
Authenticated Key Distribution:
When the Coupon Collector is Your Enemy

Marc Beunardeau1, Fatima-Ezzahra El Orche2,4, Diana Maimuţ3, David
Naccache2,4, Peter B. Rønne4, and Peter Y.A. Ryan4

1 Nomadic Labs, Paris, France
marc.beunardeau@nomadic-labs.com

2 ENS, CNRS, PSL Research University, Paris, France
{fatimaezzahra.elorche,david.naccache}@ens.fr

3 Advanced Technologies Institute, Bucharest, Romania
diana.maimut@dcti.ro

4 SnT, FSTC, University of Luxembourg
{fatima.elorche,peter.roenne,peter.ryan}@uni.lu

Abstract We introduce new authenticated key exchange protocols which
on the one hand do not resort to standard public key setups with cor-
responding assumptions of computationally hard problems, but on the
other hand, are more efficient than distributing symmetric keys among
the participants. To this end, we rely on a trusted central authority
distributing key material whose size is independent of the total number
of users, and which allows the users to obtain shared secret keys. We
analyze the security of our construction, taking into account various
attack models. Importantly, only symmetric primitives are needed in the
protocol making it an alternative to quantum-safe key exchange protocols
which rely on hardness assumptions.

Keywords: Symmetric cryptography, key exchange protocol, authentication,
provable security, post-quantum cryptography.

1 Introduction

Symmetric key primitives are the preferred choice for fast encryption applications.
On the other hand, public-key cryptography is widely adopted for ensuring (au-
thenticated) key exchange functionalities. Many currently deployed applications
take the best of both worlds and use key encapsulation mechanisms where keys
are exchanged using public key protocols and are subsequently used as input to
efficient symmetric primitives.

This paper proposes an intermediate construction. We introduce a crypto-
graphic protocol approaching some of the functionalities of public-key encryption
while relying entirely on symmetric primitives. Before we proceed, we stress that
our models are very different from those of classical public-key cryptography, and
so are their security and efficiency metrics. However, it appears that in many

marc.beunardeau@nomadic-labs.com
{fatimaezzahra.elorche,david.naccache}@ens.fr
diana.maimut@dcti.ro
{fatima.elorche,peter.roenne,peter.ryan}@uni.lu

practical settings, the proposed constructions can successfully replace classical
public-key encryption.

Given that our techniques do not resort to number-theoretic cryptography,
the construction is naturally resistant against attacks from quantum computers.

Prior Work. Key exchange protocols play an important role in protecting end-to-
end communications. Initially introduced in [5], the previously mentioned notion
revolutionized cryptology. These protocols allow two parties to generate securely
a common secret key, which will be used later for different cryptographic purposes
such as sending authenticated and encrypted messages. Another closely related
flavour of such protocols may be defined as authenticated key exchange protocols.
The first basic understandings of this category of schemes were presented in
[2,4]. Considering that such constructions could lead to practical and efficient
protocols, the authors focused on formalizing the security notions related to
entity authentication and key distribution.

Note that contrary to the Needham-Schroeder symmetric key protocol [8],
the central authority is only active in the enrolment phase in our protocol, not
during the actual key establishment.

ID-based secret key cryptography was first presented in [7]. While the paradigm
similarity between this paper and [7] is obvious (i.e. mimicking public-key cryp-
tography with symmetric primitives), the technical details are of different nature
and granularity. We stress that even though [7] introduces applications like a
challenge-response authentication protocol and an ID-based MAC algorithm,
it does not provide an in-depth security analysis. Moreover, our key exchange
protocol can use more than one key per user, which, as we will see, allows us to
optimise security non-trivially.

Structure of the Paper. We present our authenticated key distribution protocol
in Section 2, describing particular and general cases. In Section 3, we discuss the
adversarial advantage in various attack scenarios, computing probabilities and
expectation values. We provide a security analysis of our scheme in Section 4.
Finally, we conclude in Section 5 and discuss future work ideas. We introduce
notations, definitions and security assumptions used throughout the paper in
Appendix A. Appendix B presents the proofs of the lemmas from Section 3.
Appendix C tackles parameter choices and discusses the efficiency of our protocol.

2 The Protocol

Participants. Let n be the number of the users in the system (n can be very large,
for instance, a billion), each having a unique identity IDi, where i ∈ [1, n]. In the
following, IDi will designate both the (alphanumeric) name of user i and the user
itself as a physical entity. The proposed protocol relies on a central authority
(CA) which creates r key tables (called ‘racks’) each containing ` random κ-bit
keys. CA distributes, to each user, u distinct keys chosen randomly from each
rack, i.e. u × r keys per user. CA also provides each user with supplementary
key material that will be described later.

Building-Blocks. Let f(k,m) be a MAC function, where k is the key and m is
the message. The protocol also uses a hash function h.

For the sake of clarity, we describe the protocol in steps. We first consider
and analyze a basic one-rack case (r = 1) and one key per user (u = 1).

2.1 Basic Scheme (r = 1 and u = 1)

Key Generation. CA generates one rack of ` secret keys: {k1, . . . , k`}.

User Enrolment. CA then gives to IDi:

– A secret key kI(i), where I(i) ∈R [1, `];
– A table Ti containing the ` derived keys: Ti = {ti,1, . . . , ti,`} where ti,j =
f(kI(j), IDi).

Remark 1. Two users, IDi and IDj may get (and in reality are actually expected
to get) from CA the same kI(i) = kI(j). Note however that Ti 6= Tj as key tables
are derived from identities.

Key Exchange. Assume now that users i and j want to establish a secure
communication channel (Figure 2). They proceed as follows:

1. Exchange I(i) and I(j);
2. User j generates ti,I(j) = f(kI(j), IDi);
3. User i generates tj,I(i) = f(kI(i), IDj);
4. Both users generate the common key sk = h(ti,I(j), tj,I(i)) and use sk to

protect their communications.

Remark 2. To avoid ambiguities in the order of parameters of h, we assume that
IDi > IDj .

Enrol (IDi):

CA User
IDi←−−−−−−−−−−−−−−−−

I(i) ∈R [1, `]
Ti = (f(k1, IDi), . . . , f(k`, IDi))

I(i), kI(i), Ti
−−−−−−−−−−−−−−−−→

Figure 1. User enrolment

IDi knows I(i), kI(i) and Ti IDj knows I(j), kI(j) and Tj
I(i)

−−−−−−−−−−→
I(j)

←−−−−−−−−−−
tj,I(i) ←− f(kI(i), IDj) ti,I(j) ←− f(kI(j), IDi)
Read ti,I(j) = f(kI(j), IDi) from Ti Read tj,I(i) = f(kI(i), IDj) from Tj
sk←− h(ti,I(j), tj,I(i)) sk←− h(ti,I(j), tj,I(i))

Figure 2. Key exchange

Informally, here is the intuition behind this protocol: we first note that to
gain the capacity to listen in to all communications, an opponent would need to
set his hands on all the kis; this assumes compromising at least ` chosen devices.
Indeed, if at least ti,I(j) or tj,I(i) is unknown, sk is still safe. Evidently, this is not
as satisfactory as classical public-key cryptography. Nonetheless, the achieved
protection is still useful in many practical scenarios where choosing the target
IDi is impossible5. The number of compromised devices required for learning all
the ` keys with a given probability p is known as the coupon collector’s problem
(cf. infra).

The coupon collector’s problem is a famous question introduced in graduate
probability lectures. If each box of cookies contains a coupon, and there are `
different coupons, what is the probability that more than t boxes need to be
bought to collect all ` coupons? An alternative statement is: Given ` coupons, how
many coupons do you expect you need to draw with a replacement before having
drawn each coupon at least once? The mathematical analysis of the problem
reveals that the expected number of trials needed grows as

` log(`) + γ`+
1

2
+O(

1

`
) where γ = 0.57721 . . .

For example, when ` = 50, it takes about 225 trials on average to collect all
50 coupons. We hence see that the defender enjoys a little advantage over the
attacker. Can this advantage be amplified by engaging in several draws? This is
the goal of the next sections.

2.2 General Case: r ≥ 1 and u ≥ 1

In this scenario, each user gets u distinct keys per rack. The function I is hence
generalized by taking three indices: 1 i denoting the concerned user, 2 ρ
denoting the rack and 3 µ an index running from 1 to u.

In other words, kρI(i,µ,ρ) denotes that the µ-th key from rack ρ is given to user
i. Note that kI(i) defined in the previous section just corresponds to k1I(i,1,1).

5 For instance, if the IDis are identity cards, the attacker needs to collect and com-
promise enough cards hoping to complete his collection of kis.

Key Generation: CA generates r racks of ` distinct keys: Rρ = {kρ1 , . . . , k
ρ
` },

where ρ ∈ [1, r].

User Enrolment. CA gives to user IDi:

– u× r secret keys:

k1I(i,1,1) k2I(i,1,2) · · · krI(i,1,r)
k1I(i,2,1) k2I(i,2,2) · · · krI(i,2,r)

...
...

...
k1I(i,u,1) k2I(i,u,2) krI(i,u,r)

where ∀ρ ∈ [1, r],∀µ ∈ [1, u], I(i, µ, ρ) ∈R [1, `]
– A table Ti of `× r derived keys:

Ti =


t1i,1 t2i,1 · · · tri,1
t1i,2 t2i,2 · · · tri,2
...

...
...

t1i,` t2i,` · · · tri,`


where ∀ρ ∈ [1, r],∀j ∈ [1, `], tρi,j = f(kρj , IDi)

Remark 3. Note that the user can derive the table values for his own keys and
in principle does not need to store these. In this way memory can be saved at
the cost of computational efficiency during key derivation.

Key Exchange: Assume now that users IDi and IDj want to establish a secure
communication channel. To generate their common secret key, they do the
following:

1. Exchange their indices I(i, µ, ρ) and I(j, µ, ρ) for µ ∈ [1, u], ρ ∈ [1, r];
2. User IDi:

– generates u× r derived keys:

tρj,I(i,µ,ρ) = f(kρI(i,µ,ρ), IDj), ∀µ ∈ [1, u], ∀ρ ∈ [1, r]

– reads u× r derived keys from his table Ti:

tρi,I(j,µ,ρ) = f(kρI(j,µ,ρ), IDi), ∀µ ∈ [1, u], ∀ρ ∈ [1, r]

3. User IDj :
– generates u× r derived keys:

tρi,I(j,µ,ρ) = f(kρI(j,µ,ρ), IDi) ∀µ ∈ [1, u], ∀ρ ∈ [1, r]

– reads u× r derived keys from his table Tj :

tρj,I(i,µ,ρ) = f(kρI(i,µ,ρ), IDj) ∀µ ∈ [1, u], ∀ρ ∈ [1, r]

4. Both users IDi and IDj generate a common session keys by using h to combine
the 2u× r derived keys:

sk = h
(
tρi,I(j,1,1), . . . , t

ρ
i,I(j,u,r), t

ρ
j,I(i,1,1), . . . , t

ρ
j,I(i,u,r)

)
.

Enrol (IDi):

CA User
IDi←−−−−−−−−−−−−−−−−−−−

I(i, µ, ρ) ∈R [1, `]
µ ∈ [1, u], ρ ∈ [1, r]
Ti = (f(kρI(i,µ,ρ), IDi))µ∈[1,u]

ρ∈[1,r]

I(i, µ, ρ), kρI(i,µ,ρ), Ti
−−−−−−−−−−−−−−−−−−−−→

µ ∈ [1, u], ρ ∈ [1, r]

Figure 3. User enrolment for the General Case: u > 1 and r > 1

Remark 4. For clarity, in Figure 4, we reduce the writing of sk and we write
sk = h

(
tρi,I(j,1,1), . . . , t

ρ
j,I(i,u,r)

)
instead of writing: sk = h

(
tρi,I(j,1,1), . . . , t

ρ
i,I(j,u,r),

tρj,I(i,1,1), . . . , t
ρ
j,I(i,u,r)

)
.

IDi knows: IDj knows:
I(i, µ, ρ), kρI(i,µ,ρ) and Ti I(j, µ, ρ), kρI(j,µ,ρ) and Tj
µ ∈ [1, u], ρ ∈ [1, r] µ ∈ [1, u], ρ ∈ [1, r]

I(i,µ,ρ)−−−−−−−−−→
µ∈[1,u],ρ∈[1,r]

I(j,µ,ρ)←−−−−−−−−−
µ∈[1,u],ρ∈[1,r]

tj,I(i,µ,ρ) ←− f(kρI(i,µ,ρ), IDj) ti,I(j,µ,ρ) ←− f(kρI(j,µ,ρ), IDi)
µ ∈ [1, u], ρ ∈ [1, r] µ ∈ [1, u], ρ ∈ [1, r]
Read ti,I(j,µ,ρ) = f(kρI(j,µ,ρ), IDi) Read tj,I(i,µ,ρ) = f(kρI(i,µ,ρ), IDj)
from Ti s.t. µ ∈ [1, u], ρ ∈ [1, r] from Tj s.t. µ ∈ [1, u], ρ ∈ [1, r]
sk←− h

(
tρi,I(j,1,1), . . . , t

ρ
j,I(i,u,r)

)
sk←− h

(
tρi,I(j,1,1), . . . , t

ρ
j,I(i,u,r)

)
Figure 4. Key exchange for the general case: u > 1 and r > 1

3 Adversarial Advantage

In this section, we consider an adversary who has corrupted nc out of the n users
and obtained their key material, e.g. by physically attacking the IoT devices
containing those keys. The corruption can happen before the user gets the key
material or afterwards; however, the main assumption of this section is that
the indices of the stolen keys are random. We will consider targeted attacks in
Section 4.3.

We compute probabilities and expectation values for the adversarial advantage
as well as the optimal selection of security parameters in Section C for fixed
memory.

3.1 Expected Number of Collected Keys

Let Nkey be the number of distinct keys that the adversary gets on average after
corrupting nc users. Since two users may share keys, we get less than u× nc keys
per rack. The precise calculation is given below:

Lemma 1 (The expected number of keys obtained by the adversary).
Assuming that the adversary corrupts nc users, the expected total number of
distinct keys that the adversary holds is

Nkey = `×
(
1−

(
1− u

`

)nc
)
.

The proof of Lemma 1 can be found in Appendix B.

3.2 Probabilities

We now consider the probability for the adversary to get a non-corrupted user’s
keys, i.e. that the targeted user’s key indices are all among the key indices
obtained from the corrupted users.

In the following, we denote by K a random variable taking values from 1 to
`. We let Ki

a, i ∈ [1, n] and a ∈ [1, u] be the random variables defining the key
indices for user i (considering only one rack, i.e. r = 1). Note that these variables
are not independent since we assume each user gets u distinct indices. Let C
be the set of corrupted users and H the set of non-corrupted ones. We define
nc := card(C) and nh := card(H), i.e. n = nc + nh.

Lemma 2 (The probability to get a targeted user’s key). With the above
notations, for some given i0 ∈ H, the attacker’s probability of getting a specified
user’s keys is denoted by P1 = P (∀µ ∈ [1, u] : Ki0

µ ∈ {K
j
b}j∈C,b∈[1,u]), and the

value is:

P1 = 1−
u∑
i=1

(−1)i+1

(
u

i

) i∏
j=1

anc
j , with aj =

`− j + 1− u
`− j + 1

.

For r > 1 we have

P1 =

1−
u∑
i=1

(−1)i+1

(
u

i

) i∏
j=1

anc
j

r

.

The proof of Lemma 2 is given in Appendix B. Based on the probability P1, we
can also find the probability of getting an arbitrary user’s keys:

Lemma 3 (The probability to get an arbitrary user’s key). The probab-
ility of an attacker to get an arbitrary user’s key, P2 = P (∃i ∈ H ∀a = 1, . . . , u :
Ki
a ∈ {K

j
b}j∈C,b∈[1,u]), is given by (also valid for r > 1):

P2 = 1− (1− P1)
n−nc .

The proof can be found in Appendix B.
Finally, we can consider the probability of getting the keys for two users,

which will allow the attacker to break a session’s keys.

Lemma 4 (The probability of getting two targeted users’ keys). The
probability of the attacker to get two targeted users’ keys and hence to break a
shared key between them is P3 = (P1)

2.

Lemma 5 (The probability to break an arbitrary session key). The
probability of an attacker to get two arbitrary users’ keys and thus to break a
session key is P4 = (P2)

2.

Both Lemmas 4 and 5 follow directly from the independence of the allocated
keys between users.

3.3 Optimising u

Given the probability P1 defined in the last subsection, we can pose the question
of whether there exists a non-trivial optimal value for u. To be specific, we fix a
risk-level p and determine the maximal number of users that can be corrupted,
nc, while satisfying P1 ≤ p. The optimal value of u is the one allowing the largest
amount of corrupted users, nc. The problem is non-trivial since increasing u
makes it harder for the adversary to get all keys from the targeted user, but on
the other hand, the attacker gets more keys per corrupted user. Figure 5 shows
that we indeed have non-trivial optimal values.

To make a precise analysis, we consider a large ` limit. A power expansion of
P1 gives

P1 =
(
1−

(
1− u

`

)nc
)u

+O
(

1

`2

)
.

We then observe that nc ∼ log(1− P
1
u
1)/ log(1− u

`), i.e.

nc/` ∼ −u−1 · log(1− P
1
u
1) ,

see Figure 5. We can use this expression to find the optimal value for u, forcing
the adversary to corrupt as many possible users. By differentiation, we find the
optimal u-value as

u = − logP1

log 2
.

To be able to have a risk level P1 = 2−m, the optimal u-value is u = m and
the adversary needs to corrupt approximately

nc ∼ −`
log2 2

logP1
= `

log 2

m

users. If we naively used u = 1, the attacker needs to corrupt

nc ∼ −` log(1− P1) ∼ `P1 = `2−m

users to breach the risk level, where in the last approximation we assumed P1

small. That is choosing the optimal u gives a significant advantage, actually
logarithmic in the desired risk level. However, the flip side of increasing u is that
the adversary has to corrupt fewer users to break the system entirely.

2 4 6 8 10 12 14 16 18 20 22 24

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

u

nc/` ` = 100

` = 1000

`→∞

Figure 5. The relationship between u and nc/` for different values of ` (` = 100, 1000,∞)
and P1 = 1%; ` = 100, 1000 have been found directly via the formula for P1 in Lemma
2, whereas the curve for infinite ` plotted using the approximation above.

3.4 Expected Number of Corrupted Users to Full Breach – the
Coupon Collector Problem

We now consider the expected number of users that the adversary needs to
corrupt to reveal all keys, i.e. fully break the system. As discussed above, for
u = r = 1 we have the classical coupon collector problem, where nc = `H(`) with
H being the harmonic series.

For u > 1, r = 1 we clearly have nc ≤ `H(`)/u. The problem was ana-
lysed in the context of data package scheduling in [9] and the solution is

nc =
∑`−1
i=0

(
1−

(
i
u

)
/
(
l
u

))−1
. For large ` the speed-up is actually close to u:

lim`→∞
nc

` log ` =
1
u .

In the case u = 1, r > 1 we have only obtained an upper bound on nc. Let n
ρ
i

be the number of users needed to corrupt to get the ith new key in rack ρ. Each
nri is geometrically distributed with probability parameter pi = (` − i + 1)/`.
Denoting the expectation value by E, for r = 1 we have that nc = E(

∑`
i=1 ni) =∑`

i=1E(ni) =
∑`
i=1 1/pi = `H(`) as mentioned above. For general r we have

nc = E
(
maxρ∈[1,r](

∑`
i=1 n

ρ
i)
)
. However, even for the average of the maximum

of geometric random variables, we do not have an explicit large r limit [6], only a
closed sum formula. Nevertheless, using the bound for the maximum of geometric
variables given in [6], we can get the following rough upper bound

nc ≤
∑̀
i=1

E
(

max
ρ∈[1,r]

(nρi)
)
≤
∑̀
i=1

(
1− H(r)

log(1− pi)

)
≤ `+

∑̀
i=1

H(r)

pi
≤ `+H(r)`H(`)

Thus in limit r →∞ we see that nc/` log ` is bounded by log r.

4 Security Analysis

The protocol can be seen as a special form of authenticated key exchange where
the outcome is a fixed key. The authentication is implicit, i.e. Alice and Bob
will hold the same key at the end of an undisturbed run of the protocol. In
contrast, for an adversary who actively interrupts the communication and alters
the transmitted indices, can make the keys might end up non-matching. However,
the security guarantee we can give is an adversary who holds neither Alice’s nor
Bob’s secret keys cannot distinguish the obtained secret key(s) from a random
key.

Standard key-exchange protocols require complicated analyses of concurrent
sessions. Nevertheless, in our case, we have a simple fixed protocol and we can
split our analysis into three cases: 1 a passive attacker only monitoring the
communication, 2 a man-in-the-middle attacker changing the information of
the indices exchanged and, finally, 3 an active attacker trying to impersonate
Alice or Bob.

Remark 5 (Explicit Authentication). For a protocol with explicit authentication
to be achieved, an extra key-confirmation round can be added. One way to do
this is by Alice sending h2(sid, sk) and Bob sending h3(sid, sk), where h2 and h3
are independent hash functions and the session identity sid contains Alice and
Bob’s ID and the indices exchanged. This is for one time use only; otherwise, we
need to include nonces in the protocol to ensure freshness.

General Assumptions. Security, in general, relies on an honest setup ensured
by a CA without information leakage (see, however, Section 4.4 on how to
distribute the trust in CA). We also assume that the identities IDi are publicly
known and that they uniquely identify the users.

4.1 Passive Attacker

We start our analysis with the weakest attacker model, where the attacker can
only observe the communication (i.e. see the indices I(i) and I(j) exchanged
between participants IDi and IDj). Clearly, if the adversary holds the secret keys
of both participants (i.e. kρI(i,µ,ρ) and k

ρ
I(j,µ,ρ) for all ρ, µ,), then he will be able

to reconstruct their secret key. We will now show that the obtained key is indeed
indistinguishable from a random key for the adversary if he doesn’t have all the
keys.

We consider two cases. First, where the combiner function h is modelled in
the ROM and f is euf-cma-secure.

Theorem 1. Let the combining function h be modelled in the ROM and assume
that f is an euf-cma-secure MAC. Then, a passive attacker can not distinguish
the secret key sk obtained by IDi and IDj from a random key with a non-negligible
probability unless he has obtained all of their keys kρI(i,µ,ρ), k

ρ
I(j,µ,ρ) for all µ ∈

[1, u], ρ ∈ [1, r].

Proof. The secret key is sk = h
(
tρi,I(j,1,1), . . . , t

ρ
i,I(j,u,r), t

ρ
j,I(i,1,1), . . . , t

ρ
j,I(i,u,r)

)
.

In the ROM this key can only be distinguished from random if the input value
has been computed. This is only possible if all the MACs are either computed or
already known by the adversary. Regarding the latter, the known tabulated MACs
from the corrupted users are not useful since they contain the wrong ID. Thus
the adversary has to compute the MACs which, by the euf-cma assumption,
is only possible using the corresponding keys. If even a single key is unknown by
the adversary, the probability of distinguishing sk from random is, thus, bounded
by the advantage in the euf-cma game. Note that the adversary’s known keys
reduce the space of possible keys, since the keys in each rack are distinct, but for
` maximally polynomial in the key size, this is a negligible advantage.

Remark 6. The probability of breaking some session key for a static passive
adversary or an adversary corrupting random users is given by P4 and the
probability to break an sk between two specific users is P3.

Remark 7. Note that if the two users have the same index, the theorem still
holds, but it is simply easier for the adversary to obtain all the keys.

Remark 8. The euf-cma assumption is too strong in the sense that we only
need the adversary to be unable to compute the MAC of the identities. Even
choosing f as a hash function of the ID and the key is safe in the ROM following
the same proof structure.

Remark 9. It is also possible to relax the ROM and only consider h and f to be
randomness extractors. This ensures that the adversary does not learn anything
useful from the Ti tables of the corrupted users. Further, if just a single key is
unknown, the obtained sk will still be indistinguishable from random.

4.2 Man-in-the-Middle and Authentication Attacks

We now consider an attacker who alters the sent messages, or even tries to pose
as someone else to break authenticity. Note that in this case, we do not have any
sk-security in the Canetti-Krawczyk model since the attacked users will not end
up with the same key, but a key confirmation would help.

We also note that if the adversary gets all of Alice’s keys, he can pretend to
be any IDj to Alice. The adversary simply sends an index, I(j′), from one of the
corrupted users. Note that Alice is not supposed to keep a record of indices, so
Alice will probably not detect that the wrong index is being sent. The adversary
can now calculate sk using that all keys are known, and hence the MACs can be
constructed.

Nevertheless, if the adversary is missing one of Alice’s keys, he cannot distin-
guish the key computed by Alice from random.

Theorem 2. Let the combining function h be modelled in the ROM and assume
that f is euf-cma-secure MAC. Consider a user IDi wanting to establish a
key with IDj. Even if the adversary alters the sent indices, he cannot distinguish
the secret key sk obtained by IDi from random with a non-negligible probability
unless he has obtained all of the keys kρI(i,µ,ρ) for all µ ∈ [1, u], ρ ∈ [1, r].

The proof follows as before, and all remarks about relaxing the assumption
given in Section 4.1 also hold here.

Remark 10. An active adversary can thus successfully attack a specified user
with probability P1 and some arbitrary user with probability P2.

4.3 Adaptive Corruption

In the protocol, the key indices are sent in clear. However, this is problematic in
the case of adaptive attackers. If the adversary wants to target a specific user, he
can then observe any key establishment to learn the index of that particular user.
The adversary can then look for other users with the same index who might be
easier to corrupt.

One possible countermeasure would be to use hybrid security techniques
to make the indices private. Nonetheless, a more interesting approach would
be to use the fact that both users entering into a key establishment already
know that the resulting key will be one of ` different possible keys (here we
take r = u = 1). As an example, IDi wanting to talk to IDj knows that the
key is going to be sk = h(ti,I(j), tj,I(i)) and she can then simply compute all
possibilities for I(j) = 1, . . . , `. The two users could hash their corresponding

possibilities – the correct key will yield the same hash on both sides. They could
now exchange these hashes in random order, and thus determine the shared key
without revealing the indices. This could be done even with logarithmic efficiency.

4.4 The Central Authority

As our proposed protocol relies on a trusted third party (TTP), for analyzing
security, we assume that the CA is not malicious. However, in real-life applications,
this is not always the case. For example, due to the distributed nature of IoT
devices, various dedicated authenticated key exchange protocols appeared in
the literature. We are particularly interested in the results of [1] in terms of
cryptographic layer separation and, more precisely, role distribution. Building
on the model proposed in [1, Section 2.1] involving different roles for achieving
different goals, we believe that distributing the power that a single CA normally
has in a classical architecture can be useful especially in the context of our
coupon-collector security-based protocol. As we introduced the idea of having r
racks of keys, we may naturally distribute a rack per CA to minimize the security
impact of a malicious third party. Nonetheless, other more exotic secret sharing
schemes may be used to distribute the power between several CAs.

On another note, the idea presented in [7] bases its security on a TTP which
“also serves as an arbitrator when disputes arise due to a user denying certain
actions”. Besides relying on various CAs as previously mentioned, we stress that
there are various methods of circumventing issues like trusting TTPs.

4.5 Post-Quantum Security

The primitives used in our proposed protocol (such as MACs and hash functions)
seem to be good quantum-safe candidates. The main (optimal) quantum algorithm
to break these is Grover’s algorithm, which only gives a quadratic speed-up.

5 Conclusion and Further Development

We presented a new authenticated key exchange protocol entirely based on
symmetric primitives and analyzed its security. We also discussed parameter
choices and efficiency; we found especially interesting ways of improving security
by handing out more keys per user while keeping memory usage constant.

Future Work. A natural research direction would be to formally analyze both the
similarities of our proposed construction with standard public-key cryptography
schemes and the post-quantum nature of our key distribution protocol. For a
more precise security assessment, it is important to achieve better bounds for
the expected number of corrupted users required to get a full breach in the case
of general r, u – a problem which is an interesting coupon collector problem in
its own right. It would also be interesting to understand in detail the u and r

duality phenomenon seen in Appendix C when dealing with constrained memory
and a large `.

Another possible venue of future research is to consider hybrids of the current
protocol, e.g. by achieving forward secrecy relying on a computational assumption.

6 Acknowledgements

PBR and PYAR acknowledge support from the Luxembourg National Research
Fund (FNR) under the FNR CORE project Q-CoDe, and the European Union’s
Horizon 2020 research and innovation programme under grant agreement No.
779391 (FutureTPM), in particular, Fatima-Ezzahra El Orche was supported by
the Luxembourg National Research Fund through grant PRIDE15/10621687/
SPsquared.

The authors would like to thank Natacha Laniado for her useful comments.

References

1. Avoine, G., Canard, S., Ferreira, L.: IoT-Friendly AKE: Forward Secrecy and Session
Resumption Meet Symmetric-Key Cryptography. In: ESORICS’19. Lecture Notes in
Computer Science, vol. 11736, pp. 463–483. Springer (2019)

2. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. http://
cseweb.ucsd.edu/~mihir/papers/eakd.pdf (1993), full version

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: CCS’93. pp. 62–73. ACM (1993)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Advances
in Cryptology - CRYPTO’93. Lecture Notes in Computer Science, vol. 773, pp.
232–249. Springer (1994)

5. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (September 1976)

6. Eisenberg, B.: On the Expectation of the Maximum of IID Geometric Random
Variables. Statistics & Probability Letters 78(2), 135–143 (2008)

7. Joye, M., Yen, S.M.: ID-based Secret-key Cryptography. SIGOPS Oper. Syst. Rev.
32(4), 33–39 (Oct 1998)

8. Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM 21(12), 993–999 (1978)

9. Sharif, M., Hassibi, B.: Delay Considerations for Opportunistic Scheduling in Broad-
cast Fading Channels. IEEE Transactions on Wireless Communications 6(9), 3353–
3363 (2007)

A Preliminaries

Notations. Throughout the paper, κ denotes a security parameter. We use the
notation x ∈R X when selecting a random element x from a sample space X. We
denote by PPT a Probabilistic Polynomial-Time algorithm.

http://cseweb.ucsd.edu/~mihir/papers/eakd.pdf
http://cseweb.ucsd.edu/~mihir/papers/eakd.pdf

Random Oracles. Let RO represent the notion of a random oracle. Also, we denote
by ROM the random oracle model. The widely adopted ROM was introduced in
[3]. The model is characterized by either considering perfectly random functions
or ROs (i.e. 1 each new query is returned a random answer and 2 if a given
query is repeated it receives the same answer). Practical instantiations are usually
done by means of hash functions.

Security of Message Authentication Codes. The experiment existential unforgeab-
ility under chosen message attack will further be denoted by euf-cma when
referring to the security of message authentication codes (MACs). A MAC consists
of three PPT algorithms Setup(1κ), MACk(m) and Verifyk(m, tag).

We define the experiment Exp(n)euf-cma
A,MAC by:

1. k ← Setup(1κ);
2. (m, tag)← A(1κ). Let {mi}q1 denote A’s queries to MACk;
3. If Verify(m, tag) = 1 and m /∈ {mi}q1 return Valid;
4. Otherwise return Invalid.

Definition 1 (euf-cma). A MAC consisting of the three algorithms Setup,
MAC and Verify is euf-cma (or simply secure) if for all PPT adversaries A
there exists a negligible function negl such that:

Pr[Exp(n)euf-cma
A,MAC = 1] ≤ negl(n).

Definition 2. A MAC is considered (t, ε)-secure (euf-cma) if for all t-time
adversaries A

Pr[Exp(n)euf-cma
A,MAC = 1] ≤ ε.

B Proofs from Section 3

B.1 Proof of Lemma 1

Proof. From the first user the adversary gets u keys. The second gives on average
u ×

(
1− u

`

)
new keys since u keys are already taken. In general let Ni be the

number of new keys gotten from the ith user. We then have the average number
of keys with nc corrupted users

Nkey(nc) = E(
∑
i

Ni) =
∑
i

E(Ni) .

We note that we have a recursion

E(Ni) = u×

(
1−

∑i−1
j=1E(Nj)

`

)
.

To see this let p(k) be the probability of having k different keys just before the ith

corrupted users, that is
∑i−1
j=1E(Nj) =

∑
k k · p(k). Given k keys the probability

of getting m new keys is
(
u
m

) (
l−k
l

)m (k
l

)u−m
. Thus

E(Ni) =

u∑
m=0

∑
k

m

(
u

m

)(
l − k
l

)m(
k

l

)u−m
p(k) .

Using standard differentiation methods, rewriting and solving we find that∑u
m=0m

(
u
m

) (
l−k
l

)m (k
l

)u−m
= u(1− k

l), from which the relation follows.
We can rewrite the recursion as:

Nkey(nc) = Nkey(nc − 1) + u×
(
1− Nkey(nc − 1)

`

)
,

with the solution
Nkey(nc) = `×

(
1−

(
1− u

`

)nc
)
.

ut

B.2 Proof of Lemma 2

Proof. For a given i0 ∈ H, we have:

P1 = P (∀µ ∈ [1, u] : Ki0
µ ∈ {Kj

µ}j∈C,µ∈[1,u])
= 1− P (∃µ ∈ [1, u] : Ki0

µ /∈ {Kj
µ}j∈C,µ∈[1,u])

= 1− P (Ki0
1 /∈ {Kj

µ}j∈C,µ∈[1,u] or . . . or Ki0
u /∈ {Kj

µ}j∈C,µ∈[1,u])
= 1− P ′1

Let Ai = {Ki0
i /∈ {Kj

µ}j∈C,µ∈[1,u]} for all i ∈ [1, u].
Since P ′1 = P (A1 ∪A2 ∪ . . .∪Au) =

∑u
i=1(−1)i+1

(
u
i

)
P (A1 ∩ . . .∩Ai), it only

remains to compute P (A1 ∩ . . . ∩Ai) for all i ∈ [1, u] to complete the calculation
of P1:

P (A1 ∩ . . . ∩Ai) = P (Ki0
1 /∈ {Kj

µ}j∈C,µ∈[1,u] and . . . and Ki0
i /∈ {Kj

µ}j∈C,µ∈[1,u])

=

nc∏
j=1

P (Ki0
1 /∈ {Kj

µ}µ∈[1,u] and . . . and Ki0
i /∈ {Kj

µ}µ∈[1,u])

= P (Ki0
1 /∈ {K1

µ}µ∈[1,u] and . . . and Ki0
i /∈ {K1

µ}µ∈[1,u])nc

=

(
`− u
`
· `− u+ 1

`− 1
· · · `− i+ 1− u

`− i+ 1

)nc

=

i∏
j=1

(
`− j + 1− u
`− j + 1

)nc

The value for r > 1 follows from independence between the racks. ut

B.3 Proof of Lemma 3

Proof. We have:

P2 = P (∃i ∈ H,∀µ ∈ [1, u] : Ki
µ ∈ {K

j
b}j∈C,b∈[1,u])

= 1− P (∀i ∈ H,∃µ ∈ [1, u] : Ki
µ /∈ {K

j
b}j∈C,b∈[1,u])

= 1− P (
⋂
i∈H
{{Ki

1, . . . ,K
i
µ} /∈ {K

j
b}j∈C,b∈[1,u]})

= 1− P ({Ki
1, . . . ,K

i
µ} /∈ {K

j
b}j∈C,b∈[1,u])

n−nc

= 1− (1− P1)
n−nc

ut

C Parameter Choice and Efficiency Analysis

In this section, we analyze the efficiency of our protocols based on the consideration
of two types of attacks: small scale attacks and full breach attacks that we define
in the next sections.
The user’s global memory usage is determined by r and ` (as r × `). Hence it
is natural to fix r × ` to some reasonable constant (e.g., 1Mb) and assume that
keys are 128 bits long (as in NIST’s PQ-cryptography standardization). This
implies that r× ` = 213. Thus the question boils down to finding the optimal u, r
(and by implication the corresponding ` = 213/r) maximizing nc (the expected
number of corrupted users) for a given n.

C.1 Low-Threat Scenario

Definition 3. A low-threat scenario happens when the adversary succeeds to
break the u× r keys of a (targeted or random) user with probability greater than
or equal to ε, which we call later the risk-level.

This section provides numerical values for lowering the adversary’s success
probability below ε. In the following, we consider the two different values of
ε = 1‰, 0.01‰ and we evaluate the attack probabilities found in Section 3.

Attack 1: Breaking the Keys of a Targeted User. This attack happens
with probability P1 which does not depend on n. Therefore, we are interested in
finding the optimal u and r allowing maximizing nc under the constraint:

P1(
213

r
, u, nc, r) ≤ 1‰, 0.01‰

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

50

55

60

u

nc/10 ` = 100 (r = 82)

` = 1170 (r = 7)

` = 2000 (r = 4)

Figure 6. u and nc for (`, r) values s.t.
`r = 213 and P1 = 1‰.

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

u

nc/10 ` = 128 (r = 64)

` = 1024 (r = 8)

` = 2048 (r = 4)

Figure 7. u and nc for (`, r) values s.t.
`r = 213 and P1 = 0.01‰.

Repeating the analysis from Section 3.3 for general u, r with a fixed memory
size `r = 213, we find for large ` that the optimal parameter choice is reached for
ur = − logP1

log 2 . We see clearly in Figure 6 and Figure 7 the presence of an optimum
in some curves (r = 4, 7 in Figure 6 and r = 4, 8 in Figure 7). This optimum
corresponds to a non-trivial optimal ur and it is increasing when P1 is decreasing
(ur ∼ 10 for P1 = 1‰ and ur ∼ 16 for P1 = 0.01‰). No optimum is noticed
when r > − logP1

log 2 . Moreover, nc reaches the highest values when the probability
risk-level is large (nmax

c ∼ 569 for P1 = 1‰ and nmax
c ∼ 341 for P1 = 0.01‰).

To see whether we can differentiate the the parameters satisfying ur =
− logP1/ log 2, we further compute the expected number of corrupted users nc
needed for a full breach for the corresponding parameters (r, u, `). We take
(r, u, `) = (r,− 1

r
logP1

log 2 ,
213

r). Table 1 and Table 2 show the numerical values.

(r, u, `) (1, 10, 213) (2, 5, 212) (5, 2, 1638) (10, 1, 819)

nmax
c 7343 7885 7859 7853

Table 1. nmax
c to fully breach the system with P1 = 1‰ and `× r = 213

(r, u, `) (1, 16, 213) (2, 8, 212) (4, 4, 211) (8, 2, 210) (16, 1, 29)

nmax
c 4929 4919 5065 4732 4928

Table 2. nmax
c to fully breach the system with P1 = 0.01‰ and `× r = 213

We notice from Table 1 and Table 2 that for all the possible optimal (r, u, `)
combinations, nmax

c always takes approximately the same value (well within the
standard deviation of the Monte Carlo simulations used to obtain the tables)
and only depending on the chosen P1 level. Hence, the optimal combination
(r, u, `) is not unique. We conjecture that there is a duality between u and
r with constrained memory. Note that we could try to explain this e.g. for
(r, u, `) = (1, 2, 2`) 7→ (2, 1, `) by splitting a rack of size 2× ` into two of size `.
However, two random keys from the original rack only have probability around

1/2 of being split into separate racks. Thus, further analysis is needed, which we
postpone for future research.

Attack 2: Breaking the Keys of a Random User. This attack happens
with probability P2 which depends on n. Therefore, we are interested in finding
the optimal u and r allowing maximizing nc for a given n under the constraint:

P2(
213

r
, u, n, nc, r) ≤ 0.1‰, 0.01‰

Tables 3, 4 investigate this for n′ = log10(n) = 1, . . . , 6. Values were obtained
using a Python code.

u = 1 u = 2 u = 3 u = 4 u = 5

n′ = 2 (9, 7) (2, 57) (1, 60) (1, 67) (1, 69)

n′ = 3 (1, 1) (3, 15) (2, 46) (2, 83) (2, 114)

n′ = 4 (1, 1) (3, 5) (2, 21) (2, 45) (2, 69)

n′ = 5 (1, 1) (2, 2) (2, 10) (2, 26) (1, 43)

n′ = 6 (1, 1) (1, 1) (2, 5) (2, 15) (1, 27)

Table 3. (ropt, nmax
c) for P2 = 1‰

u = 1 u = 2 u = 3 u = 4 u = 5

n′ = 2 (9, 4) (6, 35) (3, 66) (2, 65) (1, 72)

n′ = 3 (1, 1) (4, 9) (4, 28) (3, 50) (2, 70)

n′ = 4 (1, 1) (3, 3) (3, 13) (3, 28) (2, 43)

n′ = 5 (1, 1) (4, 2) (4, 7) (3, 16) (2, 27)

n′ = 6 (1, 1) (1, 1) (2, 3) (2, 9) (2, 17)

Table 4. (ropt, nmax
c) for P2 = 0.01‰

From Table 3 and Table 4 we see that the highest value of nc is reached when
(u, r, n) = (5, 2, 1000) (nmax

c = 114) for P2 = 1‰ and when (u, r, n) = (5, 1, 100)
(nmax
c = 72) for P2 = 0.01‰.

Remark 11. We notice that the value of nmax
c for Attack 1 is about 5 times bigger

than the one for Attack 2 (nmax
c (P1 = 1‰) = 569 > nmax

c (P2 = 1‰) = 114 and
nmax
c (P1 = 0.01‰) = 341 > nmax

c (P2 = 0.01‰) = 72).

C.2 Full Breach

Definition 4. A full system breach happens when the adversary succeeds to
recover all the `× r secret keys given by the CA.

In the following, we are interested in finding the maximal value of nc needed to
fully breach the system and the corresponding r and u for a fixed memory size
M = ` × r = 213. Table 5 shows the numerical values obtained after running
Monte Carlo simulation in Python and taking N = 1000.

u 1 2 3 4 5 6 7

nmax
c 40159 39270 25430 18323 15544 13283 10606

u 8 9 10 11 12 13 14

nmax
c 10219 8413 7361 6884 6645 6326 5636

Table 5. Values of nmax
c to fully breach the system (`× r = 213 and N = 1000). In all

cases ropt = 1.

nmax
c is strictly decreasing when u is increasing and reaches the highest value

when u = r = 1.

C.3 Expected Number of Corrupted Users to Fully Breach the
System

This section gives numerical values of nc to fully breach the system. The following
values are obtained using Monte Carlo simulation in Python and taking N =
10000.

0 2 4 6 8 10 12 14 16 18 20
20

25

30

35

40

45

r

n
c
/1
0
2

40

45

50

55

60

65

70

75

80

n
c

u = 1

u = 50

Figure 8. r and nc for ` = 400 and u =
1, 50 to recover all secret keys.

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

u

nc/10
2

r = 20

r = 1

Figure 9. u and nc for ` = 400 and r =
1, 20 to recover all secret keys.

From Figure 8 and Figure 9 we see clearly that nc is increasing when r is
increasing and decreasing when u is increasing. The values obtained through this
simulation are very close to the theoretical results of Section 3.4. We consider
the main cases (u = r = 1, u > 1, r = 1 and u = 1, r > 1) and refer the reader to
Table 6 for precise values.

Cases u = r = 1 u > 1, r = 1 u = 1, r > 1

(nsimu
c , ntheo

c) (2627, 2630) (47, 47) (3850 < 9854)

Table 6. nc values from Monte Carlo simulation and theoretical formulas

	Authenticated Key Distribution: When the Coupon Collector is Your Enemy

