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Abstract—The active participation of external entities in the
manufacturing flow has produced numerous hardware security
issues in which piracy and overproduction are likely to be
the most ubiquitous and expensive ones. The main approach
to prevent unauthorized products from functioning is logic
encryption that inserts key-controlled gates to the original circuit
in a way that the valid behavior of the circuit only happens
when the correct key is applied. The challenge for the security
designer is to ensure neither the correct key nor the original
circuit can be revealed by different analyses of the encrypted
circuit. However, in state-of-the-art logic encryption works, a lot
of performance is sold to guarantee security against powerful
logic and structural attacks. This contradicts the primary reason
of logic encryption that is to protect a precious design from being
pirated and overproduced. In this paper, we propose a bilateral
logic encryption platform that maintains high degree of security
with small circuit modification. The robustness against exact and
approximate attacks is also demonstrated.

Keywords—Logic Encryption; Logic Locking; Circuit Obfus-
cation; SAT-based Attack; Logic Complexity; Structural Com-
plexity; Affectability Ratio; Corruptibility Ratio

I. INTRODUCTION

Increasing the design costs of Integrated Circuits (ICs) on
the one hand, and growing the number of powerful Reverse
Engineering (RE) tools [1] on the other hand, make chip
protection one of the vital priorities for the semiconductor
industry. The main approach to prevent unauthorized products
from functioning is logic encryption in which key-controlled
gates are inserted to the IC netlist in a way that the valid
behavior of the circuit only happens when the correct key
is applied. To encrypt a circuit with traditional XOR-based
encryption [2], first a random combination of n buffers (for
key bit “0”) and inverters (for key bit “1”) are chosen, and
then each selected buffer or inverter is replaced with a key
bit controlled XOR gate. The correct n-bit key can be stored
in a tamper-proof memory or embedded into the circuit using
dummy-contact [3], stealthy dopant-level [4], or polymorphic
logic solutions [5], [6], [7].

However, the SAT-based attack [8] can defeat almost all of
the traditional logic encryption methods [2], [9], [10], [11],
[12], [13], [14]. The attack uses two copies of the encrypted
circuit with the same input, but different key values under a
given constraint to check whether it is still possible to generate
different outputs. Such input patterns are called Differentiating
Input Patterns (DIPs). Each DIP is then used to query the
activated IC as a black-box to get the correct output. Then,

the DIP with the output is used to further constrain the keys
under consideration. The power of the SAT-based attack lies
on the fact that a single query can remove a large number of
wrong keys.

Traditional logic encryption schemes considered only key
insertion without worrying about structural analysis, while
the post-SAT era approaches have to explicitly protect the
vulnerable structure of the SAT-proof component from the
removal attack. Thus, in post-SAT era, logic encryption can
be separated into two closely related goals: Logic locking and
circuit obfuscation. We define logic locking as a logical request
to make sure that the correct key cannot be easily figured out
by studying the logic of the encrypted circuit. On the other
hand, we specify circuit obfuscation as a structural request to
make sure that the original circuit cannot be simply extracted
by structural analyses of the encrypted circuit.

Based on the above definitions, the focus of the recent
approaches has been on the locking goal with little attention
to the obfuscation part. In addition, even the locking scheme
may be vulnerable against improved versions of the SAT-based
attack [15], [16], [17], [18], [19] that can return either an exact
or approximately correct key [20]. The main contributions of
the paper are three-fold:
• Suggesting a secure locking scheme against the original and

the improved versions of the SAT-based attack;
• Obfuscating only a small part of the original circuit to

reduce the overhead and maintain the performance;
• Integrating locking & obfuscation in post-SAT era instead

of postponing obfuscation to resynthesis.

A. Definitions

Suppose a Boolean function f : Bn → Bq represented by
a multi-level netlist of logic gates with a q-vector output and
f ′ : Bm → B as a Boolean sub-function of f (i.e., m ≤ n)
with a single output. In other words, f ′ is a sub-circuit of
f . Also, suppose a Boolean function g : Bn+l → Bq as a
locked version of function f in which there is a Boolean l-
vector k∗ such that g(x, k∗) ≡ f(x). Furthermore, suppose
a class H of obfuscated circuits including Boolean function
h : Bn+l+o → Bq in which there is an o-vector p∗ such that
h(x, k, p∗) ≡ g(x, k) with the following properties: First, any
two circuits in H are structurally indistinguishable. Second,
given any obfuscated circuit h(x, k, p) in which p 6= p∗,
structurally separating the original circuit f(x) from the locked
circuit g(x, k) is exponentially hard with regard to the p size.
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Fig. 1: Logic locking (a) Standard [21] (b) Stripped function-
ality [22]

Corruptibility Ratio (CR): We define CR of sub-function
f ′ as the number of input patterns in f in which flipping the
output of f ′ also changes the output vector of f divided by
the number of all input patterns in f .

Affectability Ratio (AR): We define AR of sub-function f ′

as the number of all input patterns in f ′ divided by the number
of all input patterns in f . In other words, AR = 2m−n.

Error Number (EN): We define error of a key k as
the number of input patterns in which there is at least one
inconsistency between the output vector of g under k and the
output vector of f . Accordingly, we define EN of the locked
function g as the average error among all the wrong keys.

Logic Complexity (LC): We define LC of a locked function
g as the average number of DIPs that is required to test under
the SAT-based attack [8] in order to reveal k∗.

Structural Complexity (SC): We define SC of an obfus-
cated function h as the size of its corresponding class H .

B. Motivation

After proposing the SAT-based attack, different logic lock-
ing methods [23], [24], [25] have been introduced to increase
the required number of DIPs exponentially with the key
size. However, these incremental techniques have two main
drawbacks. First, although they have high LC, they suffer from
very low EN. Second, the lock component is nearly separated
from the rest of the circuit. In other words, no SC parameter
is defined for such methods.

Due to the first drawback, the above methods are vulnerable
to approximate SAT-based attacks [15], [18], [17] that can
return an almost correct key in which only a small number
of input patterns produce wrong outputs. As an example,
AppSAT [15] first uses the original SAT-based attack to prune
some of the wrong keys with a certain number of DIPs.

Then, the SAT solver is utilized to report a key satisfying all
these DIPs. To estimate the error of the reported key, random
testing is adopted. If the estimated error is below a specified
threshold, the reported key is considered as an approximate
key. Otherwise, the samples that resulted in disagreement will
be added to the SAT formula as new constraints.

Because of the second drawback, the attacker can easily
remove the lock by structural analysis of the encrypted circuit.
Thus, a secure circuit obfuscation scheme is required that has
been given over to resynthesis in state-of-the-art post-SAT
era works. However, a large portion of the original circuit
needs to be modified in order to guarantee security against
the removal attack. But in most cases, the value of a design is
just the structure of the efficient netlist, and resynthesizing the
circuit for obfuscation will lose the design treasure. Recently
it is shown that stripped functionality logic locking [22] that
is viewed by the community as the most advanced and thus
perhaps the most secure approach to logic encryption is still
vulnerable to a series of structural analysis attacks [26] even
in the case of resynthesis.

In this paper, for overcoming the first drawback, we suggest
a secure logic locking scheme that defeats the original SAT-
based attack and its approximate versions. In order to solve
the second problem, we propose a practical circuit obfuscation
scheme that protects the lock component with small circuit
modification. Our proposed logic encryption platform that
maintains high degree of security with low-overhead, consists
of the following steps:

• First, a sensitive sub-circuit with high CR and high AR is
extracted.

• Second, the extracted sub-circuit is locked using a standard
or stripped functionality logic locking with high EN and
high LC.

• Third, the locked sub-circuit is obfuscated adopting an
efficient routing-based circuit obfuscation scheme with
high SC.

• Fourth, the obfuscated sub-circuit is concatenated with the
original one.

In state-of-the-art works of logic encryption, it is supposed
that the attacker has access to the physical layout. Moreover,
he can acquire a functioning circuit from the market as a black-
box and get the correct outputs for given input vectors. Also,
since almost all ICs are sequential circuits, it is assumed that
scan chain is accessible to the attacker. In this paper, we also
consider the above attacker model.

C. Warm-up Example

Standard and stripped functionality logic lockings [21], [22]
can be viewed as Fig. 1a and Fig. 1b respectively. However,
making the difference logic explicit introduces a structural
vulnerability; the difference logic has to be XORed with
the original circuit to form the encryption circuit. Therefore,
without circuit obfuscation, the original circuit lays exposed
for piracy. In order to prevent such removal attack on standard
logic locking, the whole circuit needs to be obfuscated. Not
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Fig. 2: Warm-up example (a) Original circuit (b) Locked
circuit with k∗ = 11 (c) Obfuscated circuit with resynthesis

only the Stripped Function Circuit (SFC) needs to be obfus-
cated in stripped functionality locking, but also the restore unit
may dominate the system performance parameters.

Fig. 2a depicts a simple circuit to be encrypted as an
example. First, the circuit is locked with an ad-hoc scheme
shown in Fig. 2b. Then, the locked circuit is obfuscated with
resynthesis shown in Fig. 2c to hide the vulnerable structure
of the lock. This encryption has two main drawbacks. First,
the secret key can be deciphered by a single SAT query.
In other words, any chosen input pattern by the SAT-based
attack can prune all the wrong keys. Second, the structure
of the obfuscated circuit is completely different from the
original one. In fact, when the resynthesis is considered for
obfuscation, substantial modification of the original design is
inevitable regardless of the locking approach.

II. BILATERAL LOGIC ENCRYPTION

In this section, we propose bilateral logic encryption that
consists of four main stages namely extraction, locking, ob-
fuscation, and concatenation. We use c17 circuit (i.e., Fig. 3)
from ISCAS’85 benchmarks [27] as an example.

A. Extraction

If only the sensitive component of the original circuit is
extracted as the sub-circuit, it may have small CR. Thus,
the effect of its encryption may not be fully transmissible to
the original circuit. On the other hand, if one of the primary
outputs of the original circuit is included in the chosen sub-
circuit, CR will be equal to 1. Thus, the straight forward way
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Fig. 3: Original c17 benchmark [27]

is to specify the sensitive component of the circuit and then
greedily add additional gates to its fan-out to reach the desired
CR. Because the selection criteria of the sub-circuit is based on
input/output sensitivity, the greedy algorithm can minimize the
area overhead of the encrypted circuit. The case for making
AR equal to 1 is easier since we can utilize the additional
inputs of the original circuit as fan-in signals to encrypt the
sub-circuit in a way that when the correct key is inserted, they
act like don’t care inputs but when a wrong key is inserted,
they participate in forming the output of encrypted circuit. Fig.
4 shows a sub-circuit extraction example with CR=AR=1.

B. Locking
Either the standard or the stripped functionality locking can

be applied to the extracted sub-circuit as long as the adopted
scheme has high EN and high LC. Fig. 5a shows a sub-circuit
locking example based on the standard scheme of Fig. 1a with
a 4-bit locking size. If an even key size l = n is considered,
in general we have:

h(x, k) =
∧

i∈0,...,n
2
−1

(x2i ⊕ k2i)⊕ (x2i+1 ⊕ k2i+1)

k 6= k∗ =
∧

i∈0,...,n−1

ki⊕k∗i
(1)

The above locking scheme has both EN and LC of 2
n
2 .

Thus, exact (or approximate) SAT-based attack cannot reveal
any correct (or approximate) key in linear time. Fig. 5b
depicts another sub-circuit locking example this time using the
stripped functionality scheme of Fig. 1b. The general form is:

h(x, k) =
∨

i∈0,...,n−1

xi ⊕ ki (2)

The above scheme has EN of 2 and LC of 2n−1. For the
above scheme, although an exact attack cannot report any
correct key in linear time, an approximate attack can easily
report an approximate key with small error. To have both high
EN and high LC, it is possible to adopt the following general
scheme for stripped functionality locking with a squared
number key size l = n:

h(x, k) =
∧

i∈0,...,
√
n−1

[ ∨
j∈i.
√
n,...,(i+1).

√
n−1

xi ⊕ ki

]
(3)

C. Obfuscation

The critical difference between the circuit obfuscation and
program obfuscation is that the former one has key inputs
while the latter one does not. In fact, the request to have key
inputs is an intrinsic feature of logic encryption. When we
allow key inputs and have protection mechanism for them, the
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Fig. 4: Sub-circuit extraction example
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Fig. 5: Sub-circuit locking example (a) Standard (b) Stripped
functionality

circuit obfuscation problem becomes simpler than the program
obfuscation.

Signal routing can be utilized in order to obfuscate the
locked circuit. First, we use breadth-first traversal of the locked
circuit to assign a level to each gate based on its critical
path from the primary inputs. In other words, all the gates
with more than one input (i.e., inverters are not considered) in
which they have the longest path t from the primary inputs will
be assigned into group t. Then, we obfuscate all the possible
connections between adjacent levels using the obfuscation key.
If the gate in level t is AND gate, each signal in level t − 1
will be connected as fan-in signal of the AND gate with an OR
gate and a obfuscation key bit. If the connection really exists
in the locked circuit, the correct value of the key bit is “0”;
otherwise in order to neutralize the dummy signal, the correct
value should be “1”. On the other hand, if the gate in level t
is OR gate, the same scenario will take place with the help of
a key bit controlled AND gate. In this case, the correct value
of the key bit for real signals is “1” and for dummy ones is
“0”. Fig. 6 shows a signal routing obfuscation example.

In order to reduce the key size while still cope with the SC
requirements, instead of obfuscating all the possible connec-
tion, the priority will be given to the signals that connect a
gate in the inserted lock to the extracted sub-circuit and vice
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Fig. 6: Signal routing obfuscation example (a) Original circuit
(b) Obfuscated circuit
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Fig. 7: Sub-circuit obfuscation example (a) Fig. 5a (b) Fig. 5b
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Fig. 8: Sub-circuit concatenation example

versa. In this case, the sub-circuit and the lock component will
become structurally mixed and thus fulfilled the requirements
of the class H of obfuscated circuits. Fig. 7a and Fig. 7b show
the obfuscation procedure for the locked circuits of Fig. 5a and
Fig. 5b respectively with a 4-bit obfuscation key.

D. Concatenation

Finally, the encrypted sub-circuit can be concatenated with
the original circuit. Fig. 8 depicts the concatenation stage
example. Comparing Fig. 3 and Fig. 8, it is clear than input
x0 should not have any effect on output y′2 when the correct
key is inserted. However, it may have influence on the output
when a wrong key is inserted.

E. Discussion

For the circuit encrypted with the propose bilateral encryp-
tion approach, it may be possible for the attacker to identify
the boundary of h′(x, k, p). Then, he can remove the encrypted
sub-circuit and build a partial circuit. Now, he has access
to not only the activated IC but also the partially running
circuit. However, when AR = 1 for the encrypted sub-circuit,
running the SAT-based attack (either exact or approximate)
on h′(x, k, p) has the same attack complexity as running the
attack on h(x, k, p).

Another way to determine the unknown sub-circuit function
is to run a brute-force attack on h′(x, k, p) using the partial
circuit and the activated IC. Again, if AR = 1, 2n+l+o

cases need to be checked which is equivalent to run a brute-
force attack on h′(x, k, p). Please note that the differentiation



TABLE I: Decryption results on the encrypted benchmarks with bilateral logic encryption approach

Benchmark #Inputs #Keys #Outputs #Gates
Original SAT-based Attack [8] AppSAT Attack [15]

CPU Time #Iterations Note CPU Time #Iterations Note

apex2 39 40×2 3 610 - - No Result 17.548s 262 Wrong Key

apex4 10 10×2 19 5360 1.276s 32 Correct Key - - No Attack

c17 5 6×2 2 6 0.02s 7 Correct Key - - No Attack

c432 36 36×2 7 160 - - No Result 10.376s 262 Wrong Key

c499 41 42×2 32 202 - - No Result 15.724s 262 Wrong Key

c880 60 60×2 26 383 - - No Result 21.54s 262 Wrong Key

c1355 41 42×2 32 546 - - No Result 22.04s 262 Wrong Key

c1908 33 34×2 25 880 - - No Result 12.92s 262 Wrong Key

c2670 233 234×2 140 1193 - - No Result 106.82s 262 Wrong Key

c3540 50 52×2 22 1669 - - No Result 27.956s 262 Wrong Key

c5315 178 178×2 123 2307 - - No Result 96.136s 262 Wrong Key

c6288 32 34×2 32 2406 - - No Result 47.632s 262 Wrong Key

c7552 207 208×2 108 3512 - - No Result 106.212s 262 Wrong Key

dalu 75 76×2 16 2298 - - No Result 39.732s 262 Wrong Key

des 256 256×2 245 6473 - - No Result 156.664s 262 Wrong Key

ex5 8 8×2 63 1055 0.18s 16 Correct Key - - No Attack

ex1010 10 10×2 10 5066 1.128s 32 Correct Key - - No Attack

i4 192 192×2 6 338 - - No Result 87.628s 262 Wrong Key

i7 199 200×2 67 1315 - - No Result 92.992s 262 Wrong Key

i8 133 134×2 81 2464 - - No Result 66.5s 262 Wrong Key

i9 88 88×2 63 1035 - - No Result 37.16s 262 Wrong Key

k2 46 46×2 45 1815 - - No Result 26.336s 262 Wrong Key

seq 41 42×2 35 3519 - - No Result 33.48s 262 Wrong Key
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Fig. 9: Percentage increase on the critical path in full and bilateral logic encryptions

between the don’t care primary inputs and the ones that
actually matter to form f ′(x) is not possible by structural
analysis of the encrypted circuit when SC is high and the
correct key is unknown.

III. EXPERIMENTAL RESULTS

For experiments, we use combinational circuits of IS-
CAS’85 [27] and MCNC’91 [28]. For each benchmark a
random sensitive component is chosen. Then additional gates
are greedily added to its fan-out to reach a primary output

from the sensitive component. Next, the chosen sub-circuit
is locked with the proposed standard scheme of Equation 1.
Please note that the locking key size of each benchmark is
selected to be almost equal to the number of its primary
inputs (l ≈ n). Afterward, the locked circuit is obfuscated
with the proposed routing-based obfuscation method with the
obfuscation key size equal to the locking key size (p = l).
Finally the encrypted sub-circuit is concatenated with the
original circuit. The decryption results under the original SAT-
based [8] and AppSAT [15] attacks are shown in Table I.



First, we ran the SAT-based attack on each benchmark for
one day long. As can be seen, it can only decrypt the small
size circuits (i.e., apex4, c17, ex5, and ex1010). Even for these
circuits, the required number of iterations is in the order of
2

n
2 since the locking scheme has high LC. Then, we ran the

AppSAT attack on the benchmarks with no reported result
under the SAT-based attack. The threshold of the AppSAT
attack is considered to be five. This is the same threshold that
is used in the AppSAT paper [15]. After every 12 iterations
of the SAT-based attack, 50 iterations are done for random
sampling. Thus, it takes 262 iterations for each benchmark.
However, still an exponentially large number of input patterns
produce wrong outputs under the reported keys. This happens
because the EN of the locking scheme is 2

n
2 .

As another experiment, each benchmark is locked with the
same scheme and locking key size. Then, the whole circuit
is resynthesized using ABC synthesis tool [29]. Since the
same locking scheme is adopted, the full logic encryption is
still secure against exact and approximate SAT-based attacks.
However, the structure of the original circuit is completely
changed due to resynthesis. Fig. 9 depicts the percentage
increase on the critical path of the original unencrypted circuits
after both bilateral and full logic encryptions. The critical path
increase in the full logic encryption is on average 1.7x more
than the bilateral one.

IV. CONCLUSION

In this paper, we proposed a new perspective on logic
encryption using integrated locking and obfuscation on a
sensitive component of a circuit. As long as both CR and
AR of the sensitive sub-circuit are high, the security impact
of its encryption (i.e., both LC and SC) is transmissible to the
whole circuit. The experiments confirmed that we can securely
protect a precious design with small circuit modification if
the bilateral logic encryption approach is adopted. In addition,
the bilateral logic encryption imposes much less performance
overhead on the circuit that the full logic encryption.
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