 3 (On a variant using universal arguments). Note that, if Π is a preprocessing argu-
ment system with a universal CRS (i.e., following the notion in [CHM+20]), then one can mod-
ify our VC scheme as follows: Π.Setup can be executed in Setup (of VC scheme) and the uni-
versal CRS is included in PK, while KeyGen would only run the deterministic preprocessing
crsg←Preprocess(CRS, g). The main benefit of this variant is that only the Setup algorithm must
be executed in a trusted manner.

10

The generic scheme satisfies the properties of VC scheme given that all the building blocks
satisfy the required properties.

Theorem 1. For given security parameter λ, if we exploit a correct, compact, and secure SHE
scheme, an ε-universal family of hash functions with ε = negl(λ), and a complete succinct argu-
ment system Π with soundness δ = negl(λ), then our VC scheme is correct, secure, private and
outsourceable.

Proof. We refer to the formal definition of VC scheme (Definition 1) in Section 2.2. Our VC scheme
is an interactive version of the generic private VC scheme from [FGP14], with the difference that
there is an interactive Verify algorithm that uses homomorphic hashing. Therefore, we get the result
as in [FGP14], except for the security for which we give a detailed proof.

The correctness of our VC scheme follows from the correctness of SHE and the completeness of
the argument system Π.

The privacy of our VC scheme follows from the semantic security of SHE: if P could break the
privacy of VC, it can run the VC scheme by itself on a ciphertext SHE.Enc(xb) from the semantic
security game of SHE then guess b with non-negligible advantage.

The outsourceability follows from the compactness of SHE scheme and the succinctness of the
argument system Π that has verifier complexity o(S) where S is the size of the circuit ĝ (see next
Lemma for a detailed complexity analysis).

For the security, we consider a slightly different version of the security experiment ExpV erifA [VC, λ]
in Section 2.2, adapted to handle the case of protocols in which Compute and Verify interact. Namely,
instead of an adversary that directly provides the result σy, we consider an adversary A that inter-
acts with the challenger acting as an honest verifier, and A wins if the challenger accepts but the
transcript decodes to a wrong result.

Let x and g respectively be the input and function chosen by A in the game, cx be the encryption
of x sent to A, ĉy be the result claimed by A in the first round, and cy be the true result. We note
y = g(x) (if ĉy does not encrypt y then necessarily ĉy 6= cy). We now study the Verify algorithm:
a homomorphic hash function H ∈ H is randomly sampled, either by V or by a random oracle
using A’s inputs and outputs, so that A cannot know it before sending ĉy. Thus, if we denote
by A the event {H(ĉy) = H(cy)} and if H is a ε-universal family then Pr[A|cy 6= ĉy] ≤ ε. If
H(ĉy) 6= H(cy) then the only way left for A to have V accept is to cheat when applying Π with the
false result H(ĉy). Let B denote the event {Π(V,A, H(c), H(ĉy), r) = 1}. If Π has soundness δ then
Pr
[
B|Ā ∩ (cy 6= ĉy)

]
≤ δ.

The output bit b of the security game satisfies:

Pr[b = 1] = Pr[(A ∪B) ∩ (SHE.Dec(ĉy mod f) 6= y)]

≤ Pr[(A ∪B)|cy 6= ĉy]

≤ Pr
[
B|Ā ∩ (cy 6= ĉy)

]
+ Pr[A|cy 6= ĉy]

≤ δ + ε

This proves the result when ε and δ are negl(λ). ut

The required computational (or communication) cost of our VC scheme can be easily derived
from that of the argument system Π and the homomorphic hash functions H.

11

Lemma 1. Let TΠ
P , T

Π
V , and CΠ respectively denote the time complexity of P, that of V, and the

communication cost in the argument system Π, which will be signified as, e.g., TΠ
P (g;R) when

denoting the complexity of P (in Π) for a circuit g over a ring R. Then, for a circuit g with n inputs
and 1 output, the time complexity of ComputePKg(σx), that of VerifyPKg(τx), and the communication
cost in the execution of 〈ComputePKg(σx),VerifyPKg(τx)〉, in our VC scheme (Theorem 1) is as
follows:

Time [ComputePKg(σx)] : Tĝ + (n+ 1) · THash + TΠ
P (ĝ;DH)

Time [VerifyPKg(τx)] : (n+ 1) · THash + TΠ
V (ĝ;DH)

Comm [〈ComputePKg(σx),VerifyPKg(τx)〉] : |ĝ(c)|+ |H|+ CΠ(ĝ;DH)

where ĝ is the circuit corresponding to g over the ciphertext, DH is the range space (ring) of a hash
function H ∈ H, Tĝ and THash are the times for computing ĝ (without reduction modulo f) and
for evaluating a homomorphic hash function, respectively, |ĝ(c)| is the size of the output ciphertext
(from P), and |H| is the size of a homomorphic hash function.

The proof of this lemma directly follows from the description of the VC scheme. We remark that
the complexity mainly depends on the ring DH which can be much smaller than the ciphertext space
RDq ⊆ Zq[X]D (see Section 4.3). It makes our VC scheme show better efficiency (in both asymptotic
and concrete cost) than a naive VC (over the ciphertext space) without our homomorphic hash
functions (see Section 4.4 for detailed analysis).

Remark 4. The space complexity of VerifyPKg(τx) is also improved in our VC, since it is the same
as the space complexity of V in Π for a circuit ĝ over DH , given that the evaluation of homomorphic
hash function is space-efficient (as will be shown in Section 4.4). Here, we only mention that V does
not need to store the result ĝ(c) and only needs to store the output of hash evaluation which is
much smaller.

Applications to VC for SIMD Computations. Besides the application to HE computations,
the use of ε-universal family of homomorphic hash functions can have broader applications in
improving prover efficiency in VC over polynomial rings, i.e., when proving and verifying the com-
putations over a polynomial ring. By combining this observation with the “packing” techniques
of HE [SV14] one can obtain a VC scheme for SIMD (single-instruction multiple-data) operations
where the prover’s costs are less dependent on the number of (parallel) inputs. A bit more in detail,
with the packing techniques of [SV14] one can encode a vector (vi)i of m elements of Zt into a
polynomial p ∈ Rt (such that df ≥ m) in such a way that the result of computing ĝ((pj)j) over
Rt := Zt[X]/(f) can be decoded to the vector (g((vj,i)j))i over Zt. By using a homomorphic hash
from Rt to Zt[X]/(h) we can obtain a prover time which depends on |g| · dh + df , as opposed to
|ĝ| ≈ |g| ·df .7 We remark that dh ≈ logt λ (when t is prime) while df can be as large as the number
of parallel inputs.

4 Instantiating Our VC Scheme

In this section, we provide concrete instantiations of the building blocks for our generic scheme
presented in the previous section. In particular, our novel contributions are the constructions of two
homomorphic hash functions. We also give a detailed efficiency analysis with example parameters.

7 We assume that the cost of basic operation over a ring (Zt[X]/(h) or Zt[X]/(f)) depends on its degree (dh or df)
for simplicity.

12

4.1 SHE - The BV Homomorphic Encryption Scheme

As an instantiation of SHE, we exploit the BV scheme [BV11] which allows homomorphic evaluation
of circuits of limited multiplicative depth. The advantage of the BV scheme for our purpose is
that its homomorphic additions and multiplications over ciphertexts are composed of arithmetic
operations over RDq only.8 As a result, this scheme can be easily combined with the homomorphic
hash functions (which will be described in the following subsection) defined in our generic VC
scheme.

Parameters. Let q and t (t < q) be coprime integers, f ∈ Z[X] be a monic polynomial of degree
df , and R := Z[X]/(f). The plaintext space is Rt := Zt[X]/(f), and the ciphertext space is

RDq = (Zq[X]/(f))D where D(≥ 2) bounds the total degree of a multi-variate polynomial which
can be evaluated on ciphertexts, i.e., products of at most D − 2 input ciphertexts are allowed.

Homomorphic Operations. A ciphertext c = (c0, c1, . . . , cD−1) ∈ RDq is identified as a polynomial
c(Y) ∈ Rq[Y] of degree at most D − 1 as follows:

c(Y) =
D−1∑
i=0

ciY
i.

Then, addition and multiplication of two ciphertexts c = Enc(m), c′ = Enc(m′) are defined, respec-
tively, by the usual addition and multiplication in Rq[Y]:

• cadd(Y) := c(Y) + c′(Y), i.e., cadd := (c0 + c′0, c1 + c′1, . . . , cD−1 + c′D−1).

• cmult(Y) := c(Y) · c′(Y), i.e., cmult := (ĉ0, ĉ1, . . . , ĉD−1) where
∑D−1

i≥0 ĉiY
i = c(Y) · c′(Y).

The correctness (Dec(cadd) = m+m′, Dec(cmult) = m ·m′) is guaranteed only if the degree (in Y)
of result ciphertext (cadd or cmult) does not exceed D − 1. We remark that a fresh ciphertext is of
degree 1 (in Y), i.e., ci = 0 for all i > 2, and the correctness is guaranteed for the computation
represented by a (multivariate) polynomial of total degree at most D − 1.

We refer to Appendix A for the description of other algorithms (KeyGen,Enc,Dec) of BV scheme
and the concrete conditions (Lemma 11) for the correctness and security of BV scheme.

4.2 Argument System - The GKR Protocol over Rings

The GKR protocol [GKR08] is a (public-coin) interactive proof system for arithmetic circuits over
a finite field. In [CCKP19], Chen et al. showed that the protocol can be generalized to handle
arithmetic circuits over a finite ring. We exploit this GKR protocol over rings [CCKP19] (with
Fiat-Shamir) as our instantiation of argument system, since it can efficiently prove and verify
arithmetic of rings9 which constitutes the range DH (Zq[X]/(h) or (Zq[X]/(h))D) of our hash
functions (Section 4.3).

One drawback of the GKR protocol is that the circuit (to be verified) should be log-space uniform
and be layered in low depth for efficient verification. A line of work has shown that many compu-
tations of interest are in this form [CMT12, Tha13] or can be converted to this form [WTs+18].

8 This is not the case in other schemes, e.g., BGV [BGV12] or FV [FV12] schemes where multiplication of ciphertexts
accompanies rounding or bitwise operations.

9 Usual argument systems deal mainly with arithmetic of a field, and it requires to represent arithmetic of a ring by
that of a field, resulting in substantial inefficiency.

13

Therefore, we (plausibly) assume that the given circuit is log-space uniform and that a succinct
description of the circuit can be found during the preprocessing phase (e.g., KeyGenPK(g) finds
such description for g and puts it into PKg). We remark that, in our instantiation, the circuit
already has low depth to be supported by the BV scheme.

In this section, we recall the definition of Galois rings, the Schwartz-Zippel lemma for rings,
and give a summary of the GKR protocol over rings. See Appendix B for a detailed description of
the GKR protocol [GKR08, Tha13] and its generalization to rings [CCKP19]. In this section, rings
are commutative rings with multiplicative identity 1.

Galois Rings. Galois rings play a central role in the GKR protocol over rings and in our instantia-
tion of hash functions. Galois rings are a natural generalization of Galois fields GF(pn) = Zp[X]/(f),
and proofs of the following properties of Galois rings can be found in [Wan03].

Definition 5 (Galois ring). A Galois ring is a ring of the form

Zpe [X]/(f)

where p is a prime number, e is a positive number, f ∈ Zpe [X] is a monic polynomial whose
reduction modulo p is an irreducible polynomial in Zp[X].

We remark that a Galois ring Zpe [X]/(f) has many more invertible elements than the base ring
Zpe :

Lemma 2 (Units of Galois ring). In a Galois ring Rq := Zpe [X]/(f), the set of units of Rq
is Rq \ pRq, i.e., the elements which are not divisible by p. In fact, we have a ring isomorphism
Rq/pRq ∼= F

p
df where df is the degree of f .

Schwartz-Zippel Lemma for Rings. We now present the Schwartz-Zippel lemma for rings,
specifically, we focus on the case of Galois rings which is closely related to our instantiation.

Definition 6 (Sampling set). Let R be a finite ring and A ⊂ R. We call A a sampling set if

for all x, y ∈ A such that x 6= y, x− y is invertible.

Lemma 3 (Schwartz-Zippel). Let R be a finite ring, and let A ⊂ R be a sampling set. Let
f : Rn → R be an n-variate nonzero polynomial of total degree D. Then

Pr
x←An

[f(x) = 0] ≤ D

|A|
.

Examples of Sampling Set. In a ring Zpe with p prime, A = {0, 1, .., p−1} is a maximal sampling
set with cardinality p. In a Galois ring Zpe [X]/(f) where f is a monic polynomial of degree df , the
set {a0 + a1X + · · ·+ adf−1X

df−1 | ai ∈ A} is a maximal sampling set with cardinality pdf .

In the following, we borrow the result of [CCKP19], the generalized GKR protocol on the
circuit over Galois rings. The soundness of the protocol is guaranteed by the Schwartz-Zippel
lemma (Lemma 3), thus it depends on the size of sampling set, e.g., pdf in the following.

14

Theorem 2 (GKR protocol over Galois rings [CCKP19]). Let Rq := Zpe [X]/(f) be a Galois
ring where f is of degree df . Let C : Rnq → Rq be an arithmetic circuit over Rq taking n inputs
and outputting 1 output. Let C be of size (the number of arithmetic gates contained) S and depth
d. Then, there exists an interactive protocol (with public coins) for C with perfect completeness
and soundness 7dlogS

p
df

, which requires the same number of operations (over Rq) for a prover and a

verifier as the GKR protocol over a finite field (where the required operations are over a finite field).

Efficiency of GKR protocol. The latest refinement [XZZ+19] of the GKR protocol reduced
the prover’s cost to O(S). Since their technique can also be adapted to the protocol over Galois
rings (their technique only uses addition, multiplication, and bookkeeping which are all available
in arbitrary rings), the complexity of our instantiation is also (TΠ

P , T
Π
V , C

Π)10 = (O(S), O(n +
d logS)11, O(d logS)). We remark that the space complexity of a verifier V can be O(logS) only
(without increasing other cost) and that the time complexity O(d logS) of V can be regarded as
o(S) since d is a small constant in the usual utilization of BV scheme.

4.3 Our Homomorphic Hash Functions Realizations

In this section, we present explicit constructions of two families of ε-universal homomorphic hash
functions on some domain D ⊂ Zq[X]D with q = pe for a prime p. Both of our hash function families,
taking as input D polynomials of Zq[X], are based on the map of modulo reduction by a polynomial
h ∈ Zq[X], which is a natural generalization of the evaluation map (f ∈ Zq[X] → f(r) ∈ Zq)
exploited in the previous works [FGP14, FNP20]. The range of our hash function families are
(Zq[X]/(h))D or Zq[X]/(h) where h ∈ Zq[X] is a monic polynomial whose reduction modulo p is
irreducible in Zp[X], i.e., Zq[X]/(h) is a Galois ring.

4.3.1 Homomorphic Hash Function - I. Single Hash

We first give the definition of our hash functions specifying the domain D.

Definition 7 (Single Hash Function). Let N,D be positive integers and q = pe for a prime p,
and let D = {(zi)D−1i=0 ∈ Zq[X]D : degX(zi) ≤ N}. For a monic polynomial h ∈ Zq[X], the hash
function Hh on D is defined as follows.

Hh :D ⊂ Zq[X]D −→ (Zq[X]/(h))D(
zi
)D−1
i=0

7→
(
zi (mod h)

)D−1
i=0

where zi (mod h) is the remainder of zi when divided by h in Zq[X].

We can gather these hash functions into a family of hash functions which satisfies the ε-
universality as follows.

10 We refer to Lemma 1 for this notation.
11 Here, we assume that the wiring predicate [CMT12] of the circuit is computable in O(logS) complexity. Generally,

if the circuit is log-space uniform, the cost of verifier has an additional O(poly(logS)) term.

15

Theorem 3. Let N,D, dH be positive integers and q = pe for a prime p. On D = {(zi)D−1i=0 ∈
Zq[X]D : degX(zi) ≤ N}, the family of functions H := {Hh : h ∈ Zq[X] is monic, degree-dH, and
irreducible (in Zp[x])} is homomorphic and ε-universal for ε = 2N

pdH
.

In other words, for all z, z′ ∈ D such that z 6= z′,

Pr[H(z) = H(z′) : H
$← H] ≤ 2N

pdH
.

Proof. The homomorphic property of hash functions Hh ∈ H follows from that of the modulo
reduction by h ∈ Zq[X]. For the probability of a collision, let ∆ ∈ Zq[X] be a non zero element
among the components of z − z′. Then, ∆ is a non zero polynomial of degree at most N , and
Hh(z) = Hh(z′) implies that ∆ has h ∈ Zq[X] as a factor, which is equivalent to that ∆ has h as a
factor in Zp[X] (after modulo reduction by p).12 Therefore,

Pr[H(z) = H(z′) : H
$← H] ≤ Pr[h divides ∆ in Zp[X] : h

$← A(dH, p)]

≤ N

dH
× 1

I(dH, p)
≤ 2N

pdH
,

where A(n, p) (and I(n, p)) denote the set (resp., the number) of monic irreducible polynomials of
degree n in Zp[X]; the second inequality follows from the fact that, in Zp[X], a degree-N polynomial
can have at most N/d irreducible factors of degree d; the third inequality follows from the lower
bound of I(n, p) in the following lemma. ut

Lemma 4. Let µ be the Möbius function,13 p be a prime number, and n ≥ 1 be an integer. Let
I(n, p) be the number of monic irreducible polynomials in Zp[X] of degree n. Then,

I(n, p) =
1

n

∑
d|n

µ
(n
d

)
pd.

It also holds for all n that I(n, p) ≥ 1
n(pn− 2pb

n
2
c) and I(n, p) ≥ pn

2n . Moreover, if n is also a prime

number, then I(n, p) = 1
n(pn − p). Finally, asymptotically we have I(n, p) ∼

n→∞
pn

n .

Proof. (sketch) We refer to [VZGG13, Lemma 14.38] for details. Let A(d, p) denote the set of monic
irreducible polynomials of degree d in Zp. Then, from the fact that Xpn −X =

∏
d|n
∏
φ∈A(d,p) φ,

computing the degree of that product and using the Möbius inversion formula, we get the equation
on I(n, p). If n is prime, then this formula has only two summands, namely for d = 1, and d = n.
From the definition of µ, we get I(n, p) = 1

n(pn−p). The bounds 1
np

n ≥ I(n, p) ≥ 1
n(pn−2pb

n
2
c) are

not difficult to prove for all n. This implies the asymptotic statement. For pn ≥ 16, the lower bound
above directly implies I(n, p) ≥ pn

2n . For n = 1 clearly I(1, p) = p ≥ p
2n . Finally for the remaining

cases (pn = 4, 8, 9) it can be checked that I(n, p) ≥ pn

2n also holds. ut
12 More precisely, the argument follows if ∆ is not zero when reduced modulo p. Otherwise, ∆ = pkδ for some k < e

and a polynomial δ which is not zero when reduced modulo p, and δ has h as a factor in Zp[X]: h|∆ gives that, by
division, δ(X) = h(X)Q(X) + pe−kr(X) in Zq[X] and h is a factor of δ in Zp[X].

13 For n ∈ Z+, the function is defined as follows: if n is square-free with k prime factors, µ(n) = (−1)k; if n =
1, µ(n) = 1; otherwise, µ(n) = 0.

16

Remark 5 (Setting ε). We can set ε of the homomorphic hash family negligibly small, e.g., dH ≈
λ logp 2 gives that ε ≈ 1

2λ
. In case of our instantiation with BV, the degree N of polynomials in D

is bounded by (df − 1)(D − 1), and ε can be bounded by
2(df−1)(D−1)

pdH
.

Remark 6 (Sampling h). For an efficient instantiation of above homomorphic hash functions, one
has to efficiently sample (uniformly randomly) an h from the set A(n, p) of monic irreducible
polynomials in Zp[X] of degree n. We explain how to do so in Section 4.3.3.

4.3.2 Homomorphic Hash Function - II. Double Hash

Recall that ciphertext additions and multiplications of BV scheme (Section 4.1) respectively cor-
respond to the additions and multiplications of polynomials in Rq[Y] and that, in our generic
VC scheme (Section 3.2), those ciphertext operations are carried on (Zq[X])[Y] (polynomials in
Y having coefficients from Zq[X]) by postponing the modulo f operation. Then, we can define a
homomorphic hash with much smaller range Zq[X]/(h), instead of (Zq[X]/(h))D in the previous
section.

Definition 8 (Double Hash Function). Let N and D be positive integers, and let D = {z ∈
Zq[X][Y] : degX(z) ≤ N and degY (z) < D}. For a monic polynomial h ∈ Zq[X] and an element
r ∈ Zq[X]/(h), the hash function Hr,h on D is defined as follows.

Hr,h :D ⊂ Zq[X][Y]−→ (Zq[X]/(h))[Y]−→ Zq[X]/(h)∑D−1
i=1 ziY

i 7→
∑D−1

i=1 z̄iY
i 7→

∑D−1
i=1 z̄ir

i

where z̄i := zi (mod h) is the remainder of zi when divided by h in Zq[X].

Note that Hr,h is indeed the composition of Hh (Definition 7) and an evaluation map (z(Y)→
z(r)) on (Zq[X])[Y]. Similarly as the case of single hash functions (Section 4.3.1), we can gather
this hash functions into a family of hash functions which satisfies the ε-universality as follows.

Theorem 4. Let N,D, dH be positive integers and q = pe for a prime p. On D = {z ∈ Zq[X][Y] :
degX(z) ≤ N and degY (z) < D}, the family of functions H := {Hr,h : h ∈ Zq[X] is monic, degree-
dH, and irreducible (in Zp[x]), and r ∈ Zq[X]/(h) is from the maximal sampling set (Definition 6)
of Zq[X]/(h)} is homomorphic and ε-universal for ε = 2N+D−1

pdH
.

In other words, for all z, z′ ∈ D such that z 6= z′,

Pr[H(z) = H(z′) : H
$← H] ≤ 2N +D − 1

pdH
.

Proof. As we noted, Hr,h is the composition of Hh (Definition 7) and an evaluation map (z(Y)→
z(r)) on R′q[Y] where R′q := Zq[X]/(h). Therefore, the homomorphic property of Hr,h ∈ H follows
from that of the Hh (Theorem 3) and that of the evaluation map (z(Y) ∈ R′q[Y] → z(r) ∈ R′q).
For the probability of a collision, let ∆ := z − z′ ∈ Zq[X][Y]. Then, ∆ is a non zero polynomial of
degree at most N in X and of degree less than D in Y . In the following, let A = A(dH, p) be the

17

set of monic irreducible polynomials of degree n in Zp[X], and let B be the maximal sampling set
(Definition 6) of R′q. Then,

Pr[H(z) = H(z′) : H
$← H] ≤ Pr

h←A
[Hh(∆) = 0 ∈ R′q[Y]]

+ Pr
r←B

[Hh(∆)(r) = 0|Hh(∆) 6= 0 ∈ R′q[Y]]

≤ 2N

pdH
+
D − 1

pdH
,

where the second inequality follows from Theorem 3 and Lemma 3: on the right side, the first
summand is the result of Theorem 3 while the second summand follows from the fact that the
degree of Hh(∆) in Y is less than D and that the size of the maximal sampling set B of R′q is pdH

since R′q is a Galois ring (see examples following Lemma 3). ut

We can also set ε of the double hash family negligibly small: in our instantiation with BV, since
the degree N of polynomials in D is bounded by (df − 1)(D − 1),

ε ≤
2(df − 1)(D − 1) +D − 1

pdH
. (1)

Remark 7 (Comparison to Single Hash). Utilizing double hashes instead of single hashes gives
better efficiency. With double hash, each addition (resp. multiplication) gate on the ciphertext
space (Zq[X])D = Zq[X][Y] maps to each addition (resp. multiplication) gate of R′q = Zq[X]/(h)
while the single hash maps each of them to at most D additions (resp. D2 multiplications and D
additions) of R′q. See Section 4.4.2 for detailed analysis.

Remark 8 (Sampling r). Recall that the Galois ring Zq[X]/(h) can be identified as a set {
∑dh−1

i=0 aiX
i :

ai ∈ {0, 1, 2, . . . , q − 1}} where dh is the degree of h. Therefore, sampling (uniformly randomly) r
from the maximal sampling set (Definition 6) of Zq[X]/(h) is simple, since the set can be identified

as a set {
∑dh−1

i=0 aiX
i : ai ∈ {0, 1, 2, . . . , p− 1}} ⊆ Zq[X]/(h).

4.3.3 Efficient, Public-Coin Sampling of h

We now turn our attention to an efficient sampling method of a monic irreducible polynomial h of
degree dh in Zp[X] for our hash functions (Section 4.3). We first recall a method that is based on a
textbook algorithm [Ben81, VZGG13]. It samples an irreducible polynomial by repeatedly sampling
a random monic polynomial, and then checking if it is irreducible by verifying whether it is coprime
with Xpi −X for every i ≤ dh/2. In our version, we slightly change the original algorithm in order
to make explicit the amount of random coins that it needs in order to make its probability of failing
negligible. Our change also makes clear how it can be implemented on input public random coins.

Theorem 5 (Ben-Or’s Generation of Irreducible Polynomials [Ben81]). The following
algorithm uniformly samples a monic irreducible polynomial of degree dh in Zp[X] taking expected
number of Õ(d2h log p) operations in Zp (Õ hides logarithmic factors in dh). Furthermore, for N =
2dh(dh − 1)λ, the algorithm outputs fail with probability ≤ 2−λ.

[Algorithm] (‘gcd’ denotes the greatest common divisor)
– Input: A prime p, a degree dh ∈ Z>0 and a security parameter λ ∈ Z>0.

18

– Random coins: ρ1, . . . , ρN ∈ Zp.
– Output: A monic irreducible polynomial of degree dh in Zp[X].
– Procedure:

1. Initialize j = 0.
2. If j = 2dhλ return fail

3. Set k = j · (dh − 1), and build a monic polynomial h ∈ Zp[X] of degree dh by using
(ρk+1, . . . , ρk+dh−1) to define its coefficients.

4. for i = 1, . . . , bdh2 c do

if gcd(h,Xpi −X) 6= 1, set j←j + 1 and goto 2.
5. return h

Proof. See [VZGG13, Theorem 14.42] for the full proof. The correctness follows since every monic

irreducible polynomial of degree d divides Xpd −X. Hence, a monic polynomial h of degree dh is
reducible if and only if gcd(h,Xpi −X) 6= 1 for some 1 ≤ i ≤ bdh2 c. The complexity follows from
the fact that randomly sampled h is irreducible with probability greater than 1

2dh
(there exists

more than pdh
2dh

(Lemma 4) monic irreducible polynomials among pdh candidates). To bound the
probability of failing, this is the probability that at each step j the random coins do not yield an
irreducible polynomial. Let us call bad the failing event, then (given the independence of the coins
used in each step) we have Pr[bad] =

∏2dhλ
j=1 Pr[badj], where badj is the event that the polynomial

built in step j is not irreducible, and the probabilities are taken over the random choice of ~ρ
$← ZNp .

As mentioned above, for every step j, Pr[badj] ≤ (1− 1
2dh

), and thus Pr[bad] ≤ (1− 1
2dh

)2dhλ ≤ 1
eλ

.
ut

Remark 9 (Lower Bound of N). In the above proof, the probability of random sampled h being irre-

ducible is upper bounded by 1
dh

([VZGG13, Lemma 14.38]). With this, Pr[bad] =
∏(dh−1)λ′
j=1 Pr[badj] ≥

(1− 1
dh

)(dh−1)λ
′ ≥ 1

eλ′
≥ 1

2λ
when λ′ ≤ λ ln 2. Therefore, we can see that, in the above theorem, N

must be greater than (ln 2)(dh − 1)2λ to achieve negligible failure probability.

A drawback of the above algorithm is its rejection sampling nature, which in a public coin
instantiation (especially when applying the Fiat-Shamir heuristic to our protocol) forces us to
sample a significant number of random coins (2dh(dh − 1)λ Zp-elements) to make the probability
of failure negligible.

To avoid this, we propose an alternative sampling method that achieves a similar complexity
and uses much less random coins, 2dh Zp-elements. It is based on the following observation: Let
Fpdh := Zp[X]/(φ) be a finite field. Then, it suffices to sample an element of Fpdh which is not
contained in any of the subfields Fpk with k|dh, since the minimal polynomial of such element
is monic, irreducible, and of degree dh in Zp[X]. It turns out that given a generator α of the

multiplicative group F×
pdh

, these sampleable elements are exactly αj where j =
∑dh−1

i=0 aip
i and

(a0, a1, . . . , adh−1) /∈
⋃
k|dh,k 6=dh Badk, where14

Badk = {(~v dh/k) ∈ Zdhp : ~v ∈ {0, . . . , p− 1}k}.

Theorem 6 (Sampling Irreducible Polynomials). The following algorithm, on input 2dh ran-
dom elements of Zp, returns a uniformly sampled monic irreducible polynomial of degree dh in

14 ~v ` denotes ` concatenations of ~v.

19

Zp[X], takes O(dhM(dh) log p) operations in Zp where M(dh) denotes the complexity of multiplying
polynomials of degree dh in Zp[X], and fails with probability ≤ 4p−(dh−1) ≈ 2−λ.

[Algorithm]
– Input: A prime p and a degree dh ∈ Z>0.

– Random coins: ρ
(1)
0 , . . . , ρ

(1)
dh−1, ρ

(2)
0 , . . . , ρ

(2)
dh−1 ∈ Zp.

– Output: A monic irreducible polynomial of degree dh in Zp[X].
– Setup:
• Fix a finite field Fpdh := Zp[X]/(φ) with an irreducible polynomial φ ∈ Zp[X] of degree
dh.
• Let α be a generator of the multiplicative group F×

pdh
, compute and store αi = αp

i
for

i ∈ {1, . . . , dh − 1}.
– Procedure:

1. If (ρ
(1)
0 , . . . , ρ

(1)
dh−1) /∈

⋃
k|dh,k 6=dh Badk, set β =

∏dh−1
i=0 α

ρ
(1)
i
i , go to 4.

2. Else if (ρ
(2)
0 , . . . , ρ

(2)
dh−1) /∈

⋃
k|dh,k 6=dh Badk, set β =

∏dh−1
i=0 α

ρ
(2)
i
i , go to 4.

3. Else, return fail.
4. Find the minimal polynomial h of β, using the algorithm in [Sho99].
5. Return h

We want to argue three points: first, that (conditioned to not aborting) the algorithm yields a
uniform monic irreducible polynomial of degree dh; second, that the algorithm aborts with negligible
probability; and third, that the complexity is as promised.

Lemma 5. Let α be a generator of F×
pdh

, and let k|dh, k 6= dh. Then for 0 ≤ j < pdh − 1, αj is in

the proper subfield Fpk if and only if j =
∑dh−1

`=0 a`p
` where (a0, a1, . . . , adh−1) ∈ Badk.

Proof. First of all, αj is in Fpk if and only if (αj)p
k−1 = 1. From here and the fact that α is a

generator of F×
pdh

, we get that αj is in Fpk if and only if j = i · p
dh−1
pk−1 , where i ∈ {0, . . . , pk − 2}.

However pdh−1
pk−1 = 1 + pk + p2k + · · ·+ p(

dh
k
−1)k.

This means that if the p-ary decomposition of i is i = i0+i1p+· · ·+ik−1pk−1 (with 0 ≤ i` ≤ p−1),

then the p-ary decomposition of j = i · p
dh−1
pk−1 i.e., j =

∑dh−1
`=0 a`p

` is given by a` = i(` mod k) for all

` = 0, . . . , dh − 1, which is equivalent to being in Badk, where v = (i0, i1, . . . , ik−1). ut

Lemma 6. Conditioned to the algorithm in Theorem 6 not aborting, its output is a polynomial
distributed uniformly randomly in I(dh, p), the set of monic irreducible polynomials in Zp[X] of
degree dh

Proof. By the theory of finite fields, the minimal polynomial in Zp[X] of β ∈ F×
pdh

(which is

irreducible, monic and unique) has degree equal to the smallest k ≥ 1 for which β belongs to the
subfield Fpk (and this k must divide dh). Denote by S the set of elements β ∈ F×

pdh
which are not

in any proper subfield. If β ∈ S, it must be the case that its minimal polynomial is of degree dh,
i.e. it is in I(dh, p). On the other hand, every polynomial in I(dh, p) has exactly dh different roots
in S. Therefore mapping an element to its minimal polynomial induces a dh − to− 1 map between
S and I(dh, p).

Note that by the preceeding lemma, if the algorithm does not abort, it clearly samples β
uniformly at random in S either in step 1 or 2, and therefore the output of the algorithm is uniform
in I(dh, p).

20

Lemma 7. The algorithm in Theorem 6 fails with probability at most 4
pdh−1 .

15

Proof. With notation as in the previous lemma, note that the set S has size dh · I(dh, p), which by

Lemma 4 is of size at least pdh − 2pb
dh
2
c. Every element in S is realized as β in step 1 for exactly

one possible coin-vector (ρ
(1)
0 , ρ

(1)
1 , . . . , ρ

(1)
dh−1) (the same holds for step 2 and (ρ

(2)
0 , ρ

(2)
1 , . . . , ρ

(2)
dh−1))

The probability that step 1 outputs an element in S and continues to step 4 is hence |S|/pdh ≥
1 − 2p−b

dh
2
c, and the same holds for step 2 (if the algorithm enters that step). Therefore the

probability that the algorithm fails is at most (2p−b
dh
2
c)2 ≤ 4

pdh−1 .

Remark 10. If dh is prime then |S| = pdh−p and step 1. already outputs some β with overwhelming
probability 1− pdh−1. Therefore in that case we can omit step 2. and the algorithm still fails with
negligible probability.

Lemma 8. The algorithm in Theorem 6 takes O(dhM(dh) log p) operations in Zp.

Proof. Consider first steps 1. and 2. The algorithm needs to check whether (ρ
(b)
0 , . . . , ρ

(b)
dh−1) /∈⋃

k|dh,k 6=dh Badk (where b denotes the step number) and compute β if this is not the case. For the

former, note that if k1|k2, then Badk1 ⊆ Badk2 . Hence it is enough to check that (ρ
(b)
0 , . . . , ρ

(b)
dh−1) /∈⋃

p prime,p|dh Baddh/p, because every proper divisor of dh must be a divisor of dh/p for some prime
divisor p of dh. Each of the tests whether (a0, . . . , adh−1) ∈ Baddh/p takes dh comparisons in Zp, as
it just checks ai = ai mod dh/p for all i. On the other hand, dh has at most log dh distinct prime
divisors and hence the test in step 1 (resp. step 2) takes O(dh log dh) comparisons in Zp. Next
computing β requires computing dh exponentiations in Fpdh where the exponent is at most p − 1,
and then dh− 1 multiplications in Fpdh . Each of the aforementioned exponentiations takes O(log p)
multiplications in F

pdh
, and each such multiplication consists of M(dh) operations in Zp, so the total

complexity of the computation of β is O(dhM(dh) log p) operations. We remark that this step gives a
β expressed as p(α), where p ∈ Zp[X] of degree < dh. Finally we consider step 4. In this case we use
an algorithm by Shoup[Sho99] that takes β expressed in the form explained above, and computes

its minimal polynomial in O(d
1/2
h M(dh) + d2h) operations over Zp. Since clearly dh ≤ M(dh), the

cost is dominated by the computation of β in step 1 (or 2), which is O(dhM(dh) log p) operations
in Zp. ut

Remark 11. Using Fast Fourier Transform algorithms or the Schönhage-Strassen algorithm we can
set M(dh) = Õ(dh) and the complexity above becomes Õ(d2h log p) (where Õ hides logarithmic
factors in dh).

Remark 12. If dh is prime, we only need the coins ρ
(1)
i as step 1 succeeds with overwhelming

probability since |
⋃
k|dh,k 6=dh Badk| = |Bad1| = p� pdh .

4.4 Efficiency Analysis

In this section, we analyze the efficiency of the generic VC scheme (Section 3.2) instantiated with
the concrete building blocks described so far. As before, let Rt := Zt[X]/(f), let g : (Rt)

n → Rt

15 This is in fact not too tight, as it comes from the bound in Lemma 4 which is quite rough, but it is good enough
for our purposes.

21

denote the (delegated) computation of degree less than D over the plaintext space Rt, and P
computes (then proves) the function ĝ : (RDq)n → Zq[X]D (not RDq) that describes SHE.Evalevk(g, ·)
without reduction modulo f .

4.4.1 Combining Instantiations

The aggregation of building blocks can be summarized as follows:

SHE - BV scheme: In setup, take a polynomial f of (large enough) degree df and a cipher-
text modulus q satisfying 2λ security and the correctness condition (Appendix A, Lemma 11)
with given degree bound D and a plaintext modulus t, which sets the ciphertext space RDq =

(Zq[X]/(f))D.
Homomorphic Hash: Note that the ciphertext space RDq can be identified as (a subset of)

Zq[X]D or Zq[X][Y].16 We can use our single hash or double hash, whose domain and range are
as follows.
* Single: {(zi)D−1i=0 ∈ Zq[X]D : degX(zi) ≤ N} −→ (Zq[X]/(h))D

* Double: {z ∈ Zq[X][Y] : degX(z) ≤ N and degY (z) < D} −→ Zq[X]/(h)
In both cases, N = (df − 1)(D− 1) as noted before (in Remark following Theorem 3, 4). Note,
in the range of both hash functions, that Zq[X]/(h) is a Galois ring.

Argument System - GKR protocol over Zq[X]/(h): Since the image of computations under
the hash functions are in the ring Zq[X]/(h) which is a Galois ring, we can use the GKR protocol
to prove and verify such computations.

Security: We remark that the polynomial h ∈ Zq[X] (where q = pe) should be chosen of degree
logp λ to guarantee ≈ 1

2λ
universality (and ≈ 1

2λ
soundness) in the hash functions (resp. in the

GKR protocol), from which our scheme gets ≈ 1
2λ

soundness (see Theorem 1, 2, 3, 4).

4.4.2 Complexity of the Instantiation

As expected from the complexity analysis (Lemma 1) in Section 3.2, the efficiency of the instan-
tiation mainly depends on the range space (ring) of hash functions and the costs of the argument
system on that space.

Theorem 7. In the instantiation of our VC scheme with soundness 2−λ and the BV scheme having
Rq := Zq[X]/(f) as a ciphertext ring, assume that a verifier delegates a function g : Rnt → Rt of
degree less than D, which is described by an arithmetic circuit C over Rt of size S and depth d.
Then, the required complexity (TP , TV , CC)

17 measured by the number of operations (or elements)
of Zq is as follows.

(i) with Single hash:

(Õ((n+D2)df + λD2S), Õ((n+D2)df + λd log (D2S)), O(D2df + λd log (D2S)))

(ii) with Double hash:

(Õ((n+D2)df + λS), Õ((n+D2)df + λd logS), O(D2df + λd logS))
16 For this, we skip the modulo reduction by f at the (delegated) computation.
17 Each signifies the time complexity of P, that of V, and the communication cost.

22

where df is the degree of f ∈ Zq[X] and Õ hides the logarithmic factors. In TP , we assume that the
prover P already has the result of computation ĝ : (RDq)n → Zq[X]D over the ciphertexts.

Proof. The theorem is proved by the following complexity analysis on each building block.

Description of Circuit C ′ with BV scheme.
We first bound the size S′ and the depth d′ of the circuit C ′ (over Rq) representing the prover P’s
computation ĝ : (RDq)n → Zq[X]D on the ciphertexts. Recall that each ciphertext is composed of
at most D elements of Rq. Hence, each plaintext addition corresponds to O(D) operations over
Rq while each plaintext multiplication corresponds to O(D2) operations over Rq. To estimate the
cost of the GKR protocol (esp. for the verifier), the depth of the circuit should be considered, and
we can assume that both addition and multiplication corresponds to a circuit of depth O(1).18

Therefore, the size and depth of the circuit C ′ over BV ciphertexts are respectively, S′ = O(D2S)
and d′ = O(d). Note that the prover sends the result ciphertext (without modulo reduction by f)
to the verifier, which appears as the O(D2df) term in the communication cost (in the number of
elements of Zq).

Cost of Hashing.
We consider two cases using (i) single hash Hh and (ii) double hash Hr,h. Sampling h ∈ Zq[X]
can be done efficiently (with Õ(d2h log p) or O(dhM(dh) log p)19 operations in Zp, see Section 4.3.3)
by V (and P in a non-interactive argument). Note that it suffices to take dh ≈ λ/ log p for 2−λ

soundness, and the cost for sampling is negligible compared to the complexity required in the
following task. Now, the prover and verifier evaluate the input and output ciphertext under the
hash function Hh or Hr,h with Õ((n + D2)df) operations in Zq,20 which gives such cost in TP
and TV . We finally note that Hh maps each addition and multiplication of C ′ to each addition
and multiplication over Zq[X]/(h), while Hr,h maps O(D) operations (or O(D2) operations) of C ′

corresponding to one addition (resp. one multiplication) of C to one addition (resp. one multipli-
cation) over Zq[X]/(h). It is significant when considering the cost of GKR protocol in the following.

Complexity of GKR.
Recall that the complexity of GKR protocol on the circuit (over Zq[X]/(h)) of size S and depth d
with n input is as follows (time complexity of P or V; communication cost):

(TΠ
P , T

Π
V , C

Π
C) = (O(S), O(n+ d logS), O(d logS))

where the measure of complexity is the number of operations or elements in Zq[X]/(h). Therefore,
plugging this equation into the case of single hash where the circuit (to be proved and verified)
is over Zq[X]/(h) of size S′ = O(D2S) and depth d′ = O(d), then multiplying Õ(dh) = Õ(λ)21

to each cost since we count the complexity in number of operations (or elements) in Zq (instead
of Zq[X]/(h)), we get the desired result. Similarly, in case of double hash, since the circuit (to be
proved and verified) is over Zq[X]/(h) of size O(S) and depth O(d), we get the result. ut
18 Computing each coefficient accompanies evaluating a tree of binary addition gates with O(D) inputs, and verifica-

tion on it can be done as if it is a depth 1 layer having gates summing multiple inputs (see [Tha13, (Full version)
Section 5]).

19 M(dh) denotes the complexity of multiplying polynomials of degree dh.
20 Dividing a polynomial of degree a by another one of degree b takes Õ(a− b) operations ([VZGG13])
21 We assume that each multiplication of Zq[X]/(h) can be done in Õ(dh) operations of Zq with fast multiplication

methods (e.g., FFT).

23

Note that computing ĝ : (RDq)n → Zq[X]D over ciphertexts costs Ω(dfD
2S) operations over Zq,

and is roughly ×D costly than the original ciphertext computation SHE.Evalevk(g, ·) : (RDq)n → RDq
(with mod f) which costs Ω(dfDS). However, this gap is not significant given that the degree D
of computation is not large.

Remark 13 (Ciphertext Computation vs Proof Generation). Since df = Ω(
√
λ log q) for the security

of BV scheme (from the hardness of LWE, Appendix A.1), double hash makes the proof generation
cost TP = Õ((n + D2)df + λS) asymptotically negligible to the cost of computing ĝ (while single
hash does not). In other words, with our scheme, there is no significant additional overhead for P
to prove the correctness of its computation, as will be also demonstrated with concrete example
parameters in the following section.

Remark 14 (Space Complexity of V). Our instantiation of VC supports space-efficient verification as
does the GKR protocol: with single or double hash, the space complexity of verifier is O(λ log (D2S))
or O(λ logS), respectively. Note that computing the remainder of polynomial division (required in
evaluation of hash) can be done using the space proportional to the degree of divisor polynomial
only, if the dividend polynomial is given with appropriate streaming.

4.4.3 Concrete Parameters and Examples

To demonstrate the efficiency of our VC, we give some explicit parameters for the example computa-
tion. For Rt := Zt[X]/(f), assume that a verifier delegates a (multivariate) polynomial g : Rut → Rt
of (total) degree D. We assume that the ciphertext modulus q and the degree df of f satisfies the
following equation for the correctness (Lemma 11, Section 4) of BV scheme.

||g||∞(t · σ · d1.5f)(D−1) ≤ q

2
(2)

On the other hand, for the security of BV scheme, underlying PLWEf,q,χ problem or correspond-
ing LWEdf ,q,α(= 8

q
) problem22 should provide 2λ security, which can be simplified as the following

condition when λ = 128 (see Appendix A.1).

log q ≤
df
30

+ 1, (3)

which, combined with the equation (2) and ||g||∞ ≤ t and σ ≈ 3.2 ≤ 4, gives the following

D log t+ (D − 1)(2 +
3

2
log df) + 1 ≤ log q ≤

df
30

+ 1 (4)

In fact, we used the estimator [APS15] (https://bitbucket.org/malb/lwe-estimator) rather
than equation (3) for more accurate analysis.

On the other hand, for the 2−λ soundness of our scheme (from the 2−(λ+1) universality of
homomorphic hash functions and the 2−(λ+1) soundness of GKR protocol), the degree dh of h
should satisfy that (see Theorem 2, Theorem 3,4, and Theorem 7),

(i) when using single hash,

2λ+1 · 7d log(D2S) ≤ pdh

2λ+2 · (df − 1)(D − 1) ≤ pdh
(5)

22 Here, we regard given PLWE problem as a corresponding LWE problem as usual.

24

https://bitbucket.org/malb/lwe-estimator

(ii) when using double hash,

2λ+1 · 7d logS ≤ pdh

2λ+1 · (2(df − 1)(D − 1) +D − 1) ≤ pdh
(6)

where we assume that q = pe for a prime p. From these equations, we can set the parameters of
our scheme in the following examples.

Example I. Inner Product.
Assume a verifier delegates the inner product of two n-dimensional vectors over Rt = Zt[X]/(f),
which can be represented by the computation of following function:

g : Rnt ×Rnt −→ Rt

((a1, a2, . . . , an), (b1, b2, . . . , bn)) 7→
∑n

i=1 aibi

Since the function g is of multiplicative depth 1, it suffices to take D = 3 in the parameters of BV
scheme. The circuit description of g is simple: it takes 2n inputs, has n multiplication gates (each
computing ai×bi), and a tree of addition gates summing n terms of aibi’s. Since the tree of addition
gates can be efficiently handled with GKR protocol, we regard them as one layer consisting of n
addition gates when setting parameters for the protocol. Taking these into account, the parameters
for our scheme with double hash satisfying equation (4) and (6) can be found in Table 2. We assume
that the plaintext modulus t is a prime of 8-bit or 16-bit, and the ciphertext modulus q is a power
of two. We also considered a more tight bound than equation (4) since ||g||∞ = 1.

Example II. Polynomial Evaluation.
As the second example, assume a verifier delegates a parallel evaluation of a polynomial F ∈ Rt[Y]
of degree dF on n elements over Rt = Zt[X]/(f), which can be represented by the computation of
following function (we denote the coefficients of F as Fi’s).

g : Rnt ×R
dF+1
t −→ Rnt

((a1, a2, . . . , an), (F0, F1, . . . , FdF)) 7→ (
∑dF

i=0 Fia
i
1,
∑dF

i=0 Fia
i
2, . . . ,

∑dF
i=0 Fia

i
n)

The function g is of degree dF + 1, and it suffices to take D = df + 2 in the parameters of BV
scheme. For the circuit description of g, we assume that the evaluation of polynomial F is done
by Horner’s method23. The method requires dF additions and dF multiplications to evaluate F on
one input, resulting in a total of ndF additions and ndF multiplications in the computation of g,
and the depth of the circuit is dF . Taking these into account, the parameters for our scheme with
double hash satisfying equation (4) and (6) can be found in Table 2. We assume that the plaintext
modulus t is a prime of 2-bit or 16-bit, and the ciphertext modulus q is a power of two.

Efficiency Improvement. With Table 2, we can give more concrete analysis on the efficiency of
our VC scheme. In a naive approach without our hashing, the prover should generate a proof on
the computation over Rq = Zq[X]/(f) where the degree df of f is 211–215 in above examples. In
contrast, in our scheme with hashing, the proof is generated on the computation over Zq[X]/(h)

23 i.e., F (x) is evaluated by F0 + x
(
F1 + x

(
F2 + · · ·+ x(Fn−1 + xFn) · · ·

))
.

25

Circuit BV scheme GKR & Hash Security

g n d D log t log q log df dh λBV λs

Inn Prod. 28 2 3 8 54 11 136 128.4
Inn Prod. 28 2 3 16 73 12 136 ≥ 128 128.4
Inn Prod. 210 2 3 16 73 12 136 128.2

Poly Eval. 210 2 4 2 62 11 136 117.5 128.1
Poly Eval. 210 4 6 2 110 12 137 128.8
Poly Eval. 210 4 6 16 187 13 137 ≥ 128 128.7
Poly Eval. 212 16 18 16 685 15 138 128.6

Table 2. Example parameters for our VC scheme: λBV and λs respectively denote the bit security of BV scheme and
our VC scheme.

where the degree dh of h is only 136–139 (≈ λs as expected). Therefore, we can expect roughly

×df
dh
≈ ×15–235 improvement in the cost of proof generation and the size of proof. It also implies

that the cost of proof generation is not significant compared to the ciphertext computation, since
the former is done over the ring Zq[X]/(h) which is much smaller than the ring Zq[X]/(f) of
ciphertext.

We remark that the size of dh does not increase seriously though the target computation g has
more inputs and depth, and aforementioned efficiency improvement also appears in other compu-
tation. In addition, the improvement can be more drastic if the ciphertext modulus q is a power of
prime bigger than 2: if q = pe for a prime p, we can take dh = 139

log p in our examples, resulting in
additional × log p improvement.

5 Context-Hiding VC for Nondeterministic Computations

In this section, we generalize the notion of private VC to support nondeterministic computations
and public verifiability with context-hiding. Next, we show how to extend our construction of Section
3 to achieve these properties.

In brief, supporting nondeterministic computations means to consider functions of the form
g(x,w) in which the untrusted worker receives an encoding σx of the input x (which may hide
x), holds an additional input w and can produce an encoding σy that, if computed honestly, is
supposed to decode to g(x,w). This is useful to handle more complex computations, such as ones
that use random coins, non-arithmetic operations (e.g., bit-decompositions) or (secret) computation
parameters. For instance, with this we can prove correct re-randomization of ciphertexts, or to
evaluate polynomials with coefficients provided by the server.

For security, we require a notion similar to the soundness of proof systems, namely that a
dishonest prover holding σx cannot produce an output σy which decodes to a value y for which
there exists no w such that y = g(x,w).

On the other hand, context-hiding—introduced in [FNP20] for deterministic computations g(x)
only—is a property that guarantees that the verifier does not learn any information about (x,w)
beyond what can be inferred from y. Finally, public verifiability allows the computation to be
verifiable by anyone (possibly a party different from the one who provided the input).

In the next section we introduce our definitions of context-hiding VC for nondeterministic
computations, and then in the following sections we present two constructions of this primitive.

26

5.1 Definition of VC for Nondeterministic Computation & Context-Hiding

We extend the notion of verifiable computation from Section 2.2 to support non-deterministic
computations and context-hiding, as informally explained above.

Formally, a VC scheme for non-deterministic computations is a tuple of algorithms as defined
in Section 2.2 with the following differences.

ComputePKg(σx, w) → σy: Using the public keys, the encoded input σx and an additional input
w, the server computes an encoded version of the function’s output y = g(x,w).

The notion of correctness considers the additional input w:

Correctness. For any function g and input x and w,

Pr

 VerifyPKg(τx, σy) = 1

∧ DecodeSK,SKg(σy) = g(x,w)

∣∣∣∣∣∣∣∣
(PK,SK)← Setup(1λ)

(PKg, SKg)← KeyGenPK(g)
(σx, τx)← ProbGenPK(x)
σy ← ComputePKg(σx, w)

 = 1.

Privacy and Security. The notion of privacy is the same as in the Definition 1. For security, we
instead consider the following experiment where OKeyGen(g) is an oracle that calls KeyGenPK,SK(g)
and returns PKg as in Section 2.2 (the difference lies in the final if condition).

Experiment ExpV erifA [VC, λ]
(PK,SK)← Setup(1λ);

(x, st)← AOKeyGen(·)(PK);
(σx, τx)← ProbGenPK(x);

(g, σ̂y)← AOKeyGen(·)(st, σx, τx);
acc← VerifyPKg(τx, σ̂y);

if acc = 1 and @w : DecodeSK,SKg(σ̂y) = g(x,w) output 1;
else output 0;

Context-Hiding. Note that, in the definition of a publicly verifiable VC scheme, anyone with
PKg and τx can run Verify on σy to verify the correctness of the computation. A party who has
the secret keys SKg, SK can additionally get the computation result y encoded in σy.

In some applications, however, one may want to be assured that σy reveals nothing beyond y.
In particular, it should not leak information about the inputs (x,w). We formalize this property in
the following context-hiding notion. More specifically, we are interested in modeling two cases:

(a) no information about (x,w) should be leaked to a party that has τx (for verification) and
SK,SKg (for decoding of σy) together with σy;

(b) no information about w should be leaked to a party that, in addition to the information above
(i.e., SK,SKg, τx) has σx.

To motivate the properties above, consider an application where Alice stores encrypted confi-
dential data x on a server P and allows a user Bob to get the results of a classification algorithm
(computed by P with its own secret parameters w) on her data. In this case, one can be interested
that no information about Alice’s data x and the server’s parameters w are leaked to Bob from
the encoding σy when he decodes the result, e.g., in the case of lattice-based encryption, the noise

27

revealed during the decryption of ciphertexts exposes such information. Furthermore, there can be
use cases where Alice and Bob are the same entity, in which case we want to keep w hidden even
to the party that knows x and its encoding σx.

Definition 9 (Context Hiding). A VC scheme is context-hiding if there exist simulator algo-
rithms Sτ , S1, S2, S3,a, S3,b such that:

1. the keys (PK,SK) and (PK∗, SK∗) are statistically indistinguishable, where (PK,SK)←Setup(1λ)
and (PK∗, SK∗, td)←S1(1λ);

2. for any g the keys (PKg, SKg) and (PK∗g , SK
∗
g) are statistically indistinguishable, where

(PKg, SKg)←KeyGenPK,SK(g) and (PK∗g , SK
∗
g , tdg)←S2(td, g);

3. for any simulated keys (PK∗, SK∗, td)←S1(1λ), (PK∗g , SK
∗
g , tdg)←S2(td, g), any function g,

any inputs (x,w), and any honestly generated input/output encodings (σx, τx)←ProbGenPK(x),
σy←ComputePKg(σx, w), the following distributions are negligibly close:

(a) (PK∗, SK∗, PK∗g , SK
∗
g , τx, σy) ≈ (PK∗, SK∗, PK∗g , SK

∗
g , τ
∗
x , σ

∗
y)

where τ∗x←Sτ (td) and σ∗y←S3,a(tdg, τ∗x , g(x,w));

(b) (PK∗, SK∗, PK∗g , SK
∗
g , σx, τx, σy) ≈ (PK∗, SK∗, PK∗g , SK

∗
g , σx, τx, σ

∗
y)

where σ∗y←S3,b(tdg, τx, g(x,w)).

In the following lemma we show that property (3.a) of Definition 9 can be reduced to a simpler
requirement essentially saying that τx statistically hides x.

Lemma 9. Let VC be a VC scheme for which there exist simulator algorithms S1, S2, S3,b such that
properties 1,2,3.b of Definition 9 hold. Furthermore, assume there exists a simulator algorithm Sτ
such that, for any (PK∗, SK∗, td)←S1(1λ), for any input x and (σx, τx)←ProbGenPK(x), we have
Sτ (td) ≈ τx. Then VC satisfies Definition 9.

Proof. We prove the lemma by constructing the simulator S3,a from S3,b and Sτ as follows. Let
S3,a(td, τ

∗
x , y) be the algorithm that simply outputs S3,b(td, τ

∗
x , y). To see that property (3.a) of

Definition 9 is satisfied: first, observe that property 3.b holds even when removing σx from the
view; second, we can create an hybrid view in which we replace τx with a simulated one τ∗x←Sτ (td).
By the simulation property of Sτ this view is negligibly close to the previous one (i.e., that of
property (3.b) without σx). Also, the latter view is identical to that in the right-hand side of
property (3.a). ut

Note that, as introduced in [FNP20], context-hiding is a meaningful property even in the case
of deterministic computations, i.e., for empty w, where it assures that the values τx and σy do not
reveal additional information on the input x.

5.2 Overview of Our Construction

Let g : Rnt × Rmt → Rt denote the nondeterministic computation to be delegated, and let x ∈ Rnt
and w ∈ Rmt be the inputs of the client C and the prover P respectively. Also, assume that P
receives an encryption cx = SHE.Encpk(x).

In order to compute an encryption of g(x,w), P can first encode w in a ciphertext cw,24 and
then perform the corresponding encrypted computation ĝ : (RDq)n × (RDq)m → Zq[X]D (without

24 This operation can be deterministic, e.g., embedding w in the ciphertext space.

28

reduction modulo f)25 to obtain cy = ĝ(cx, cw). Note that checking the validity of such cy means
to check that

∃cw ∈ Ω : cy = ĝ(cx, cw)

where Ω is a (sub)set of valid ciphertexts.
Computing cy in this way would not be enough for context-hiding, as cy (in particular its “noise”)

may contain information on (x,w). To solve this issue, we exploit the noise flooding technique: P
adds to the result ĝ(cx, cw) an encryption c0 of 0 with large noise that statistically hides the noise
in ĝ(cx, cw). If we let Ω0 ⊂ {SHE.Encpk(0)} be a subset of encryptions of 0 with the appropriate
noise level, then checking the validity of such computation means to check that

∃cw ∈ Ω, c0 ∈ Ω0 : cy = ĝ(cx, cw) + c0

For the sake of achieving context-hiding, the above statement must be verifiable without knowing
cx, as context-hiding asks for hiding x even against a party who has the decryption key SK and
may thus figure out x from cx. For this reason, we follow an approach similar to [FNP20]: the client
creates a commitment comx to cx and gives to the verifier τx = comx, while the prover proves that
it knows (cx, cw, c0) such that comx opens to cx, cw ∈ Ω, c0 ∈ Ω0 and cy = ĝ(cx, cw) + c0.

Next, to avoid that the cost of generating the proof above depends on O(|ĝ| · df) we adapt the
homomorphic hashing technique to this context. In our (interactive) protocol, the prover sends to
the verifier the result cy (as in Section 3) as well as commitments (comw, com0) to (cw, c0) and
proves knowledge of their opening; next the verifier picks a homomorphic hash function H; finally,
the prover creates a proof that the openings (cx, cw, c0) of (comx, comw, com0) are such that:

H(cy) = ĝ(H(cx), H(cw)) +H(c0) ∧ cw ∈ Ω ∧ c0 ∈ Ω0

Starting from this idea, we enhance it in two ways.
First, by using the commit-and-prove paradigm we split further the statement above into two

statements linked by the same commitment. Namely, we let the prover commit to (γx = H(cx), γw =
H(cw), γ0 = H(c0)) in (com′x, com′w, com′0) and then prove the following two relations w.r.t. such
commitment:

RH : γx = H(cx) ∧ γw = H(cw) ∧ γ0 = H(c0) ∧ cw ∈ Ω ∧ c0 ∈ Ω0

Rĝ : H(cy) = ĝ(γx, γw) + γ0

With this splitting we can use two separate proof systems: one for Rĝ which is the computation
ĝ(·) (over the small ring DH), and one for RH which is about correct hashing and the suitability
of the committed ciphertexts cw, c0.

Second, by exploiting the structure of the BV HE scheme, we discuss how to encode the checks
cw ∈ Ω∧c0 ∈ Ω0 in an efficient manner. For c0 ∈ Ω0, we assume that in the (trusted) key generation
one generates a vector of ciphertexts ~ω0 = (ω0,i)

z
i=1 such that each of them is an encryption of 0.

Then, c0 can be generated as 〈~β, ~ω0〉 where ~β ∈ {0, 1}z is a random binary vector. This way proving
c0 ∈ Ω0 boils down to proving that ∃~β ∈ {0, 1}z : c0 = 〈~β, ~ω0〉.

For cw ∈ Ω, we prove the embedding of the plaintext in the ciphertext space. Namely, parsing
cw as the vector of coefficients (cw,1, . . . , cw,(D+1)·df), we need to prove that cw,i ∈ (−t/2, t/2] ∩ Z,
for i = 1 to df , and cw,i = 0 for all i > df .

25 Recall that Rq := Zq[X]/(f) and ĝ(cx, cw) mod f = FHE.Evalpk(g, (cx, cw)).

29

The solution sketched above needs two commit-and-prove arguments, one for RH and one for
Rĝ. We also present a variant VC construction in which the relation Rĝ can be proven using a
non-zero-knowledge verifiable computation such as GKR. In this case, we reveal the values (γx =
H(cx), γw = H(cw), γ0 = H(c0)) to the verifiers, yet we show how this can preserve context-hiding.
Roughly, we prove that when c is a fresh ciphertext (and thus has enough entropy), its hash H(c)
does not reveal any information about it. To use this assumption we modify the VC construction
so that cw is freshly encrypted (instead of embedding a plaintext in a deterministic way), whereas
for cx we show that it can be hashed a bounded number of times without loosing information
on it. This assumption can also be removed if the prover re-randomizes cx and proves its correct
re-randomization in RH .

5.3 Building Blocks

To sum up, our VC scheme for nondeterministic computation and context-hiding requires as ad-
ditional building blocks: a somewhat homomorphic encryption that, in addition to the properties
defined in Section 3, supports circuit privacy via noise flooding; a commitment scheme, and suc-
cinct zero-knowledge arguments that are commit-and-prove (CaP). We give below the necessary
definitions of these building blocks.

Noise-flooding-based circuit-private SHE. Let SHE be a somewhat homomorphic encryption
scheme with the same structure as defined in Section 3. In addition we assume that SHE achieves
circuit privacy by re-randomizing any ciphertext c output of SHE.Eval by adding a random linear
combination of z publicly available and properly generated encryptions of 0. A bit more in detail,
we assume there is a sufficiently large z = poly(λ), and two simulator algorithms SHE.S0, SHE.S1
such that: SHE.S0(pk) generates a vector ~ω0 such that for all i ∈ {1, . . . , z}, ω0,i ∈ SHE.Enc(0),

and for any input x, any admissible function g, and c ← Enc(x), it holds {ĝ(c) + 〈~β, ~ω0〉 : ~β
$←

{0, 1}z} ≈ SHE.S1(pk, g(x)).

Commitments. We recall the definition of (extractable) non-interactive commitment schemes.

Definition 10 (Commitment). A commitment scheme is a tuple of algorithms Com = (ComGen,
Commit,ComVer,OpenVer):

ComGen(1λ)→ ck: generates a commitment public key, a message space Mck, a randomness (open-
ing) space Rck and a commitment space Cck. It should be run by a trusted party.

Commit(ck,m)→ (com, o): V given a message m ∈Mck, outputs a commitment com ∈ Cck and an
opening information o ∈ Rck.

ComVer(ck, com)→ 0/1: outputs 1 if c is well-formed and 0 otherwise.
OpenVer(ck, com,m, o)→ 0/1: outputs 1 if m ∈Mck is the message in the commitment com and 0

if (m, o, com) does not correspond to a valid pair opening-commitment.

We say that a commitment Com is secure if it satisfies the following properties:

Correctness. Ifm ∈Mck is honestly generated and (com, o) = Commit(ck,m) then ComVer(ck, com) =
1 and OpenVer(ck, com,m, o) = 1.

Hiding. For any two messages m0,m1 ∈ Mck, it is hard for an adversary A to distinguish
between their corresponding commitments com0, com1, where (com0, o0) ← Commit(ck,m0) and
(com1, o1)← Commit(ck,m1).

30

Binding. It is computationally hard for any adversary A to find (com,m0, o0,m1, o1) such that o0
and o1 are valid opening values for two distinct messages m0 6= m1 for com. Namely, for any PPT
A, the following probability is negligible:

Pr

 OpenVer(ck, com,m0, o0) = 1 ck← ComGen(1λ)
∧ OpenVer(ck, com,m1, o1) = 1 (com,m0, o0,m1, o1)← A(ck)

∧ m0 6= m1


Knowledge Binding. For any adversary A that produces a valid commitment c associated to a
message, i.e. such that ComVer(ck, com) = 1, there is an extractor ExtA that returns m and a valid
opening o of com that is valid with overwhelming probability, i.e.,:

Pr

[
OpenVer(ck, com,m, o) = 1 ck← ComGen(1λ)
∧ComVer(ck, com) = 1 (com, (m, o))← (A||ExtA)(ck)

]
= 1− negl(λ)

For simplicity we often omit the parameter ck and use Commit(m) → (com, o). Also, we observe
that an extractable commitment can be realized by augmenting a regular commitment scheme with
a proof of knowledge, i.e., the commitment includes both the commitment and the proof of knowl-
edge, and ComVer consists in verifying this proof.

We recall the definition of arguments of knowledge, which is like the one in Definition 3 (in
Section 2.4) except that it is required to satisfy the knowledge-soundness and the zero-knowledge
property defined below.

Knowledge-soundness. An argument system Π for an NP relation R(u,w) is knowledge-sound if
for every PPT adversary A there exists a PPT extractor ExtA such that, for all adversaries A0 it
holds

Pr

 〈A1(crs, u, st),V(crs, u)〉Π = 1
∧ R(u,w) = 0

∣∣∣∣∣∣
crs← Π.Setup(1λ)
(u, st)← A0(crs)
w ← ExtA(crs, u, st)

 = negl(λ).

Honest-Verifier Zero-knowledge. Π is a (statistical) honest-verifier zero-knowledge (HVZK)
argument for a relation R if there exists a stateful PPT simulator Sim such that for all interactive
PPT distinguishers (D0,D1), the following two probabilities are negligibly close:

Pr

 R(u,w) = 1
∧ D1(tr) = 1

∣∣∣∣∣∣
crs← Π.Setup(1λ)
(u,w, st)← D0(crs)

tr〈P(crs, u, w),V(crs, u, st)〉Π

 ≈ Pr

 R(u,w) = 1
∧ D1(tr) = 1

∣∣∣∣∣∣
(crs, td)← Sim(1λ)
(u,w, st)← D0(crs)
tr←Sim(crs, td, u)


Finally, the definition of Commit-and-Prove argument (CaP-Π) follows. It is an argument system

regarding the relations on the committed messages.

Definition 11 (Commit-and-Prove Argument). Let R(u,w) be a NP relation where u =
(mi)i. A Commit-and-Prove argument (CaP) for a commitment scheme Com and relation R is an
argument system for the “commit-and-prove” relation Rck(u∗, w∗) where u∗ = (u, (comi)i), w

∗ =
({mi}i, {oi}i, w) and that holds if and only if R(u,w) holds and OpenVer(comi,mi, oi) = 1 for all
i.

31

5.4 The Generic Scheme

Before introducing our generic VC scheme for nondeterministic computation with context hiding,
we present the NP relations that need to be proven in our construction.

Let g : Rnt ×Rmt → Rt be the computation to be delegated, and let ĝ : (RDq)n×(RDq)m → Zq[X]D

be the corresponding computation over ciphertexts such that:

ĝ(cx,1, . . . , cx,n, cw,1, . . . , cw,m) mod f = FHE.Evalevk(g, cx,1, . . . , cx,n, cw,1, . . . , cw,m) ∈ RDq .

Let Com be a commitment scheme with key ck. Then we define the following two relations RH
and Rĝ.

RH(uH , vH) = 1 ⇐⇒ ~γx = H(cx) ∧ ~γw = H(cw) ∧ γ0 = H(c0)

∧ c0 = 〈~β, ~ω0〉 ∧ ~β ∈ {0, 1}z

∧ cw ∈ Ωm

∧ OpenVer(ck, comx, (cx,1, . . . , cx,n), ox) ∧ OpenVer(ck, comw, (cw,1, . . . , cw,m), ow)

∧ OpenVer(ck, com0, c0, o0) ∧ OpenVer(ck, comγ , (~γx, ~γw, γ0), oγ)

where (uH , vH) = ((~ω0, H, comx, comw, com0, comγ), (cx, cw, c0, (~γx, ~γw, γ0), ox, ow, o0, oγ , ~β)), ~ω0 is a
vector of encryptions of 0, and cw ∈ Ωm is a shorthand for checking that each cw,i ∈ Rt×{0}D−1 ⊂
RDt .
Rĝ is over pairs (uĝ, vĝ) = ((γy, comγ), (~γx, ~γw, γ0, oγ)) and is such that:

Rĝ(uĝ, vĝ) = 1 ⇐⇒ γy = ĝ(~γx, ~γw) + γ0

∧ OpenVer(ck, comγ , (~γx, ~γw, γ0), oγ)

In our VC construction we assume the existence of two argument systems CaPH and CaPĝ for
relations RH and Rĝ respectively. The construction follows.

Setup(λ)→ (PK,SK):

– Run (pk, evk, sk)← SHE.KeyGen(λ) to generate keys for SHE.
– Run ck← ComGen(λ) to generate a key for a commitment Com.
– Set PK = (pk, evk, ck) and SK = sk.

KeyGenPK(g)→ (PKg, SKg):

– Run crsH ← CaPH.Setup(λ) to generate a common reference string for RH
– Run crsĝ ← CaPĝ.Setup(λ) to generate a common reference string for Rĝ.
– Prepare a vector ~ω0 of z honest encryptions of 0.
– Set PKg = (PK, ĝ, crsH , crsĝ, ~ω0) and SKg = ∅.

ProbGenPK(x)→ (σx, τx):

– Parse x ∈ Rnt as (x1, x2, . . . , xn).
– Run cx,i ← SHE.Encpk(xi) for each i = 1 to n to get the ciphertexts cx = (cx,1, cx,2, . . . , cx,n) ∈(

RDq
)n

.
– Run (comx, ox)← Commit(ck, cx) to compute the commitment to cx.
– Set σx = (cx, ox) and τx = comx.

〈ComputePKg(σx, w),VerifyPKg(τx)〉: prover and verifier proceed as follows.

– Compute performs:

32

• Parse w ∈ Rmt as (w1, w2, . . . , wm) and let cw,i = (wi, 0
D−1) ∈ RDq for each i = 1 to m, then

get the ciphertext cw = (cw,1, cw,2, . . . , cw,m).

• Randomly sample ~β = (β1, . . . , βz)
$← {0, 1}z and compute c0 = 〈~β, ~ω0〉.

• Compute cy = ĝ(cx, cw) + c0 (without reduction modulo f).
• Compute (comw, ow)← Commit(ck, cw) and (com0, o0)← Commit(ck, c0).
• Send (cy, comw, com0) to Verify.

– Verify samples and sends a homomorphic hash function H
$← H to Compute.

– Verify computes γy = H(cy).
– Compute performs:
• Compute ~γx = (H(cx,i))

n
i=1, ~γw = (H(cw,i))

m
i=1, γ0 = H(c0).

• Run (comγ , oγ)← Commit((~γx, ~γw, γ0));
• Send the commitment comγ to Verify.

– Compute and Verify run CaPH for the relation RH in the roles of prover and verifier respec-
tively. Let b1 be the bit returned by V.

– Compute and Verify run CaPĝ for the relationRĝ in the roles of prover and verifier respectively.
Let b2 be the bit returned by V.

– Verify accepts if and only if b1 = b2 = 1.
– Let σy include the cy and the transcript of the interactive argument.

DecodeSK(σy)→ y: Compute y = SHE.Decsk(cy mod f).

In the following theorem we state the security of the construction. The proof is similar to that of
Theorem 1.

Theorem 8. Assume that SHE is a correct, semantically secure and circuit-private somewhat ho-
momorphic encryption scheme, H is an ε-universal family of hash functions with ε = negl(λ),
Com is a secure commitment scheme, and CaPH (resp. CaPĝ) are complete, knowledge-sound and
zero-knowledge succinct arguments for the relation RH (resp. Rĝ). Then the above VC scheme for
nondeterministic computation is correct, secure, private, outsourceable, and context-hiding.

Proof. The proof is similar to that of the VC scheme in Section 3.2. The correctness follows from
the correctness of SHE and Com and the completeness of the argument systems CaPH and CaPĝ;
the privacy follows from the semantic security of SHE. The outsourceability follows from the com-
pactness of SHE scheme and the succinctness of the argument systems CaPH and CaPĝ.

To prove the security we define the following games (where Gi(A) = b denotes that game Gi
executed with A outputs b):

Game G0: this is the same as ExpV erifA [VC, λ] of Section 5.1).
Game G1: this is like G0 except that in the first round the adversary is supposed to send (cw, ow)

and (c0, o0), and the game outputs 0 if these are not valid openings of comw and com0 respec-
tively.
By the knowledge-binding of the commitment scheme, we can show that for any adversary A
there is another adversary A1 such that Pr[G0(A) = 1] ≈ Pr[G1(A1) = 1].

Game G2: this is like G1 except that the adversary is also supposed to send vH and vĝ, and the
game outputs 0 if these are not valid witnesses for the relations RH and Rĝ respectively with
the appropriate statements defined during the protocol execution.
By the knowledge-soundness of the argument systems, we can show that for any adversary A1

there is another adversary A2 such that Pr[G1(A1) = 1] ≈ Pr[G2(A2) = 1].

33

Game G3: this is the same as G2 except that the game outputs 0 if there are distinct openings
for some of comx, comw, com0, comγ .
By the binding of the commitment it can be shown that for any adversary A it holds Pr[G2(A) =
1] ≈ Pr[G3(A) = 1].

Finally, we claim that Pr[G3(A) = 1] = ε. To see this notice that for G3 to output 1 it holds that:
¬∃w : g(x,w) = y where y is the decryption of cy (this is the original winning condition); the
values cw, c0 sent in the first round are respectively a valid ciphertext and a valid encryption of 0;
ĝ(H(cx), H(cw)) + H(c0) = H(cy). By correctness of homomorphic encryption, ¬∃w : g(x,w) = y
also means that for all valid ciphertexts c′w and any encryption of 0 c′0 it must be ĝ(cx, c

′
w)+c′0 6= cy.

Hence c̄y = ĝ(cx, c
′
w) + c′0 6= cy. However (by the homomorphic property of H) H(c̄y) = H(cy).

Since cy and c̄y are set before the sampling of H, we have that Pr[H(c̄y) = H(cy)] = ε.

The context-hiding follows from the noise flooding on the (output) ciphertext, the zero-knowledge
of CaPH and CaPĝ, and the hiding property of the commitment scheme.

Formally, we use Lemma 9 and show how to construct the simulators Sτ , S1, S2, and S3,b. S1
runs exactly the same as Setup with td = ∅, and S2 proceeds as KeyGenPK except that it also sets
tdg = (tdCaPH

, tdCaPĝ
) where tdCaP = trap ← CaPH.Sim and tdCaPĝ

= trap ← CaPĝ.Sim. Sτ can be
the simulator that outputs a commitment to a dummy message, which is indistinguishable from τx
by the hiding of the commitment.

Finally, S3,b(τx, y) sets cy as an SHE encryption of y built by using the circuit privacy simulator,
and computes comw, com0 as commitments to dummy messages; next it runs the zero-knowledge
simulators of CaPH and CaPĝ. ut

Remark 15. We observe that the check cw ∈ Ωm can express conditions that are more specialized
than the one we mention above (i.e., that it is a valid encoding of a plaintext). This can be useful to
enforce some checks on the non-deterministic input w which may not be expressed with a constant-
degree polynomial, and can be pushed to the relation RH and the proof system CaPH.

On the instantiation of CaPH and CaPĝ. We observe that CaPĝ can be instantiated with any
succinct commit-and-prove ZK argument for proving the correctness of arithmetic circuits over
Zq[X]/(h) (which can also be efficiently instantiated via one for Zq). RH instead is best modeled as
a circuit over Zq, where: for each hashing one checks a Euclidean division (with evaluation in R for
double hashing); βi ∈ {0, 1} can be encoded with the classical equation β2i − βi = 0 (which works
for any q that is a prime power); and the check cw,i ∈ Ω requires df range proofs in an interval of
size t and df (D − 1) equal-to-0 checks.

To the best of our knowledge, there are no commit-and-prove SNARKs that can directly handle
circuits over Galois rings such as Zq[X]/(h). One could however rely on one for circuits over Zq.
When q is prime, there are many already existing choices, such as the ones from [FNP20] for q ≥ 2λ,
or Ligero [AHIV17] which can work for any prime q and can be repeated to increase its soundness
if q is too small and offers an efficiency gain with batched proofs.

5.5 A Variant Context-Hiding VC with Public Hashed Ciphertexts

In this section, we present a generic scheme achieving the same goal — proving nondeterministic
computation with context-hiding — as the previous one (in Section 5.4) but exploiting only one
CaP argument instead of two. The scheme leverages the fact that the image of hash functions

34

on an input does not leak the information on the input given that the number of images is not
large. With this, it uses the CaP argument (similarly to CaPH) only for the evaluation of hash,
discloses the hashed output to V, then uses an argument, instead of a CaP argument, for proving
the computation on them.

We first define the hiding property of a hash family.

Definition 12 (Hiding). Let H be a family of hash functions H : Zq[X]D → DH and D be a

distribution on a subset of Zq[X]D. We say that H is δs-hiding on D for N -queries if, for c
$←− D,

Hi
$←− H, and ui

$←− DH , it holds that

(Hi(c), Hi)
N
i=1

stat
≈ (ui, Hi)

N
i=1

where the statistical distance between the above distributions is less than δs, and we assume that
Hi’s are all different from each other.

We will show, in the following section, that our homomorphic hash family (from Section 4.3) satisfies
this hiding property.

To present our VC scheme with hiding homomorphic hash family, we first introduce the NP
relations and corresponding commit-and-prove argument (CaP) and an argument system that will
be required in the VC scheme. We use the same notation as Section 5.4 for the computation g, ĝ,
and the commitment scheme Com with a key ck.

A CaP argument CaP′H proves the evaluation of hash functions, i.e., the following relation R′H
on u′H = (~ω0, H, (~γx, ~γw, γ0), comx, comw, com0) and v′H = (cx, cw, c0, ox, ow, o0, ~β):

R′H(u′H , v
′
H) = 1 ⇐⇒ ~γx = H(cx) ∧ ~γw = H(cw) ∧ γ0 = H(c0)

∧ c0 = 〈~β, ~ω0〉 ∧ ~β ∈ {0, 1}z

∧ cw ∈ Ωm

∧ OpenVer(ck, comx, (cx,1, . . . , cx,n), ox)

∧ OpenVer(ck, comw, (cw,1, . . . , cw,m), ow)

∧ OpenVer(ck, com0, c0, o0)

where ~ω0 is a vector of encryptions of 0, and cw ∈ Ωm is a shorthand for checking that each cw,i is
a valid encryption. Note that the two differences of R′H from RH are that (~γx, ~γw, γ0) is disclosed
as a part of public input u′H and that the cw is generated as fresh ciphertexts.26

On the other hand, an argument Πĝ proves the computation on the hashed outputs, i.e., the
following relation R′ĝ on u′ĝ = (γy, ~γx, ~γw, γ0):

R′ĝ(u′ĝ) = 1 ⇐⇒ γy = ĝ(~γx, ~γw) + γ0.

Now, the construction of our VC follows with the above two argument systems CaP′H and Π′ĝ
for the relations R′H and R′ĝ, respectively. Most part of the scheme is the same as the previous one
(in Section 5.4), but the main difference is that the prover in Compute sends the output (~γx, ~γw, γ0)
of hash H directly, instead of the commitments, to the verifier.

26 We mention that this generation procedure can be a relaxed one than the original encryption algorithm, e.g.,
without error sampling which is costly to prove, since only the image of cw under a hash will be disclosed, i.e., the
output cw does not need to hide w but only needs to contain enough randomnesses so that its image under a hash
does not reveal much information of it (see Lemma 10 and the following Remark).

35

Setup(λ)→ (PK,SK):

– The same as the previous scheme: generate keys for the building blocks.

KeyGenPK(g)→ (PKg, SKg):

– The same as the previous scheme, except that
crs′H ← CaP′H.Setup(λ) (for R′H) and crs′ĝ ← Πĝ.Setup(λ) (for R′ĝ).

– Set PKg = (PK, ĝ, crs′H , crs′ĝ, ~ω0) and SKg = ∅.
ProbGenPK(x)→ (σx, τx):

– The same as the previous scheme:
set σx = (cx, ox) and τx = comx where cx = (SHE.Encpk(xi))i.

〈ComputePKg(σx),VerifyPKg(τx)〉: prover and verifier proceed as follows.

– Compute performs:
• The same as the previous scheme except that cw is generated with enough entropy (see

footnote 26): Sends (cy, comw, com0) to Verify.

– Verify samples and sends a homomorphic hash function H
$← H to Compute.

– Verify computes γy = H(cy).
– Compute performs:
• Compute ~γx = (H(cx,i))

n
i=1, ~γw = (H(cw,i))

m
i=1, γ0 = H(c0).

• Send (~γx, ~γw, γ0) to Verify.
– Compute and Verify run CaP′H for the relation R′H in the roles of prover and verifier respec-

tively. Let b1 be the bit returned by V.
– Compute and Verify run Π′ĝ for the relation R′C in the roles of prover and verifier respectively.

Let b2 be the bit returned by V.
– Verify accepts if and only if b1 = b2 = 1.
– Let σy include cy and the transcript of the interactive argument.

DecodeSK(σy)→ y: Compute y = SHE.Decsk(cy mod f).

Note that the argument system Π′ĝ is more efficient and easy to instantiate than the CaP argument
CaPĝ of the previous scheme since it does not deal with the proof of opening the commitment. The
construction also satisfies the required properties as follows.

Theorem 9. Assume that SHE is a correct, semantically secure and circuit-private somewhat ho-
momorphic encryption scheme, H is an ε-universal family of hash functions with ε = negl(λ) and
is δs-hiding on the distribution of encryption of fresh ciphertext (having the input x or the witness
w as messages) for N -queries, Com is a secure commitment scheme, and CaP′H is a complete,
knowledge-sound and zero-knowledge succinct argument for the relation RH while Π′ĝ is a complete,
sound, and succinct argument for the relation Rĝ. Then the above VC scheme for nondeterministic
computation is correct, secure, private, outsourceable, and context-hiding, given that there has been
at most N distinct proofs (with different hashes) on the same input.

Proof. Other properties than the context-hiding follows similarly as the previous proof of Theo-
rem 8. The context-hiding also follows similarly using Lemma 9 and showing the existence of simu-
lators Sτ , S1, S2, and S3,b as follows: S1 runs exactly the same as Setup with td = ∅, and S2 proceeds
as KeyGenPK except that it also sets tdg = trap ← CaP′H.Sim. The hiding of commitment scheme
guarantees the existence of a simulator Sτ outputting commitment to dummy messages, which is
indistinguishable from τx. Finally, S3,b sets σ∗y as composed of an SHE encryption c∗y of g(x,w) with
appropriate noises, the proof π∗

CaP′H
← CaP′H.Sim(tdg, u

′∗
H), and the transcripts of Π′ĝ on u′∗ĝ where

36

u′∗H and u′∗ĝ are the same as u′H and u′ĝ except that the commitments other than comx are dummy

commitments and that γy = H(c∗y) and (~γx, ~γw, γ0) are substituted by (~γ
$←− Dn+mH , H(c∗y)− ĝ(~γ)).

Then, the indistinguishability of simulated output and real output follows from the hybrid
argument with consecutive hybrid simulators Shyb−03,b , Shyb−13,b , Shyb−23,b , Shyb−33,b as follows:

• Shyb−03,b : the real execution.

• Shyb−13,b : the same as Shyb−03,b except that it outputs c∗y and H(c∗y) − ĝ(~γx, ~γw) instead of cy and
γ0, respectively.
• Shyb−23,b : the same as Shyb−13,b except that it outputs a dummy commitment.

• Shyb−33,b : the S3,b.

Note that the indistinguishability of Shyb−03,b and Shyb−13,b follows from that of cy and c∗y, i.e., the

circuit privacy of SHE; the indistinguishability of Shyb−13,b and Shyb−23,b (resp., Shyb−23,b and Shyb−33,b)
follows from the hiding property of commitment scheme (resp., from the hiding property of hash
family). ut

Hiding Property of Our Hash Function Family.
We now show that the homomorphic hash function family, especially, the double hash (Defi-

nition 8) introduced in Section 4.3 satisfies the hiding property (Definition 12) described above.
Recall that the fresh BV ciphertext is of the form c0 + c1Y with c0 = −c1s+ te+m and the double
hash is defined by Hr,h(c0 + c1Y) := c0 + c1r mod h.

Lemma 10. Let H := {Hr,h} be the family of homomorphic hash functions (Definition 8) where
h ∈ Zq[X] is monic, degree-dH, and irreducible (in Zp[x]); and r ∈ Zq[X]/(h) is from the maximal
sampling set (Definition 6). Let Dm be the distribution of fresh ciphertexts (⊂ Zq[X]2 ∼= Zq[X][Y])

from the encryption algorithm BV.Encpk(m) for a message m ∈ Zt[X]/(f). Assume that N ≤ df
dh

,

then for all message m, H is δs-hiding on Dm for N -queries with δs = N
pdh

.

In other words, for all aY + b
$←− Dm, it holds that

((Hri,hi(aY + b), ri, hi))
N
i=1

stat
≈ ((ui, ri, hi))

N
i=1

where ui
$←− Zq[X]/(hi) and {ri, hi}Ni=1 are all different from each other, and the statistical distance

is bounded by N
pdh

.

Proof. Since {hi}Ni=1 are distinct monic irreducible polynomials, they are coprime to each other, and
we get the ring isomorphism Zq[X]/(h1h2...hN) '

∏N
i=1 Zq[X]/(hi) by Chinese remainder theorem.

Let ai be the image of projection of a on Zq[X]/(hi) from the isomorphism. Since (a, b) is a RLWE

sample, a
$←− Zdfq ∼= Zq[X]/(f) and each ai is uniformly random in Zq[X]/(hi). Therefore, if ri is

not a zero divisor, (airi, ri) ≈ (ui, ri) since the map x→ rix is one-to-one in Zq[X]/(hi). Hence,

{(airi, ri, hi)}Ni=1

stat
≈ {(ui, ri, hi)}Ni=1

where the statistical distance is bounded by the probability that at least one of ri is a zero divisor,

which is N
pdh

(since ri
$←− the sampling set A (Definition 6) is a zero divisor with probability 1

pdh
).

Now, the theorem follows from the definition ofHri,hi , i.e. from the fact thatHri,hi(aY +b) = airi+bi
where bi is the image of projection of b on Zq[X]/(hi). ut

37

Remark 16. The indistinguishability of above lemma indeed originates from the random sampling
of a and holds also in the presence of the secret key of BV scheme. Recall that one should set
pdh ≈ 2λ to achieve ε = negl(λ)-universality (Theorem 4) of the hash which is necessary for the

soundness of the VC scheme. Therefore, given that N ≤ df
dh

, we can expect that the hash is δs-hiding
with δs = negl(λ) when exploited in the VC scheme.

Remark 17. After reaching the maximal number of allowed queries, P can re-randomize the ci-
phertexts to answer another queries on the ciphertexts. The re-randomization, for example, can be
done by adding encryptions of zero to the ciphertexts (similarly as the noise flooding technique)
then publishing commitments of new ciphertexts with the appropriate proof (of commit-and-prove
argument) that P did the re-randomization correctly.

We finally mention that a family of single hash functions (Hh(a) = a mod h ∈ Zq[X]/(h),
Definition 7) does not seem to satisfy the hiding property, especially when the secret key s is
known, since the image (Hh(a), Hh(a)Hh(s) + Hh(e)) of a RLWE sample (a, as + e) can be close
to the uniform distribution only if Hh(e) is close to the uniform distribution.

6 Generalization to an Arbitrary Modulus q

Our VC scheme (Section 3, Section 4) also works for an SHE scheme with q not a power of a prime,
i.e., when q is a product of distinct primes. Let q =

∏N
i=1 p

ei
i , then the Chinese Remainder Theorem

(CRT) gives that

Zq[X] ∼= Zpe11 [X]× ...× ZpeNN [X],

and running our VC over the ring Zq[X] (or Zq[X]/(f)) is equivalent to running it over each subring
Zpeii [X](or Zpeii [X]/(fi)), i ∈ {1, 2, . . . , N} whose modulus is a prime power, which is the case given

in our proposal. The verifier V accepts the result only if it accepts all the proofs (total N) on each
ring, and a (dishonest) P can cheat only if he can break the soundness of the argument system

over at least one of the subrings, whose probability is bounded by O(
∑N

i=1 1/p
dhi
i) where dhi is the

degree of each Galois ring Zpeii [X]/(hi) for the homomorphic hash function (Section 4.3) on each

subring Zpeii [X].

We additionally remark that our VC is appealing in its efficiency (especially, in P’s cost) also
when working with a circuit over Zq[X]/(f) ∼=

∏N
i=1 Zqi [X]/(f) where qi is a small prime (less than

2λ) and f fully splits over Zqi ,27 i.e., Zqi [X]/(f) ∼= (Zqi)M where M is the degree of f . As mentioned
at the above, to run VC over Zq[X]/(f), one should run the VC on each subring Zqi [X]/(f), and it
can be boosted by our method. For concrete analysis, let C be an arithmetic circuit over Zqi [X]/(f),
and let S and D be the size and the degree of C, respectively. We measure the cost by counting
the number of operations over Zqi required. Then, the cost of P for computing and proving the
evaluation of C is as follows:

In a naive method (without our homomorphic hash functions), one can exploit the CRT iso-
morphism Zqi [X]/(f) ∼= (Zqi)M then apply the VC over each subring Zqi (total M times). Then,
to achieve 1/2λ soundness, the cost of P for getting the result and for generating the proof are as
follows (the former is denoted by Pcomp and the latter is by Pproof):

27 It arises commonly in many HE schemes [BEHZ16, HPS19, CHK+18] aiming faster implementation exploiting
CRT (Chinese Remainder Theorem) and NTT (Number Theoretic Transform).

38

– Pcomp = O(MS)

– Pproof = O(λ
log qi

·MS) (∵ needs to repeat the proof generation λ
log qi

-times.)

In contrast, in our method with homomorphic hash functions, P evaluates the circuit C without
modulo f , then proves the computation over a ring Zqi [X]/(h) where the degree of h is set to be
λ

log qi
to achieve 1/2λ soundness. Then, the cost of P follows (Õ hides logarithmic factors):

– Pcomp = Õ(DMS)

– Pproof = Õ(λ
log qi

· S)

Therefore, our method is more efficient when the degree D of circuit is not very large while the
degree M of f is very large, which is exactly the case of SHE schemes.

Acknowledgements

Research leading to these results has been partially supported by the Spanish Government under
projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), SECURI-
TAS (ref. RED2018-102321-T) and SecuRing (ref. PID2019-110873RJ-I00), by the Madrid Re-
gional Government under project BLOQUES (ref. S2018/TCS-4339), and by a research grant from
Nomadic Labs and the Tezos Foundation. This work was also supported in part by the National
Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under Grant
NRF-2017R1A5A1015626.

References

AHIV17. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight Sublinear Arguments
Without a Trusted Setup. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS
2017, pages 2087–2104. ACM Press, October / November 2017.

Alb17. M. R. Albrecht. On Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices in HElib and
SEAL. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 103–129. Springer, Heidelberg, April / May 2017.

APS15. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169–203, 2015.

BCR+19. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent
Succinct Arguments for R1CS. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

BCS16. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive Oracle Proofs. In M. Hirt and A. D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg, October / November 2016.

BEHZ16. J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca. A full RNS variant of FV like somewhat homomor-
phic encryption schemes. In International Conference on Selected Areas in Cryptography, pages 423–442.
Springer, 2016.

Ben81. M. Ben-Or. Probabilistic Algorithms in Finite Fields. In 22nd FOCS, pages 394–398. IEEE Computer
Society Press, October 1981.

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without boot-
strapping. In S. Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

BV11. Z. Brakerski and V. Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and Security for
Key Dependent Messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505–524.
Springer, Heidelberg, August 2011.

CCH+18. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, and R. D. Rothblum. Fiat-Shamir
From Simpler Assumptions. Cryptology ePrint Archive, Report 2018/1004, 2018. https://eprint.iacr.
org/2018/1004.

39

https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004

CCKP19. S. Chen, J. H. Cheon, D. Kim, and D. Park. Verifiable Computing for Approximate Computation.
Cryptology ePrint Archive, Report 2019/762, 2019. https://eprint.iacr.org/2019/762.

CGGI16. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster Fully Homomorphic Encryption: Boot-
strapping in Less Than 0.1 Seconds. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 3–33. Springer, Heidelberg, December 2016.

CGGI17. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster Packed Homomorphic Operations and
Efficient Circuit Bootstrapping for TFHE. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 377–408. Springer, Heidelberg, December 2017.

CH18. H. Chen and K. Han. Homomorphic Lower Digits Removal and Improved FHE Bootstrapping. In J. B.
Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 315–337.
Springer, Heidelberg, April / May 2018.

CHK+18. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. A full RNS variant of approximate homomorphic
encryption. In International Conference on Selected Areas in Cryptography, pages 347–368. Springer, 2018.

CHM+20. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

CKKS17. J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic Encryption for Arithmetic of Approximate
Numbers. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages
409–437. Springer, Heidelberg, December 2017.

CMT12. G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming interactive
proofs. In S. Goldwasser, editor, ITCS 2012, pages 90–112. ACM, January 2012.

DM15. L. Ducas and D. Micciancio. FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second. In
E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640.
Springer, Heidelberg, April 2015.

FGP14. D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computation on Encrypted Data. In G.-J.
Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages 844–855. ACM Press, November 2014.

FNP20. D. Fiore, A. Nitulescu, and D. Pointcheval. Boosting Verifiable Computation on Encrypted Data. In
A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS,
pages 124–154. Springer, Heidelberg, May 2020.

FV12. J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint
Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, 41st ACM
STOC, pages 169–178. ACM Press, May / June 2009.

GGP10. R. Gennaro, C. Gentry, and B. Parno. Non-interactive Verifiable Computing: Outsourcing Computation to
Untrusted Workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer,
Heidelberg, August 2010.

GGPR13. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic Span Programs and Succinct NIZKs
without PCPs. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 626–645. Springer, Heidelberg, May 2013.

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to Run Turing
Machines on Encrypted Data. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 536–553. Springer, Heidelberg, August 2013.

GKR08. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for muggles.
In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press, May 2008.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-
Simpler, Asymptotically-Faster, Attribute-Based. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

HPS19. S. Halevi, Y. Polyakov, and V. Shoup. An Improved RNS Variant of the BFV Homomorphic Encryption
Scheme. In M. Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 83–105. Springer, Heidelberg,
March 2019.

Kil92. J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended Abstract). In 24th ACM
STOC, pages 723–732. ACM Press, May 1992.

LFKN92. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. Journal
of the ACM (JACM), 39(4):859–868, 1992.

LP11. R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-Based Encryption. In A. Kiayias,
editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer, Heidelberg, February 2011.

40

https://eprint.iacr.org/2019/762
http://eprint.iacr.org/2012/144

LPR10. V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with Errors over Rings.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

PRV12. B. Parno, M. Raykova, and V. Vaikuntanathan. How to Delegate and Verify in Public: Verifiable Compu-
tation from Attribute-Based Encryption. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
422–439. Springer, Heidelberg, March 2012.

Rot09. G. N. Rothblum. Delegating computation reliably: paradigms and constructions. PhD thesis, Massachusetts
Institute of Technology, 2009.

Sho99. V. Shoup. Efficient Computation of Minimal Polynomials in Algebraic Extensions of Finite Fields. In
Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC ’99,
1999.

SV14. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, codes and cryptography,
71(1):57–81, 2014.

Tha13. J. Thaler. Time-Optimal Interactive Proofs for Circuit Evaluation. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 71–89. Springer, Heidelberg, August 2013.

VZGG13. J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge university press, 2013.
Wan03. Z.-X. Wan. Lectures on finite fields and Galois rings. World Scientific Publishing Company, 2003.
WTs+18. R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish. Doubly-Efficient zkSNARKs Without Trusted

Setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943. IEEE Computer Society Press,
May 2018.

XZZ+19. T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct Zero-Knowledge Proofs with
Optimal Prover Computation. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 733–764. Springer, Heidelberg, August 2019.

41

A The BV Homomorphic Encryption Scheme and its Security

Let χ denote a discrete Gaussian distribution over the ring R := Z[X]/(f) (identified as a set
(Z)df) with standard deviation σ. We identify Rq := Zq[X]/(f) as a subset (Z∩ [− q

2 ,
q
2))[X]/(f) of

R when required (and similarly for Rt). The formal description of BV SHE scheme from [BV11] is
as follows:

BV.KeyGen(1λ)→ (pk, dk): sample a secret key dk = s
$← χ, and a public key pk = (a0, b0 =

a0s+ te0) where a0
$← Rq and e0

$← χ.

BV.Encpk(m)→ c: sample v, e′
$← χ and e′′

$← χ′, where χ′ is the same as χ but with standard
deviation σ′ > 2ω(log df) · σ. Then compute (a, b) = (a0v + te′, b0v + te′′) ∈ R2

q . Output c =

(c0, c1, 0, ..., 0) ∈ RDq where:
c0 = m+ b , c1 = −a

BV.Decdk(c)→ m: using the secret key dk = s, compute c(s) =
∑D−1

i=0 cis
i and output m =

c(s) mod t.

BV.Eval(g, c1, . . . , ct)→ cg: addition and multiplication of two ciphertexts c = Enc(m), c′ = Enc(m′) ∈
RDq are defined as the usual addition and multiplication in Rq[Y]:

• c+ c′ = (c0 + c′0, .., cD−1 + c′D−1) encrypts m+m′.

• we see the ciphertexts as polynomials as explained before. Let c(Y)·c′(Y) = c∗ =
∑

i≥0 c
∗
iY

i:
Then m ·m′ is encrypted by (c∗0, ..., c

∗
D−1).

Note that in the case of multiplication, the result will not be correct if the degree of c∗ (in Y)
exceeds D − 1.

The conditions for the correctness and the security are as follows.

Lemma 11 (Correctness and Security [BV11]). Let σ be the standard deviation of the noise
distribution (used in Enc) in BV scheme. Then, BV scheme is semantically secure under the
PLWEf,q,χ assumption, and it correctly computes any multi-variate polynomial g of degree D − 1
over Rt given that

||g||∞(t · σ · d1.5f)(D−1) ≤ q

2
,

where ||g||∞ denotes the size of maximal coefficient of g, and other values are as described in
Section 4.1, Parameters.

A.1 Hardness of LWE - Security of BV scheme

The BV scheme is secure if the corresponding LWE problem is hard (note that a LWE instance
can be derived from a RLWE instance, so our analysis also applies to RLWE-based schemes). The

hardness can be estimated based on known attacks. We will use σ ' 3.2 and α =
√
2πσ
q = 8

q , because
it is used in practice. Here we give our detailed analysis of the harness of the LWE problem, based
on state of the art estimates and attacks.

42

Let us first define the LWE problem: A LWE instance is a pair (A,AT s+ e) where A ∈ Zn×mq

and s ∈ Znq , e ∈ Zmq (from the noise distribution, with standard deviation σ). The Search-LWE
problem consists in finding the secret s given a LWE instance. The Decision-LWE problem consists
in distinguishing LWE instances from uniform pairs.

If σ > 2
√
n then LWE is reduces to SVP on ideal lattices ([LPR10]), but in practice σ is often

smaller, for example, in SHE libraries such as SEAL or HElib σ ' 3.2 (which is the value used to
attack them in [Alb17]).

The main security analysis comes from attacks which consist in finding one or several short
vectors in some lattice by using lattice reduction: [LP11] analyses a decoding attack that solves the
Bounded-Distance Decoding problem on the lattice Λ(AT) = {z ∈ Zm : ∃s ∈ Znq , z = AT s mod q}
to recover the secret from a short basis, [Alb17] uses a dual attack to solve the Decision problem
by finding a short vector in the dual lattice v ∈ Λ(AT)⊥ = {w ∈ Zmq , wTAT = 0 mod q} and
distinguishing < v, e > from uniform. In both cases, the lattice reduction algorithm (BKZ) runtime
nearly only depends on the root-Hermite factor defined as follows:

Let v be the shortest vector outputed by BKZ on a lattice L, the the root-Hermite factor δ0 is
defined by ||v|| = δm0 |det(L)|

1
m .

[LP11] finds an estimate runtime of

log(tBKZ(δ)) =
1.8

logδ
− 110,

[APS15] updated it to

log(tBKZ(δ0)) =
0.009

log2δ0
+ 4.1

Our security analysis for LWE will be based on the distinguishing attack from [Alb17], because it
is one of the most recent ones, it is efficient against practical SHE libraries, and because it allows
us to derive a security condition (as it did for the choice of parameters in [FV12], but it used the
runtime estimate from [LP11], we will use the one from [APS15]).

A short vector of norm ||v|| gives the attack an advantage ε ' exp(−πα2||v||2), with α = 8
q

([LP11, Alb17]). So we need ||v|| = 1
α

√
−ln(ε)
π = F (ε)

α . [Alb17] shows how to run the attack several

(e.g. 1
ε2

) times with amortized costs to get a high advantage. In Λ(AT)⊥, the determinant is qn with

high probability, so we get ||v|| = δm0 q
n
m . We will use the value m =

√
nlogq
logδ0

, which minimizes the

norm of the short vector and gives the best attack. Thus, the distinguishing attack has advantage
at least ε if

log δ0 ≥
log2

(
1
αF (ε)

)
4nlogq

where F (ε) =

√
−ln(ε)
π .

For the attack runtime to be 2λ, we need log δ0 =
√

0.009
λ−4.1 , and finally we get a security condition

for LWE: √
0.009

λ− 4.1
= log δ0 ≥

log2
(
1
αF (ε)

)
4nlogq

(7)

If we chose a security parameter λ = 128, an advantage ε = 2−64 for the distinguishing attack, and
α = 8

q as usual HE scheme, (7) gives logδ0 ' 0.008523 and 1
αF (ε) = qF (ε)

8 ' 0.4697q. Then, using

43

a small approximation to simplify the expression:

log2
(
F (ε)
α

)
4df logq

=
1

4df

(
logq + log(0.4697) +

log2(0.4697)

logq

)
' 1

4df
(logq − 1)

Finally (7) becomes:

logq ≤ 4df logδ0 + 1 '
df
30

+ 1 (8)

The security condition was obtained with some approximations, but we used a conservative estima-
tion of the attack runtime, and we can eventually check that the required security is well achieved
using the estimator [APS15] (https://bitbucket.org/malb/lwe-estimator) which estimates the
runtime of various attacks on given LWE problem with the parameters n, q, α.

B The GKR Protocol over Rings

For completeness, we present the GKR protocol ([GKR08, Tha13]), which is a (public-coin) interac-
tive proof system, whose generalized version for arithmetic circuits over Galois rings was exploited
in our instantiation of the VC scheme.

B.1 Preliminaries

Schwartz-Zippel Lemma. We start with the famous lemma which plays a central role in the
GKR protocol.

Lemma 12. Let F be a field, let f be an n-variate polynomial of total degree df . Then for any
finite subset A ⊆ F such that df ≤ |A|,

Pr
x←An

[f(x) = 0] ≤
df
|A|

.

Sum-check Protocol. We present the famous Sum-check protocol which will be called as a sub-
routine in the GKR protocol.

Theorem 10 (Sum-check Protocol [LFKN92]). Let F be a finite field. For an n-variate poly-
nomial f : Fn → F of degree at most d ≤ |F| in each variable and β ∈ F, the sum-check protocol is
an interactive proof protocol to prove that S(f) = β, where

S(f) :=
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

f(b1, b2, . . . , bn).

The protocol has the soundness probability nd
|F| . The computational complexity, measured by the

number of operations over F required, is O(2nd) for the prover P and O(nd) for the verifier V. The
communication cost (the number of F-elements transffered) is O(nd), and the space complexity of
V is O(d+ n).

44

https://bitbucket.org/malb/lwe-estimator

Proof. The proof of soundness can be found in [LFKN92] while the derivation of cost can also
be found in [Tha13]. In a nutshell, the soundness is guaranteed from the Schwarz-Zippel Lemma
(Lemma 12): see the description of the sum-check protocol below; if a prover has sent an incorrect
value β′, then he must send, in the first round, a polynomial g1 which is different from f1. Then,

g1(r1) 6= f1(r1) (r1
$←− F) with high probability and it forces the prover to send a polynomial g2

which is different from f2. Continuing this process, the prover has less than nd
|F| probability of passing

all checks of verifier during total n rounds. ut

We give a description of the Sum-check protocol:

– The protocol proceeds in n rounds.
– In the first round, P sends

f1(t) :=
∑

b2∈{0,1}

∑
b3∈{0,1}

· · ·
∑

bn∈{0,1}

f(t, b2, b3, . . . , bn),

and V checks β = f1(0) + f1(1). Then, V sends r1
$←− F to P.

– At the i-th round (2 ≤ i ≤ n− 1), P sends

fi(t) :=
∑

bi+1∈{0,1}

∑
bi+2∈{0,1}

· · ·
∑

bn∈{0,1}

f(r1, . . . , ri−1, t, bi+1, . . . , bn),

and V checks28 fi−1(ri−1) = fi(0) + fi(1). Then, V sends ri
$←− F to P.

– At the final round, P sends
fn(t) := f(r1, r2, . . . , rn−1, t),

and V checks fn−1(rn−1) = fn(0)+fn(1). Then, V checks, with rn
$←− F, if fn(rn) = f(r1, r2, . . . , rn).

– If all checks pass, V accepts. Otherwise, rejects.

Multilinear Extension. We finally recall the multilinear extension.

Lemma 13 (Multilinear Extension (MLE) [CMT12]). Given a function V : {0, 1}n → F,
there exists a unique multilinear (i.e., linear in each variable, e.g., f(x1, x2) = ax1x2 + bx1 + cx2)
polynomial Ṽ (~x) : Fn → F extending V , i.e., Ṽ (~x) = V (~x) for all ~x ∈ {0, 1}n. We call Ṽ the
multilinear extension of V over F.

Explicitly, the multilinear extension of V can be defined as follows from which the above lemma
follow.

Ṽ (x1, x2, . . . , xn) =
∑

~b∈{0,1}n
V (~b) ·

n∏
i=1

[(1− bi)(1− xi) + bixi].

B.2 The GKR Protocol

Theorem 11 (The GKR protocol [GKR08, CMT12, Tha13, XZZ+19]). Let C : Fn → F
be a (layered) circuit over a finite field F with fan-in 2, of size S and depth d. The GKR protocol
is an interactive proof system that allows a prover P to prove that C(x) = y to a verifier V with
the following properties:

28 It also checks that fi(t) is a polynomial of degree at most d.

45

Completeness: if C(x) = y, Pr(V accepts) = 1
Soundness: if C(x) 6= y, Pr(V accepts) ≤ 7dlogS

|F|
Complexity: O(S) for P, O(n + d logS)29 for V (with O(logS) space), and O(d logS) for the

communication cost.

Proof. The proof of soundness can be found in [GKR08, Rot09], and the derivation of cost can be
found in one of the latest work, e.g., [XZZ+19]. Briefly, the correctness and soundness of the GKR
protocol follows from those of the Sum-Check protocol and the Schwartz-Zippel lemma. ut

We give an overview and a description of the GKR protocol.
Notation. We number the layers of given circuit C consecutively in a way that the output layer is

0-th layer and the input layer is d-th layer. For simplicity, we assume that the size Si of i-th layer
as 2si , a power-of-two, and number each gate of the i-th layer as one of j ∈ {0, 1}si . Then, the
functions Vi : {0, 1}si → F are defined in a way that Vi(j) is the output of the j-th gate at the i-th
layer. Let Ṽi : Fsi → F denote the multilinear extension of Vi.

For each i ∈ [0, d)∩Z, we also define functions addi and multi both mapping {0, 1}si×{0, 1}si+1×
{0, 1}si+1 → {0, 1} that specify the wiring pattern of the circuit C:

Let gi,j denotes the output of j-th gate at i-th layer. Then,

addi(z, w1, w2) :=

{
1 if gi,z = gi+1,w1 + gi+1,w2

0 otherwise

multi(z, w1, w2) :=

{
1 if gi,z = gi+1,w1 × gi+1,w2

0 otherwise

In other words, addi(z, w1, w2) = 1 only if the z-th gate of i-th layer is an addition gate taking the
output of w1-th gate and w2-th gate at i+1-th layer, and multi is defined similarly for multiplication

gates. Let ãddi(z, w1, w2) (and m̃ulti(z, w1, w2)) be the multilinear extension of addi (resp. multi).

Overview and Protocol Description. The protocol proceeds in layer by layer from the output
layer to the input layer: a verifier, given the claimed output from a prover, reduces (via the sum-
check protocol) the claim on the output to the claim on the output of the previous layer; iterating
this procedure from the i-th layer to the i+ 1-th layer for each i, the verifier finally gets the claim
on the output of the d-th layer, which is indeed the input of the circuit; then, the claim can be
checked by the verifier itself with the input.

Now, we describe the detailed procedure. We omit the vector notation.

The 0-th (Output) layer: a verifier V, given the claimed output (i.e., the output of gates in the
0-th layer) from a prover P, evaluates the multilinear extension Ṽ0 at a random vector r0 ∈ Fs0
to get the claim Ṽ0(r0) = v0 (V sends r0, v0 to P).

From i-th layer to i+ 1-th layer: (0 ≤ i ≤ d− 1)
– V having the claim Ṽi(ri) = vi executes the sum-check protocol, with P as a prover, on the

following equation with z = ri:

Ṽi(z) =
∑

w1,w2∈{0,1}si+1

[ãddi(z, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))

+ m̃ulti(z, w1, w2)(Ṽi+1(w1)Ṽi+1(w2))]

29 Given that the wiring predicate of circuit efficiently computable in O(logS) complexity.

46

Note, at the end of the final round of sum-check, that V needs to check the following equation
(where rw1 , rw2 are sampled by V) for some Ai+1 given from the sum-check protocol:

ãddi(ri, rw1 , rw2)(Ṽi+1(rw1) + Ṽi+1(rw2))

+ m̃ulti(z, rw1 , rw2)(Ṽi+1(rw1)Ṽi+1(rw2)) = Ai+1.
(9)

– P takes the line γ : F→ Fsi+1 such that γ(0) = rw1 and γ(1) = rw2 , then sends Ṽi+1(γ(t)) :
F→ F (which is a univariate polynomial of degree at most si+1) to V.

– V, given Ṽi+1(γ(t)) from P, gets Ṽi+1(rw1) = Ṽi+1(γ(0)) and Ṽi+1(rw2) = Ṽi+1(γ(1)), com-

putes ãddi(ri, rw1 , rw2) and m̃ulti(ri, rw1 , rw2) by itself, then checks if the above equation (9)
holds.

– If the check passes, V samples a random s ∈ F and gets the claim Ṽi+1(ri+1) = Ṽi+1(γ(s)) =
vi+1 where ri+1 := γ(s).

– V sends ri+1, vi+1 to P and iterates above process with the claim (on Ṽi+1) until i+ 1 ≤ d.
The d-th (Input) layer: after the above process with i = d − 1, V gets the claim Ṽd(rd) = vd.

Then, V, knowing the input, checks the claim by evaluating Ṽd(rd) by itself. If all the checks
passes, V accepts the result. Otherwise, reject.

We remark that the proof of soundness of GKR protocol is similar to that of sum-check protocol:
if P have sent a wrong output to V, then V gets the claim Ṽi(ri) = v′i where v′i is different from
the correct one vi for all 0 ≤ i ≤ d with overwhelming probability. As we briefly mentioned at the
proof of Theorem 11, above argument follows from the Schwartz-Zippel lemma and the soundness
of sum-check protocol.

B.3 The GKR Protocol over Rings

[CCKP19] showed that, using the generalized Schwartz-Zippel lemma over rings, one can gener-
alize the multilinear extension and Sum-Check protocol over rings (instead of fields), from which
the generalized GKR protocol over rings follows. Here, ring is always a commutative ring with
multiplicative identity 1.

Schwartz-Zippel Lemma for Rings. The first observation is that the Schwartz-Zippel Lemma
also holds over the rings.

Lemma 14 (Schwartz-Zippel for Rings). Let R be a finite ring, and let A ⊂ R be a finite set
such that ∀x, y ∈ A, x− y is invertible. We will call such A a sampling set of R. Let f : Rn → R
be an n-variate nonzero polynomial of total degree D. If D ≤ |A|, then

Pr
x←An

[f(x) = 0] ≤ D

|A|
.

Proof. The proof can be found in many texts or in [CCKP19]. We first consider the case when f is
a univariate polynomial. If it has a root a ∈ A, then f = (x− a) · f1. If b ∈ A is another root, then
f = (X − a)(X − b)f2 because b− a is invertible and b must be a root of f1. By iterating D times
we prove that f has at most D roots in A. Extension to the multivariate case is the same as that
of the original lemma (Lemma 12) using the induction. ut

Sum-check Protocol over Rings. From the Schwartz-Zippel lemma over rings, one can naturally
generalize the sum-check protocol over the rings.

47

Theorem 12 (Sum-check Protocol over Rings [CCKP19]). Let R be a finite ring with a
sampling set A ⊂ R (Lemma 14). For an n-variate polynomial f : Rn → R of degree at most
d ≤ |A| in each variable and β ∈ R, the sum-check protocol is an interactive proof protocol to prove
that S(f) = β, where

S(f) :=
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

f(b1, b2, . . . , bn).

The protocol has the soundness probability nd
|A| . The computational complexity and the commu-

nication cost is the same as the original sum-check protocol (Theorem 10) except that the cost is
measured by the number of operations (or elements) over R instead of over F.

The protocol is the same as the original protocol over F, except that the random points are chosen
from the set A, which gives the soundness probability nd

|A| instead of nd
|F| . See [CCKP19] for the full

proof and the description.
We remark that the polynomial interpolation (which is implicitly used in the sum-check protocol

to identify and send a polynomial fi(t)) is also possible in the ring R with the elements of A as a
point of interpolation, since there difference is invertible (e.g., we can use the Lagrange interpolation
method).

Multilinear Extensions over Rings. The multilinear extension can also be defined over rings,
i.e., given a function V : {0, 1}n → R, there exists a unique multilinear polynomial Ṽ (~x) : Rn → R
extending V , i.e., Ṽ (~x) = V (~x) for all ~x ∈ {0, 1}n. The construction of Ṽ (~x) is also the same as
that over the field: see the equation following Lemma 13.

GKR protocol over rings. Since the Schwarz-Zippel lemma, sum-check protocol, and multilinear
extension can be easily defined over rings, the GKR protocol can also be generalized over rings. In
other words, for an arithmetic circuit C : Rn → R over a finite ring R with fan-in 2, of size S and
depth d, given that the ring R has enough size of sampling set A, the GKR protocol over ring is
an interactive proof system that allows a prover P to prove that C(x) = y to a verifier V.

As in the case of sum-check, the only difference of the GKR protocol over rings from that over
fields is that V samples random points from A (instead of R), from which the soundness probability
is modified to 7dlogS

|A| instead of 7dlogS
|F| of the field case. We refer to [CCKP19] for the full description

of the protocol and a detailed proof.

48

	Flexible and Efficient Verifiable Computation on Encrypted Data
	Introduction
	Our Contributions
	Organization

	Preliminary Definitions
	Notation
	Verifiable Computation
	Fully Homomorphic Encryption
	Succinct Argument Systems

	Our VC Scheme - Generic Solution
	Building Blocks and Assumptions
	The Generic Scheme

	Instantiating Our VC Scheme
	SHE - The BV Homomorphic Encryption Scheme
	Argument System - The GKR Protocol over Rings
	Our Homomorphic Hash Functions Realizations
	Efficiency Analysis

	Context-Hiding VC for Nondeterministic Computations
	Definition of VC for Nondeterministic Computation & Context-Hiding
	Overview of Our Construction
	Building Blocks
	The Generic Scheme
	A Variant Context-Hiding VC with Public Hashed Ciphertexts

	Generalization to an Arbitrary Modulus q
	The BV Homomorphic Encryption Scheme and its Security
	Hardness of LWE - Security of BV scheme

	The GKR Protocol over Rings
	Preliminaries
	The GKR Protocol
	The GKR Protocol over Rings

