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Abstract. In this paper, we extend the notion of server-aided revocable identity-based en-

cryption (SR-IBE) to the hierarchical IBE (HIBE) setting and propose a generic construction

of server-aided revocable hierarchical IBE (SR-HIBE) schemes with decryption key exposure

resistance (DKER) from any (weak) L-level revocable HIBE scheme without DKER and

(L+1)-level HIBE scheme. In order to realize the server-aided revocation mechanism, we use

the “double encryption” technique, and this makes our construction has short ciphertext size.

Furthermore, when the maximum hierarchical depth is one, we obtain a generic construction

of SR-IBE schemes with DKER from any IBE scheme and two-level HIBE scheme.

Keywords: generic construction, server-aided revocation mechanism, hierarchical identity-

based encryption, decryption key exposure resistance

1 Introduction

Identity-based encryption (IBE), which was proposed by Shamir [37] in 1984, provides a

public key encryption mechanism that an arbitrary string representing user’s identities

(e.g., email address, ID number) can be used as public keys. As an extension of IBE, hi-

erarchical identity-based encryption (HIBE) supports key delegation functionality. It has

been well studied on (H)IBE [1, 3, 4, 6, 9, 11, 42, 43, 40, 44] since after Boneh and Franklin

[5] gave the first IBE scheme in 2001. As for many multi-user cryptosystems, adding an

efficient revocation mechanism to the (H)IBE scheme to revoke the malicious user is a nec-

essary problem. Boneh and Franklin [5] gave a naive approach method to realize revocation

that every non-revoked users need to update their secret key by communicating with the

key generation center (KGC) per time period secretly. This method is too inefficient since

the workloads of the KGC is linearly in the number of users N .
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In 2008, Boldyreva et al. [2] introduced the notion of revocable IBE (RIBE), and gave

an efficient RIBE scheme by combining fuzzy identity-based encryption [31] and the tree-

based revocation technique in [25]. In their definition, each user can issue a long-term

secret key corresponding to his identity, but only using this secret key cannot decrypt the

ciphertext. In order to realize the revocation, the KGC broadcasts the key update per

time period, and the non-revoked users can obtain their decryption key by combining the

secret key and the key update, while the revoked user gains nothing. In their work, the size

of the key update in each time period is logarithmic in N (i.e., O(r log N
r ), where r is the

number of the revoked users). Followed by the Boldyreva et al.’s framework, there emerged

numerous works on R(H)IBE constructions [7, 10, 14, 15, 20, 16, 18, 19, 27, 30, 33, 34, 36, 41].

Nevertheless, in their model [2], the non-revoked users still need to communicate with the

KGC per time period to update their decryption key, and this leads to a heavy workload

on every user.

In order to resolve the above problem, Qin et al. [28] introduced server-aided RIBE (SR-

IBE) and gave a pairing-based instantiation of SR-IBE scheme. In the SR-IBE scheme,

almost all the workloads of users are outsourced to an untrusted server, and the users

can compute their decryption keys at any time period by themselves. The server can

be unstrusted since it does not keep any secret, and the only requirement is computing

correctly. More specifically, the SR-IBE scheme works as follows. When a user registers to

the system, the KGC generates a “public key” which corresponding to the long-term secret

key in RIBE scheme, and sends it to the server through public channel. The key updates

are only sent to the server rather than to all users. The ciphertexts are also forwarded to

the server, and the latter transforms them to “partial decrypted ciphertexts” which are

sent to the intended recipients. The recipients can recover the message using the decryption

key generated from their private key. Later on, Nguyen et al. [26] gave the first lattice-

based SR-IBE scheme by combining the ideas of Chen et al.’s RIBE scheme [7] and the

HIBE scheme in [1]. In 2018, Hu et al. [12] gave a non-black-box construction of SR-IBE

from computational Diffie-Hellman assumption.

Considering decryption key leakage that caused by unexpected human errors, Seo and

Emura introduced a security notion called decryption key exposure resistance (DKER) to

RIBE [33] and RHIBE [36], respectively. This security guarantees that an exposure of a

user’s decryption key at some time will not compromise the confidentiality of ciphertexts

that are encrypted for different time period. After the notion of DKER proposed, many

works that viewing it as a default security requirements for R(H)IBE scheme emerged [10,

14–16, 18, 19, 41, 30, 36, 38].
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Observe that in the RHIBE scheme, the secret key of a user can be divided into two

parts: one part is its own secret key which used to realize key revocation by combining

with the key update information, the second part is used to realize key delegation for its

descendants. Thus, the workloads of users in RHIBE are much heavier than that in RIBE.

So it has practical interest to add a server-aided revocation mechanism to the RHIBE

setting to reduce the user’s heavy workload. Note that Ma and Lin’s generic construction of

RIBE scheme with DKER is natural to be server-aided [23]. In their works, the server gains

and sends a random chosen message to the recipient. While the server may be untrusted, if

he sends a random string which is not what he obtained, then the recipient cannot obtain

the real message and may have no idea of that. Inspired by the above observation and the

works of [28],[26] and [23], we focus on giving a generic construction of SR-HIBE scheme

that can guarantee both the integrity and privacy of message. For security aspect, we also

consider the DKER property on our generic construction of SR-HIBE.

Note that RHIBE should support both key revocation and key delegation functionali-

ties, so we cannot transform all the computations of users to the server when considering

the sever-aided revocation mechanism in RHIBE. While it is still meaningful to add a

server-aided revocation mechanism to RHIBE since a parent node may manage a large

number of the users, and the workloads of the secret key are also very heavy for the user.

Our contributions. In this paper, we add a server-aided revocation mechanism to the

HIBE scheme and propose a generic construction of SR-HIBE scheme with DKER. Our

contributions are as follows:

First, we extend the notion of SR-IBE to the SR-HIBE case, and give a formal definition

of SR-HIBE scheme. Additionally, we also give a rigorous security definition of SR-HIBE

by modifying that of RHIBE in [15]. To the best of our knowledge, it is the first time to

realize the server-aided revocation mechanism in the HIBE setting.

Second, we propose a generic construction of SR-HIBE scheme with DKER from any

L-level RHIBE without DKER and (L+1)-level HIBE. In our construction, the decryption

key size is equal to that of the underlying HIBE scheme, and the ciphertext size is the

same as that of the underlying RHIBE scheme. Our generic construction possesses DKER

property since the decryption key is a secret key of the HIBE scheme which has a property

that disclosure of the secret key of a user ID will not compromise his ancestors’ secret key.

To show the advantages of our approach, we give a detailed comparison of our construction

with some non-server-aided revocable HIBE schems [32, 35] in Table 1.

Third, our construction implies a generic transformation from any IBE and two-level

HIBE to SR-IBE scheme with DKER by combining with Ma and Lin’s work that the

generic construction of RIBE from any IBE. Compared with the SR-IBE scheme with
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Table 1. Comparison with non-server-aided revocable HIBE schemes.

Schemes PP size PK size SK size KU size CT size DKER resis. Dec. cost Assumption

SE[32] O(L) - O(L2 logN) O(Lr log N
r

)† O(L) × O(L) static

SE[35] O(L) - O(L logN) O(Lr log N
r

)† O(1) X O(1) q-type

Ours O(L) O(L2 logN) O(L) O(Lr log N
r

)‡ O(L) X O(L) static

Let N be the maximum number of users in each level, L the maximum hierarchical level and r the

number of revoked users. † means that this item is sent to the users, and ‡ represents that this item

is sent to the server. “-” denotes that this item does not considered in the scheme. We initialize our

generic construction of SR-HIBE by using the RHIBE scheme in [32] and the HIBE scheme derived

from the Waters IBE scheme [42].

DKER in [23], our construction has shorter ciphertext size and can guarantee both the

integrity and privacy of messages. If the server sends something that is different from

what he obtained, then the recipient cannot decrypt and thus can detect this dishonest

behavior.

Technique overview. At a high level, in our generic construction, we use an RHIBE

scheme with L levels and a (L+1)-level HIBE scheme as building blocks, together with

the “double encryption” technique.

However, looking into the details, it is not straightforward to obtain our generic con-

struction from those two building blocks. As we mentioned before, the secret key of a user

in RHIBE scheme contains two parts: one part is its own secret key, the other one is used

to realize key delegation for its descendants, so we cannot send the whole secret key as a

public key to the server just as in SR-IBE. We should be careful to deal with the secret

key in RHIBE so that our construction can work smoothly.

In our work, we overcome those above problems as follows. Firstly, we use the stateful

version of the definition of RHIBE scheme used in [15] and separate the secret key r.skID

generated by r.GenSK into two part: (r.skID, r.mskID), where the first part is a secret key

while the other one is a master secret key for ID which is used to generate the master

secret key for its descendants. Note that this modification does not change the syntax

definition of RHIBE scheme since it is just a form change, while this is very useful for

our generic construction. So in our SR-HIBE construction, users only sends r.skID to the

server as public key while keeping r.mskID as secret. Secondly, we use a (L+1)-level HIBE

scheme that any user ID with secret key h.skID can delegate a decryption key h.skID,t

for (ID, t).Thirdly, using “double encryption” technique makes our construction can work

on all settings, guarantee both the integrity and privacy of messages and has shorter

ciphertext size.
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Construction scratch. At the setup stage, the KGC runs the setup algorithm of RHIBE

and HIBE schemes to generate the public parameter mpkkgc := (r.mpkkgc, h.mpkkgc) and a

master secret key mskkgc := (r.mskkgc, h.mskkgc), where (r.mpkkgc, r.mskkgc) and (h.mpkkgc,

h.mskkgc) denote the public parameter and the master secret key of RHIBE scheme and

the HIBE scheme, respectively. When a user ID registers to join the system, the “del-

egated KGC” – the user’s direct parent pa(ID) generates the public key pkID := r.skID

and the secret key skID := (r.mskID, h.skID), and sends pkID to the server through the

public channel and skID to the user with ID by secret channel. At each time period,

the user pa(ID) generates and sends the update key ukpa(ID),t to the server, and the lat-

ter can obtain the transform key tkID,t which is corresponding to the decryption key in

RHIBE scheme by using pkID and ukpa(ID),t. When encrypting a message, the sender run-

s h.Enc(h.mpk, (ID, t),M) → h.ctID,t and r.Enc(r.mpk, ID, t, h.ctID,t) → r.ctID,t, and sends

r.ctID,t to the server. The latter uses tkID,t to transform this ciphertext into a “partial

decrypted ciphertext” – a HIBE ciphertext h.ct′ID,t, and sends it to the intended recipient.

The recipient uses h.skID to generate his decryption key dkID,t := h.skID,t, and use it to

recover the message.

Related works. Revocation mechanism has been considered in many multi-user cryp-

tosystems [7, 13, 17, 22, 24, 39, 40] to revoke the malicious user. While most schemes suffer

one problem: the workloads of the user is too heavy, so server-aided revocation mechanis-

m was also introduced to such schemes. For example, server-aided revocation mechanism

was studied in the setting of attribute-based encryption by Cui et al. [8] and they al-

so considered the decryption key exposure on the transform keys. Later on, Qin et al.

[29] considered server-aided RABE scheme against local decryption key exposure attacks.

In 2018, Ling et al. [21] introduced the server-aided revocation mechanism to predicate

encryption.

Roadmap. The rest of this paper is organized as follows. Section 2 provides definitions

of HIBE, RHIBE and SR-HIBE schemes, and the strategy-dividing Lemma which will be

used in the security proof. Our generic construction of SR-HIBE scheme and its security

proof are presented in Section 3. We summarize our results in Section 4.

2 Preliminaries

Notations. Let λ be the security parameter, negl(λ) represents a negligible function. For

positive integer n ∈ N, [n] represents the set {1, · · · , n}. PPT is the abbreviation for

probabilistic polynomial time. In (R)HIBE, ID = (id1, · · · , id`), idi ∈ ID, denotes a `-level

user with identity ID, where idi and ID are called as element identity and element identity

space. For ` ∈ N, define (ID)≤` :=
⋃
i∈[`](ID)i and the hierarchical identity space IDh :=
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(ID)≤L, where L is the maximum depth of the hierarchy. The level-0 user is denoted as

kgc, i.e., the key generation center. For a `-level identity ID = (id1, · · · , id`), set ID[i] :=

(id1, · · · , idi) represents the length-i prefix of ID, i ∈ [`], define pa(ID) := (id1, · · · , id`−1) as

the direct ancestor of ID and prefix(ID) := {ID[1], · · · , ID[`] = ID}. Furthermore, ID‖ID ⊆
(ID)`+1 represents the subset that contains all the nodes who have ID as its direct ancestor.

2.1 Hierarchical Identity-Based Encryption

In this paper, we extend the syntax definition of two-level HIBE scheme in [15] to the

general case. Assume that the plaintext space M, the element identity space ID, and

the hierarchical identity space IDh := (ID)≤L. The syntax definition of HIBE scheme

HIBE = (Setup,Delegate,Enc,Dec) is defined as follows.

Definition 1 (Hierarchical Identity-Based Encryption, HIBE).

• Setup(1λ) → (mpk,mskkgc). On input the security parameter 1λ, output a public pa-

rameter mpk and the master secret key mskkgc.

• Delegate(mpk, skpa(ID), ID) → skID
1. This algorithm is run by the user pa(ID) where

ID ∈ IDh. It takes the public parameter mpk, a secret key skpa(ID) and an identity ID,

outputs the secret key skID.

• Enc(mpk, ID,M) → ct. On input the public parameter mpk, the recipient’s identity

ID ∈ IDh and a message M , outputs a ciphertext ct.

• Dec(mpk, ct, skID) → M/⊥. It takes the public parameter mpk, a ciphertext ct and a

secret key skID as inputs, outputs a message M or a symbol ⊥.

Correctness. For all λ, (mpk,mskkgc)← Setup(1λ), ID ∈ IDh, skID ← Delegate(mpk, skpa(ID), ID),

M ∈M, ct← Enc(mpk, ID,M), it holds that Dec(mpk, ct, skID) = M .

Security definition. We also extend the security definition in [15]. The following game

is played between an adversary A and the challenger C.
Initial. A announces the challenge identity ID∗ ∈ IDh and sends it to C.
Setup. C runs (mpk,mskkgc)← Setup(1λ), and prepares a table T which initially contains

(kgc,mskkgc) to store the generated identity/secret key pair (ID, skID) during the game.

Then C sends mpk to A.

Level-i secret key generation query: When A issues a query ID ∈ (ID)i, i ∈ [L],

C first checks if (ID, ∗) /∈ T and (pa(ID), skpa(ID)) ∈ T for some pa(ID). If not, return ⊥.

Otherwise, C runs skID ← Delegate(mpk, skpa(ID), ID) and stores (ID, skID) into the table T

but returns nothing to A.

1 We combine the GenSK and Delegate algorithms in [15] into one Delegate algorithm. When pa(ID) = kgc,

skpa(ID) := mskkgc.
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Level-i secret key reveal query: When A queries on ID ∈ (ID)i, i ∈ [L], C first checks

if ID /∈ prefix(ID∗) and (ID, skID) ∈ T. If not, return ⊥. Otherwise, C returns skID to A.

Level-(i, i+1) secret key reveal query: When A queries on (ID, idi+1) ∈ IDi+1, C first

checks if ID /∈ prefix(ID∗) and (ID, skID) ∈ T. If not, return ⊥ to A. Otherwise, C executes

skID||idi+1
← Delegate(mpk, skID, idi+1) and returns skID||idi+1

to A.

Challenge phase: Once A submits two messages M0,M1 with equal length, C chooses a

random bit b ∈ {0, 1}, and sends the challenge ciphertext ct∗b ← Enc(mpk, ID∗,Mb) to A.

Guess. A make a guess b′ for b and wins the game if b′ = b.

Definition 2 (Selective-identity security). A HIBE scheme HIBE is selective-identity

secure if for any PPT adversary A, its advantage denoted as AdvHIBE−sel
HIBE,A (1λ) =

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible in λ.

Adaptive-identity security. A HIBE scheme HIBE is called adaptive-identity secure

if A announces ID∗ and two equal length messages M0,M1 at the Challenge phase with

the restrictions that A has never issued the secret key generation query on ID∗ and the

secret key reveal query on any of ID ∈ prefix(ID∗).

2.2 Revocable Hierarchical Identity-Based Encryption

In this paper, we make a little change to the syntax definition of the RHIBE scheme in

[15], in order that we can obtain our generic construction of SR-HIBE scheme smoothly.

As mentioned in technique overview in introduction section, we separate the secret key

skID into two parts: (skID,mskID). Note that this modification does not change the syntax

definition of RHIBE scheme since it is just a change in form. Assume that the plaintext

space M, the time period space T , the element identity space ID, and the hierarchical

identity space IDh := (ID)≤L, the syntax definition of the RHIBE scheme RHIBE =

(Setup,GenSK,KeyUp,GenDK,Enc,Dec,Rev) is as follows.

Definition 3 (Revocable Hierarchical Identity-Based Encryption, RHIBE [15]).

• Setup(1λ, L)→ (mpk,mskkgc,RLkgc, stkgc). This algorithm is run by the KGC. On input

the security parameter 1λ and the maximum depth of the hierarchy L ∈ N, output a

public parameter mpk, the KGC’s secret key mskkgc (also called the master secret key),

the initial state stkgc and an empty revocation list RLkgc.

• GenSK(mpk,mskpa(ID), ID, stpa(ID)) → (skID,mskID,RLID, stID, st′pa(ID)).
2 This algorithm

is run by a parent user pa(ID). On input the public parameter mpk, the parent’s mas-

ter secret key mskpa(ID), an identity ID ∈ IDh and the state stpa(ID), output a secret

2 When ID is in level-1, then pa(ID) is the KGC, i.e., skpa(ID) = skkgc. When L = 1, i.e., the RIBE case,

GenSK(mpk,mskkgc, ID, stkgc)→ (skID,⊥,⊥,⊥, st′kgc).
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key skID, the delegated master secret key mskID which was used when ID worked as a

“delegate KGC” for its children, an empty revocation list RLID and the state stID that

held by ID, and the updated state st′pa(ID).

• KeyUp(mpk,mskID, t,RLID,t, kupa(ID),t, stID)→ (kuID,t, st′ID). This algorithm is run by the

user ID ∈ IDh. It takes the public parameter mpk, a master secret key mskID, the time

period t, the revocation list RLID,t ⊆ ID ‖ ID, a parent’s key update kupa(ID),t and the

state stID as inputs, outputs the key update information kuID,t and the updated state

st′ID.

• GenDK(mpk, skID, kupa(ID),t)→ dkID,t. This algorithm is run by the receiver ID ∈ IDh.

On input the public parameter mpk, a secret key skID and a parent’s key update infor-

mation kupa(ID),t, output a short-term decryption key dkID,t for time period t.

• Enc(mpk, ID, t,M) → ctID,t. This algorithm is run by the sender. It takes the public

parameter mpk, the recipient’s identity ID ∈ IDh, a time period t and a message M ,

outputs a ciphertext ctID,t.

• Dec(mpk, ctID,t, dkID,t) → M/⊥. This algorithm is run by the receiver ID ∈ (ID)≤L.

It takes the public parameter mpk, a ciphertext ctID,t and a short-term decryption key

dkID,t, outputs a message M or a symbol ⊥.

• Rev((ID, t),RLpa(ID),t, stpa(ID))→ RLpa(ID),t. This algorithm is run by a parent user with

pa(ID). On input the identity ID ∈ IDh and the time t, the revocation list RLpa(ID),t

managed by pa(ID) and the state stpa(ID), output the updated revocation list RLpa(ID),t

by adding ID as a revoked user at time t.

Correctness. It required that for all λ ∈ N, L ∈ N, (mpk,mskkgc,RLkgc, stkgc)← Setup(1λ, L),

` ∈ [L], ID ∈ IDh, t ∈ T , M ∈ M, RLID[`−1],t ⊆ ID[`−1] ‖ ID, if ID′ /∈ RLpa(ID′),t holds for

all ID′ ∈ prefix(ID), then we require M ′ = M to hold after does the following steps:

(1) (kukgc,t, stkgc)← KeyUp(mpk,mskkgc, t,RLkgc,t,⊥, stkgc).

(2) For all ID′ ∈ prefix(ID) ( in the short to long order), execute (2.1) and (2.2):

(2.1) (skID′ ,mskID′ ,RLID′ , stID′ , st′pa(ID′))← GenSK(mpk,mskpa(ID′), ID
′, stpa(ID′))

(2.2) (kuID′,t, st′ID′)← KeyUp(mpk,mskID′ , t,RLID′,t, kupa(ID′),t, stID′)
3.

(3) dkID,t ← GenDK(mpk, skID, kupa(ID),t)

(4) ctID,t ← Enc(mpk, ID, t,M).

(5) M ′ ← Dec(mpk, ctID,t, dkID,t).

Security definition. We adopt the stateful version of the security definition for RHIBE

in [15]. We also introduce the “current time period” tcu ∈ T and initialize it to 1 as in

[15]. The following game is played between an adversary A and the challenger C.
3 If |ID′| = L, then this step is skipped.
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Initial. A announces the challenge identity/time period pair (ID∗, t∗) ∈ IDh × T and

sends them to C.
Setup. C first runs (mpk,mskkgc,RLkgc, stkgc) ← Setup(1λ, L), and prepares a table T to

store the generated identity/master secret key/secret key tuple (ID,mskID, skID) during

the game. The table is initialized to (kgc,mskkgc,⊥). Then C executes (kukgc,1, stkgc) ←
KeyUp(mpk,mskkgc, tcu = 1, RLkgc,1 = ∅,⊥, stkgc), and sends the public parameter mpk and

the key update kukgc,1 to A.

A may adaptively issue any of the following queries to C:
Secret key generation query: When A issues a query ID ∈ IDh, C first checks if

(ID, ∗, ∗) /∈ T and (pa(ID),mskpa(ID), skpa(ID)) ∈ T for some pa(ID). If not, return ⊥.

Otherwise, C runs (skID,mskID,RLID, stID, st′pa(ID)) ← GenSK(mpk,mskpa(ID), ID, stpa(ID)),

and stores (ID,mskID, skID) into the table T. If ID ∈ (ID)≤L−1, C also need to execute

(kuID,tcu , st′ID) ← KeyUp(mpk,mskID, tcu, RLID,tcu = ∅, kupa(ID),tcu , stID). Then, C returns the

key update information kuID,tcu to A when ID ∈ (ID)≤L−1, or return nothing to A if

ID ∈ (ID)L.

In the following, we require all identities ID in the following queries must have been

queried in this query, namely, (ID,mskID, skID) ∈ T.

Secret key reveal query: When A queries on ID ∈ IDh, C first checks whether the con-

dition: if tcu ≥ t∗ and ID ∈ predix(ID∗), then ID ∈ RLpa(ID),t∗ , is satisfied. If not, return ⊥ to

A. Otherwise, C obtains the entry (ID,mskID, skID) and returns the secret key (mskID, skID)

to A.

Revoke & key update query: When A queries on RL ⊆ IDh (which denotes the set of

identities that will be revoked), C first checks the following conditions:

– RLID,tcu ⊆ RL for all ID ∈ (ID)≤L−1 ∪ {kgc} that appear in table T.4

– For all identities ID such that (ID, ∗, ∗) ∈ T and ID′ ∈ prefix(ID), if ID′ ∈ RL, then

ID ∈ RL.5

– If tcu = t∗ − 1 and A has already issued the secret key reveal queries on some ID′ ∈
prefix(ID∗), then ID′ ∈ RL.

If those are all not satisfied, return ⊥. Otherwise, C increments tcu ← tcu + 1. Then,

C executes the following two steps for all identities that have been issued a secret key

generation queries and not been revoked, i.e., ID ∈ (ID)≤L−1 ∪ {kgc}, (ID, ∗, ∗) ∈ T and

ID /∈ RL, in the identity hierarchy order:

1. Set RLID,tcu ← RL ∩ (ID‖ID), where kgc‖ID := ID.

4 This check ensures that the identities that have already been revoked will remain revoked in the next

time period.
5 This check ensures that if some ID is revoked, then all of its descendants are also revoked.
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2. Run (kuID,tcu , st′ID) ← KeyUp(mpk,mskID, tcu,RLID,tcu , kupa(ID),tcu , stID). When ID = kgc,

kupa(kgc),tcu := ⊥.

Finally, C sends all the key update information {kuID,tcu}(ID,∗,∗)∈T to A.

Decryption key reveal query: When A issues a query (ID, t) ∈ IDh×T , C first checks

if the following conditions holds:

– t ≤ tcu, ID /∈ RLpa(ID),t, (ID, t) 6= (ID∗, t∗).

If not, return ⊥ to A. Otherwise, C obtains the tuple (ID,mskID, skID) from the table T,

runs dkID,t → GenDK(mpk, skID, kupa(ID),t) and returns dkID,t to A.

Challenge phase: Once A submits two messages M0,M1 with equal length, C chooses a

random bit b ∈ {0, 1}, and sends the challenge ciphertext ct∗b ← Enc(ID∗, t∗,Mb) to A.

Guess. A make a guess b′ for b and wins the game if b′ = b.

Definition 4 (Selective-identity security). A RHIBE scheme RHIBE is selective-

identity secure if for any PPT adversary A, its advantage denoted as AdvRHIBE−sel
RHIBE,A(1λ) =∣∣Pr[b′ = b]− 1

2

∣∣ is negligible in λ.

Adaptive-identity security. A RHIBE scheme RHIBE is called adaptive-identity se-

cure if A announces the challenge identity/time period pair (ID∗, t∗) and two equal length

messages M0,M1 at the Challenge phase with the following restrictions that

– If t∗ ≤ tcu, then A has not submitted a decryption key reveal query on (ID∗, t∗),

– If A has been issued a secret key reveal query for any ID ∈ prefix(ID∗), then ID ∈
RLpa(ID),t∗ and thus, ID∗ ∈ RLpa(ID),t∗ .

Note that those restrictions related to ID∗, t∗ are only work in the challenge phase, while

it is not considered before the challenge query.

Weak selective/adaptive-identity secure. A RHIBE scheme RHIBE is called weak

security (i.e., security without DKER) if A is not allowed to make any decryption key

reveal query. The weak selective-identity (resp. weak adaptive-identity) security advantage

of A is denoted by AdvRHIBE−sel−weak
RHIBE,A (1λ) (resp. AdvRHIBE−adap−weak

RHIBE,A (1λ)).

2.3 Server-Aided Revocable Hierarchical Identity-Based Encryption

In this section, we give a definition of the SR-HIBE scheme. Qin et al. [28] proposed and

formalized the definition of SR-IBE scheme which contains ten algorithms: Setup,PubKG,

KeyUp,TranKG,PrivKG,DecKG,Enc,Transform,Dec and Rev. Note that in their definition,

PubKG(mskkgc, ID, st) → (pkID, st′) and PrivKG(mskkgc, ID) → skID are all executed by the

KGC for the user ID. Thus we combine these two algorithms into one UerKG algorithm
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where UerKG(mskkgc, ID, st) → (pkID, skID, st′), namely, when a user join the system, the

KGC generates a public/secret key pair for the user. Note that this is just a change in form,

the combined definition of SR-IBE is equivalent to that in [28]. We extend this combined

definition of SR-IBE to the HIBE setting to obtain the definition of SR-HIBE. Assume

that the plaintext spaceM, the time period space T , the element identity space ID, and

the hierarchical identity space IDh := (ID)≤L. The definition of SR-HIBE scheme SR-

HIBE = (Setup,UserKG,UpdKG,TranKG,DecKG,Enc,Transform,Dec,Rev) is as follows.

Definition 5 (Server-Aided Revocable Hierarchical Identity-Based Encryption,

SR-HIBE).

• Setup(1λ, L)→ (mpk,mskkgc, stkgc,RLkgc). This algorithm is run by the KGC. On input

the security parameter 1λand the maximum depth of the hierarchy L ∈ N, output a

public parameter mpk, the KGC’s secret key mskkgc (also called the master secret key),

the initial state stkgc and an empty revocation list RLkgc.

• UserKG(mpk, skpa(ID), ID, stpa(ID)) → (pkID, skID, st′pa(ID),RLID, stID).6 This algorithm is

run by a parent user pa(ID) when a user ID ∈ IDh registers to the system. On input

the public parameter mpk, the parent’s secret key skpa(ID), an identity ID and the state

stpa(ID), output a public key pkID, a secret key skID, the updated state st′pa(ID), an empty

revocation list RLID and an initial state stID managed by ID. The public key pkID is sent

to the server through public channel and the secret key skID is sent to the user ID by

secret channel.

• UpdKG(mpk, skID, t,RLID,t, ukpa(ID),t, stID)→ (ukID,t, st′ID). This algorithm is run by the

user with ID ∈ IDh. It takes the public parameter mpk, a secret key skID, the time

period t, the revocation list RLID,t ⊆ ID ‖ ID, a parent’s update key ukpa(ID),t and the

state stID as inputs, and outputs an update key ukID,t and the updated state st′ID. The

update key ukID,t also is sent to the server by public channel.

• TranKG(mpk, pkID, ukpa(ID),t)→ tkID,t. This algorithm is run by the server. It takes the

public parameter mpk, a public key pkID of a user with ID ∈ IDh and a parent’s update

key ukpa(ID),t as inputs, outputs a short-term transform key tkID,t for time period t.

• DecKG(mpk, skID, t) → dkID,t. This algorithm is run by the recipient. On input the

public parameter mpk, a secret key skID of user with ID ∈ IDh and a time period t,

output a short-term decryption key dkID,t for time period t.

• Enc(mpk, ID, t,M) → ctID,t. This algorithm is run by the sender. It takes the public

parameter mpk, the recipient’s identity ID ∈ IDh, a time period t and a message M ,

outputs a ciphertext ctID,t, which is sent to the server.

6 When L = 1, i.e. for the RIBE case, skpa(ID) = mskkgc, thus UserKG(mpk,mskkgc, ID, stkgc) →
(pkID, skID, st

′
kgc,⊥,⊥).
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• Transform(mpk, ctID,t, tkID,t) → ct′ID,t. This algorithm is run by the server. It takes

the public parameter mpk, a ciphertext ctID,t and a transformation key tkID,t, outputs a

partially decrypted ciphertext ct′ID,t, which is sent to the recipient by the public channel.

• Dec(mpk, ct′ID,t, dkID,t) → M/⊥. This algorithm is run by the recipient ID ∈ IDh. It

takes the public parameter mpk, a partially decrypted ciphertext ct′ID,t and a decryption

key dkID,t, outputs a message M or a symbol ⊥.

• Rev((ID, t),RLpa(ID),t, stpa(ID))→ RL′pa(ID),t. This algorithm is run by a parent user with

pa(ID) where ID ∈ IDh. On input the identity ID and the time t, the revocation list

RLpa(ID),t managed by pa(ID) and the state stpa(ID), output the updated revocation list

RL′pa(ID),t by adding ID as a revoked user at time t.

Correctness. It needs that for all λ ∈ N, L ∈ N, (mpk,mskkgc, stkgc,RLkgc)← Setup(1λ, L),

` ∈ [L], ID ∈ IDh, t ∈ T , M ∈ M, RLID[`−1],t ⊆ ID[`−1] ‖ ID, if ID′ /∈ RLpa(ID′),t holds for

all ID′ ∈ prefix(ID), then M ′ = M holds after executing the following steps:

(1) (ukkgc,t, stkgc)← UpdKG(mpk,mskkgc, t,RLkgc,t,⊥, stkgc).

(2) For all ID′ ∈ prefix(ID) ( in the short to long order), execute (2.1) and (2.2):

(2.1) (pkID′ , skID′ , st′pa(ID′),RLID′ , stID′)← UserKG(mpk, skpa(ID′), ID
′, stpa(ID′))

(2.2) (ukID′,t, st′ID′)← UpdKG(mpk, skID′ , t,RLID′,t, ukpa(ID′),t, stID′)
7.

(3) tkID,t ← TranKG(mpk, pkID, ukpa(ID))

(4) ctID,t ← Enc(mpk, ID, t,M).

(5) ct′ID,t ← Transform(mpk, ctID,t, tkID,t).

(6) dkID,t ← DecKG(mpk, skID, t).

(7) M ′ ← Dec(mpk, ct′ID,t, dkID,t).

Security definition. Note that the above modification of the SR-HIBE definition is just

a change in form and will not affect the security definition since we just change the time

that the secret key generated and has no restrict on when the secret key reveal query

happens. We give a rigorous security definition for SR-HIBE by modifying the stateful

version of the security definition for RHIBE which described in Section 2.2. The following

game is played between an adversary A and the challenger C.
Initial. At the beginning, A announces the challenge identity/time period pair (ID∗, t∗) ∈
IDh × T and sends them to C.
Setup. C runs (mpk,mskkgc,RLkgc, stkgc)← Setup(1λ, L), and prepares a table T to store

the generated identity/public key/secret key tuple (ID, pkID, skID) during the game. The ta-

ble T is initialized to contains the tuple (kgc,⊥,mskkgc) . Then C executes (ukkgc,1, stkgc)←

7 If |ID′| = L, then this step is skipped.
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UpdKG(mpk,mskkgc, tcu = 1,RLkgc,1 = ∅,⊥, stkgc). After that, C sends the public parameter

mpk and the update key ukkgc,1 to A.

A may adaptively issue any of the following queries to C:
Public key reveal query: WhenA issues a query ID ∈ IDh, C first checks if (ID, ∗, ∗) /∈ T

and (pa(ID), pkpa(ID), skpa(ID)) ∈ T for some pa(ID). If not, return ⊥. Otherwise, C runs

(pkID, skID,RLID, stID, st′pa(ID))← GenSK(mpk, skpa(ID), ID, stpa(ID)), and stores (ID, pkID, skID)

into the table T. If ID ∈ (ID)≤L−1, C also need to execute (ukID,tcu , st′ID)← UpdKG(mpk, skID, tcu,

RLID,tcu = ∅, ukpa(ID),tcu , stID). Then, C returns the public key pkID and the update key

ukID,tcu to A when ID ∈ (ID)≤L−1, or returns the public key pkID to A if ID ∈ (ID)L.

In the following, we require all identities ID appearing in the following queries must

have been queried in this query, namely, (ID, pkID, skID) ∈ T.

Secret key reveal query: When A queries on ID ∈ IDh, C first checks if the following

condition is satisfied:

– If tcu ≥ t∗ and ID ∈ predix(ID∗), then ID ∈ RLpa(ID),t∗ .

If not, return ⊥ to A. Otherwise, C obtains the entry (ID, pkID, skID) and returns skID to

A.

Revoke & update key query: When A queries on RL ⊆ IDh (which denotes the set of

identities that will be revoked), C first checks if the following condition holds:

– RLID,tcu ⊆ RL for all ID ∈ (ID)≤L−1 ∪ {kgc} that appear in table T.

– For all identities ID such that (ID, ∗, ∗) ∈ T and ID′ ∈ prefix(ID), if ID′ ∈ RL, then

ID ∈ RL.

– If tcu = t∗ − 1 and A has already issued the secret key reveal queries on some ID′ ∈
prefix(ID∗), then ID′ ∈ RL.

If not, return ⊥. Otherwise, C increments tcu ← tcu+1. Then, C executes the following two

steps for all identities that have been issued a secret key generation queries and not been

revoked, i.e., ID ∈ (ID)≤L−1 ∪ {kgc}, (ID, ∗, ∗) ∈ T and ID /∈ RL, in the identity hierarchy

order:

1. Set RLID,tcu ← RL ∩ (ID‖ID), where kgc‖ID := ID.

2. Run (ukID,tcu , st′ID) ← UpdKG(mpk, skID, tcu,RLID,tcu , ukpa(ID),tcu , stID). When ID = kgc,

ukpa(kgc),tcu := ⊥.

Finally, C sends all the generated update key information {ukID,tcu}(ID,∗,∗)∈T to A.

Decryption key reveal query: When A issues a query (ID, t) ∈ IDh×T , C first checks

the following conditions:

– t ≤ tcu, ID /∈ RLpa(ID),t, (ID, t) 6= (ID∗, t∗).
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If those are not hold, return ⊥. Otherwise, C obtains the tuple (ID, pkID, skID) from the

table T, runs dkID,t → DecKG(mpk, skID, t) and returns dkID,t to A.

Challenge phase: Once the adversary A submits two messages M0,M1 with equal

length, C chooses a random bit b ∈ {0, 1}, and sends the challenge ciphertext ct∗b ←
Enc(ID∗, t∗,Mb) to A.

Guess. A make a guess b′ for b and wins the game if b′ = b.

Definition 6 (Selective-identity security). A SR-HIBE scheme SR-HIBE is selective-

identity secure if for any PPT adversary A, its advantage denoted as AdvSR−HIBE−sel
SR−HIBE,A(1λ) =∣∣Pr[b′ = b]− 1

2

∣∣ is negligible in λ.

Adaptive-identity security. A SR-HIBE scheme SR-HIBE is called adaptive-identity

secure if A chooses the challenge identity/time period pair (ID∗, t∗) and two equal length

messages M0,M1 at the Challenge phase with the restrictions that

– If t∗ ≤ tcu, then A has not submitted a decryption key reveal query on (ID∗, t∗),

– If A has been issued a secret key reveal query for any ID ∈ prefix(ID∗), then ID ∈
RLpa(ID),t∗ and thus, ID∗ ∈ RLpa(ID),t∗ .

Note that those restrictions related to ID∗, t∗ are only work in the challenge phase, while

it is not considered before the challenge query.

3 Generic Construction of Server-Aided Revocable HIBE with DKER

In this section, we show how to construct a SR-HIBE scheme by combing a RHIBE with L

levels and a (L+1)-level HIBE scheme. Let r.Π = (r.Setup, r.Delegate, r.GenSK, r.KeyUp, r.GenDK, r.Enc,

r.Dec, r.Rev) be an RHIBE scheme with identity space r.IDh, plaintext space r.M, cipher-

text space r.CT and time period space r.T . Let h.Π = (h.Setup, h.Delegate, h.Enc, r.Dec)

be a (L+1)-level HIBE scheme with identity space h.IDh, plaintext space h.M and ci-

phertext space h.CT . We assume r.ID = h.ID, r.T ⊆ h.ID and h.CT ⊆ r.M, where h.ID
and r.ID are the element identity space.

The SR-HIBE scheme Π = (Setup,UserKG,UpdKG, TranKG,DecKG,Enc,Transform,Dec,Rev)

with identity space IDh = r.IDh ⊆ h.IDh, where the element identity space ID = r.ID =

h.ID, the plaintext space M = h.M, time period space T = r.T ⊆ h.ID and the cipher-

text space CT = r.CT . In order to satisfy the security guarantee, without lose of generality,

we assume that if ID = {0, 1}n, then for the identity ID = (id1, · · · , idi) ∈ IDh, i ≤ [L],

idi ∈ ID′ = {0} × {0, 1}n−1, and the time period space T = {1} × {0, 1}n−1. Namely, it

should keep that ID′ ∩ T = ∅. The generic construction of SR-HIBE are as follows.
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• Setup(1λ, L) → (mpk,mskkgc,RLkgc, stkgc). It takes the security parameter 1λ and the

maximum depth of the hierarchy L ∈ N as inputs, the algorithm does as follows:

1. Run (r.mpk, r.mskkgc, r.RLkgc, r.stkgc)← r.Setup(1λ, L),

2. Run (h.mpk, h.mskkgc)← h.Setup(1λ).

Then, output the public parameter mpk := (r.mpk, h.mpk), the KGC’s secret key mskkgc :=

(r.mskkgc, h.mskkgc), the revocation list RLkgc := r.RLkgc and the initial state stkgc :=

r.stkgc.

• UserKG(mpk, skpa(ID), ID, stpa(ID)) → (pkID, skID, st′pa(ID),RLID, stID). On input the public

parameter mpk = (r.mpk, h.mpk), the parent’s secret key skpa(ID) = (r.mskpa(ID), h.skpa(ID))

and identity ID ∈ IDh, the parent pa(ID) does as follows:

1. (r.skID, r.mskID, r.RLID, r.stID, r.st′pa(ID))← r.GenSK(r.mpk, r.mskpa(ID), ID, r.stpa(ID)),

2. h.skID ← h.Delegate(h.mpk, h.skpa(ID), ID).8

Then, output the public key pkID := r.skID, the secret key skID := (r.mskID, h.skID), the

parent’s updated state stpa(ID) := r.st′pa(ID), the revocation list RLID := r.RLID and the

initial state stID := r.stID.

• UpdKG(mpk, skID, t,RLID,t, ukpa(ID),t, stID) → (ukID,t, st′ID). On input the public parame-

ter mpk = (r.mpk, h.mpk), the secret key skID = (r.mskID, h.skID), the time period t ∈ T
and a revocation list RLID,t = r.RLID,t, the parent’s update key ukpa(ID),t = r.kupa(ID),t

and the state stID = r.stID, run

(r.kuID,t, r.st′ID)← r.KeyUp(r.mpk, r.mskID, t, r.RLID,t, r.kupa(ID),t, r.stID).

Then, output an update key ukID,t := r.kuID,t and the updated state st′ID := r.st′ID.

• TranKG(mpk, pkID, ukpa(ID),t)→ tkID,t. On input the public parameter mpk = (r.mpk, h.mpk),

a public key pkID = r.skID and the update key ukpa(ID),t = r.kupa(ID),t, the server runs

r.dkID,t ← r.GenDK(r.mpk, r.skID, r.kupa(ID),t),

and outputs a transform key tkID,t := r.dkID,t for identity ID in time period t.

• DecKG(mpk, skID, t)→ dkID,t. On input the public parameter mpk = (r.mpk, h.mpk), the

secret key skID = (r.mskID, h.skID) and the time period t, the user ID ∈ IDh runs

h.skID,t ← h.Delegate(h.mpk, h.skID, t)

and outputs a decryption key dkID,t := h.skID,t.

• Enc(mpk, ID, t,M) → ctID,t. On input the public parameter mpk = (r.mpk, h.mpk), an

identity ID ∈ IDh, a time period t ∈ T and a message M ∈ M, the algorithm does as

follows:

8 When ID is level-1 user, h.skpa(ID) = h.mskkgc, and h.skID ← h.GenSK(h.mpk, h.mskkgc, ID)
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1. h.ctID,t ← h.Enc(h.mpk, (ID, t),M),

2. r.ctID,t ← r.Enc(r.mpk, ID, t, h.ctID,t).

Finally, output the ciphertext ctID,t := r.ctID,t.

• Transform(mpk, ctID,t, tkID,t)→ ct′ID,t. On input the public parameter mpk = (r.mpk, h.mpk),

a ciphertext ctID,t = r.ctID,t and a transform key tkID,t := r.dkID,t for identity ID in time

period t, run

h.ct′ID,t ← r.Dec(r.mpk, r.dkID,t, r.ctID,t).

If h.ct′ID,t = ⊥, return ⊥. Otherwise, output a partial decrypted ciphertext ct′ID,t :=

h.ct′ID,t.

• Dec(PP, ct′ID,t, dkID,t) → M . On input the public parameter mpk = (r.mpk, h.mpk), a

partial decrypted ciphertext ct′ID,t = h.ct′ID,t and a decryption key dkID,t = h.skID,t for

identity ID in time period t, run

h.M ′ ← h.Dec(h.mpk, h.skID,t, h.ct′ID,t).

If h.M ′ = ⊥, return ⊥. Otherwise, output a message M := h.M ′.

• Rev((ID, t),RLpa(ID),t, stpa(ID)) → RL′pa(ID),t. On input (ID, t) ∈ IDh × T , the revocation

list RLpa(ID),t = r.RLpa(ID),t and the state stpa(ID) = r.stpa(ID), run

r.RL′pa(ID),t ← r.Rev((ID, t), r.RLpa(ID),t, r.stpa(ID))

and output the updated revocation list RL′pa(ID),t := r.RL′pa(ID),t.

Correctness. It is immediate to see that the correctness of the constructed SR-HIBE

scheme Π follows from that of the underlying RHIBE scheme r.Π and the HIBE scheme

h.Π.

Theorem 1. If the underlying RHIBE scheme r.Π satisfies weak selective-identity security

(resp. weak adaptive-identity security) and the underlying (L+1)-level HIBE scheme h.Π

satisfies selective-identity security (resp. adaptive-identity security), then the constructed

constructed SR-HIBE scheme Π satisfies selective-identity security (resp. adaptive-identity

security).

Proof (of Theorem 1). Here we only give the proof for the selective-identity security

since it is essentially the same as that for the adaptive one. Let (ID∗, t∗) be the challenge

identity/time period pair. We call a query made by an adversary is valid, if the challenger’s

answer is not “⊥”. The strategies that an adversary used to against the SR-HIBE scheme

Π can be divided into the following cases:

– Type-I: The adversary issues valid secret key reveal queries on at least one ID ∈
prefix(ID∗).
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– Type-I-i∗: The adversary issues a valid secret key reveal query on ID∗[i∗] but not on

any ID ∈ prefix(ID∗[i∗−1]).

– Type-II: The adversary does not issue valid secret key reveal queries on any ID ∈
prefix(ID∗).

By the strategy-dividing lemma in [15], in order to prove the theorem, it is sufficient to

show that for each type of adversary, its advantage is negligible.

Lemma 1. If there exists a PPT Type-I-i∗ adversary A1−i∗ breaking the selective-identity

security of SR-HIBE scheme Π with advantage ε, then there exists a PPT adversary B
against the weak selective-identity security of the underlying RHIBE scheme r.Π with the

same advantage.

Proof (of Lemma 1). Recall that the condition of the secret key reveal query is that if none

of ID′ ∈ prefix(ID∗) has been revoked before t∗, i.e., ID′ /∈ RLpa(ID′),t∗ , then skID′ will not be

revealed after t∗. In revoke & update key query, the condition means that if A has issued a

valid secret key reveal query on ID∗[i∗] before t∗ and tcu ≥ t∗, then ID∗[i∗] ∈ RLID∗[i∗−1],t
∗ and

thus ID′ ∈ RLpa(ID′),t∗ for all ID′ ∈ prefix(ID∗) \ prefix(ID∗[i∗−1]). In particular, if tcu ≥ t∗, it

guarantees that ID∗ ∈ RLpa(ID∗),t∗ . Let A1−i∗ be a PPT Type-I-i∗ adversary that breaking

the selective-identity secure of SR-HIBE scheme Π. We can construct a PPT adversary B
that can break the weak selective-identity secure of the RHIBE scheme r.Π by using the

ability of A1−i∗ as following.

Initial. A1−i∗ announces to B the challenge identity/time period pair (ID∗, t∗) ∈ IDh×T ,

and B forwards them to the RHIBE challenger r.C as its own challenge identity/time period

pair.

Setup. After r.C receives (ID∗, t∗), it generates and sends r.mpk and r.kukgc,1 to B. Then B
runs h.Setup(1λ)→ (h.mpk, h.mskkgc) and sends the public parameter mpk = (r.mpk, h.mpk)

and ukkgc,1 := r.kukgc,1 to A1−i∗ . As in the real selective-identity security game, B also pre-

pares a table T which initially contains (kgc,⊥,mskkgc := (⊥, h.mskkgc)), and initializes a

counter tcu := 1 which always is synchronized by the one maintained by r.C.
Public key reveal query. When A1−i∗ issues a public key reveal query ID ∈ IDh,

B forwards it to the RHIBE challenger r.C as a secret key generation query. Then, r.C
first makes the checks as in the selective-identity secure game of RHIBE. If it does not

hold, return ⊥ to B and B returns it to A1−i∗ . Otherwise, run (r.skID, r.mskID, r.st′) ←
r.GenSK(r.mpk, r.mskpa(ID), ID, r.st). If ID ∈ (ID)≤L−1, then r.C further executes (r, kuID,tcu , r.st′ID)←
r.KeyUp(r.mpk, r.mskID, tcu, r.RLID,tcu = ∅, r.kupa(ID),tcu , r.stID). Finally, r.C sends the update

key r.kuID,tcu to B when ID ∈ (ID)≤L−1, or returns nothing to B if ID ∈ (ID)L. After

that, B issues a secret key reveal query on ID to r.C and receives (r.skID, r.mskID). Then, B
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runs h.Delegate(h.mpk, h.skpa(ID), ID)→ h.skID, stores the entry (ID, pkID := r.skID, skID :=

(r.mskID, h.skID)) in table T, and returns pkID to A1−i∗ .

Secret key reveal query. When A1−i∗ makes a secret key reveal query ID ∈ IDh, B first

checks if the condition that if tcu ≥ t∗ and ID′ ∈ RLpa(ID′),t∗ for all ID′ ∈ prefix(ID∗), then

ID /∈ prefix(ID∗) \ prefix(ID∗[i∗−1]) holds. Since A1−i∗ uses Type-I-i∗ strategy, it does not

issue a valid secret key reveal query on any ID ∈ prefix(ID∗[i∗−1]). If it does not hold, return

⊥ to A1−i∗ . Otherwise, it guarantees that there exists an entry indexed by ID in table T,

then B obtains the entry (ID, pkID, skID = (r.mskID, h.skID)) and returns skID to A1−i∗ .

Revoke & update key query. When A1−i∗ issues a revoke & update key query RL ∈
IDh, B forwards it to the RIBE challenger r.C. Then r.C does the same check as in the

selective-identity security game. If those are not hold, return ⊥ to B, and B it to A.

Otherwise, r.C sets tcu := tcu + 1 and so does B. Then r.C does the same computations as

in the selective-identity security game and returns the key updates r.kuID,tcu to B. And B
returns the update keys ukID,tcu := r.kuID,tcu to A1−i∗ . Here, as mentioned at the beginning,

if tcu ≥ t∗, then it holds that ID∗[i∗] ∈ RLID∗[i∗]−1,t
∗ , thus ID∗ ∈ RLpa(ID∗),t∗ .

Decryption key reveal query. When A1−i∗ makes a decryption key reveal query

(ID, t) ∈ IDh × T , B first checks whether t ≤ tcu, ID /∈ RLpa(ID),t and (ID, t) 6= (ID∗, t∗)

hold simultaneously. If this is not the case, return ⊥ to A1−i∗ . Otherwise, B can an-

swer the query since it possesses h.skID (As we assumed before that all the identities

appeared in the queries has been queried a public key reveal query, thus there exists

an entry (ID, pkID = r.skID, skID = (r.mskID, h.skID)) in table T). Thus, B runs h.skID,t ←
h.Delegate(h.mpk, h.skID, t) and returns dkID,t := h.skID,t to A1−i∗ .

Challenge phase. Once the adversary A1−i∗ submits two messages M0,M1 with equal

length, B generates the challenge ciphertext as follows:

1. Set M ′0 = h.Enc(h.mpk, (ID∗, t∗),M0), M
′
1 = h.Enc(h.mpk, (ID∗, t∗),M1).

2. Choose a random bit b
$← {0, 1}, set M ′′1 = M ′b, M

′′
0 = M ′1⊕b, where ⊕ denotes the

addition modulo 2. Then sendM ′′0 andM ′′1 to the RHIBE challenger r.C as the challenge

messages that he chooses.

3. r.C chooses a random bit b̂
$← {0, 1}, generates the RHIBE challenge ciphertext

r.ct
(b̂)
ID∗,t∗ ← r.Enc(r.mpk, ID∗, t∗,M ′′

b̂
) and sends r.ct

(b̂)
ID∗,t∗ to B.

4. B sets the challenge ciphertext ct∗ID∗,t∗ = r.ct
(b̂)
ID∗,t∗ and sends it to A1−i∗ . Note that the

challenge ciphertext ct∗ID∗,t∗ is an SR-HIBE encryption on Mb⊕b̂ under (ID∗, t∗) since

M ′′
b̂

= Mb⊕b̂, and the bit b⊕ b̂ is uniformly random in {0, 1}.

Guess. At some point, A1−i∗ make a guess b′
$← {0, 1} that ct∗ID∗,t∗ is an encryption of

Mb′ . Then B computes and sends b̂′ = b⊕ b′ to the RHIBE challenger r.C as its guess for

the bit b̂.
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By the assumption,

AdvSR−HIBE−sel
SR−HIBE,A1−i∗

(1λ) =

∣∣∣∣Pr[b′ = b⊕ b̂]− 1

2

∣∣∣∣ = ε.

While by the construction, it holds that b′ = b⊕ b̂⇐⇒ b′ ⊕ b = b̂⇐⇒ b̂ = b̂′. Thus,

AdvRHIBE−sel−weak
RHIBE,B (1λ) =

∣∣∣∣Pr[b̂′ = b̂]− 1

2

∣∣∣∣ = ε.

Thus, it holds that

AdvRHIBE−sel−weak
RHIBE,B (1λ) = AdvSR−HIBE−sel

SR−HIBE,A1−i∗
(1λ),

as desired. This complete the proof of Lemma 1. ut

Lemma 2. If there exists a PPT Type-II adversary A2 breaking the selective-identity

security of SR-HIBE scheme Π with advantage ε, then there exists a PPT adversary B
against the selective-identity security of the underlying (L + 1)-level HIBE scheme h.Π

with the same advantage.

Proof (of Lemma 2). Let A2 be the PPT Type-II adversary, then we can construct a

PPT adversary B that can break the selective-identity security of the underlying HIBE

scheme h.Π by using the ability of A2. Note that A2 uses Type-II strategy, it has never

issues valid secret key reveal query on any ID ∈ prefix(ID∗), so A2 cannot issues decryption

key reveal query on (ID∗, t∗). The description of B is as follows:

Initial. A2 announces to B the challenge identity/time period pair (ID∗, t∗) ∈ IDh × T ,

and B forwards them to the HIBE challenger h.C as the challenge on its own.

Setup. After h.C receives (ID∗, t∗), it runs (h.mpk, h.mskkgc) ← h.Setup(1λ) and sends

h.mpk to B. Then B initializes the counter tcu = 1, executes (r.mpk, r.mskkgc, r.RLkgc,1, r.stkgc)←
r.Setup(1λ, L) and (r.kukgc,1, r.st′kgc) ← r.KeyUp(r.mpk, r.mskkgc, tcu = 1, r.RLkgc,1, r.stkgc),

sets RLkgc,tcu := r.RLkgc,tcu , stkgc := r.stkgc and sends the public parameter mpk = (r.mpk, h.mpk)

to A2. As in the real selective-identity security game, B also prepares a table T which ini-

tially contains (kgc,⊥,mskkgc := (r.mskkgc,⊥)).

Public key reveal query. When A2 makes a public key reveal query on level-i user ID ∈
IDh, i ∈ [L], B forwards it to the HIBE challenger h.C as a level-i secret key generation

query. h.C first makes the same check as in selective-identity security game of HIBE. If not,

return ⊥. Otherwise, h.C runs h.skID ← h.Delegate(h.mpk, h.skpa(ID), ID) and returns noth-

ing to B. Then, B issues a level-i secret key reveal query on the same ID. If h.C returns ⊥ to

B, then B returns ⊥ toA2. Otherwise, B executes (r.skID, r.mskID, r.RLID, r.stID, r.st′pa(ID))←
r.GenSK(r.mpk, r.mskpa(ID), ID, r.stpa(ID)) and stores the entry (ID, pkID := r.skID, skID :=
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(r.mskID, h.skID)) in table T. If i = L, B returns pkID := r.skID to A2. If i ≤ L− 1, B fur-

ther executes (r.kuID,tcu , r.st′ID)← r.KeyUp(r.mpk, r.mskID, tcu, r.RLID,tcu , r.kupa(ID),tcu , r.stID),

and returns pkID and r.kuID,tcu to A2.

Secret key reveal query. When A2 issues a secret key reveal query ID ∈ IDh, B first

checks the condition that if tcu ≥ t∗ and ID′ /∈ RLpa(ID′),t∗ for all ID′ ∈ prefix(ID∗), then

ID /∈ prefix(ID∗) holds. If not, return ⊥ to A2. Otherwise, it guaranteed that there is

an entry indexed by ID exists in table T, and ID /∈ prefix(ID∗) since A2 uses Type-II

strategy. Then B obtains the entry (ID, pkID = r.skID, skID = (r.mskID, h.skID)) from table

T and returns skID = (r.mskID, h.skID) to A2.

Revoke & update key query. When A2 makes a query RL ∈ IDh, B does the same

check as in the selective-identity security game. If not, return ⊥ to A2. Otherwise, B
increases tcu := tcu + 1 and does the same computations and can answer A2 as in the

selective-identity security game.

Decryption key reveal query. When A2 makes a decryption key reveal query (ID, t) ∈
IDh × T , B first checks whether t ≤ tcu, ID /∈ RLpa(ID),t and (ID, t) 6= (ID∗, t∗) hold simul-

taneously. If this is not the case, return ⊥ to A2. Otherwise, B sends (ID, t) to the HIBE

challenger h.C as a level-(i, i+1) secret key reveal query. As we assumed before that all the

identities appeared in the queries has been queried a public key reveal query, and the con-

dition ID /∈ RLpa(ID),t guarantees that pa(ID) is not revoked at time t∗. Thus, it guarantees

that h.C has already generated h.skID. Thus, h.C runs h.skID,t ← h.Delegate(h.mpk, h.skID, t)

and sends h.skID,t to B. Then, B returns dkID,t := h.skID,t to A2.

Challenge phase. Once the adversary A2 submits two messages M0,M1 with equal

length, B generates the challenge ciphertext as follows:

1. Choose a random bit b
$← {0, 1}, set and send M ′0 = Mb and M ′1 = M1⊕b to h.C as the

challenge messages.

2. h.C chooses a random bit b̂
$← {0, 1}, generates the HIBE challenge ciphertext h.ct

(b̂)
ID∗,t∗ ←

h.Enc(h.mpk, (ID∗, t∗),M ′
b̂
) and sends h.ct

(b̂)
ID∗,t∗ to B.

3. B runs r.ct∗ID∗,t∗ ← r.Enc(r.mpk, ID∗, t∗, h.ct
(b̂)
ID∗,t∗), set the SR-HIBE challenge ciphertext

ct∗ID∗,t∗ := r.ct∗ID∗,t∗ and sends it to A2. Note that ct∗ID∗,t∗ is an SR-HIBE encryption on

Mb̂⊕b under (ID∗, t∗) since M ′
b̂

= Mb̂⊕b and the bit b̂⊕ b is uniformly random in {0, 1}.

Guess. A2 outputs a guess b′
$← {0, 1} that ct∗ID∗,t∗ is an encryption of Mb′ . Then B

computes b̂′ = b⊕ b′ and returns b̂′ to h.C as the guess for the bit b̂ chosen by h.C.
By the assumption,

AdvSR−HIBE−sel
SR−HIBE,A2

(1λ) =

∣∣∣∣Pr[b′ = b⊕ b̂]− 1

2

∣∣∣∣ = ε.
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Besides, by the construction, b′ = b⊕ b̂⇐⇒ b′ ⊕ b = b̂⇐⇒ b̂ = b̂′. Thus,

AdvHIBE−sel
HIBE,B (1λ) =

∣∣∣∣Pr[b̂′ = b̂]− 1

2

∣∣∣∣ = ε.

Thus, it holds that

AdvHIBE−sel
HIBE,B (1λ) = AdvSR−HIBE−sel

SR−HIBE,A2
(1λ),

as desired. This complete the proof of Lemma 2. ut
Combining Lemmas 1, 2 and the strategy-dividing lemma in [15], we can conclude that

the constructed SR-HIBE scheme Π satisfies selective-identity security. This complete the

proof of Theorem 1. ut

3.1 Generic Construction of SR-IBE with DKER from any IBE and

two-level HIBE

When the maximal hierarchical depth L = 1 in our generic construction, i.e., for the SR-

IBE case, we obtain a generic construction of SR-IBE scheme with DKER from RIBE

without DKER and two-level HIBE. While Ma and Lin [23] gave a generic construction of

RIBE without DKER from any IBE scheme. Combining their work with our construction,

we can get a generic construction of SR-IBE scheme with DKER from any IBE scheme

and two-level HIBE scheme.

Observe that Ma and Lin [23] said their generic construction of RIBE with DKER

from any IBE scheme and HIBE scheme was natural to server-aided. In their work, the

sender chooses a random message M1 and set the message M2 = M ⊕M1, and the server

can get one of M1 and M2 while the recipient can recover the other one. Since the server

may be untrusted, if he sends something that is different from what he obtained, then the

recipient cannot gain the real message M . And the ciphertext contains a HIBE ciphertext

and ` IBE ciphertexts in their construction, where ` is the length of identity. While in

our construction, the server only can get a HIBE ciphertext on M , if he has dishonest

behavior, then the recipient cannot decrypt to recover the message M and thus can detect

this case. Thus, our construction can guarantee both the integrity and privacy of messages,

and has shorter ciphertext size which contains ` IBE ciphertexts in our construction.

4 Conclusion

In this paper, we propose a generic construction of server-aided revocable hierarchical

identity-based encryption. Specifically, we give a definition of SR-HIBE scheme by ex-

tending the SR-IBE scheme to the HIBE setting and propose a generic construction
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of SR-HIBE scheme with DKER from any (weak) L-level RHIBE without DKER and

(L+1)-level HIBE by modifying the definition of RHIBE scheme. In order to realize the

server-aided revocable functionality, we use the “double encryption” technique. Besides,

we obtain a generic construction of SR-IBE scheme with DKER from any IBE scheme and

two-level HIBE scheme. Our construction has shorter ciphertext size and can guarantee

both the integrity and privacy of messages.
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