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Abstract. Recently, Srinath and Chandrasekaran have proposed an undeniable
blind signature scheme (UBSS) from supersingular isogeny to provide signer’s
control in a quantum-resistant blind signature. However, certain weaknesses of
undeniable signature have already been observed and have been overcome by
formalizing the designated verifier signature (DVS). In this paper, we explore the
possibility of generic construction of a DVS from hard homogeneous spaces. Fur-
ther, following this motivation, we realize a quantum-resistant designated verifier
blind signature (DVBS) scheme based on supersingular isogenies from the pro-
posed generic construction. In contrast to the UBSS, our construction do not re-
quire interactive communication between the signer and the verifier, yet engages
the signer in the verification. The compact signature adds more security proper-
ties in a quantum-resistant blind signature to be useful in specific applications
including electronic tendering, online auctions etc.

Keywords: Supersingular elliptic curves, [sogeny, Post-quantum signature, Des-
ignated verifier signature, Blind signature.

1 Introduction

At the turn of the century, we are at the verge of a quantum era which would render
many cryptographic schemes unsafe. This paradigm shift has called for drastic change
in the way we perceive the subject. More precisely, most of the public-key crypto-
graphic protocols whose security are based on hard mathematical problems like integer
factorization and discrete logarithm problem (DLP), considering the classical comput-
ers, would be vulnerable by large-scale quantum computers, for instance following an
algorithm due to Shor [31]. This threat recommends development of quantum-resistant
primitives. In less than past two decades, the preparation to address this upcoming risk
has taken shape and recognized as a fast growing topic of research referred to as post-
quantum cryptography (PQC). Currently in the last 4-5 years this topic has received
utmost attention as the National Security Agency (NSA) has announced its plans to
shift to quantum-immune algorithms and National Institute of Standards and Technol-
ogy (NIST) is conducting a project to standardize post-quantum public-key cryptog-
raphy. Some practical outcomes— like the quantum supremacy achieved recently by
Google [1]]- also encourage researchers to attain practical quantum-resistant schemes
in the soonest possible time. In this line of research, certain candidate constructions



have already been proposed including lattice-based [15/28]], code-based [22]], multi-
variate equations-based [25]], hash-based [23] and isogeny-based [[L8]]. The last one is
comparatively recent and offers primitive with smaller key size. In this paper, we con-
sider constructions based on isogenies over supersingular elliptic curves. In the heart
of the isogeny-based cryptography are the supersingular elliptic curves. The security
of the primitives is based on the difficulty of finding a path in the isogeny graph of su-
persingular elliptic curves. The known quantum algorithm to solve this problem due to
Biasse et al. [2]] has exponential time complexity.

Motivated from the approach by Couveignes [9] of integrating the hard homogeneous
spaces (HHS) in the class field theory (CFT) to couple the DLP into HHS, Rostovtsev
and Stolbunov [29] constructed rational-morphism-based cryptosystems on ordinary
curves. These protocols had many security flaws and were not quantum safe. The super-
singular isogeny graphs were first considered in the construction of collision-resistant
hash function from expander graphs by Charles et al [5]. This was a turning point, as
it had the potential for providing a quantum safe platform. In the consequent years,
Stolbunov [34]] proposed a Diffie-Hellman key exchange (DHKE) utilizing isogenies
between ordinary elliptic curves, for which Childs et al. [8]] showed recovery of private
key in sub-exponential time for quantum case. Another paradigm shift in this regard was
through the works of Jao and De Feo [18] who introduced DHKE inspired by [2934]
and using isogenies of supersingular elliptic curves. This lead to the construction of
public-key encryption scheme and interactive identification protocol [12] from super-
singular isogeny. Though, in his doctoral thesis, Stolbunov [35] outlined a probable
idea of digital signature from isogenies, but strong designated verifier signature by Xi
et al [36] and undeniable signature of Jao and Soukharev [[19] were the initial proposals
of concrete signature schemes using the properties of isogenies between supersingular
elliptic curves. A generalization of the isogeny-based digital signature schemes, from
supersingular elliptic curves, were presented by Galbraith et al. [[14] and Yoo et al. [41]].
The first signature of [[14] and the signature of [41]] were obtained applying the Un-
ruh’s transformation [38]]- a quantum analogue of the Fiat-Shamir transform [13]]- on
the De Feo-Jao-Plat [[12] identification protocol. The signature in [14] achieves space
optimization due to smaller size than that of [41].

To achieve off-line anonymity, David Chaum [6] introduced the idea of blind signatures.
It is essentially an interactive protocol where a requester receives signature on a mes-
sage from a signer in a way that the actual message and the actual signature is blinded to
the signer. Due to its property of anonymity, this signature finds excellent applications
in electronic cash system viz. untraceable payments, and electronic voting system. The
main security requirements of blind signature are unforgeability and blindness. Security
challenges of blind signature are broadly described in [20J27430]. The idea of undeni-
able signature [[7]] was introduced to provide signer’s control in the signature’s verifi-
cation. This is obtained by directly involving the signer in the verification procedure.
The signer can decide when a signature has to be verified. Such a signature is useful
in application like licensing software etc. Unfortunately, certain fundamental weak-
nesses [11], blackmailing [[16]] and man-in-the-middle attack [10] have been observed



for the undeniable signature which marginalize its practical applications. Another ob-
vious roadblock is the requirement that the signer has to be available online always for
the verification, which is a less viable deal. To address these observed weaknesses of
the undeniable signature, the notion of designated verifier signature (DVS) [[L7] was
proposed. A DVS is issued for an authorized verifier who can only verify the signature
but cannot transfer the conviction of verification to any third party.

1.1 Contribution

Recently, Srinath and Chandrasekaran [33] proposed isogeny-based quantum-resistant
undeniable blind signature scheme (UBSS) by adding the properties of blind signature
into the Jao-Soukharev’s quantum-resistant undeniable siganture [19]. The main ob-
jective of the construction is to provide control to the signer in the quantum-resistant
blind signature. As discussed above, the main motivation of an undeniable signature is
to achieve signer’s involvement in the verification (without acting maliciously) in order
to avoid undesirable verifiers who can be convinced of the validity of the signatures.
However, in undeniable signature the signer does not have control over the verifier in
the sense that she can recognize the authorized verifier beforehand (i.e. before the inter-
action). Also, a recent observation by Merz et al. [24] shows the possibility of solving
the underlying hard problems of the undeniable signatures [19133]] in polynomial time.

To address the observed weaknesses of undeniable signature in a post-quantum undeni-
able blind signature, in this paper, we propose a supersingular isogeny-based designated
verifier blind signature (SI-DVBS) scheme. A relevant work to our proposal is the paper
by Xi et al. [36], which offers a strong designated verifier signature from supersingular
isogeny (SI-SDVS). Considering the involvement of (private, public) key pair of signer
and verifier respectively in the signing and the (public, private) key pair in verifica-
tion phase, it is straight forward to obtain SI-SDVS following the SIDH [18]]. Further,
in [36]] the property of strongness—i.e. privacy of signer’s identity— provides anonymity
to the signer in a sense that when such a signature is trapped even before reaching to
the designated verifier, it cannot be distinguished among the possible signers that ex-
actly who has signed the message. In contrast to this approach, we achieve anonymity
of signer by the means of blind signature which is a more standard and effective prac-
tice of realizing anonymous signature than attaining strongness. Moreover, we provide
proof of achieving additional security properties like unverifiability for such a signature.

Our motivation to this work is to offer more suitable and practical alternate of the
quantum-resistant UBSS, by adding more security properties. Moreover, in the view
of [33]], we eliminate the undesirable communication between the signer and the veri-
fier and hence overhead due to this interaction. Additionally, we also give an instance
where our approach can be generalized to realize a designated verifier signature under
different security assumptions including those in classical setup as well. To the best
of our knowledge, the only proposal of designated verifier blind signature in the clas-
sical platform is [42]. Furthermore, we have not observed any such signature in any
post-quantum setting yet.



1.2 Outline of the Paper

The rest of this paper is organized as follows. In Section 2] we introduce some related
mathematical notions, definitions and problems. In Section [3|we elaborate the approach
of our construction in more generic sense and discuss the possibility of constructing
designated verifier signature in general under different assumptions. In Section |4} we
formalize definition of the supersingular isogeny-based designated verifier blind signa-
ture (SI-DVBS) scheme and discuss the security properties of SI-DVBS scheme. Our
proposed SI-DVBS signature scheme is presented in Section [5] We analyse the secu-
rity of our scheme in Section [6] and lastly present a brief conclusion of our work in
Section

2 Background

In this section we introduce the notations used in the paper, some relevant definitions
and computational problems. We refer [32040l18/19]] for mathematical notions and def-
initions related to finite field, elliptic curve and isogenies.

A probabilistic polynomial time (PPT) algorithm is a probabilistic/randomized algo-
rithm that runs in time polynomial in the length of input. We denote by y < A(x) the
operation of running a randomized or deterministic algorithm A with input x and storing
the output to the variable y. If X is a set, then v <& X denotes the operation of choosing
an element v of X according to the uniform random distribution on X. We say that a
given function f : N — [0,1] is negligible in n if f(n) < 1/p(n) for any polynomial p
for sufficiently large n [21]].

An elliptic curve is a non-singular projective curve of genus one with a specified base
point. For practical application, elliptic curves can be considered as plane non-singular
cubics with fixed Weierstrass co-ordinates. These varieties are particularly interesting
due to the fact that they can be endowed with a group law, expressed in terms of regular
morphisms. It is natural then to consider morphisms of curves which are homomor-
phisms of groups. Let Ey and E; be elliptic curves defined over field I, an isogeny
0 : Ey — E; is a morphism of curves which is also a homomorphism of groups. In this
case, Ep and E; are said to be isogenous. Tate’s theorem [37] says that two curves Ey
and E; defined over a finite field F are isogenous if and only if they have the same
number of F-rational points, i.e. #E(F) = #E, (F).

Each isogeny ¢ : £y — E; induces an injection between the fields of rational functions
of the curve that fixes F by map ¢* : F(E|) — F(Ey). The degree of ¢ (denoted as deg 0)
is defined as [F(Ep): ¢*(F(E)))]. In this view, an isogeny is said to be separable (insep-
arable) if the induced field extension is separable (inseparable). An isogeny of degree ¢
is called ¢-isogeny.

Each separable isogeny can be identified (up to isomorphism) with its kernel (denoted
as ker). In particular, if Ey is an elliptic curve defined over I, and G is a finite sub-
group of Ejp, then there exists a unique separeble isogeny ¢ : Ey — E; defined up to



F-isomorphism such that ker¢ = G and #ker ¢ = deg¢. The image curve E; is defined
up to isomorphism and denoted by Ey/G. An explicit representative of a quotient can
be determined using Vélu’s formulae [39]. Throughout this paper we determine ellip-
tic curves as quotients, thus we always identify each curve with its isomorphism class.
Moreover, every class of F-isomorphic curves is uniquely identified by an element of
F, the j-invariant. Given an elliptic curve E, its j-invariant j(E) can be computed by
the coefficients of a Weierstrass form. Further, the fact that two elliptic curves are iso-
morphic or not can be verified by just comparing their j-invariants.

If the kernel of an n-isogeny is cyclic then the isogeny is said to be cyclic and we say
that the two curves are n-isogenous. Let E be an elliptic curve defined over I, then for a
positive integer n, the n-torsion subgroup of E is defined as E[n] ={P € E | nP = O},
where O is the identity element of E. Given a prime ¢, co-prime to the characteristic of
the base field, the torsion group E (] is isomorphic to (Z/¢Z)?. Hence E has £+ 1 cyclic
subgroups of order ¢ and there are (up to isomorphism) exactly £+ 1 distinct (separable)
isogenies of degree ¢ with domain E.

In the set of supersingular elliptic curves defined over I, an isogeny graph is a graph
whose nodes represent elliptic curves (up to isomorphism) and edges represent isoge-
nies between them. Let Ey and E be elliptic curves defined over [F, then for the isogeny
0:Ey — Ej of degree n, there exists a unique isogeny ¢ : E; — Eo, called the dual
of ¢, such that ¢ o = d o ¢ = n, where n is a multiplication map. Hence isogeny graph
can be considered undirected.

The set of all endomorphisms of an elliptic curve E, denoted as End(E), forms a ring
under the operations of pointwise addition and functional composition. If an elliptic
curve E is defined over a field of positive characteristic, then End(FE) is isomorphic
either to an order in a quaternion algebra or an order in an imaginary quadratic field.
In the first case, the elliptic curve is said to be supersingular and in the latter ordinary.
Tate [37] proved that an ordinary and a supersingular curve cannot be isogenus. In par-
ticular, it is possible to prove that the supersingular elliptic curves define a connected
component of the isogeny graph whose node can be represented using only j € F . If
we restrict to consider only cyclic isogenies of prime degree ¢, we obtain a £+ 1-regular
graph. This /-isogeny graph has many good properties, in particular it has been proved
to be an expander graph.

In our construction, we consider as base field I, where p is prime of the form p =
ﬁ‘;{ié? Eflfﬁfv}‘ f £ 1 where ¢; are distinct small primes, e; are positive integers and f > 1
is a small cofactor. We fix a supersingular curve E over F » and {Pg,0¢% },{Ps,05s},
{Py,Qy} and {Py,Oum} bases of the K%,E? ,62}/, and /}} -torsion groups respectively.
These public parameters are implicitly provided for all the problems discussed below.

For more details of the notations please refer section 3}
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Definition 1 (Decisional Supersingular Isogeny (DSSI) Problem). Given an addi-
tional curve E defined over F >, decide whether E is 625 -isogenous to E.

Definition 2 (Computational Supersingular Isogeny (CSSI) Problem). Given the
curve E and the images ¢s(Py), 05(Q4), find a generator of (Ps + ng - Qs), where

Os : E — Eg is an isogeny with kernel (Ps +n - Qs), and ng < Z/K?Z.

Definition 3 (Supersingular Computational Diffie-Hellman (SSCDH) Problem). Let
¢s:E — Es and ¢ : E — E, be isogenies with kernel (Ps + ng-Qg) and (Py +
nqy - Qy) respectively, where ng - 7/ (3 Z and ny &7/ KZJ/Z. Then, given the curves
Es,E, and the images 05(Py),05(0q),04(Ps),04(Qs), find the j-invariant of

E/(Ps+ns-Qs,Py+nqy-0Qy)

Definition 4 (Decisional Supersingular Product (DSSP) Problem). Given an isogeny

0: E — E5 of degree 625 and a tuple sampled with probability 1/2 from one of the fol-

lowing distributions:

— (E1,E»,¢'): where the product Ej x E, is chosen randomly among Zflf-isogenous
couple to E x E3, and ¢/ : E; — E; is an isogeny of degree 625

— (E1,E2,¢'): where Ej is chosen randomly among the curves isogenous to E, and
0’ : E; — E, is arandom isogeny of degree 525

then determine that the tuple is sampled from which of the above distributions.

Isogeny graphs allow to translate the problem of finding an isogeny between two given
elliptic curves in the problem of finding paths between two nodes in a graph, which
can be solved by a meet-in-the-middle approach in O(y/n) time and memory, where
n is the number of nodes in the graph. Biasse, Jao and Sankar [3] published in 2014
the first quantum algorithm to solve the general isogeny problem (GIP) between su-
persingular curves by random walks in the 3-isogeny graph. They reduced GIP to find
an isogeny between two supersingular elliptic curves defined over I, which can be
solved in sub-exponential time. Specifically, they proved that there exists a quantum
algorithm, to solve this problem, with complexity O( pl/ 4) in the general case, and with

O(eg Vlog(p)y/loglog(p)) when both the curves are defined over ;. In the current state
of the art, there is no specific algorithm that uses the additional information provided
in CSSI, except an algorithm by Petit [26]]. However, the hypotheses assumed in [26]
are different from the hypotheses suggested by Jao and De Feo [18]] to use isogenies of
degree of the same size in order to maximize the security of SIDH.



3 A General Construction of DVS

In the DHKE protocol of [12]] the zero knowledge proof (ZKP) of identity is provided
by a commutative square diagram. An extended view of this approach can be seen in
achieving confirmation and disavowal protocol, i.e. in verification, of the undeniable
signature [19]. It is obtained through a 6-faced diagram i.e. a cube in which each of
the face is a commutative diagram. The reason for it is straight forward. The scheme
in [19] uses 3 primes over the 2 primes of [[12]. In general extending this notion to
arbitrary number of primes would render in realising a hypercube with each face hav-
ing a commutative diagram. We investigate this fact to realize a signature scheme in a
generic sense considering some functionalities of the signature. We start our investiga-
tion by considering the double cube, with a commutative square at each of the faces, as
conceived in section 5] for the construction of our proposed SI-DVBS scheme.

The idea is as follows: each function involved contributes a path in a three-dimensional
commutative diagram, in which, specific information are required to move in a specific
direction.

Es Esy
e -
floor0 E —F—— Eyp & skg < Signer
— & skqy < Verifier
Esm —— Esyy
e A 0] —1 < m < Verifier, Requester
floor-1 Ey —+— Eqy
—1] -2 & r < Requester
Eygs — Evugs
A A
floor -2 Emg > E‘VMK

The lower cube is involved only in the Sign algorithm of our proposed scheme which
essentially contains the blinding and unblinding phases. However, only the upper cube
can be considered for signature, without considering the blindness property, as

Eyy
0y (90 (Ps)) +ns -0y (04(05)))

hence, this way we generally obtain an isogeny-based designated verifier signature.

An interesting question is that, if this double cube model can be adopted each time
to realize a Diffie-Hellman type primitive. For example, let us consider a cyclic group
G = (g), in which the DLP is hard (suppose for now, not in the post-quantum context),
and define the exponentiation automorphisms ¢,: G — G such that g — g*. We can
build a similar commutative diagram in which the signer, verifier and requester can
move following the similar rules, i.e.



8 8
fl g - i
oor0 & g & 05 < Signer
— & 0y, & Verifier
gSﬂ’l ; gsvm
e e 0] —1 < 0, < Verifier, Requester
floor-1 g" —+F— g™
—1] -2 < ¢, < Requester
gmrs [ ngrS
e e
floor -2 gmr I gvmr

Now, we can define Setup, KeyGen, Sign, Verify and TranSim as above by substituting
the isogenies with the exponentiation maps. Let us consider the upper cube i.e the DVS
part of the schemeﬂ Clearly this is not unforgeable, since if an adversary queries the
signature S = g*" on a certain message m, encoded as m, then he can recover g* as
S'/m and can compute a valid signature for another message m’ as §m'/m_ As a counter-
measure, we can impose the signature to be hashed.

In particular, the idea of hashing is not an effective countermeasure when we want to
achieve the blindness, since an adversary acting as requester must have access to S be-
fore the hashing, to unblind the signature. However, this idea of three-dimensional cube
can be used to obtain a DVS based on DLP in general. Further, a similar approach can
be adopted to achieve a DVS based on ECDLP.

Couveignes [9] introduced the notion of HHS, which is essentially a simple transitively
action of finite group, some of whose operations are easy to compute and some are hard.
He showed that from each HHS a Diffie-Hellman type protocol can be obtained natu-
rally. In this view, we have that, from each HHS a DVS can be obtained naturally. An
alternative isogeny-based cryptograpic primitive is commutative SIDH (CSIDH) [4],
which at the current state of art, is an instance of HHS. More explicitly, in this case
the objects are supersingular elliptic curves defined over F, whose endomorphism ring
over I, is a given order O, in an imaginary quadratic field, and the arrows are the ideals
of O. Thus, our construction provides also an DVS based on CSIDH.

We emphasise that our DVBS construction can be realised on SIDH setting but not
on the CSIDH. The crucial issue is that to recover E¢q from a signature, additional
information are required to compute the dual isogeny using the hash of the message.
An interesting problem is to understand if it is possible to modify our protocol to obtain
a DVBS from HHS.

! Note that in the general setting requester and signer are the same person.



4 Supersingular Isogeny-Based Designated Verifier Blind

Signature (SI-DVBS) Scheme

We present here the definition of a supersingular isogeny-based designated verifier blind
signature (SI-DVBS) scheme and formalize a security model for it.

4.1 SI-DVBS Scheme

There are three users in the scheme: the requester R who requests signature, designated
to a particular verifier, on a blinded message, from the signer; the signer S who signs
the blinded messages for the requester and the verifier 1 who verifies the signature re-
ceived from the requester. The SI-DVBS scheme consists of the following algorithms:

1.

params <— Setup(): This is the Serup algorithm. On input security parameter A, this
algorithm generates the system’s public parameters params. In all the algorithms
from here onward, params will be considered as an implicit input.

. ((pkg,sks), (pkqy,skqy)) < KeyGen(params): This key generation algorithm, on in-

put params, generates signer’s and verifier’s (public key, private key) pairs (pk, sks)
and (pkq, skq)), respectively.

. 6 < Sign(sks,pkq,m): This is the signature algorithm. On input the signing key sk ¢

of signer, public key pk,, of verifier and the message m, this probabilistic (or deter-
ministic) algorithm finally generates a SI-DVBS, 6. The main algorithm consists of
the following three sub-algorithms:

(a) o’ < Blinding(m, r, pkq)): This is a probabilistic blinding algorithm, run by the
requester, which outputs the blinded message m’ depending on the input mes-
sage m, a random choice r and the public keys pkq, of the verifier.

(b) ¢’ < Sign(m',sks): This is a signing algorithm run by the signer, which takes
input the blinded message m’ and signer’s secret key sk;. This algorithm outputs
signature ¢’ on the blinded message m'.

(¢) 6« Unblinding(o’, r): This is a deterministic unblinding algorithm , run by the
requester, which outputs the unblinded signature ¢ on message m, taking input
the blinded signature 6" and the random choice r.

. b« Verify(skq),pks,0,m): This is a deterministic verification algorithm run by the

designated verifier. On input secret key skq, of the verifier, public key pk ¢ of signer,
signature ¢ and message m, this algorithm outputs a bit b which is 1 if the signature
is valid and O if invalid.

. 6 < TranSim(skq,pkg,m): This is a deterministic transcript simulation algorithm

run by the designated verifier. On input secret key skq, of the verifier, public key pk ¢
of the signer and message m, this algorithm outputs identically distributed transcript
that is indistinguishable from the original signature.

Remark 1. In practice we can be interested to give the signer the possibility to have
control on the verifier. More specifically, if we add to the input of 3.(b) explicitly the
identity of the verifier, the signer can decide to sign, or refuse to sign a message for
such designated verifier.



4.2 Security Properties for SI-DVBS

A secure SI-DVBS scheme must satisfy the following properties.

1. Correctness: 1If the signature G on a message m is correctly computed (i.e. signed
correctly on the blinded message m’ by the signer § and unblinded correctly by the
requester R), then the designated verifier % must be able to verify the correctness of
the (message, signature) pair (m,s). That is,

Pr(1 < Verify(skq,pks,Sign(sks,pks,pkq,m),m)] = 1.
where Sign(sks,pk,pkq,m) = o.

2. Unforgeability: 1t is computationally infeasible to construct a valid SI-DVBS with-
out the knowledge of private key of either the signer or the designated verifier.

3. Blindness: The signer should not be able to correspond the (message, signature)
pairs to their blinded copies.

Definition 5 (Blindness). An SI-DVBS scheme is said to achieve blindness if for any
PPT adversary A4 which runs in time ¢, the advantage

1
Advsipvesa (M) i=€a(h) = [Prfb’ = b] - 5

is negligible in A in the below game. We consider the security game motivated by [30/33]].

1. Setup: On input a security parameter A, the challenger C runs KeyGen() to gen-
erate the public parameter params and the system key pair (pk,sk) and gives the
adversary A4 the public key pk.

2. Challenge: A outputs two messages mg and m; and sends them to C. Receiv-

ing these messages, C picks a random bit b & {0,1} and reorder the messages as
(mp,m(;_p)), blind them as m), = Blind(my,r1) and m’(lib) = Blind(m(j_p),r2). 11,12
are chosen at random.  then gives m;), and m'(
sages.

3. Queries: A then obtain the following responses by accessing the corresponding
oracles:

H : / / : / /
— A access the Sign oracle for inputs m), and M _pys and receives G, S(1_p)-

1p) tO A as the challenge blinded mes-

— A sends 6, and G/(lfb) to the challenger C and receives o), and G(;_p) as the cor-
responding unblinded signatures.
4. Guess: Finally 4 outputs its guess b’ for b.

4.Unverifiability: It is computationally infeasible to verify the validity of a SI-DVBS
without the knowledge of the private key of either the signer or the designated verifier.

5. Non-transferability: This property establish the fact that the designated verifier can-
not transfer the conviction of the verification to any third party. This is due to the fact
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that the verifier can output a signature, during the simulation in the TranSim phase,
indistinguishable from the DVBS obtained in the Sign protocol. More formally, given
a DVBS (i.e. 6) on message m, it is infeasible for any PPT adversary A4 to decide
whether ¢ was produced by the signer or by the designated verifier, even if A4 is also
given the private keys of the signer and the designated verifier.

Definition 6 (Non-transferability). An SI-DVBS scheme is said to achieve non- trans-
ferability if the signature generated by the signer is computationally indistinguishable
from that generated by the designated verifier, that is,

0 < Sign(sks,pkq,m) ~ G < TranSim(skq,pk,m).

S Proposed Scheme

In this section, we present our proposed SI-DVBS. As described in section ] the pro-
posed scheme consists of the algorithms: Setup, KeyGen, Sign,Verify and TranSim.

Setup: Given a security parameter A, the algorithm generates system’s public param-
eters

params = (paEv{PR;QK}a{P57Q.5}7{P‘VaQ‘V}v{PMvQM}7H)

where p = p(A) is a prime of the form E%K? Kf,j/ﬁf‘f,” - f+£1, ¢; are small primes and

f 1s a co-factor such that p is prime, E is a supersingular elliptic curve over I ,» such
that #E(F 2) is divisible by (( (5.} €)?, {Px, O },{Ps, s},

{Py, 0y}, {Py,Qum} are bases ofE[EZ?],E[E?],E[éf,}’},E[é;ﬁf] respectively, and H is

cryptographic hash function defined as H : {0,1}* — % .
M

Remark 2. Since the security of our protocol relies on the hardness of computing iso-
genies, consistently with the literature, we consider the scheme achieving the security
level A if p satisfies certain conditions, mentioned further in section @

KeyGen: The signer and the verifier generate their respective public key and private
key as follows:

— The signer randomly selects ng € Z /€§5 Z., computes the cyclic subgroup
Ks = (Ps+ns-Qs) C E and the isogeny 05: E — Es were E is a representative
of the class of curves E /K. The public and private key of the signer are as follows:

Pks < Es,05(Py),05(Qv),05(Pu), 05(Om)
sks < ng (or equivalently Ks or ¢)

— The verifier randomly selects nqy, € Z/ Ef,“’Z, computes the cyclic subgroup
Ky = (Py +nq-Qq) CE and the isogeny ¢ : E — Eq were Ey) is a represen-
tative of the class of curves E /X . The public and private key of the verifier are as
follows:

Pky < Eq,00(Pu),09(0m),09(Ps),04(0s),09(Pg),04(0x)
sky <= nq (or equivalently %, or ¢4))
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Sign: To get a DVBS on message m, the requester & _first blinds the message and sends
it to the signer §, who signs the blinded message and sends back to & . Finally, X
unblinds the signature received from the signer, to output signature on m. The following
algorithms describe this process:

(a) Blinding:
Hashing : Let m be the message to be signed. The requester computes the hash
h = H(m) and the isogeny ¢, whose co-domain is the curve

Eypy = Ey
VM 00 (Pu) +h- 0 (Om))

Additionally the following images are computed

Oom (00 (P ) 0arn (00 (Q%))s Oarns (90 (Ps)), dps (90/(Qss))

Blinding : The requester selects r € Z/ €;§Z randomly and computes the isogeny
¢4pg Whose co-domain is

Eym
O (P (Pg)) +7-Op (04(0g)))

E‘VMR = <

dymg

Eymz

Remark 3. Inspired by [33], now we need to compute the dual of ¢,),¢ to make
the unblinding possible. More precisely it is sufficient for our purpose that the re-
quester finds the inverse of this map in the isogeny graph. In what follows we are
writing (T),VMR for such a map and identifying the co-domain E,, little improp-
erly, since such E,, is defined up to isomorphism. We refer to [33] for details
(see Section 4 and Remark 4.1) and recall the main operations in order to establish
a coherent notation in our setting.
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The requester has to find a point Ky € Eqy, [E;?] of order exactly E;{i such that
Ky ¢ kerdqy4 . Then he sets ker(f)q/MK = (0qy5 (Ky)). Now he chooses a ran-
dom basis {P;i’ Qlﬂi} of E’VMK[E;?] and computes m,n € Z/é;{iZ such that

Oymg (Ky) =m-Py +n-Qp

The masking curve Eq¢, the tuple {P;i’Q/R} and the following images are
sent to the signer

Oymir (Qvn (00 (Ps))), 0ymx (O (09(Qs)))-
(b) Sign : The signer computes the curve

Eor o Eyyg
VMRS (0 mmag 0 (00 (Ps)) + 115 - 0unrg (01n (0(Q5))))

|
|
|
l
¢fVM 1
v
Eyy
|
|
l
o |
VMR
| Epygs
. //;;Mx5
Eymg

and provides Eqyy g 5. Qunizs(Pg ) and 0qp g s(Q% ) to the requester as her sig-
nature on the blinded message Eqy/ -

(c) Unblinding: Receiving the signature on the blinded message, the requester gener-
ates the signature on the original message m, by computing

Eymgs
(m-0ppgs(Pg) +n-Oyyzs(Qg))

Eyygsz =

and sends the signature ¢ = (m, j(Eq¢ s%/)) to the designated verifier 7.
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Eypg sy

dvpz

dymz
VMRS

Pl
-

2 Opmg s
Eymz

Verify :  To verify the received signature ¢ on the message m, the designated verifier
first computes 7 = H(m) then proceeds by computing the curves

Ecy = Es
SV 05 (Py) + 1y 05(Qy))

and

P Esy _
SVM 0 50(05(Pu)) + - 050(05(Om)))

Finally, the verifier accepts G as a valid signature on message m if and only if

JEymzsgr) = J(Esyum)
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Eg Egq Es Esq
os -7 os -7
= oy L
E Ey E
: (DS VM
|
1
0
VOvm :
| Eymg s/ Esym
\ 0
; 3
Eyy .
| Pypg,
| |
1 1
| |
Oymg
: VMRS
| P .
b

TranSim : To output identically distributed transcripts indistinguishable from the re-
ceived signature G = Eq /4 s/ On a message m, the designated verifier proceeds ex-
actly in the same manner as the Verify algorithm, and computes a simulated signature
6 i.e. an elliptic curve isomorphic t0 Eqyg sz

6 Analysis of the Proposed Scheme

6.1 Correctness of the Proposed Scheme

The proposed SI-DVBS scheme is correct, as the curve Eqy¢ g is isomorphic to the
curve Egq,, thus their corresponding j-invariants are same

JEymzsg’) = J(Esym)-

6.2 Unforgeability

Following the security requirements formalized in section[d] we recall that the property
of unforgeability achieves the fact that no one, except the signer and the designated
verifier, can output an SI-DVBS which follows the verification correctly. In connection
to the most relevant works [19J33]], we emphasise that in contrast to the interactive zero-
knowledge proof adopted in [33] following the techniques of [[19], unforgeability of our
scheme corresponds to the notion in achieving completeness, zero-knowledge (NIZK)
and simulation-sound online-extractability as described in [38]] towards realizing NIZK
proof in quantum random oracle, as the presented signature is non-interactive.
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6.3 Blindness

We prove here that the proposed DVBS scheme achieves blindness following the model
formalized in section 4.2}

1. Setup: For security parameter A, the challenger C provides params

(p7E7{PRaQK}a{P57Q5}7{P’V7Q'V}7{PM7QM}5H)

and public keys

pks: Es,05(Py),05(Qq),05(Pu),05(Oum)

pk"l/: E‘Vv(I)‘V(PM)v(I)"V(QM)vq)‘V(PS)aq)’V(QS)?q)’V(PfR_)»q)’V(QR)
to the adversary 4.

2. Challenge: A outputs two messages mo and m; and sends them to C. Receiving these
messages, C picks a random bit b < {0,1} and reorder the messages as (mp,m(1_p))s
computes Eqy ¢, = Blinding(mp,r1) and Eymg,,_, = Blinding(m(;_p), r2) and sends
these curves to A4 as the challenge blinded messages.

3. Queries: A4 get access to two parallel interactive (Sign) protocols and finally receives
two curves Eqyg sgr, and Eqyg s/, from the challenger as unblinded signatures.
Precisely, during these interactive protocols the adversary A4 gets knowledge of the
curves:
= Eymy Evmz s, and isogeny ¢o between them.
= Eym, Eyug s, and isogeny ¢; between them.

- Eymg, Eyug s, and isogeny ¢!. between them.

- Eymg, . Evugs, . and isogeny ¢/ _.. between them.

such that there exists ¢ € {0, 1} (depending on b) providing the following commutative
diagrams:

9o o1
Eyyy ——— Evugsz, Eypy ———— Evmgsx,
I | | I
I | I I
I | I I
I I | I
I I | I
I l | I
I I l I
! ¢/ ! L A A
v A v I-c
E‘VMﬁK[ —_— E‘VMR,SE E’VM?(‘],C _— E’VMKS[,C

5. Guess: Finally A4 outputs the value of bit b.

Solution of DSSP Problem: By the knowledge of above curves and corresponding iso-
geies between them, it is straight forward that if the adversary A4 outputs correct value
of bit b, then the challenger C can output solution of the DSSP problem using all the
responses obtained by the adversary, as corgfactly deciding the value of b is equivalent
to deciding whether Eqyz | X Eqpyg s, 18 Eﬂé{-isogenous 0 Eqpy, X Eqprg g7, OF NOL,
i.e. to solve an instance of DSSP problem.
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6.4 Unverifiability

To verify the signature one has to compute the elliptic curve Egq, from the knowl-
edge of params and provided public keys. It is evident from the scheme described in
section E}, that computation of curve Egq/, isogenous to Eg requires the knowledge of
private key nq, of the designated verifier, which leads further the computation of curve
E 54734 isogenous to E¢q . Thus, it is evident that no user without the private key of the
designated verifier can actually verify the validity of the signature. Moreover, since a
transcript, indistinguishable to the proposed signature, can be simulated by the veri-
fier, the same fact applies for the signer (when she acts as a verifier for the simulated
transcript), hence, following the definition of unverifiability from section {4} it can be
established that it is computationally infeasible to verify the validity of the proposed
SI-DVBS without the knowledge of the private key of either the signer or the desig-
nated verifier.

6.5 Non-transferability

As described in section[d] the property of non-transferability implies that the signatures
simulated by the designated verifier are indistinguishable from those that he receives
from the signer. TranSim phase of Section[]already shows that this property is achieved
in the presented scheme.

6.6 Parameter Selection

The security of the proposed signature scheme relies on the problems related to comput-
ing an isogeny between two given supersingular elliptic curves. As in SIDH, the degree
of the isogenies involved in our scheme are public. In order to compute an isogeny of de-
gree (¢ between two given curves, the best (classic) solution is to explore the /-isogeny
graph using a meet-in-the-middle strategy. In our case, to achieve the maximal security
against this attack, we have to maximize the minimum of (O(Efl}/), 0(6? )). Moreover,

to achieve the maximal blindness, we have to maximize O(EZ{‘). Unlike the SIDH, we
reveal more information in the public key of the signer and the verifier. In particular,
we reveal the image of some N-torsion subgrups (for N greater than the degree of the
secret isognenies). Note that it is not possible to set the parameter as in SIDH, since
here the public parameters are unbalanced. We suggest to use Efﬂ/ ~ E? ~ AN~ p?lT
and (% ~ p'/7 and to set the initial curve E such that any non-trivial endomorphism is
unknown. Currently, to generate such a curve the best way is to consider a random walk
in the isogeny graph, however this operation must be performed by a trusted authority
since it reveals information on the endomorphism ring of E. This choice of parameter
is valid also in the quantum setting.

7 Conclusion

Designated verifier signature belongs to a special family of digital signature where a
document can be signed particularly for a designated recipient in such a way that only

17



the authorised verifier can validate the signature but cannot transfer the conviction of
verification to any third party. Blind signature is a candidate digital signature to provide
user’s anonymity. Now there may be situations where both these properties— anonymity
and signer’s control in the verification— may require together, for example in online
anonymous auctions, electronic tendering and voting. In particular, Srinath and Chan-
drasekaran [33] have proposed undeniable blind signature scheme (UBSS) from super-
singular isogeny for such a purpose. However, it has been observed that the undeniable
signature suffers by some well known weaknesses and limitations which can be ad-
dressed by a designated verifier signature (DVS). In this paper, we have proposed a
designated verifier blind signature from supersingular isogenies, which achieves simi-
lar properties as UBBS. Moreover, in contrast to the only existing SI-UBSS we do not
require interactive communications between the signer and the verifier i.e. we elim-
inate the communication overhead. Additionally, we have also formalized a generic
construction of a DVS from hard homogenous spaces and have discussed the possibil-
ity of realization of a DVS under different security assumptions.
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