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Abstract. Recent publications describe profiled single trace side-channel attacks
(SCAs) against the DES key-schedule of a “commercially available security controller”.
They report a significant reduction of the average remaining entropy of cryptographic
keys after the attack, with surprisingly large, key-dependent variations of attack
results, and individual cases with remaining key entropies as low as a few bits.
Unfortunately, they leave important questions unanswered: Are the reported wide
distributions of results plausible - can this be explained? Are the results device-
specific or more generally applicable to other devices? What is the actual impact on
the security of 3-key triple DES? We systematically answer those and several other
questions by analyzing two commercial security controllers and a general purpose
microcontroller. We observe a significant overall reduction and, importantly, also
observe a large key-dependent variation in single DES key security levels, i.e. 49.4 bit
mean and 0.9 % of keys < 40 bit (first investigated security controller; other results
similar). We also observe a small fraction of keys with exceptionally low security levels
that can be called weak keys. It is unclear, whether a device’s side-channel security
should be assessed based on such rare weak key outliers. We generalize results to
other leakage models by attacking the hardware DES accelerator of a general purpose
microcontroller exhibiting a different leakage model. A highly simplified leakage
simulation also confirms the wide distribution and shows that security levels are
predictable to some extend. Through extensive investigations we find that the actual
weakness of keys mainly stems from the specific switching noise they cause. Based on
our investigations we expect that widely distributed results and weak outliers should
be expected for all profiled attacks against (insufficiently protected) key-schedules,
regardless of the algorithm and specific implementation. Finally, we describe a sound
approach to estimate actual 3-key triple-DES security levels from empirical single
DES results and find that the impact on the security of 3-key triple-DES is limited,
i.e. 96.1 bit mean and 0.24 % of key-triples < 80 bit for the same security controller.
Keywords: DES · 3-DES · SCA · side-channel attack · key schedule · weak keys

1 Introduction
Most side-channel attacks (SCAs) target the main data-path of cryptographic engines,
where input data and round keys are processed. Differential attacks can generally be
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considered as most powerful because they use side-channel observations with different input
data to recover keys using statistical tools. The matter becomes significantly more difficult
for attackers when implementation parts should be targeted where no such differential
analysis is possible. The transfer of constant secret keys over internal buses and its handling
during the key schedule are examples for this. Attacks in such cases are usually profiled and
performed by comparing previously acquired templates to new side-channel observations.
They usually require a higher measurement precision. This can e.g. be achieved using
high-precision EM measurements [HMH+12].

Wagner et al. [WH17, WHG17, WH18] published results of mounting a profiled side-
channel attack against the key schedule of a “DES hardware accelerator” in a “security
controller” product. Their SCA attack provides partial information about the key and the
key must be recovered through a subsequent brute-force search. The effort required by the
brute-force search is represented by the remaining security level or guessing entropy of a
key in bit (cf. definition in Section 5.4). The authors find a significant reduction of security
levels, but it appears to be highly dependent on the key. This leads to a distribution of
results and implies the existence of particularly weak keys. Their results raise interesting
questions, both for the specific case of their device, and in general. Most of these questions
are left unanswered in the original series of papers. Several of their choices during analysis
seem heuristic or ad-hoc, calling for a re-assessment through a second investigation.

In this work, we independently perform an investigation on a comparable device and
provide carefully reasoned and fully documented results including new insights and answers
to the following important questions:

1. Can the results from Wagner et al. on single DES be reproduced independently and
what are the actual results for a commercial security controller? Are there really
weak keys?
We perform an analysis of a comparable device and carefully argue every choice
of algorithm. We systematically attest that the device exclusively leaks the XOR
difference between key bits during the DES key schedule, which allows us to make
reasonable algorithm choices. The results confirm several statements of Wagner et
al. Specifically, a reduction of security levels to a similar extent is achieved for single
DES, i.e. the average remaining security level is reduced to 48.2 bit (from 56 bit)
after a comparable amount of traces per key. Also, some keys are significantly weaker
than others with 1.8 % of keys < 40 bit (when using 3 traces per key). In terms of
worst case, tested with key bits being either all ones or all zeros (note that those keys
are also cryptographically weak and thus an unrealistic choice), we found security
levels as low as only 2 bit for those two particular keys.
Contrarily, the resulting security levels of DPA attacks against AES implementations
is largely independent of the key’s value.

2. If weaker individual keys exist for single DES, what is the impact on 3-key triple-DES
implementations?
Three-key triple-DES is the last remaining ’acceptable’ use of the DES algorithm.
Note, however, that the German BSI does generally not recommend using DES [Bun19].
The impact on three-key triple-DES was left unanswered by Wagner et al. We de-
scribe a sound approach to derive security levels for 3-key triple-DES based on single
DES security levels. This is done by generalizing a meet-in-the-middle attack for
side-channel results which is not straight-forward. Single trace attacks against single
DES in one of the analyzed devices resulted in a distribution of security levels with
49.4 bit mean and 0.9 % of keys < 40 bit. The derived distribution of security levels
for 3-key triple-DES after the side-channel attack (112 bit cryptanalytic security) has
a mean of 96.1 bit while only 0.24 % of key-triples lead to a security level < 80 bit.
Although this reduction of security levels is significant on average, the number of
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key-triples < 80 bit is still comparably low. If an attacker uses ≈ 900 measurements
per key (no improvement after ≈ 400 traces), the percentage of key-triples < 80 bit
increases to 6.3 %. However, a security level of < 70 bits is still rare and achieved
in only 0.32 % of cases. This means that an attacker faced with actual devices will
only reach a brute-force effort < 70 bit for every 300-th device, given he performs a
> 400-trace attack on every device.

3. Are there SCA-weak DES keys? What is the reason and is it device-specific?
Our investigations confirm the widely distributed security levels and dependence on
the key value, including significantly weak keys1. An important question to ask is
whether the widely distributed security levels and occurrence of weak keys are due to
properties of the device, noise, or of algorithmic origin. How are they influenced by
the key-schedule algorithm and exhibited leakage model? This was left unanswered
by Wagner et al., as they are e.g. missing repeated measurements of the same keys
(for more than one example) to isolate the influence of electrical noise. Through
investigations of different devices, i.e. two security controllers and a general purpose
controller, including many measurements per key to investigate the noise influence,
and a simplified simulation, we show that the reason for different security levels
and weak keys is in fact not specific to a single type of device, but the combination
of the DES key-schedule algorithm and either one of two frequently encountered
leakage models. The investigated devices, two commercial smart card controllers and
a general purpose microcontroller, exhibit completely different leakage models, but
show similar results, as does the simulation. Hence, in case of the DES algorithm,
an SCA on the key-schedule leads to weak keys under different implementation
circumstances.

4. Can the weakness of individual keys after SCA be predicted through simulation?
We use a simplified model of the DES key schedule with perfect and equally weighted
Hamming distance leakage (XOR leakage) of round keys to perform simulated attacks.
This is extremely fast compared to performing actual measurements and significantly
more general in the sense that apart from the simplified leakage model, no other
properties of the device are used. Interestingly, this simulation reproduces widely
distributed security levels and weak keys. The simulation even allows for a rough
prediction of security levels for individual keys for the actual device, which also
emphasizes the generality of the issue. However, the simplifications seem to prevent
precise predictions for a specific device. Additional device-specific parameters to
weight XOR transitions could be derived from actual measurements and would likely
improve results. This could, in theory, allow to dismiss weak keys before using them
based on simulation to improve the worst-case security bound after side-channel
analysis. On the other hand this would hypothetically allow to deliberately generate
and distribute weak keys for malicious purposes.
Interestingly, for keys with significantly uneven distributed ones/zeros, the simplified
simulation provides a very accurate prediction of measurement results. Keys with low
security levels according to this simplified model will likely be weak on all hardware
implementations exhibiting XOR leakage. This emphasizes the prediction capability
of the model in general. Such particular keys with a Hamming weight close to either
the minimum or maximum are, however, statistically rare in case of random number
generators for cryptographic key generation, which are usually required to produce

1In theoretical cryptanalysis, cipher-specific weak keys lead to undesirable behavior, e.g. that encryption
and decryption are equivalent (i.e. enck(enck(x)) = x) because all subkeys are equal (and the cipher is a
Feistel cipher). The term weak key in the context of this work describes a key with a low security level
after a side-channel attack.
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uniformly distributed ones and zeros (e.g. through post-processing using a block
cipher).

5. How likely is it that other implementations or devices are affected by weak keys?

Our investigations show that different leakage models together with the DES key
schedule properties lead to widely distributed results and weak keys. Hence, every
device which shows any subkey-dependent leakage (of at least the two confirmed forms,
i.e. value and XOR leakage) is likely affected.

Section 2 recaps on the works of Wagner et al., discusses important aspects from their
contributions and differentiates to our work. We systematically explain all crucial choices
when attacking key schedules using profiled template attacks in Section 3. The following
Section 4 provides necessary information about the DES key schedule and answers the
remaining questions regarding template attacks given XOR leakage specifically. Section 5
provides the results and insights of an extensive empirical study of a security controller
product and includes the simulation results. Section 6 explains how to derive 3-key
triple DES results from single DES evaluations. Section 7 contains the results of an
empirical study of a general purpose microcontroller which allows further generalization.
Section 8 presents the results achieved after analyzing a second security controller. To aid
reproducibility and interpretation of our results, all algorithms and tools used in this work
are described in Appendix A.

2 Related work

Wagner and multiple co-authors focused on a “commercially available smartcard” including
a DES co-processor in the following contributions published on the IACR’s eprint server.
To the best of our knowledge, none of the following contributions have been published
in a peer-reviewed conference or journal. We discuss their publications in the order of
publication date.

2.1 Hu et al., Ciphertext and Plaintext Leakage Reveals the Entire
TDES Key, 2016

In 2016, Hu, Zhang, Zheng and Wagner [HZZW16] investigate the DES co-processor
of a commercially available smartcard running unidentified software. They use an EM
measurement setup without stating details on the probe, sampling rate, measurement
position, or alignment. Four DES executions are observed within a short frame instead of
a single one as expected. As a reason they assume a forward-backward-forward-backward
computing DFA countermeasure. They report statistically significant correlations between
measurements and Hamming distances between consecutive 32 bit words of the key,
plaintext, and ciphertext within few cycles before/after an identified DES operations. They
assume an internal 32-bit bus as cause of this leakage. Based on these findings, Hu et
al. describe that guessed keys could be tested by using a known plaintext and performing
ciphertext correlations for candidates. This would help to verify triple-DES part-keys in
case their respective key space is already reduced significantly, an important prerequisite
which is addressed in later contributions. However, for the testing of every candidate, a
correlation-based side-channel attack would have to be performed. This is only realistic
for very short lists of candidates. In summary, it seems difficult to construct an actual
attack based on their findings.
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2.2 Wagner et al., Comparative Study of Various Approximations to
the Covariance Matrix in Template Attacks, 2016

In 2016, Wagner, Hu, Zhang and Zheng [WHZZ16] describe further results from a side-
channel analysis of the same DES implementation. In this contribution, they perform
multivariate profiled template attacks to exploit the distance-based leakage of ciphertext,
plaintext and key bytes, which they uncovered in their previous publication [HZZW16].
They find that the XOR distances between key parts can be recovered with a low number
of traces (e.g. range of 500). Based on this, they describe a possible attack similar to
their previously published one and estimate that (only) 6 to 10 bits per DES key could be
recovered. Additionally, they evaluate different statistical models and parameter estimation
techniques by choosing different types of covariance matrices and methods to estimate the
coefficients. They find that some strategies lead to better results than others. However, in
their later attacks on the DES key schedule [WH17, WHG17] they report best results with
averaged covariance matrices, which is state of the art and usually referred to as pooled
covariance matrices.

In this work, a Langer EM probe with unknown specifications is placed ’on top of a
DES hard-macro’, identified in an unknown manner, and a sampling rate of 5 GS/s is used.
Pattern matching is used to extract the four DES operations, and an elastic alignment
filter helps to cope with the internal and unsynchronized clock. They record 7 million
traces, and use 5 million for profiling after dismissing untypical ones.

2.3 Wagner and Heyse, Single-Trace Template Attack on the DES
Round Keys of a Recent Smart Card, 2017.

In 2017, Wagner and Heyse [WH17] finally describe a ’single-trace’ attack claiming to
exploit a newly uncovered internal distance leakage between DES key bits during the DES
key schedule of the same commercial smart card. To explain their observation that secret
key bits actually leak their XOR distance, they assume that round keys are masked with a
value that is constant for each computation. The repetitive handling of bits, which is due
to the DES key schedule specification, together with this observation leads to exploitable
distance leakage between key bits, which is described in [WH17, Equation (3)]. The
authors list all distances between key bits and the rounds they occur in [WH17, Table 5].
Four successive DES operations are exploited in each ’single trace’. As an attack result,
they report a remaining entropy of 48.5 bit on average [WH17, Table 6] and few cases
with significantly lower remaining entropies. They do not answer the question, whether
the large difference in attack outcome is due to key values and the algorithm, or stems
from e.g. electric noise.

During the profiling phase, templates are created for subkeys (i.e. their values), which
are obtained by grouping key bits into subkeys according to occurring transitions in the key
schedule. The template size, which is the number of bits profiled together, is 7 bit. (They
also test different template sizes; see the subsequent contribution [WHG17].) For each
possible bit-value of each subkey, a profile is created using ≈ 4.7 million traces with random
keys. Since the actual leakage is a Hamming distance leakage instead of a value-based one,
they are forced to choose their subkeys with overlapping bits. See Section 3 for a detailed
discussion about this and Section 4.1 explaining why profiling bit-values is not reasonable
(instead, XORs should be profiled). This overlap approach further creates a problem when
combining ranked lists from the template matching of the overlapping subkeys. Their
proprietary key enumeration and rank estimation is suboptimal, since they are disregarding
probabilities from SCA and ignoring dependencies between overlapping subkeys. Any
optimal key rank or enumeration algorithm estimates the combined probabilities for key
candidates based on the subkey probabilities [VCGRS12]. The issues are partly addressed
in a subsequent contribution [WHG17] where probabilities are used instead of subkey
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ranks. We discuss established methods in Section 3. The authors also argue how additional
sources of leakage, e.g. the Hamming weight of the full key, could be used to improve the
attack.

2.4 Wagner et al., Brute-Force Search Strategies for Single-Trace and
Few-Traces Template Attacks on the DES Round Keys of a Recent
Smart Card, 2017

As a follow-up to their previous contribution, Wagner, Heyse and Guillemet [WHG17]
describe improved ’brute-force’ strategies of enumerating keys based on the results from
the template matching described in their previous contribution. The improved strategies
are based on lists of ranked candidates. It can be seen as an attempt to key enumeration
while still disregarding probability information or likelihoods from the template matching
of subkeys, which is unreasonable. In more detail, they derive lists of value-candidates
for overlapping subkey parts (e.g. 14 lists of 7 bit templates with 5 bit overlap for one 28
bit register; they call these ’C’-rings) from the template attack. Then as a first step, an
unordered list of all possible combinations is created while discarding combinations which
are impossible due to not-matching values in the overlapping bits (e.g. 227 candidates
remain, one bit indistinguishable due to the actual distance model). Subsequently, and
disregarding all derived likelihoods or probabilities from the template attack, they sort
this list of keys. For this, they use the average, or maximum ranking of all subkey parts
for every item on the list. From the two registers, a heuristic brute-force mechanism is
used to enumerate entire keys.

Results for DES. In a test with ≈ 297k single trace attacks (four DES executions per
trace) on individual keys, they report an average remaining entropy of 45.65 bit out of 56
bit [WHG17, Fig. 12]. While this is a significant reduction, it is not critical on average.
The results for different keys show a distribution with a large variance, however. The 1×σ
interval roughly extends down to 40 bits. They try different template sizes and report best
results with 9-bit templates (with 7 bit overlap of adjacent templates). All choices lead to
similar results. Note that through the overlap, the attack essentially extracts the same
information from the trace repeatedly at an increased computational cost.

In [WHG17, Section 3], they attempt to use ’additional’ leakage by first adding up
trace parts corresponding to the 16 rounds from the four DES executions. Then, the sum
of the Hamming distances of all bits of a round is used for a profiled template attack.
This requires ≈ 600 templates to model all possible summed Hamming distances which
may obviously only convey limited information. Instead of estimating the probability for
groups of bits and derive the joint probabilities through a rank estimation algorithm, their
strategy is to heuristically modify their ’brute-force search algorithm’ by removing all
candidates which do not match with the observed Hamming distance with a deliberately
chosen error-margin of ±7 bits. Authors report an average improvement of ≈ 2.5 bit.

Impact on 2-key triple-DES. Wagner et al. estimate 2-key triple-DES results based
on their single DES attack results. They take single DES results, and for all possible
combinations of individual results, they square2 the higher remaining entropy to derive an
estimated 2-key triple-DES result. Doing this, they implicitly dismiss a possible meet-in-
the-middle improvement. See Section 6 in this work about how to derive distributions for
multi-key encryption from single-key measurements and how to benefit from the meet-in-
the-middle approach using side-channel attack results on the example of 3-key triple-DES.
They report a distribution with a mean remaining entropy of 96.47 bits [WHG17, Fig. 17].
The occurrence of low entropy 2-key combinations is extremely rare. They also report

2Note that authors state ’double’ and most probably mean doubling the bit-representation



Heyszl et al. 7

2-key triple DES results (for different template sizes)[WHG17, Table 2]. According to their
table (template size 9 bit), 0.068 % are < 70 bit, 0.0011 % are < 60 bit, 0.0000088 % are
< 50 bit. The decline is exponential. The authors convert this probability of occurrence
into an ’effort’ measured in bit to achieve a combined attacker effort in bits. However,
given each device uses one specific key, attackers would actually need to change devices for
this. The required efforts for changing devices are significantly higher than brute-forcing
key candidates offline. Hence, a combination of the two complexities seems misleading.
They report results indicating a combined security level exceeding 70 bit for all cases,
even for cases where the estimated remaining entropies are lower than 50 bit, because the
probability of occurrence is low. Based on the fact that one key is used twice in a 2-key
triple-DES and using what they call ’total Hamming distance leakage’, they claim that
results could be improved by several bits. The presented estimates for these improvements
are not convincing, as they are partly based on a very low number of observations; e.g. three
observations in [WHG17, Table 4].

Bounds for Security Levels through Simulation. Wagner et al. investigate the reason
for weak keys using a simulation [WHG17, Section 5]. While their argumentation is
disregarding several important aspects (e.g. influence of noise is not investigated thoroughly
to rule it out as cause for the distribution), their main claims, i.e. that some keys are
weaker than others and that this depends on the key bit values, is in line with our findings.

Wagner et al. attempt to determine the remaining entropy of given keys after a simulated
side-channel observation without electrical noise. They assume that the observable leakage
is the Hamming distance between successive round-keys and that the attacker is able to
exploit this perfectly. Keys k and k′ with equal traces, i.e. summed Hamming distances
per each round key update time-point, are still not distinguishable for an attacker. By
counting the number of keys k′ with identical leakage they try to estimate a theoretical
lower bound for the security level for every given key k. This is reasonable under the
strong attacker assumptions mentioned above. However, note that this also implicitly
assumes attackers to be capable of profiling and attacking large parts of the key at once.
Counting such collisions is difficult, however.

Each side-channel observation in this simulation is fully characterized by 15 values of
Hamming distances (HD) between successive round-keys. It is represented by a function
dist15(k) = {HD(subkey(i), subkey(i + 1))}15

i=1 ∈ [0, 48]15, which maps each key to its
leakage. Based on the DES specification, Wagner et al. rightly claim that the leakage is
the sum of contributions from both equally structured registers, dist15(k) = dist15C(k) +
dist15D(k) for each key k. In order to make counting of collisions feasible, they employ
a two-stage matching with a systematic error. In the first stage, when given a key
k, and while going through possible candidates k′, they keep all keys k′, such that
||dist15C(k)||1 = ||dist15C(k′)||1 and ||dist15D(k)||1 = ||dist15D(k′)||1. Here ||v||1 =

∑
|vi|

denotes the L1-norm of a vector v. In other words, they only keep all k′ where the simplified
L1-norm of the first part (register C) matches the simplified L1-norm of the first part of
k, and the same for the second part (register D). This reduces the number of candidates
to a manageable set. They then count the true collisions (dist15(k) = dist15(k′)) in
the remaining set. Unfortunately, their first stage already discards possible matches
introducing the error. Take as an example the two keys k1 = 0x01E001E0_01F101F1 and
k2 = 0x011F011F_010E010E. Both lead to identical leakage since the roles of the two
registers are simply swapped:

dist15C(k1) = dist15D(k2) = [24, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 24] and
dist15D(k1) = dist15C(k2) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

However, this key-pair (along with many others) would be missed by the simulation of
Wagner et al. because the simplified L1-norm of the registers C and D do not match.
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This means that they systematically underestimate the security levels. As a conclusion,
this means that their given results cannot be used as a reference for the theoretical attack
potential and lower bound for the security level of the DES key-schedule.

They performed the above described simulation for a random selection of 8k keys which
results in an average remaining entropy of only 15.0 bit [WHG17, Fig. 42]. They used the
10 weakest keys (0.135 % of 8k) from their simulation for an actual attack which leads
to an average security level of 41.6 bit. The results are lower than the overall average of
46.16 bit [WHG17, Fig. 11] but from the discussion above, it is already expected that the
low security levels from the simulation are faulty. The simulation results do not represent
achievable lower bounds.

Influence of independent noise on key weakness. Wagner et al. perform 32k repeated
attacks for (only) one fixed key [WHG17, Section 6]. They find that even for this fixed key,
the results exhibit a near-Gaussian distribution with a large variance. While not noted by
the authors, this is interesting because it could indicate that attack results are in fact very
dependent on the trace-specific random noise in addition to key properties. Their results
also show that the remaining entropy of this single key converges to a certain level when
increasing the number of traces used for the attack. An analysis of more keys is missing.

2.5 Wagner and Heyse, Improved Brute-Force Search Strategies for
Single-Trace and Few-Traces Template Attacks on the DES Round
Keys, 2018

As an improvement to their previous work, Wagner and Heyse [WH18] describe modifica-
tions to their enumeration of key candidates. Their setting is equivalent to previous papers
(measurement setup, 11-bit templates, high overlap, pooled covariance matrices). Authors
report that a template size of 11 bit has been used, however, also report that smaller sizes
did not lead to worse results. In this work, they only use previously identified 378 ’weak
keys’ (0.135 % of total keys) which led to the best results in their previous work. Wagner
et al. only record single measurements per key (note that their single trace attack actually
contains four DES executions, however).

For the improved search strategy, they create a list of all possible combinations of
value-candidates for subkeys after template matching as done in their previous work. Also,
they remove candidates where the overlapping bits do not match. As a novelty, they then
sort the remaining candidates according to the product of matching probabilities of key
parts (precisely through summing after taking the logarithm) using Quicksort. They do
so for both registers (e.g. half keys) separately. They disregard dependencies which are
inherent due to the overlap. (Note that both state of the art key enumeration algorithms
mentioned in Section A.5 as well as their approach require independence between the
key parts for optimal results.) They then use an incrementally increased threshold to
repeatedly test combinations of subkeys with probabilities below that threshold. In this
search, they weight the probabilities in the two separate lists slightly different to represent
alleged differences in leakage between the two registers. In addition, they also incorporate
’total Hamming distance leakage’ as described in a previous contribution which accounts
for roughly 1 bit of the reduction. As a result, they claim that the average remaining
entropy (it remains unclear, however, how this is determined precisely) is lowered from
≈ 41.7 to ≈ 38.8 bits for this set of 378 weakest keys with values ranging from ≈ 16 to
≈ 52 bit. They explicitly claim achievable security levels as low as 2 bit, based on the
flawed simulation described in their preceding paper.
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2.6 Summary
Many described assumptions, decisions, steps, and algorithms by the authors are either not
respecting the state of the art, or argued in a manner which is unclear or not satisfying.
This makes it impossible to assess the impact of the attack on the security of DES
implementations. Nonetheless, their attack reduces the key entropy and demonstrates that
there is exploitable leakage. The generality of the threat to other implementations, devices
and cryptographic algorithms is left open by this series of papers.

3 Profiled attacks to recover key bit values - Leakage mod-
els, classification, enumeration

The aim of profiled side-channel attacks is the classification of values from (few) noisy
observations using statistical methods after a preliminary profiling. Key-dependent inter-
mediate values are often targeted during a cryptographic computation. In the context of
attacks on a key schedule, a likely target are key bits directly. A leakage model specifies
the recoverable values as variables and their functional dependencies. For the observable
variables, the statistical parameters are then estimated during profiling and used for classi-
fication. It is important to derive a solid understanding about the leakage model of the
attacked secret to determine the best or even optimal algorithms for classification. In most
cases only parts of the key (here called subkeys, usually bytes or groups of key bits) can be
classified at once due to resource constraints. The result is a list of candidates including
probabilities. The leakage model and derived classification approach also influence how
the enumeration of candidates for the entire key based on subkey classification results can
be performed.

Given the context of an attack against the DES key schedule and considering general
implementation choices (see Section 4), a small set of leakage models is reasonable and
should be considered. First, bits may leak their value directly. In case of a hardware
implementation, a transition between successive values in a register may also be a valid
model of the leakage. Best or even optimal classification and enumeration results can
only be achieved if the actual leakage model of a device is investigated thoroughly and
choices made accordingly. In the following, we discuss relevant leakage models and their
implications on the choice of suitable algorithms.

3.1 Different possible leakage models of key bits
The following four subsections describe different possible leakage models of key bit variables
ki which are targeted, e.g. during an attack on the key schedule. Since key bits are generally
chosen randomly from a uniform distribution, there is no a priori dependency between
them. Therefore, they are depicted as independent variables in the following figures.

3.1.1 Independent value leakage

The simplest form of side-channel leakage is when the value of each bit is leaked directly
(i.e. single bit Hamming weight, or bit-weight) and independently, which we refer to as
value leakage. Figure 1 depicts such a case where every bit leaks its value on a side-channel
trace in a way so that by looking at a part of the trace (i.e. a number of time-samples
denoted by Lj) the different bits can be observed independent from each other.

If value leakage of individual key bits is present exclusively, it is reasonable to model and
classify them separately. The observed probabilities of the key bits are, thus, independent
and key enumeration can be performed in a straight-forward manner. Note that this means
that there would be no overlap between the leakage Lj of individual bits. However, due
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Figure 1: Leakage model with every bit leaking its value independently.

to the nature of high-frequency sampling of physical dimensions in side-channel analysis,
an imminent low-pass behavior, thus, temporal overlap, should be expected for adjacent
time-samples in many cases.

3.1.2 Overlapping value leakage

Figure 2 depicts a more realistic case, where the leakage signals of multiple key bits overlap
temporarily. Hence, the leakage of individual key bits is observed at the same time and an
attacker may only observe the distribution of a function of these bits. Signals from one
variable do appear as switching noise in regard to the other variables (see Mangard et
al. [MOP08] for a definition).

Figure 2: Leakage model with the leakage of bits overlapping in the observation.

Joint modeling of bits with multi-bit templates. In this case of overlapping leakage, it
is reasonable to model those bits with overlapping signals jointly to reduce switching noise
and increase the signal-to-noise ratio (SNR). Practically, this means that those multiple
bits are ’put into the same template’. A difficulty arises when too many bits overlap
so that they cannot feasibly be modeled jointly. One should then aim for a reasonable
trade-off between the maximal number of values that can be profiled together, limited by
computational and storage capabilities, the number of available traces for profiling of each
class, as well as the SNR gain from reducing switching noise (see Section 4.2.1) and choose
a suitable partitioning. Importantly, in this leakage model, the observed variables (bit
values) are independent. Hence, key enumeration can be performed in a straight-forward
manner using the derived probabilities for key bit values.

3.1.3 XOR leakage

Based on the DES key scheduling algorithm and general hardware design knowledge, one
can assume that the transition between bits leads to observable leakage whenever they
are consecutively written into storage cells. For instance, based on the assumption that
consecutive round keys are written into a round key register, specific key bits follow each
other on the respective storage cells. (Section 4 describes this in the context of the DES
key schedule.) This XOR leakage implies that an attacker may observe the XOR difference
between consecutive bits. Additional information about key bit values, i.e. value leakage,
may also be observable. Masking of successive subkeys with the same mask throughout
the key-schedule would for example result in pure XOR leakage. Wagner et al. [WHG17]
assume that this is the case in their investigations. We actually prove this assumption to
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be true for the device under test described in Section 5.3. The case of XOR leakage is
depicted in Figure 3.

Figure 3: Leakage model with transition / XOR leakage of two bits.

Importantly, if XOR leakage between bits is observed, any derived (posterior or
conditional) probabilities (i.e. classification results) for the key bit values are mutually
dependent. Consequently, if an attempt is made to derive information about actual bit
values (i.e. calculate marginal distributions for the key bits), information is lost due to
their dependency. Described in simple terms, due to the observed XOR relations, the
value of one bit depends on the other which does not allow to use most established key
enumeration algorithms. Instead, Li et al.’s proposal [LWWW17] must be considered; see
Section A.5.

Classifying XOR transitions instead of bit values. However, a different approach can be
used. The observable variables, which are XORs of successive bits, are in fact independent.
This follows from the fact that we can observe them directly and a priori the XORs of
successive key-bits are uniformly distributed. Given the value of the first bit, there is a
bijection between the other key bits and the succession of XORs (using the recurrence
relation ki = (ki ⊕ ki−1) ⊕ ki−1 for successive key bits {ki}). Since the key bits are
independent, this implies the uniform distribution of the observed variables. Hence,
successive XORs of key bits are mutually independent.

For the case of exclusive XOR leakage, the enumeration algorithm should be applied
directly to the leaking XOR variables instead of the key bit values. This leads to a list
of candidates for the transition sequence, where each entry represents two possible key
candidates. We use this approach in our empirical study in Section 5 after confirming this
leakage model. The discussion regarding temporal overlap of leakage from the previous
Section 3.1.2 also applies here.

3.1.4 Mixed leakage

Finally, Figure 4 depicts a case, where both previously described forms of leakage appear
in a device. Additionally, the depicted leakages Lj may also overlap. In this case the
difficulty is that information about the bits are derived from two mutually dependent
sources (value leakage and XOR leakage). Hence, a suitable algorithm is required to
resolve this situation. Current literature [VCGS14, GS14] suggests that belief propagation
on a factor graph similar to Figure 4 is the best choice for dependent variables.

Multi-bit templates. In the case of multiple kinds of leakage with possible temporal
overlap, a careful grouping of variables into templates may increase SNR. Then, the
marginalization to recover probabilities for subkeys would be done in either of the two
directions; key bits, or observable XOR transitions. In this situation any marginalization
leads to loss of information (e.g. for the XOR leakage part), since (a posteriori) there
are no entirely independent variables. In practice, one needs to group variables with the
strongest dependencies into the same templates and maximize the number of variables in
each template, thus minimizing (but not preventing) information loss.



12

Figure 4: Leakage model with distance and value leakage.

Does it make sense to use overlapping templates? Overlap means that the same
variables are profiled in more than one template in order to capture all available leakage
during profiling. This could apply to pure XOR or mixed leakage. The downside of
such an approach are resulting dependencies between subkeys, which prevent the use of
classical key-enumeration algorithms. However, belief propagation based on the functional
dependencies between the observed variables seems to be the reasonable approach to
resolve dependencies stemming from overlaps. In practice, one has to carefully weigh the
possible gain of information against the increased computational cost.

3.2 Distinguishing XOR and value leakage
For actual implementations, it is reasonable to either assume key bits are leaking their
values directly, or to assume leakage of XOR transitions between key bits. Which leakage
model applies can be tested by calculating exclusive SNRs for those leakage models.

Value leakage in every time-sample can be determined easily by computing SNR traces
for individual key bits. If significant SNR is detected, the value leakage can be exploited
directly in a multivariate template attack. XOR leakage is more difficult to assess. The
following description focuses on two bits a and b where the value and XOR leakage is
determined for the four different classes of the tuple (a, b). For two bits a and b, we first
model leakage traces Xa,b as univariate Gaussian distributions for all values of the tuple
(a, b) ∈ {0, 1}2 at time-samples t ≥ 0 as

Xa,b(t) ∼ N (µa,b(t), σ2
a,b(t)) for all a, b ∈ {0, 1}. (1)

The number of traces in every class is Na,b. The distributions of the traces Xa and Xb of
individual bits a and b are again profiled as Gaussian and characterized through means
and variances µa, σa and µb, σb respectively (formula for a = 0, other cases analogous;
valid if Na,b ' N/4, where N is the total number of traces). The distributions are an
approximation of the mixture of two Gaussians, which has moments

µa=0(t) = 1
2 (µa=0,b=0(t) + µa=0,b=1(t)) and (2)

σ2
a=0(t) = 1

2
(
σ2

a=0,b=0(t) + σ2
a=0,b=1(t)

)
+ 1

4 (µa=0,b=0(t)− µa=0,b=1(t))2
. (3)

The SNR of variable a can be computed as

SNRvalue
a (t) = Var[µa(t)]

E[σ2
a(t)] . (4)

The XOR leakage can be determined by comparison of joint and single-bit SNR traces.
First, the SNR trace for two joint key bits SNRtotal(t) is computed. This contains all
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leakage from bit values and their XOR transitions combined.

SNRtotal(t) = Var[µa,b(t)]
E[σ2

a,b(t)] . (5)

Then, the SNR of pure value leakage is calculated from a combination of SNRs of the
individual bits, while assuming their mutual independence and independent noise. Based
on the above described value SNR, the combined value leakage can be computed as

SNRvalue
a,b combined(t) = Var[µa(t)] + Var[µb(t)]

σ2
pooled(t) , (6)

with

σ2
pooled(t) = 1

2
(
E[σ2

a(t)] + E[σ2
b (t)]

)
. (7)

If both, SNRtotal(t) and SNRvalue
a,b combined(t) are equal, no additional information from

the XOR is available that exceeds the information derived from the individual bits. Hence,
for a model to have additional XOR leakage (or any other leakage that is caused by
variables that depend on multiple bits), SNRtotal(t) must be higher than SNRvalue

a,b combined(t).
For instance if masking is implemented and both successive values are masked using
the same bit-mask, the attacker is indeed unable to distinguish the values of single bits
(SNRvalue

a,b combined(t) = 0), but could still observe XOR leakage.

4 DES key schedule and templates for implementations
with exclusive XOR leakage

The DES algorithm has a comparably simple key scheduling algorithm. After removing
the parity bits from the original 64 bit DES key, 56 effective key bits remain. Those are
divided into two halves of 28 bit each, handled in registers C and D (notation according
to specification). Round keys are generated through rotating those halves by one or two
bits to the left (depending on the round), and using a so-called permuted choice to select
24 bits out of each 28 bit register. All round keys are, hence, a permuted selection of
bits from the original key. An initial permuted choice 1 leads to a first round key already
permuted from the original one. Figures 5a and 5b depict the selection of bits for the 16
round keys (indices applied after removing parity bits). Each key bit is used approximately
in 14 out of 16 rounds. Whenever a key bit is handled, exploitable side-channel leakage
might occur, i.e. bit values or the XOR between bits depending on the implementation’s
countermeasures. Two bit pairs are highlighted in red and blue to illustrate that due to the
schedule, even XOR transitions between specific bits re-occur which increases exploitable
leakage of the respective transitions.

4.1 Leakage of the DES key schedule
It depends on the implementation, which kind of leakage is observable. Wagner et al. (see
Section 2) assume that their attacked implementation stores successive round keys in
dedicated round key registers. Hence, in these registers, successive round keys generate
leakage related to the transition between bits. Further, Wagner et al. observe, that their
implementation seems to leak the XOR of those transitions which could be explained by a
constant masking (note that they did not actually confirm this assumption).

When looking at successive round keys in Figures 5a and 5b, one finds that certain
bits always follow on certain other bits. For example, at a certain position in the registers,
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Round key # Indices refer to the input key excluding parity bits
0 8 44 29 52 42 14 28 49 1 7 16 36 2 30 22 21 38 50 51 0 31 23 15 35
1 1 37 22 45 35 7 21 42 51 0 9 29 52 23 15 14 31 43 44 50 49 16 8 28
2 44 23 8 31 21 50 7 28 37 43 52 15 38 9 1 0 42 29 30 36 35 2 51 14
3 30 9 51 42 7 36 50 14 23 29 38 1 49 52 44 43 28 15 16 22 21 45 37 0
4 16 52 37 28 50 22 36 0 9 15 49 44 35 38 30 29 14 1 2 8 7 31 23 43
5 2 38 23 14 36 8 22 43 52 1 35 30 21 49 16 15 0 44 45 51 50 42 9 29
6 45 49 9 0 22 51 8 29 38 44 21 16 7 35 2 1 43 30 31 37 36 28 52 15
7 31 35 52 43 8 37 51 15 49 30 7 2 50 21 45 44 29 16 42 23 22 14 38 1
8 49 28 45 36 1 30 44 8 42 23 0 52 43 14 38 37 22 9 35 16 15 7 31 51
9 35 14 31 22 44 16 30 51 28 9 43 38 29 0 49 23 8 52 21 2 1 50 42 37
10 21 0 42 8 30 2 16 37 14 52 29 49 15 43 35 9 51 38 7 45 44 36 28 23
11 7 43 28 51 16 45 2 23 0 38 15 35 1 29 21 52 37 49 50 31 30 22 14 9
12 50 29 14 37 2 31 45 9 43 49 1 21 44 15 7 38 23 35 36 42 16 8 0 52
13 36 15 0 23 45 42 31 52 29 35 44 7 30 1 50 49 9 21 22 28 2 51 43 38
14 22 1 43 9 31 28 42 38 15 21 30 50 16 44 36 35 52 7 8 14 45 37 29 49
15 15 51 36 2 49 21 35 31 8 14 23 43 9 37 29 28 45 0 1 7 38 30 22 42

(a) Round keys: Register C.
Round key # Indices refer to the input key excluding parity bits

0 19 24 34 47 32 3 41 26 4 46 20 25 53 18 33 55 13 17 39 12 11 54 48 27
1 12 17 27 40 25 55 34 19 24 39 13 18 46 11 26 48 6 10 32 5 4 47 41 20
2 53 3 13 26 11 41 20 5 10 25 54 4 32 24 12 34 47 55 18 46 17 33 27 6
3 39 48 54 12 24 27 6 46 55 11 40 17 18 10 53 20 33 41 4 32 3 19 13 47
4 25 34 40 53 10 13 47 32 41 24 26 3 4 55 39 6 19 27 17 18 48 5 54 33
5 11 20 26 39 55 54 33 18 27 10 12 48 17 41 25 47 5 13 3 4 34 46 40 19
6 24 6 12 25 41 40 19 4 13 55 53 34 3 27 11 33 46 54 48 17 20 32 26 5
7 10 47 53 11 27 26 5 17 54 41 39 20 48 13 24 19 32 40 34 3 6 18 12 46
8 3 40 46 4 20 19 53 10 47 34 32 13 41 6 17 12 25 33 27 55 54 11 5 39
9 48 26 32 17 6 5 39 55 33 20 18 54 27 47 3 53 11 19 13 41 40 24 46 25
10 34 12 18 3 47 46 25 41 19 6 4 40 13 33 48 39 24 5 54 27 26 10 32 11
11 20 53 4 48 33 32 11 27 5 47 17 26 54 19 34 25 10 46 40 13 12 55 18 24
12 6 39 17 34 19 18 24 13 46 33 3 12 40 5 20 11 55 32 26 54 53 41 4 10
13 47 25 3 20 5 4 10 54 32 19 48 53 26 46 6 24 41 18 12 40 39 27 17 55
14 33 11 48 6 46 17 55 40 18 5 34 39 12 32 47 10 27 4 53 26 25 13 3 41
15 26 4 41 54 39 10 48 33 11 53 27 32 5 25 40 3 20 24 46 19 18 6 55 34

(b) Round keys: Register D.

Figure 5: DES round keys in parts C and D. Two bit pairs are highlighted in red and blue
to illustrate the reoccurrence of transitions.

Figure 6: Observable transitions for key bits in register C (top) and D (bottom).

the bit with index 0 is always preceded either by bit 7 or by bit 14. The mentioned bits
are marked in Figure 5a. Figure 6 depicts these relations as two groups of bits from the
two registers C and D. The figure describes all possible transitions between key bits, that
could lead to exploitable leakage, given the assumption that the round key register is
implemented as described. The number of actually observed transitions is small compared
to the theoretical maximum of key bit combinations, which stems from the DES algorithm.
It can be observed that some transitions occur more frequent than others. The transition
between bits 0 and 7 is marked in blue in Figure 5a and occurs three times, while the
transition between bits 0 and 14 is marked in red and occurs 10 times.

Figure 7 depicts a matrix of transitions between bits. Bit numbers on both axis
represent bits before (x-axis), and after (y-axis) round-key updates. The color represents
the number of rounds that each transition is part of. Rare transitions occur 3 times at
maximum, others occur 12 times at minimum. Every key bit is involved in a higher-frequent
and a lower-frequent transition, which we call strong and weak transitions. For side-channel
analysis, this means that most transitions are observable in multiple rounds for exploitation.
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Figure 7: Matrix showing the occurrence frequency of transitions between successive round
key bits. Strong transitions in red, weak transitions in blue.

The amount of leaking information in each measurement is different, depending on the
number of re-occurrence. When grouping all bits and transitions which are connected, one
obtains the relations shown in Figure 6.

Figure 8: Transitions for key bits in C register. Coloring depicts occurrence frequency.
The dashed boxes mark the XORs used to build unique labels for the four subkeys.

Figure 8 depicts half of the transitions from Fig. 6, with a coloring depicting the
frequency of occurrence similar to as in Figure 7.

4.2 Templates for exclusive XOR leakage
If an implementation leaks only the XOR between bits, it makes sense to profile and
target this XOR leakage directly. This is argued in Section 3.1.3. Figure 8 depicts all
transitions for half of the key. Since register updates of round keys happen simultaneously,
the leakages of all individual transitions overlap. The question now is, which XORs should
be profiled together to create multi-bit (or rather multi-XOR) templates. The discussion
in Section 3.1.3 is applicable here. It makes sense to combine XOR transitions which share
bits into the same template. Figure 8 depicts black boxes around 4 groups of 7 XOR
transitions. This is an example for choosing a template size of 7 bit. It means that as
template labels, not the bits themselves are used, but the XOR between the bits. This
creates unique labels for all observable classes. At first glance it seems, that such templates
would only cover the less occurring transitions marked in blue (as included by the black
dashed boxes in Figure 8). However, the other ones are implicitly included as well. For
example, the values of k0 ⊕ k7 and k7 ⊕ k14 determines k0 ⊕ k14 = (k0 ⊕ k7)⊕ (k7 ⊕ k14).
Hence, the transitions marked in red are covered since there is only ever one possible red
transition for the included blue transitions. The blue transitions can be used to uniquely
label all classes of XOR leakage.

We chose a template size of 7 XOR transitions in the practical investigation in Section 5.
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Note that in order to derive the value/label of the XOR during profiling for 7 XOR
transitions, 8 key bits are involved. For such 7 bit XOR templates, 4 templates cover
one of the two registers C, or D. Hence, a total number of 8 templates covers all key
bits, respectively XOR transitions. To be precise, of the 28 successive XORs, only 27
are independent. The last XOR can be recovered from the first 27.3 Therefore the last
template for each register effectively only has six bit, totaling 54 recoverable bits. After
recovering all XORs there is one bit of choice left in both registers to choose an actual
value based on the XORs. Thus, two more bits need to be added to the final security level
after applying the key rank algorithm. These two bits are inherently undetermined due
to the XOR leakage and, thus, the minimal possible remaining entropy for this leakage
model is always two bit.

Strictly speaking, not 100% of the red transitions are covered. Few transitions between
adjacent bits from different templates are disregarded, specifically, one red transition at
every template boundary. For the case of 7 bit templates, there are 4 boundaries for
every 28 bit register, thus, there are 4 disregarded red transitions. As a rough estimation,
this omission of 4 out of 56 observable transitions per register equals disregarding 7% of
the available leakage. This could be prevented by overlapping templates covering one
more blue transition to also cover the previously disregarded red one. After classification,
this overlapping bit could be omitted again to go into key enumeration with independent
XOR classifications. Larger templates, i.e. 9 or 10 bit templates, lead to less template
boundaries. However, the relative improvement is small compared to the computational
overhead and increased measurement complexity. Given all facts, we decided not to use
overlapping templates, to avoid complexity while accepting this limited information loss.

Note that Wagner et al. use overlapping templates for a different reason, because they
(unfortunately) model bit values in their templates and want to connect adjacent templates
despite the XOR leakage. As described in Section 3.1, this approach of modeling bit values
is not suitable for XOR leakage.

4.2.1 On the size of templates
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Figure 9: CPOI results on measured traces. Template bit lengths b between 1 and 10.

Technically, larger templates allow a reduction in encountered switching noise from the
remaining key bits. This effect is shown on the correlations calculated using CPOI [DS16]
(see Section A.2.3) on measured traces from the empirical evaluation in Section 5 for
different templates bit lengths b in Figure 9. On the left, the correlations are shown for the

3For each 28 bit register, we choose the value of one ’first’ bit along the chain, e.g. b0 (see Fig. 8). Then
the values of all 27 other bits bi are determined by 27 XORs. The last XOR only completes the cycle.
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first 60 POIs of the traces. On the right, the maximal correlation is plotted over the bit
length of the templates. The fit (orange) shows the theoretical dependence of correlations
on b, if each bit has independent and identically distributed Gaussian leakage. It can be
noted that for higher numbers of bits the gain is limited. The penalty in computation
and required traces, however, is significant, as the matrix inversion alone scales at least
as O(2b·2,373), depending on the algorithm. Furthermore, the profiling set of a template
attack has to double in size for each extra bit to achieve a similar estimation error.

4.3 Comparison to AES
AES uses a more elaborate key scheduling algorithm with a non-linear substitution function.
This means that specific parts/bits of the original key appear only in the side-channel of
the first one/two round keys for exploitation through templates. Full diffusion is reached
after two rounds. Intermediate values of the key schedule which are connected in the
algorithm, but in a non-linear way, need to be classified independently and more complex
strategies for exploitation of many values need to be used.

5 Empirical study: Security controller
We performed a profiled template attack against the DES key-schedule executed by a
security controller. Although we were not able to perform measurements on the very
same device as the one used by Wagner et al. due to availability issues, we have very
carefully chosen our DUT to be as closely matched as possible. In particular we have
strong evidence that the underlying hardware architecture is identical.

5.1 Chip preparation, measurement setup, and alignment
The DUT was decapsulated and thinned to perform measurements from the backside of
the chip. The measurement setup is described in Section A.6. After a first test using the
500 µm diameter EM probe, we proceeded to use a 150 µm diameter probe for the main
measurements. This choice is backed by previous experience and led to useful results in
this study. The sampling rate was 5 GS/s.

5.1.1 Identifying the DES execution

The DES operation was called using different lengths for the plaintext as multiples of the
block size. A current measurement and an EM measurement were used to visually inspect
the operation of the controller. The 500 µm EM probe was positioned in a region, where
varying patterns were visible during the whole time of operation. The time of the DES
execution could be narrowed down to ≈ 100 µs because traces show a distinct and different
pattern during this frame. The length of the pattern multiplies according to the number
of input blocks, i.e. DES encryptions. A DES operation is expected to take ≈ 1 µs for
roughly 16 cycles at an internal clock frequency, which should be around 30 MHz, as most
internal clocks of current devices operate in this range. This means that the timing of the
DES execution has to be further narrowed down.

Using the 500 µm diameter probe, we manually selected different positions while
inspecting the EM traces. In one specific area, we observed a general low activity with the
exception of a short time of high activity and large peaks within the previously identified
time frame. This section is depicted in Figure 10 and fits the assumption of a hardware
core, which is mostly inactive, and activates only during DES executions. The execution
spans ≈ 0.9µs (4400 samples at 5 GS/S) as expected. The clock cycles are visible as peaks
and indicate a clock frequency of ≈ 32.5 MHz.
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Figure 10: Three EM traces showing DES executions at a manually selected position
measured with a 500 µm probe.

5.1.2 Alignment

We use a two-stage triggering in the oscilloscope with a first and second trigger on the
communication line monitoring the commands sent to and from the smartcard. No
additional trigger on the measured current is required, since the smartcard software
execution is largely deterministic and nearly constant in time. Three executions recorded
in this manner are shown in Figure 10. It is evident that the triggering leads to a good
initial alignment.

The device likely uses an internal clock source, which is not synchronized to the
oscilloscope clock. Hence, some local misalignment through drift and jitter is expected
which needs to be removed during post-processing. See Section A.1 for a background on
the discussed alignment methods. For the main analysis, we only use static alignment
to achieve the best possible local alignment. First, we use a short trace sample for least
square error matching. Then, we cut the trace into segments, each containing one clock
cycle. Given the large peaks in the measurements, we can align each segment using the
edge of the peak.

Elastic alignment based on dynamic time warping (Section A.1) was used only during
initial tests to quickly identify or rule out leakage in a new set of traces. It was not used
on trace sets prepared for template attacks, because it led to slightly worse local alignment
and lower correlation coefficients in the leakage test.

5.1.3 Comparing the number of DES executions to other implementations

Figure 11 shows a zoomed view of a DES execution including leakage test results as
described in the following Section 5.2. The DES engine performs 16 single-cycle rounds
followed by eight rounds of backward computation, most likely for the purpose of protection
against fault attacks. This assumption is confirmed by the peaks in the correlation trace
of the CPOI leakage test (Section A.2). Thus, each trace contains a single DES execution
and eight rounds of backward computation.

Wagner et al. observe four DES executions with 16 peaks in each single trace of their
single trace attacks. We attribute this deviation to a different software stack on their
device. Note that although the attack is mounted solely on leakage of the (presumable
identical) hardware crypto engine, this likely influences the exploitability due to differing
numbers of available hardware executions per recordable trace. Wagner et al. assume that
the four DES executions are due to a countermeasure against differential fault analysis
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Figure 11: Zoom into EM measurement of one DES execution at a manually selected
position measured with a 500 µm diameter probe is shown in pink. The correlation
coefficient of a CPOI leakage test for 7 bit XOR templates is shown in blue, scaled up by
a factor of 1000 (values ranging up to ≈ 0.15). The DES rounds are marked.

(DFA). We suggest that its purpose is to ensure the upward compatibility of a triple-DES
implementation with single DES [MH81]. In this way, a triple-DES implementation (i.e.
software interface) would use the same key for subsequent encryption, decryption and
encryption. Only the fourth DES execution would be a DFA countermeasure. Importantly,
this would mean that Wagner’s results would not scale to triple-DES in the way described.
Instead the attacks on the individual DES keys of a triple-DES would have less exploitable
leakage (e.g. only one DES execution instead of four). We will show that the difference
between one and slightly more DES executions per key results in a non-neglegible difference
in the security level.

5.2 Leakage test, measurement position, and POIs
We first performed a CPOI leakage test on the Hamming distance of successive round
keys. See Section A.2 for the background on all leakage tests used in this study. For that
purpose, we assumed XOR leakage as described in Section 3.1.3. Note that an attacker
would likely test value leakage (e.g. in a simple form a Hamming weight model) first,
however, from Wagner’s results we already know to prioritize XOR leakage. Traces were
prepared as described in Section 5.1.

5.2.1 Initial leakage test

The key was split into eight subkeys, each covering seven XORs between successive key
bits, as described in Section 4.2. The CPOI leakage test was performed on these 7 bit XOR
templates. We used 200k traces acquired with a 500 µm diameter probe at a measurement
position, which was selected manually as described above. The test produced positive
results with correlation coefficients in the range of 0.1 to 0.2. For comparison, Wagner et
al. report higher correlation coefficients up to 0.4 with an unknown probe (see Fig. 6 in
[WH17]). Figure 11 shows the leakage trace of one subkey in blue (scaled up by a factor
of 1000) together with an exemplary measurement trace in pink. As expected, we observe
leakage at peaks where round keys are overwritten. No leakage is detected at the time
of the first, last, and last backward computation peak. During the actual DES execution
excluding the backward computation, 15 leakage peaks are observed as expected.
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5.2.2 Determining a measurement position using the t-test

The 150 µm diameter probe is usually expected to give better results than the larger 500 µm
diameter probe, but needs to be positioned more accurately. We performed measurements
at many positions in a grid to find the optimal position. Every position was tested for
leakage using a fixed vs. random t-test on the key. The use of a t-test instead of a CPOI
leakage test and the relatively high leakage allowed us to use very few traces for this
purpose. Initial tests using the 150 µm probe at a manually selected position close to the
previous one revealed that relatively few traces are sufficient to detect leakage with a good
margin of error. We scanned a part of the backside surface of the die centered around
the manually identified position. We used a high resolution for the grid with 15 times 12
positions and steps of roughly 50 µm. This large number of positions is possible due to
the low measurement and memory complexity of the t-test.

Figure 12: Maximum of t-value trace per position on a 50 µm grid using a 150 µm diameter
probe.

Figure 12 depicts the resulting maximum t-value at all measurement positions. We
chose the position with the highest value for all further analyses. Note that the selection
of a measurement position based on the univariate maximum value does not guarantee the
best results, since template attacks exploit multivariate leakage. However, the univariate
t-test is computationally fast and represents the leakage of the whole key at once. The
CPOI leakage tests for subkeys could indicate different optimal measurement positions
for different subkeys. For practicality, we use only one position during all following
measurements.

The alignment of traces at different positions requires an alignment strategy which is
robust to expected differences between traces at different positions, in particular in the
signal amplitude. Fortunately, static alignment could be achieved with low manual tuning
efforts by a least squares matching using a pattern from a single trace and one position.

5.2.3 Determining POIs using a CPOI leakage test

We used the previously described segment-wise edge-alignment before performing a CPOI
leakage test. Using the smaller probe at the new measurement position led to improved
correlation coefficients in the range of 0.15 to 0.25. For further analyses we chose the
300 time-samples with the highest correlation coefficients in the CPOI leakage test as
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points-of-interest (POIs). No other or further trace compression is used. See Section A.3
for background on trace compression.

5.3 Leakage model

At the selected position and using 300 POIs we investigated the leakage model of the
device in more detail. Even though the assumed XOR leakage led to positive results, this
step is required to make the necessary decisions for the template attack (see descriptions
in Section A.4 and Section 3).

(a) Joint leakage of bits 0 and 7 (b) Joint leakage of bits 0 and 14

(c) XOR-leakage (red), value leakage (blue) (d) XOR-leakage (red), value leakage (blue)

Figure 13: SNR (y-axis) for the transition between key bits 0 and 7 on the left, and 0
and 14 on the right over 300 POIs (x-axis). The joint leakage is entirely caused by XOR
transitions (red) while no value leakage (blue) is detectable.

We selected three exemplary bits from the key which share two transitions according to
the DES key schedule, i.e. they follow each other at the same bit position in two subsequent
round keys. Hence, there could be observable XOR leakage from the transitions of each
bit pair. The question is, whether the observable leakage is determined by the value of
the individual bits, or by the XORs between them. Figure 13 shows the computed SNR
for key bits 0 and 7 and bits 0 and 14. Note that the strong transition between the two
bits 0 and 14 occurs in ten out of 15 round key updates. The analyzed trace contains a
total of 15 round key updates plus eight updates from the backwards computation. The
weak transition between bits 0 and 7 occurs only in three round-key updates per DES
execution. The figure shows the SNR of the joint leakage for both bit pairs in the upper
graphs. There is no value leakage from individual bits when profiled separately, as shown
in the lower graphs in blue. The presence of value leakage would indicate an additional
source of leakage, for example from an unmasked bus. The entire leakage is caused by the
transition between the two bits. The corresponding XOR leakage is shown in the lower
graph in red. We conclude that the device exhibits XOR leakage and no value leakage.

Additionally, we found that the XOR leakage for different bit-pairs has different SNRs,
which is not entirely explained by the number of rounds they appear in. This could be
caused by properties of the hardware-implementation and possibly depends on the chosen
measurement position, and is expected.
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5.4 Evaluating attack success
Profiled template attacks and successive key enumeration yield a list of key candidates
in order of likelihood. The position of the unknown secret key k in the list is called the
key rank R(k). In our situation the attacker is unlikely to retrieve the correct key as the
first entry in the list and the key rank should be treated as a random variable dependent
on input data and noise. The remaining brute-force effort to find the secret key after
a template attack can be expressed through the expected key rank E[R(k)], which is
called guessing entropy in the literature. We find that our results are best represented
by the logarithm of the key rank, which we call the security level S(k) = log2 R(k). The
expected security level E[S(k)] is a good measure to compare outcomes of different attacks,
although it does not directly correspond to the brute-force complexity, since expectation
and logarithm do not commute. It was introduced under the name ranking entropy in
Martin et al. [PMMOS16]. They also have an in depth discussion on the presentation and
comparison of their side-channel results, which resemble ours. Similar to their findings,
we chose to state attack outcomes more precisely in terms of percentiles of the empirical
distributions for the security levels.

Several other metrics designed for security evaluation can be found in literature. A
security graph [VCGS13] is a popular tool to assess the security of implementations or
devices after SCA. It relates the number of traces available for the attack (x-axis) to the
achieved reduction of security described by the minimum, maximum and average rank of
the entire key. It displays the distributions of key ranks and thus brute-force complexity
for each possible number of traces. The security graph is well suited for DPA, where the
attacker has to manage this trade-off in his favor. In case of DPA, the attacker usually
has the necessary choices regardless of the actual device or key. The graph allows an
attacker to record the optimal number of traces such that the required brute-force effort
matches the computational capabilities. In our case, however, the success rate of an attack
does not strictly increase with more traces. After a relatively small amount of traces
(e.g. ≈ 400) further improvement is hindered by noise factors that do not average-out.
Hence, it seems most reasonable to assess the security based on this limit-distribution,
which we approximate using 900 traces. For each device the achievable security reduction
is predetermined by the key and unknown to the attacker. The attacker can improve the
achievable security level only by changing the device after each unsuccessful attack, not by
increasing the number of traces.

Two other measures for the security of a device have been used in related work. The
n-th order success rate [SMY09] is defined as the percentage of cases where all subkeys
are ranked among the first n ones over the number of used traces. In its original form,
the guessing entropy [KB07] describes the average rank of subkeys over the number of
used attack traces. Applied to the entire key, it is equivalent to the average key rank.
Any metric that is purely based on the ranks of subkeys is outdated and not suitable to
describe the effort of enumerating candidates for an entire key.

5.5 Results from profiled template attacks
The template attacks are performed as described in Section 4.1. Additional details can
be found in Section A.4. At the selected measurement position, we recorded 2.5 million
profiling traces with random keys and inputs. For the attack, we used 1k random keys
and record 1000 measurements with random inputs for every key, from which we use
900 to allow for dismissal of traces which cannot be aligned properly. We present results
for template attacks with 1, 3, and 900 traces per key. The attack results are mainly
affected by electrical noise and switching noise from unprofiled parts of the key and varying
plaintexts. By using more traces the influence of electrical noise and switching noise from
varying plaintexts is averaged out, which improves results. However, switching noise from
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unprofiled parts of the key cannot be removed since the leakage of the key-schedule does
not depend on any variable inputs.

For the profiling phase of the template attack, we profiled the XOR distances of
the subkeys instead of the bit values, as described in Section 3.1.3. Each attack on a
subkey results in a list of candidates with corresponding a-posteriori probabilities. Key
enumeration was performed directly on XOR candidates. The fact that the classified
variables are independent allowed us to employ optimal key enumeration algorithms. Hence,
there is no information loss from making compromises regarding the chosen algorithms and
their requirements. The only information loss stems from dividing the key into subkeys,
which is necessary as the full 28 bit per register cannot be profiled at once. By profiling
subkeys independently of each other, the remaining key parts appear as switching noise.
Further, a total of three transitions are missing in the templates as described in Section 4.2.
We did not observe any clear improvement of results from using overlapping templates
that cover the missing transitions, as discussed briefly in Section 5.6.1. The entire key is
determined by the sequence of XOR values and the remaining choice of the first bit for
each register respectively. Hence, to obtain the final security level, two bits are added to
the output of the key rank algorithm to account for the remaining possible choices when
recovering a key from the XOR transitions.

5.5.1 Security levels exhibit wide distributions

For most symmetric ciphers, for example when performing DPA attacks, the achieved
security level is largely independent of the actual key value. The following results show
that the security levels vary, even when attacking keys with a high number of traces to
minimize the influence of electrical noise. We estimate security levels for each attacked
key for three different cases, using 1, 3 and 900 traces.

Figures 14a, 14b, 14c depict histograms of the resulting security levels. The DES
executions include eight additional and redundant rounds of backward computation. Our
case of three attacked traces, hence, roughly corresponds to the case described by Wagner
et al., where a single measurement includes four DES executions.

The security levels for different keys vary and include results as low as 25 bit (out
of 1k keys). Testing more random keys will most likely reveal additional keys with very
low security levels in the tail of the distribution. As expected, the average security level
decreases when more traces are used for the attack, since the influence of noise is reduced.
Hence, results after 900 attack traces exhibit lower security levels than after one or three
traces. Apart from electrical noise, also the part of the switching noise which is caused by
changing plaintexts averages out.

Table 1: Average security levels after attacking a varying numbers of traces per key.
This work Wagner et al.

1k keys, 300 POIs 297k keys, 352 POIs
1 trace 3 traces 900 traces 1 trace

1.5×DES per trace 4×DES per trace
Mean [bit] 49.4 48.2 45.7 46.16 [WHG17, Fig. 11]

Table 1 lists the mean security level for the three cases after an attack with 300 POIs.
The number of DES executions per trace is an important factor in the achievable entropy
reduction. The average security level after a three trace attack on our DUT significantly
lowered and amounts to 48.2 bit, which is higher than the results of Wagner et al. at 46.16
bit (cf. Fig. 11, [WHG17]). We also performed the attacks using 900 instead of 300 POIs,
which increases runtime significantly. Average security levels are approximately 2 bit lower.
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Figure 14: Histograms of security levels after template attacks on 1000 keys. Security
levels are plotted on the x-axis, number of keys per bin on the y-axis. Results are shown
for 300 POIs and three different numbers of attack traces (1,3 and 900) per key. The mean
security level is marked by an orange line.

In addition, we tested two keys with key bits all zeros or all ones, which represent the
worst case as their traces have a unique profile (assuming perfect XOR leakage). Note that
those keys are also cryptographically weak and unrealistic in practice. Cryptographically
weak keys measured on the device with 900 traces per key have security levels of 2 bit.
Increasing the number of tested random keys will increase the number of observations with
exceptionally low security levels (not necessarily as low as 2 bit).

5.5.2 Security levels converge key-dependent in the low noise limit

What remains is to find the reason for the distribution of security levels. In this part we
show that noise from insufficient sample sizes cannot explain the observations.

Figure 15 shows the security levels of selected keys over an increasing number of traces.
The left part of Figure 15 depicts randomly chosen keys, the right side shows keys that
were selected for their low security levels. The security levels of keys converge to different
limits as the number of attack traces increases. The limit is reached (up to a small error)
after roughly 200-400 traces. The histogram in Figure 14c for an attack with 900 traces is
therefore close to the limiting distribution. The spread of the security levels is not caused
by an insufficient number of attack traces. This rules out electrical and switching noise of
varying plaintexts on the attack traces as reason for the variation. Note that attacks with
few traces can lead to security levels below the low noise limit, which is due to beneficial
noise circumstances. An attacker is, however, of course unable to deliberately select such
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Figure 15: Dependence of the security levels of chosen keys on the number of used attack
traces. Left: Ten randomly selected keys. Right: Ten selected keys with low security levels.

measurements. Hence, the low noise limits of the security levels best describe what an
attacker can expect.

We ruled out two other possible influences as reason for the observations. First, we
tested for statistical artifacts caused by too low numbers of traces in the profiling set,
which could lead to a bias. We repeated the profiling measurement (using the same amount
of measurements) and achieved identical attack results with the new profiling set. Second,
we studied the influence of the measurement position by repeating all measurements at a
different position. All results are comparable to those presented in this paper.

We conclude that keys have inherent security levels which are distributed and include
cases of very low security levels.

5.5.3 Influence of noise on single trace attacks is high

Even though keys possess inherently different security levels, noise has a high influence
on individual attack results. In the following, we demonstrate this by performing a large
number of single trace attacks against the same selection of keys, shown in Figure 15.
Instead of computing security levels after attacking multiple traces and combining results,
we compute security levels for 900 individual single trace attacks. Figure 16 shows a
box plot of ten random keys on the left and the ten weak keys on the right. Somewhat
surprisingly, given the results after 900 traces in Figure 15, every weak key exhibits a broad
range of single trace attack results, most of which are close to chance level (55 bit). The
weak keys on the right part of Figure 16 only lead to lower security levels more frequently
and there are more outliers. This means that the success of a single trace attack (or an
attack with few traces) depends highly on noise.

Attackers who are allowed only one measurement per key may repeat the attack on
different keys or different devices. Every attack will lead to an expected security level
result characterized by the distribution in Figure 14a. The consequences on practical
attacks, in particular for triple-DES, are discussed in Section 6.

5.6 Generalization through ’noiseless’ simulation
The previous investigations confirm that different keys can inherently be attributed to
different security levels. In this section, we use a simplified simulation model to study the
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Figure 16: Box plot of resulting security levels from 900 single trace attacks for ten
randomly selected keys on the left and ten weak keys on the right. The interquartile range
(IQR) is shown as solid blue boxes, the 1.5-times IQR range as line with ending, and the
outliers are marked as a +. The median is marked in orange.

generality of this observation. The question is, whether weak keys are caused by the DES
key-schedule or the hardware implementation. The simulation assumes perfect Hamming
distance leakage of successive round keys, where the contribution of each bit in the registers
is equal. The simulation takes DES keys as input, computes the 16 successive round keys
and creates simulated side-channel traces by counting the sum of XOR differences between
successive round keys at 15 updates. The artificial traces can be seen as abstract current
consumption values.

The model deliberately disregards certain noise factors, like different kinds of electrical
noise and switching noise from other sources than the key-schedule. For instance, the
simulation does not consider the main data path of the DES computation, which would
introduce uncorrelated noise from independently processed values. This leads to results
which are systematically better than attacks on measured traces. The simulation is,
however, realistic regarding the constant switching noise which is created by all parts of
the key except for the respectively currently profiled subkey. This switching noise is due to
the fact that a profiling of the entire key at once is impossible, and always present, even
for repeated measurements and under perfect conditions since the key remains constant
and the leakage of the key-schedule depends only on the key itself.

Compared to real devices, the model is simplified such that every bit position in the
register leaks the same amount of information. This implies that any lower bounds for the
security levels derived from simulations need to be applied with caution. We also added
Gaussian noise with different variance (and mean value zero) to observe the dependence of
results on the SNR. Note that compared to the actual device, the model does not include
the backward computation of eight rounds because they do not introduce new information
compared to the forward rounds, at least in the setting without additive noise.

Even for simulated traces without additive noise, the profiling set needs to have a
sufficient size. Profiles for each subkey are created from traces with different keys but
equal subkey value, such that the switching noise from the other key parts is averaged. As
an example, simulating 1 million traces means that every class of the 7 bit XOR templates
can be profiled using 106/27 ≈ 78k traces. On the other hand, if the attacker is confronted
with only measurements for a fixed key he cannot eliminate switching noise from other
subkeys. Hence, without further additive Gaussian noise, one simulated trace per key
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already corresponds to the best case for an attacker in this scenario.

5.6.1 Distribution of security levels for random keys is also wide
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Figure 17: Histograms for security levels of 10k simulated traces, one attack trace per key.
Security levels are plotted on the x-axis, number of keys per bin on the y-axis. The mean
security level is marked by an orange line.

We simulated a profiling set and an attack set and performed an attack identical
to the attacks on measured traces. We used 1 million random keys for profiling and
an additional set of 10k random keys for single trace attacks. Figure 17a depicts the
results without additive noise. The mean security level is 42.3 bit, while the minimum
among the 10k randomly selected keys is 20.1 bit. As expected due to the described
simplifications, this is much lower than the 49.4 bit average security level obtained for
single trace attacks on measured traces in Table 1. Importantly, the security levels of the
10k different keys are widely distributed, similar to what is observed in the measurements.
This confirms that keys have inherently different security levels in a simple model, which
leaks the Hamming distances of subsequent DES round keys. These results are independent
of other implementation and side-channel measurement details or any particular device.

A lower SNR naturally leads to higher average security levels. Figure 17b depicts the
case of additive Gaussian noise with variance 1, the distribution has a mean of 47.1 bit.
Shown in Figure 17c is the case of additive Gaussian noise with variance 10, where the
average security level is 53.8 bit. The distributions observed in simulations with additive
noise are similar to the results of actual attacks. So far, however, these results do not tell
us how well the simulated security levels predict results obtained from measurements and
more specifically, if weak keys in the simulation are weak on the device.
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5.6.2 On different template lengths

To put our choice of templates in context, we tested different template lengths and various
amounts of overlap between subkeys.

Table 2: Average security levels after attacking with different templates for 10k keys each.
XOR templates

subkey length for profiling [bit] 7 8 9
subkey overlap [bit] 0 1 0
subkey length for key rank [bit] 7 7 9
Mean [bit] 42.3 42.1 41.5

In Table 2, we present results for two additional cases. First, we used 8 bit instead of 7
bit templates for profiling, which results in 1 bit overlap between templates in order to fit
four templates into the 28 bit of a register. Marginalization before the key rank estimation
leads to the same subkeys as for 7 bit templates. Thus, the difference between the two is
only the exploitation of 4 additional strong transitions during the attack phase. The benefit
is small, as expected. Secondly, we investigated 9 bit templates, which perfectly cover the
27 independent XORs of each register with three subkeys and without overlapping bits.
Therefore, the total number of subkeys is reduced to only 6 instead of 8 and the main
benefit should be through a reduction in switching noise. Indeed, we gain roughly 1 bit in
the average security level compared to 7 bit templates. As a downside, however, we would
need two and four times as many traces for the profiling of measured traces with 8 and 9
bit templates, respectively.

5.6.3 Predicting security levels

Based on the previous results, we assumed that there is a correlation between security
levels of keys after measurement on a DUT and results from simulations. In this section
we show the accuracy and limitations of predicting security levels through simulations.
We used the same set of keys for simulations and measurements and compared the results.
We investigated two groups of keys:

1. 200 keys with key bits Bernoulli(p)-distributed, where the probability of a key bit
being zero is either p = 0.1 or p = 0.9. The bits of these keys are therefore almost
all ones or all zeros.

2. 350 keys selected evenly from the range of security levels out of 10k uniformly random
keys. Thus key bits are distributed as Bernoulli(1/2).

While keys from the second group were generated from a uniform distribution as
recommended for maximum security, the keys in the first group are unlikely to appear in
practice. The skewed ratio of zeros and ones (p ∈ {0.1, 0.9}) for key bits in the first group
leads to fewer XOR-transitions during the key-schedule. These keys are expected to have
lower than average security levels and simpler leakage behavior.

For both classes, we performed attacks on noiseless simulated traces as well as on real
measurements. In the latter case, we used 1000 measurements for each key to reduce noise
factors to a minimum and make both attacks more comparable.

Figure 18 depicts the results for both classes as scatter plots on a x-y diagram with the
simulation results on the x-axis, and the measurement results on the y-axis. Security levels
for the first group (p ∈ {0.1, 0.9}) are shown in red, for the second group (p = 1/2) in
blue. Linear approximations for both groups highlight the relation between measurement
and simulation. The slope of the regression line for the first group is 1.03, for the second
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Figure 18: Two groups of random keys, one from a uniform distribution (blue) and one with
skewed ratio of zeros and ones (red, either 90% zeros or 90% ones ). Security levels after
attacking simulated and measured traces are shown on the x-axis and y-axis, respectively.
Linear approximations are plotted for both groups.

0.28. Both groups show a dependence between simulation and measurements on the actual
device. This means that in addition to similar distributions of security levels, the simulated
leakage actually allows some predictions for attacks on real devices. Both groups also show
significant variation of security levels around their linear approximation, which cannot be
attributed to noise in the measurements since 1000 traces per key were used in the attacks
(cf. Sec. 5.5.2). The variations are likely caused by simplifications of the simulation.

However, the quality of the predictions is very different for the two groups of keys. The
first group (red, p ∈ {0.1, 0.9}) shows a close to perfect match between simulation-based
prediction and results achieved from actual measurements. A perfect match would be
represented by a 45° line through the origin. In this group, weak keys seem to be weak
independent of the device. On the other hand, the second group (blue, p = 1/2) shows
a significantly lower prediction capability of the simulation. For keys in this group, the
results may depend strongly on the device, although this was not tested.

A possible explanation for the difference of results between the two groups of keys is
that the simulation model weights the leakage from every bit in the two registers equally.
Keys in the first group (red, p ∈ {0.1, 0.9}) have fewer bit transitions in the registers during
the key schedule, which limits the impact of the differences of contribution of register
bits. Furthermore, the impact of switching noise is reduced as well, since most subkeys
contribute little to none to the leakage. This could explain why the prediction is relatively
accurate for those keys. Even within these keys, results range from security levels of ≈ 4
to ≈ 45 bit. This shows that constructing weak keys is in fact more complex than simply
aiming for skewed ratio of zeros and ones in the key bits.

The prediction for the second group of keys (blue, p = 1/2) would suffer more from the
simplification of the simulation, since more transitions and all subkeys are contributing to
leakage. It would be possible to parameterize the simulation model and extract weight
parameters for the register bits. This would likely allow an improved prediction also for
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uniformly random keys for this specific device and measurement setup. However, the
model would lose generality at the same time.

5.6.4 Security levels significantly depend on switching noise

We have already seen that keys with a skewed ratio of ones and zeros in their key bits are
weaker than average. This section further investigates why some subkey values are easier
to classify than others by examining the generated templates of subkeys which are profiled
based on simulated traces.

The success of a template attack depends on the ability to classify subkey values given
the templates. Each template is determined by its mean trace and a pooled covariance
matrix. If the mean traces of two classes are very similar, an attacker has a low chance of
distinguishing them. If they are far apart relative to the respective covariances they can
be distinguished easier. The chance of a correct classification can, thus, already be limited
due to high similarities of profiles.

Figure 19: Simulated trace means for all 128 classes of one subkey using 1 million traces.
The mean trace of the class with index 0 is highlighted in black.

In the following, we profile one individual subkey (as it is common). We chose the first
out of the 8 available subkeys in this example (7 bit XOR templates). All other subkeys
contribute switching noise. Figure 19 depicts the trace means of the 128 classes of this
one subkey. The x-axis shows 15 time points where round-key transitions occur. The
means are generated using 1 million simulated traces with random keys. The y-axis depicts
the mean traces of all 128 classes computed from ≈ 106/128 simulated traces each. For
every specific value of the first subkey, different random keys (with different values in the
other subkeys) are averaged. Each trace is computed by summing the XOR transitions in
the two 24 bit round key registers for the 15 time points, which means the values before
averaging range between 0 and 48, a part of which is the contribution of the targeted
subkey, and the rest is contributed from the other subkeys as switching noise. They are
then averaged according to their subkey values. In the figure we see the effect of templates
averaging-out the switching noise from all keys parts other than the profiled subkey, such
that the profiles only range between 20.5 and 27.5. There is significant variance in the
traces (represented in the covariance matrix of the templates) due to the variations, i.e.
switching noise, of these other subkeys.

Note that some classes stand out by attaining minimal or maximal values in some
rounds. The class with index zero (highlighted in black in Figure 19) attains the minimum
in all 15 rounds, representing the cases in which all subkeys are the same.

The observable difference of rounds 1,8 and 15 to all other rounds stems from the
fact that at these rounds the shift operation of the key-schedule shifts by one bit rather
than two. As described in Section 4.1 and depicted in Figure 6, some XORs occur often
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(e.g. transitions 2 to 7 and 9 to 14), others less frequently (transitions 1, 8, and 15). The
existence of the two groups explains that the simulated data is also different for those two
groups.

Figure 20: Number of differences between pairs of simulated trace means for all 128 classes
of one subkey using 1 million traces. Pairs of identical profiles appear as white pixels.

Figure 20 visualizes the ’exploitable’ differences between the profiles. For every pair of
profiles from the set of 128 subkey values, we calculate the number of rounds in which
they are different, using the fact that the remaining noise on the profiles is much smaller
than 1. Any pair of profiles that are identical in every round appears as white pixel in the
plot. As important observation, we find that apart from the diagonal, there are no other
pairs of identical profiles (even if there are similarities and low differences). This holds
true for all other subkeys of 7 bit XOR templates and for 10 bit XOR templates (data not
shown). We conclude that for XOR templates every subkey profile is in fact unique after
switching noise is (de facto) removed. Thus, any misclassification during the matching
phase of a template attack must be caused by switching noise.

This does not fully answer the question, whether the variation of security levels is
caused by inherent leakage differences or switching noise. One would have to either profile
the entire key or try to estimate the entropy in the leakage. The first approach is clearly
made impossible by computational limitations. The second approach is computationally
more feasible and was attempted by Wagner et al. [WHG17]. However, as discussed in
Section 2.4, they made an incorrect simplification to speed up calculation time. Still, their
results seem to suggest that for the entire key the profiles are not unique, which is in
contrast to our results on subkeys of XOR templates. Note that the difference between
profiling bit values and XORs only leads to a constant offset of results by 2 bit and cannot
explain the variation of security levels.

Finally and although we cannot fully answer the question as to how the variation of
security levels arises, we can make a clear statement for any practical attacks. In practice,
the key needs to be profiled in parts of less than ≈ 12 bit at once, and in this case, the
spread of the distribution is caused by switching noise alone. All methods discussed in this
paper can still be applied in more general scenarios, irrespective of the exact cause of the
distribution in subkey rankings or security levels.

5.6.5 Lower bounds on the security level

It is not helpful to use the minimal security level of all keys as a general lower bound or
to assess security of an implementation. Keys with key bits all zeros or all ones in each
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register are the weakest, as their profiles are the most extreme. However, those exact
keys are also cryptographically weak and using them is not recommended. The simulation
shows a security level of 2 bits for those keys, which is the minimum possible value given
XOR leakage. Actual measurements on the device with 900 measurements per key lead to
results of 2 bits for those keys as well. Hence, the lower bound of security levels (including
cryptographically weak keys) for attacks against single DES in this device is 2 bit. This
does not provide much insight into the security of a device.

In general, the distribution of security levels obtained through simulations could be
considered a worst case scenario. Although, some caution needs to be applied, since choices
in the model do not necessarily lead to minimal possible security levels. The leakage from
each register bit is treated equally, while in reality their contribution to overall leakage
varies. Also, the choice of bit length for the templates is arbitrary. By doubling the effort
one can always use one bit more per template and thus reduce switching noise. However,
we perform all simulations and practical attacks using 7 bit templates, which makes a
comparison easier. A worst case for security levels independent of the actual attack could
only be achieved by analyzing the entropy of traces directly, which is computationally
difficult and has little practical relevance.

Finally, it is not even clear how to compare two distributions of security levels, as
already discussed in Section 5.4. Therefore, simulations primarily provide lower bounds on
the mean or different percentiles of the distribution.

6 Impact on triple-DES
So far, this contribution has described results of side-channel attacks against single DES.
However, the last application of DES that provides reasonable security guarantees today is
in the form of triple-DES. The impact of the described attack should therefore be measured
by its implication for triple-DES implementations. Note that the use of any form of DES
is generally not recommended by the German BSI [Bun19].

The best known cryptographic attacks against triple-DES are meet-in-the-middle
attacks [DH77]. It is reasonable to adapt them to deal with side-channel results. This is
challenging, because largely varying security levels (distributions as observed above) need
to be handled. The output of a key rank algorithm, i.e. enumerated lists of key candidates
including associated probabilities, must be used in an optimal way. In the following, we
present a meet-in-the-middle attack on SCA results with wide distributions of security
levels. We calculate the distribution of security levels for a 3-key triple-DES under such
attack results from single DES. This allows us to estimate the percentage of key-triples that
are threatened by successful brute-force attacks after side-channel analysis. For example,
this will allow to estimate the percentage of keys going below 80 bit brute-force effort after
a side-channel attack.

6.1 Recap on the cryptanalytic security of triple-DES
The U.S. NIST seems to still accept the use of 3-key triple-DES [Nat16]. The cryptanalytic
security level of a 3-key triple-DES is equal to twice the key length due to meet-in-the-
middle attacks given three known-plaintext and ciphertext pairs [DH77, MH81] (one pair
for the main attack algorithm, two more to rule out wrong candidates).4

A meet-in-the-middle attack on 3-key triple-DES, which encrypts a plaintext P as
C = DESk3(DES−1

k2
(DESk1(P ))), works as follows [vOW90]. First, a known plaintext is

used to exhaustively create and store a list of the first intermediate value ai = DESk1(i)(P )
for all 256 possible candidates of k1(i). This requires O(256) computations and O(256)

4Access to three pairs of plain- and ciphertext seems reasonable for many applications.
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storage. Then, the ciphertext C is used to exhaustively test (k2, k3) by backwards-
computing a′ = DESk2(DES−1

k3
(C)). This requires O(2112) computation. Every result a′

is compared to the list ai. If a match a′ = ai is found, the respective keys k1, k2, k3 are
candidates for the correct keys. Two more plain- ciphertext pairs are used to eliminate false
positives5. In summary, this algorithm requires O(2112) +O(256) = O(2112) computation
and O(256) storage. Note that the expected security level of a cryptanalytic meet-in-the-
middle attack has an expected or average complexity of O(2111).

6.1.1 Two key triple-DES

Although neither the NIST nor the BSI approve it, 2-key triple-DES is still in use in some
applications. The van Oorschot-Wiener attack [vOW90] is an effective known-plaintext
attack against 2-key triple-DES, with a complexity of O(2121−n) for 2n plain- and ciphertext
pairs. It reduces the security to ≈ 80 bit, given 232 plain- and ciphertext pairs. Here, we
are mainly interested in single-trace attacks, which makes this attack less relevant. The
van Oorschot-Wiener attack is more efficient than the meet-in-the-middle attack only if
a sufficient number of plain-/ ciphertexts is available. Further, side-channel information
of the key-schedule has little use for the van Oorschot-Wiener attack, as two tables of
size O(256) must be created and only one of them would benefit from key rankings. The
complexity of creating tables reduces at best from O(257) to O(256) and overall would still
be at least O(2120−n).

When using the meet-in-the-middle attack on 2-key triple-DES, one saves the effort
of creating the list {ai}, removing all memory requirements from the algorithm. Further,
SCA gives slightly better estimates for the key part k1 = k3, whose leakage appears twice
in each trace. Apart from this, the following discussion generalizes to 2-key triple-DES, if
few plain-/ ciphertext pairs are available.

6.2 Side-channel security of 3-key triple-DES allowing a meet-in-the-
middle advantage

In the following, we discuss the overall security of 3-key triple-DES based on the side-
channel security of a single DES by using a modification of the regular meet-in-the-middle
attack. The side-channel security of a 3-key triple-DES depends on the results of three
simultaneous attacks on three different keys. While the maximal complexity of a meet-in-
the-middle attack is still O(2112), we should expect a significant reduction of the expected
security level by using information from the attack.

The side-channel attack leads to a different entropy reduction for every one of the
three keys ki, i ∈ {1, 2, 3}. However, the attacker can a-priori not know, which of the
three keys is better than the others, since the security levels of the keys are independent
and identically distributed random variables. Consequently, referring to the description of
the meet-in-the-middle attack above, it does not matter whether we choose to create the
list using k1 and match it after the first encryption (and treat k2 and k3 together as one
112-bit key) or before the last encryption. Both options are equally likely to succeed faster
than the other and we may therefore pick one without loss of generality.

First, we need to combine our key rank results for two of our keys, say k2 and k3, to
obtain a key ranking for the combined key-pair (k2, k3). This can be done by applying
a key enumeration algorithm to the candidate lists of both keys (including associated
probabilities), or by treating the pair (k2, k3) as one 112-bit key already during the attack.
Both options are equivalent.

For the actual side-channel meet-in-the-middle attack, we want to process the key
candidates of k1 and k2,3 = (k2, k3) in order of their likelihoods. That is, we want to

5False positives are possible because the input and output lengths are shorter than the key length.
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successively check all candidates up to ranks r1 and r2,3 in both lists such that we maximize
the probability

P (R(k1) ≤ r1 and R(k2,3) ≤ r2,3) = P (R(k1) ≤ r1) · P (R(k2,3) ≤ r2,3) (8)

in each step, where R(k) denotes the rank of a key. The cumulative probabilities on the
right-hand-side of the equation are a direct output of the key enumeration algorithm applied
to the two key parts k1 and k2,3. We then create two lists, {ai} = {DESk1(i)(P )} and
{a′i} = {DESk2(DES−1

k3
(C))}, up to indices r1 and r2,3 respectively. In practice, we would

start at the top of both lists (assuming candidate lists are obtained by key enumeration
and thus ordered by likelihood) with r1 = 1 and r2,3 = 1. We then add a candidate to
one of the lists r1 = r1 + 1 or r2,3 = r2,3 + 1, according to which new candidate has the
higher likelihood by Equation (8). Each time, we add a candidate to one of the lists, we
check for a new match ai = a′j for some i ∈ [1, r1] and j ∈ [1, r2,3]. Any match can either
be confirmed or disregarded by testing with the two additional plain- and ciphertexts until
we succeed to find the correct key-triple (k1, k2, k3). This algorithm does require the same
amount of storage as number of DES computations (which is more storage than required
by the original algorithm for levels > 56). If storage is an issue and in particular if one
is not interested in very low security levels, i.e. < 56 bit, it is more practical to use the
following simplified algorithm instead.

Simplifying the algorithm to estimate security levels > 56 bit. The above described
algorithm is relatively complex and requires more storage than the original meet-in-the-
middle algorithm. Fortunately, we may simplify the side-channel meet-in-the-middle
algorithm for cases > 56 bit expected security level by using the fact that one of the lists,
{ai} ∈ O(256), is much shorter than the other, i.e. {a′i} ∈ O(2112). This helps because it
is acceptable to loose the ability to precisely determine the security level ≤ 56 nowadays
where security levels of > 80 are especially relevant. For the simplified algorithm, we first
calculate the complete list {ai} = {DESk1(i)(P )}, which has memory and computational
complexity of O(256). We then iterate over the second list {a′i} = {DESk2(DES−1

k3
(C))}

in order of their probabilities and check each candidate for a match with {ai}, which has
no additional cost on memory. The overall expected computational complexity of the
algorithm is O

(
max

{
256,E[R(k2,3)]

})
.

Use cases of the simplified versus exact algorithm. Since in all cases studied by us the
probability P

(
R(k2,3) ≤ 256) is very small, the attacker is almost always at an advantage

when picking the simplified algorithm. There is no penalty in computational cost and
the memory requirements are fixed and almost certainly below those used in the exact
algorithm. This advice might be specific to our case and depends very much on the
observed distributions. Even when using the exact algorithm, the following estimates on
computational complexity based on the simplified algorithm still provide an upper bound.

Extrapolating triple-DES estimates from single DES results. Under the assumption
that all three DES-executions in a triple-DES lead to identical distributions F single

S of
security levels, we may use the corresponding density f single

S obtained from attacks on
single DES to extrapolate to triple-DES. Unfortunately, we do not have a closed form
expression for the density of the rank or security level, so they have to be estimated directly
through histograms from empirical results. Any numerical calculations on distributions
should be done for security levels instead of key ranks, to make them numerically stable
and benefit from better density estimates on security levels. We first need the distribution
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of the combined security level of two keys F 2−key
S , which is

F 2−key
S (s) = P(S(k2) + S(k3) ≤ s)

=
∫ 56

0
P (S(k2) ≤ s− x|S(k3) = x) P (S(k3) = x) dx

=
∫ 56

0
F single

S (s− x)f single
S (x) dx

For the density we get

f2−key
S (s) =

∫ 56

0
f single

S (s− x)f single
S (x) dx (9)

accordingly, which is the convolution of the two single-key densities. Note that f single
S (x) = 0

for any x < 0 or x > 56.
Further, since P (S(k2,3) ≤ 56) is very small in practice, we also get a direct approxi-

mation of the distribution and expectation of security levels for three keys. We can express
the expected security level for triple-DES after a meet-in-the-middle attack using the
empirical density estimate in Equation (9) as

E [S(k1, k2, k3)] ≈ E [S(k2,3)] =
∫ 112

0
sf2−key

S (s) ds,

while the expected computational complexity of the simplified algorithm follows from

E[R(k2,3)] =
∫ 112

0
2sf2−key

S (s) ds.

6.3 Triple-DES estimates based on measurement data
For the estimation of triple-DES security levels of an actual device, the distribution of a
single DES is required. It can be obtained from actual measurements, in our case after
attacking 1, or 3, or 900 traces per key. Every case represents how many measurements
the attacker would be able to perform. We computed results for those three cases of 1, 3,
and 900 traces per key using the results presented in Figure 14 and Table 1.

Figure 21a depicts the empirical densities of the security level distributions after 1
(blue), 3 (orange), and 900 (green) traces per key when attacking 3-key triple-DES. It also
includes results obtained from a noise-free simulation (black, dashed). This, as described
above, precisely represents the security level of the 3-key triple-DES for all cases with
a security level > 56 bit. Figure 21b depicts the corresponding empirical cumulative
distributions.

Table 3: Security levels for 3-key triple-DES based on measured single DES results, and
simulation without additive noise.

1 trace 3 traces 900 traces sim.
Mean sec. level 1-key 1-DES [bit] 49.4 48.2 45.7 42.3
Mean sec. level 3-key 3-DES [bit] 96.1 93.8 88.7 82.1
Fraction of 3-key 3-DES cases < 80 bit 0.24 % 0.43 % 6.3 % 37.4 %
Fraction of 3-key 3-DES cases < 70 bit 0.0015 % n.a. 0.32 % 4.0 %

Table 3 summarizes the concrete values for some exemplary cases. First, the mean
security level for 3-key triple-DES for the analyzed device for actual single trace attacks is
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Figure 21: Empirical density and distribution of security levels for an attack against 3-key
triple DES (equal to combined attack on two DES keys). Results are shown for attacks on
1 trace (blue), 3 traces (orange) and 900 traces (green). Results obtained from a noise-free
simulation are shown (black, dashed).

96.1 bits. As one of the most important observations, from all possible key-triples, only a
fraction of 0.24 % will lead to a 3-key triple DES security level of < 80 bits in a single
trace attack. An attacker can increase this percentage to 0.43 % if he is allowed to perform
3 measurements, and to 6.3 % if he is able to increase the number of measurements to a
large number of traces, e.g. 900. Note, that no further improvement can be expected since
security levels reach their minimums already at about 200-400 traces. However, even with
900 traces per key, the attacker can achieve a security level of < 70 bits only for 0.32 %
cases. This means that only every 300-th device will exhibit a security level < 70 bits when
a large number of measurements per key is allowed.

The results for a noiseless simulation are given as a reference. They cannot be regarded
as a true lower bound, however, since the model is simplified. This simplification may in
part be unfavorable for the attacker (e.g. differently weighted transitions may be easier to
distinguish for the attacker).

7 Empirical study: General purpose microcontroller
We repeated the described attack on the DES hardware accelerator of an STM32F4 general
purpose microcontroller. The device is studied after decapsulation from the top side of the
die using a 250 µm diameter EM probe and a sampling rate of 2.5 GS/s. The measurement
position and 600 POIs for the template attack were chosen based on a CPOI leakage test.

As emphasized before, it is crucial to understand the exhibited leakage of the device to
make the right choices for the model in the template attack (see descriptions in Section A.4
and Section 3). We performed a test to determine the leakage type similar to Section 5. The
results are discussed here for key bits 0 and 14. Figure 22 shows the computed SNR values,
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(a) Joint leakage of bits 0, 14 does not disclose leakage type.

(b) Individual value leakage of bits 0, 14 is significant.

(c) No XOR leakage (red), only independent leakage of bits (blue)

Figure 22: SNR (y-axis) for the bit pair 0,14 during the time period, where key-dependent
leakage was observed (x-axis, samples recorded at 2.5 GS/s). The joint leakage can be
explained entirely by the value leakage of the bits. There is no XOR leakage.
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Figure 23: Histogram of security levels after template attacks on 10k keys using 100 traces
per key on STM32 hardware DES accelerator. The average security level, marked by an
orange line, is at 48.4 bit.

starting with the joint SNR of both bits in black in the upper graph. There is exploitable
leakage, which could be caused by any leakage model. From the middle graph, it can be
seen that significant value leakage of the bits is present and exploitable as well. The lower
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graph shows that the entire joint leakage can be explained by the sum of independent
value leakages of the two bits, depicted in blue. There is virtually zero additional XOR
leakage, which is shown in red. Identical results were observed for other tested bit pairs
(data not shown). We conclude that the device exhibits value leakage from individual key
bits, but no XOR leakage. Consequently, this device has a completely different leakage
model than the one investigated in Section 5, which has pure XOR leakage.

According to Section 3.1.1, this means that key bit values (not their XORs) should
be targeted directly during profiling, and that key enumeration can be performed in a
straight-forward manner (not on XORs) due to the independence of individual bits. We
chose 7 bit templates for classifying key bit values during the attack. Therefore, the model
used for the template attack is also different to the case described in Section 5 where XOR
leakage is targeted, and enumeration performed on XOR values.

Figure 23 shows the resulting security levels after attacking 10k keys using 100 traces
per key. We can observe a wide distribution of security levels again, with a mean security
level of 48.4 bit. This is similar to the empirical study in Section 5, although device,
implementation and leakage model differ between the two empirical cases. Specifically, the
previously observed XOR leakage between round key bits is missing here. Nonetheless, the
distribution of security levels is similar, including the observation of weak keys. These results
support the conclusion that any key-schedule implementation with non-uniform distribution
of leakage may have varying security levels after a template attack. In particular, this case
study proves the point for Hamming weight leakage of a DES key-schedule.

8 Empirical study: Second Security Controller
We repeated the described attack against a device of another family of security controllers.
The measurement setup and processing steps are very similar to Section 5. A number of
460 POIs was chosen for the template attack. Figure 24 shows the resulting security levels
after attacking 1k keys using 900 traces per key. We can observe a wide distribution of
security levels again, with a mean security level of 48.7 bit.
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Figure 24: Histogram of security levels after template attacks on 1k keys using 900 traces
per key. The average security level, marked by an orange line, is at 48.7 bit.

The results are comparable to the empirical study in Section 5 where the average
security after using 900 traces is at 45.7 bit. The security level distribution is shifted to
the right by ≈ 3 bit which means that the percentage of keys with lower security levels is
lower. Consequently the number of keys with low security levels (e.g. below 80 bits) in a
triple-DES use will also be lower while the general observation of keys with low security
remains.

Additionally and similar to Section 5.6.3, we tested two different classes of keys in regard
to their relation between simulated security levels and outcome of actual attacks. One
class containing 288 random keys, the other containing 212 keys with key bits Bernoulli(p)-
distributed, where the probability of a key bit being zero is either p = 0.1 or p = 0.9.
The bits of these keys are therefore almost all ones or all zeros. For both classes, we
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Figure 25: Two groups of random keys, one from a uniform distribution (blue) and one with
skewed ratio of zeros and ones (red, either 90% zeros or 90% ones ). Security levels after
attacking simulated and measured traces are shown on the x-axis and y-axis, respectively.
Linear approximations are plotted for both groups.

performed attacks on noiseless simulated traces as well as on real measurements using 700
measurements. Figure 25 depicts the results for both classes in a similar manner as in
Section 5.6.3. The slope of the red regression line is 1.15, for the blue one 0.27. The results
are comparable. The same strong dependency between simulation and actual attacks is
detectable for keys with extreme Hamming weights.

9 Conclusion
The investigation answered many important questions regarding profiled side-channel
attacks against implementations of the DES key schedule in general, and two commercial
security controller products in specific. The main insight is that weak keys do exist
after side-channel analysis of the DES key schedule, and that security levels are widely
distributed. To judge implications for triple-DES we explain how 3-key triple-DES security
levels can be estimated based on evaluating single-DES.

We report the following numbers for the investigated commercial security controller
(first of two; results for the second security controller lead to slightly higher security levels).
The mean security level for 3-key triple-DES on this device after single trace attacks is still
relatively high with 96.06 bit. However, a fraction of 0.24 % key-triples exhibit security
levels of < 80 bits after a single trace attack. If the attacker uses 900 traces instead of a
single one per key, the fraction of key-triples < 80 bits increases to 6.3 %. The fraction of
key-triples < 70 bits is 0.32 %. The resulting security levels are widely distributed and
dependent on the key-value with tails reaching down to almost zero. A worst case of 2 bit
of remaining security level for two specific DES keys, i.e. all zeros/ones is observed. (Note,
however, that those keys are also cryptographically weak and unlikely.) Nonetheless, this
indicates that basing the security estimates for a device on lower bounds or worst case
results seems unreasonable. Assessing the device security based on the average security
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level also fails to acknowledge the full attack potential. Hence, the important question
is: How should the security level of a device after side-channel evaluation be assessed
when results are widely distributed and weak keys are existent? It seems like a security
assessment in such cases needs to tolerate a certain non-zero, but low percentage of keys
below a reasonable security level, such as e.g. 80 bits.

Our observation of widely distributed results and weak keys for profiled attacks against
the DES key schedule seems independent of a specific device in the sense that (1) at
least two frequently encountered leakage models of round keys are affected, and (2) that
even a very simplified simulation model yields comparable results. From our analysis we
conclude that weak keys are generally expected on all devices, while concrete results are of
course in part device-specific. From this, it seems reasonable to assume that many more
implementations may be affected if their DES key schedule is not adequately protected
(i.e. through proper masking). Properties of the DES key schedule, i.e. mainly its linearity,
seem to reinforce the issue which is yet another indication that DES is outdated.

This work raises the question whether such wide distributions of results and the existence
of weak keys must also be expected in profiled side-channel attacks against the AES key
schedule. While the AES key schedule includes non-linearity, a profiled attack against
intermediate variables of the key schedule should likely lead to situations where some
values are classified better than others. The AES key-schedule’s non-linearity only means
that such effects will likely only affect few or single round keys at once. In our opinion
it seems likely that all profiled attacks against leaking key schedules will lead to similar
key-value-dependent outcomes6. The DES key schedule only seems especially prone to
such weakness because of its linearity.
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A Background on tools, analysis, and measurements
In this Section, we describe all employed trace processing and analysis methods which
are taken from the well-established state of the art. Where necessary, we describe our
implementation choices on top of the respective publications. We also describe our
high-precision EM measurement setup.

A.1 Alignment
Alignment refers to a post-processing step on recorded traces. Most side-channel analyses
require alignment of traces in order to remove the effects of deliberate and uncontrollable
misalignment sources (e.g. internal oscillators, random dummy cycles, random delays,
unsynchronized operating system tasks). Such misalignment cannot be prevented during
oscilloscope recordings, even by using multi-stage triggers and triggering on IO and power
trace patterns.

Static alignment methods align a trace at one particular time sample or during a short
time-span. Significant peaks in EM traces or edges in power traces can often be used for a
first step of alignment. Sometimes, if a significant pattern has been identified, a simple
pattern matching (least square matching) using a cut example trace can be employed. It
then depends on the reasons for misalignment, how many samples before and after this
point are aligned correctly. This may be sufficient if only a short time period needs to
be analyzed. For example, if the pattern or timing of the targeted algorithm execution
has been identified beforehand, then fewer samples need to be aligned correctly. In many
cases, multiple alignment methods are cascaded.

If static alignment methods are not sufficient to align the required time-span due to
strong jitter or random delays, dynamic alignment methods can be used. The disadvantage
of dynamic alignment methods are increased runtime and reduced quality of local alignment.
The most popular form of dynamic alignment is dynamic time warping. It is used to align
all traces to a chosen reference trace, by locally minimizing a suitable distance measure, for
example the mean absolute error or mean square error. A fast algorithm for dynamic time
warping has been described by Salvadore and Chan [SC04] and is available as a module for
python7. The FastDTW algorithm requires a radius parameter. A larger radius parameter
forces the algorithm to search a larger range for the best fit. It can be difficult to visually
determine the quality of this form of alignment. A sure sign that the radius parameter
is too small is a large number of jumps in the time-warping function, which appear as
constant parts in the aligned traces. The runtime increases significantly with larger radius
parameters. From our experience with side-channel traces, we find that the required radius
parameter mainly scales with the length of the traces and less with the amount of jitter.
In order to work with small radius parameters (r <= 20), we therefore split our traces in
short sections (each ∼5000 samples long) and align these against sections of the reference
trace. The trace sections are chosen such that they are overlapping by at least twice the
maximal jitter. The overlap can be discarded after aligning the pieces to the reference
trace. The aligned sections (without the overlapping parts) can be concatenated to recover

7https://pypi.org/project/fastdtw/

https://pypi.org/project/fastdtw/
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a complete aligned trace. Due to this piece-wise alignment, small errors can appear at the
edges of the sections, especially if the overlap is not large enough. In our experience, this
disadvantage is greatly outweighed by the speed-up compared to larger radius parameters
required otherwise.

A.2 Assessing the amount of side-channel leakage
In side-channel analysis, a selection of relevant time-samples in a trace, called points of
interest (POIs) is usually performed as a first step to reduce the amount of data from
traces. When using a high-precision EM measurement setup, the position of the probe also
has to be optimized. For both goals, it is important to assess the amount of side-channel
leakage that can be exploited for each targeted variable. This variable usually depends on
a part of the secret key.

In most cases there are several different variables to be targeted for different parts
of the key, which we refer to as subkeys. The optimal measurement position could be
different for every part. Nevertheless, the measurement position is usually determined for
one exemplary subkey or using a leakage test which targets the entire key. Unterstein et
al. [UHDSS17, UHDS+18] determine multiple measurement positions for different subkeys.
They are in a setting, where an attacker is allowed unlimited measurements of the attacked
key. Hence, they look for different measurement positions to target different subkeys
optimally. In contrast, in our contribution the focus is on attacks with a limited number
of observations per key. Hence, an attacker is unable to repeat the observation at different
measurement positions, even if different positions would be better to attack different key
parts. Nonetheless, profiling of leakage using an open device with an unlimited number of
measurements is allowed.

Some of the following methods also apply to settings where the key is inaccessible
and unknown to the attacker (e.g. correlation-based leakage test). Measurements are
always multivariate with many time-samples. A leakage assessment is usually performed
for every measurement position, and for every time-sample in an univariate manner when
searching for optimal measurement positions and exploitable time-samples. Established
univariate methods compute signal-to-noise ratios (SNRs) or correlation coefficients to
measure and compare exploitable leakage. Sections A.2.2 and A.2.3 describe the most
established approaches based on t-test statistics and the Pearson correlation coefficient
respectively. Actual SNR-computations are generally more expensive. Hence SNR-based
leakage tests are used less frequently.

In general, a leakage test is performed early during an analysis when only little
information about the implementation is available. Still, such methods already make some
assumptions about the leakage behavior of the implementation. They often assume that
variables can be described sufficiently by multivariate Gaussian distributions, and it is
often assumed that variables leak information in some specific form, for instance as their
Hamming weight. Based on these assumptions, one performs a leakage test on the chosen
variables. If no leakage is detected in this manner, other models are tested. As an example,
the transition between two consecutive values in a storage cell would leak their Hamming
distance (see Section 3.1). Such choices depend on the assumptions about the targeted
algorithm and implementation.

A.2.1 Univariate SNR-based leakage test

One straightforward approach to leakage assessment is to compute a univariate SNR for
the variables to be classified through their statistical moments. This is usually achieved
by assuming the signal can be characterized through the mean value of traces in a class
exhibiting the same value and weighing the distance between class means by their inter-
class variance. The SNR of the exploitable signal of a variable in side-channel data was
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established by Mangard et al. [MOP08] as

SNR = Var(Signal)
Var(Noise) = Var(µ0, . . . , µi−1)

E[σ2
0 , . . . , σ

2
i−1] , (10)

with the class means µi and variances σ2
i for all possible values of the variable, where i is

the class label. This method only works in the profiled setting. The advantage of the SNR
is that leakage from independent variables is additive. Therefore, it allows to determine
the contribution of different variables to the overall leakage. Typically the number of
classes is high, e.g. 256 if the target is a byte value, so a large number of traces is required
to calculate a sufficient estimate of the means and variances.

Instead of SNRs, we mainly use two leakage tests with a direct statistical interpretation.
During the initial search for leakage in the full side-channel traces or when the measurement
position is to be determined by evaluating many possible positions, we prefer to use the
t-test. For a more precise investigation to assess the amount of exploitable leakage and in
order to determine POIs we use the so-called ’correlation-based leakage test’ described
by Durveaux and Standaert [DS16]. It has the advantage over different forms of t-tests
(e.g. CRI’s non-specific fixed vs. random t-test [GGJR+11]) that the metric, and the POIs
identified with it, directly translate to the success rate of the attack. We refer to this
correlation based leakage test as CPOI.

A.2.2 Leakage assessment based on the t-test

The t-test can be easily adapted to test for all kinds of leakage, like plain- or ciphertext,
key and subkeys, and any intermediate values. For example, to test for plaintext leakage
using a t-test, a set of measurements with fixed plaintext and key is compared to a set
with random plaintexts and fixed key using their respective mean values or other statistical
moments. The t-test outputs so-called t-values which indicate statistically significant
differences in the statistical moments. The significance threshold is usually set to the
value 4.5 [SM15], which corresponds to a confidence level greater 0.99999. The absolute
t-values can be compared and used directly as scores to determine good measurement
positions. However, they cannot be used to gain insights into the success probability of
attacks. T-tests are especially useful if the number of available measurements is low, since
statistical moments need to be estimated only for two classes. This is most interesting in
cases where the measurement position is unclear. Compared to the CPOI leakage test, a
smaller, more feasible number of traces needs to be recorded at every position.

We use the t-test to search for key leakage and identify possible executions of the
key schedule. To test for key leakage, a set of measurements with fixed key and random
plaintexts is compared to a set with random keys and random plaintexts.

A.2.3 Univariate correlation-based leakage test (CPOI)

The correlation-based leakage test was initially proposed as a leakage test which does not
require key knowledge. It uses plaintext bytes as a base to separate all measurements
into different classes for the generation of univariate profiles (mean traces). These profiles
are then correlated (Pearson correlation) in an univariate manner with the attack set to
generate a correlation trace. The test detects the leakage of the plaintext byte itself as well
as the leakage of all intermediate byte values which have a bijective relation to this plaintext
byte (e.g. values after key addition or s-box substitution). The result of a correlation-based
leakage test is a correlation coefficient and directly implies the success-rate of an actual
univariate profiled DPA attack.

The correlation-based leakage test as described by Durveaux and Standeart includes
statistical cross-validation through repeatedly segmenting all available measurements into
a larger profiling and smaller disjunct attack set (with all attack sets being disjunct) to



46

minimize statistical estimation errors of the Pearson correlation coefficient. The profiling
set is then used to estimate the leakage for a DPA attack based on the Pearson correlation
coefficient. The results from multiple repetitions using the different attack sets are averaged
to complete the cross-validation. The leakage test effectively equals a profiled univariate
CPA attack with cross-validation.

This leakage test can also be targeted at other variables like transitions between
intermediate values in storage registers (i.e. Hamming distances) to focus on the leakage
of only these intermediate values. In this case, there is no possible bijective relation to
other values, and consequently no false positives.

A.2.4 Use cases and limitations

Both, t-tests and correlation-based leakage tests can generally be performed in a setting
with either unknown, or known keys. A setting with unknown but fixed keys allows to
find plaintext and ciphertext leakage and dependent leakages. A setting with known and
changeable keys also allows to identify key schedule leakage.

Considering AES as an example, we observe that a known plaintext byte and an
intermediate value after key byte addition and the substitution-box layer (sub-Bytes)
have a bijective relation. The bijective property means that they represent a permutation
(or ’relabeling’) of the input which has no effect on the test. Therefore, both tests may
identify leakage due to the plaintexts as well as key-dependent intermediate values. Thus,
intermediate values, for example after key addition and after byte substitution, cannot be
distinguished from direct leakage of the plaintext. This non-distinguishability continues
until after the first mix-columns, where three other (not modelled/profiled) bytes mix into
the intermediate values and the bijection no longer exists. Hence, one usually has to sort
out POIs where only plaintext leakage is present. This is done by using a more specific
leakage model (as for example the Hamming weight) that deliberately breaks the bijection.
Another option is to take measurements where both key and plaintext vary, if the device
allows this. However, the specific leakage model may not be accurate. In such a case it is
preferable to perform a test based on original values. When targeting leakage from the
key schedule, no false positives are expected.

A.2.5 Multivariate leakage assessment

Leakage is generally multivariate and attacks based on multivariate leakage (e.g. profiled
multivariate DPA) are superior to univariate approaches like the implicitly univariate
correlation-based DPA, which has been popular for a long time.

Bruneau et al. [BGH+15] as well as Unterluggauer et al. [UKM+18] describe how to
compute multivariate SNRs. Both provide a formula to estimate multivariate SNR from
signal and noise covariance matrices. Bruneau et al. derive an approximation in the limit
of many POIs through the calculation of an LDA, while Unterluggauer et al. present
an approximation in the limit of many traces using a mutual information estimate. In
addition, Bruneau et al. show the effect of autoregressive noise on the SNR. Autoregressive
noise means that adjacent time-samples are affected by correlated noise, which is realistic
for high-frequency sampling of physical dimensions where a certain low-pass behavior
always has to be assumed.

Importantly, multivariate leakage assessment is not necessary to select POIs from a
trace for the obvious reason that every time-sample is assessed independently. However,
strictly speaking, one should aim at determining measurement positions, which maximize
multivariate leakage. But in many cases, it may be practically sufficient to select measure-
ment positions based on univariate leakage assessments. For this, it is helpful to choose
a suitable measure to combine results from univariate leakage tests into a single score.
This can for instance be done by using the maximum or the averaged/summed univariate
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correlations. This simplification may be useful, even though it is obviously inaccurate since
the assumption behind a summation of SNRs is that the noise in all univariate samples is
independent/uncorrelated (see Bruneau et al. [BGH+15]). The assumption behind taking
the maximum univariate SNR would be that the signal and noise are strongly correlated
over all POIs (i.e. approximately equal), and there is little gain in the multivariate evalua-
tion over the univariate one. The reality lies somewhere in-between, since noise is usually
slightly correlated.

A.3 Dimensionality reduction
Bruneau et al. [BGH+15] confirm the common belief of experts in the field of pattern
classification that in a profiled setting, linear discriminant analysis (LDA) is the optimal
method for dimensionality reduction. Hence, principal component analysis (PCA) can be
disregarded in this profiled setting. They also confirm that the success rate of optimal
attacks is ultimately equal before and after LDA. This means that LDA can be used if
the number of dimensions impairs computation speed of attacks. However, LDA as well
as estimating profiles for template matching require the computation of class covariance
matrices. Hence, if the number of POIs (n) to be processed becomes ’too large’ (matrices
n× n), LDA does not help because the same covariance matrix has to be computed. A
preliminary selection of POIs based on a univariate leakage test is usually performed for
this reason.

The use of trace compression by other means such as e.g. averaging n consecutive
time-samples depends on the specifics of the device and recording setup. Oversampling
could reduce noise components with higher frequencies than the actual signal but is not
usually employed according to the current state-of-the-art.

A.4 Template attacks
The goal of template attacks is the classification of key-dependent intermediate variables
or subkeys during a cryptographic computation. As a preliminary step, in many cases,
POIs are selected from the measurement or a dimensionality reduction is performed as
described above. This section describes the approach based on state-of-the-art algorithms
to classify individual values during profiling and the computation of probabilities for subkey
candidates during the attack.

A.4.1 Recovering individual subkeys and computing discriminant scores

It is usually assumed that an exploitable signal from a variable v in a device has a
multivariate Gaussian distribution with signal means µ and additive Gaussian noise with
covariance matrix Σ. The observed noise is combined from electrical and switching noise.
Switching noise commonly refers to the side-channel signal of other processed values in
a digital device. The various sources of noise and their characteristics are discussed at
length in the book of Mangard et al. [MOP08]. During a profiling phase the distribution
parameters of the multivariate Gaussian distributions are estimated for every possible
value of v using many side-channel observations t. This allows to compute the probability
density function for observing a certain measurement t given the respective value v based
on the estimated parameters µv,Σv as

p(t|v) = 1√
(2π)n · det(Σv)

· exp
(
−1

2 · (t− µv)′ ·Σ−1
v · (t− µv)

)
. (11)

The variable v cannot be observed directly and is used only to identify different classes.
Therefore, it may be replaced by any unique choice of class labels.



48

During the evaluation of a trace in the attack phase the observation is compared to the
parameterized distributions of different values v. Given the probability density function
above and applying Bayes’ theorem, the likelihood L(v|t) = p(v|t) can be computed. By
finding the argument v that maximizes the likelihood, we obtain the most likely candidate

v∗ = argmax
v

L(v|t).

Choudary and Kuhn [CK13] describe several simplifications for the computation of this
maximum likelihood by dropping the normalization. The result of applying Bayes’ theorem
is first simplified by removing the denominator which is equal for all values and by removing
the a priori probabilities of values v since they are assumed to be equally likely, such that
the likelihood is proportional to the profiled distribution function

L(v|t) ∝ p(t|v).

By calculating the logarithm of the likelihood, numerical stability is improved. Since
these operations are monotone functions, the order of the log-likelihood scores dlog(v, t) =
logL(v|t) and in particular its maximum is unchanged.

Usually, it suffices to assume that the noise is not correlated with the value of the
variable v and we can replace Σv by the pooled covariance matrix Σpooled, which is the
average of covariance matrices over all classes. According to Choudary and Kuhn [CK13]
it is always recommended to try pooled covariances first. Pooling improves the estimate
of the covariance matrix, which helps numerical stability during the required inversion.
This leads to the simplified expression for the discriminant score dlog of an observation t
belonging to a certain value v

dlog(v, t) = −1
2 · (t− µv)′ ·Σ−1

pooled · (t− µv) (12)

and

v∗ = argmax
v

dlog(v, t). (13)

The factor − 1
2 is kept to ensure that later, probabilities can be computed from the results

(see Section A.4.3). Equation (12) is equal to Equation (23) in [CK13].
Choudary and Kuhn [CK13] also describe further simplifications by expanding Equation

(12) and omitting the quadratic term in t, which is constant for all values v due to the
pooled covariance. They achieve significantly faster computation and more robust results
in their empirical evaluation.

A.4.2 Combining multiple traces

Typically an attack includes the evaluation of multiple traces T = {ti}. Choudary and
Kuhn [CK13] describe how likelihoods can be estimated from multiple traces. We use
Equation (28) in [CK13], which calculates the joint likelihood as the product over all
traces, which leads to summation in the logarithmic discriminant score,

djoint
log (v,T ) = −1

2
∑
ti∈T

(ti − µv)′ ·Σ−1
pooled · (ti − µv). (14)

Choudary and Kuhn [CK13] also describe the alternative option of computing the joint
likelihood by first averaging the traces and then computing the discriminant score from
the averaged traces. Although this is computationally much faster, in general it leads
to too low estimates of the covariances. However, with pooled covariance matrices the
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averaging of traces leads to exact scores, which they confirm through empirical results.
The linearized score for multiple traces then becomes

djoint
linear(v,T ) = |T |

(
µ′v ·Σ−1

pooled · t̄−
1
2µ
′
v ·Σ−1

pooled · µv

)
, (15)

where the average over all traces is

t̄ = 1
|T |

∑
ti∈T

ti

and |T | denotes the number of traces.

A.4.3 Retrieving probabilities from discriminant scores

Rank estimation and enumeration algorithms require probability estimates for each hy-
pothesis as input. Since the computed discriminant is not a probability, we need to derive
a probability from it to be able to use the key rank estimation algorithm. This is done by
inverting the logarithm through exponentiation and normalizing the scores to sum to one,
which recovers the probability densities p(v|t).

A.4.4 Choosing subkeys

Usually, a complete secret is recovered through repeating a template attack on different
parts of a key-dependent intermediate values. This segmentation into parts of certain
bit-lengths which are modeled and classified at once (e.g. 8 bit) is frequent and often
lacking reasoning. For example in the case of AES, due to the algorithmic structure, 8
bits are the obvious choice because all operations are byte-wise. The upper limit for the
bit-length of the attacked subkeys is given through computational and memory constraints
as well as through the number of traces available for estimating the statistical moments of
the templates.

In some cases, one set of templates can be used to attack all parts of the secret since
their leakage behavior is identical. In other cases, different sets of templates are built for
different parts of the secret.

Divide and conquer assuming independent variables and leakage. Most commonly, a
simple divide and conquer approach is employed to recover all parts of the key. This
approach is the least complex to implement. Parts of the secret are classified through
independent template attacks on key-dependent intermediate values, and subsequently
combined through key enumeration or rank estimation algorithms. One main assumption
for attacking parts of the key independently is that the noise and signal of different parts
are not correlated. This may be the case if a software implementation handles individual
values sequentially and with significant time gaps between them. Also, current key rank
estimation and enumeration algorithms assume independence of the variables, which is
true under the above assumptions.

Hence, if there is no other relation between key parts (i.e. they are chosen independently
at random) and their leakage is not dependent, the current algorithms may be used without
further consideration (see Section A.5 about key rank estimation). See Section 3.1 for
more discussion in this direction. As always, if assumptions are not met precisely, it may
still be reasonable to proceed if satisfying results are achieved.

If divide and conquer does not apply - dependent variables. In case that the leaking
variables are dependent due to their algorithmic relations or specifics of the implementation,



50

it is more difficult to derive marginal probabilities. In Section 3.1 we describe solutions for
the different cases of variable and leakage dependencies.

In case dependencies cannot be resolved otherwise, classified variables and their depen-
dencies can be modeled as graphs. Then, probabilities of observations can be propagated
through the graph according to their mutual dependencies using dedicated belief propaga-
tion algorithms.

Such approaches also help to exploit the leakage of many intermediate values with known
functional dependencies. Veyrat-Charvillon et al. [VCGS14] describe this as Soft-Analytical
SCA (SASCA) and presented it as an improvement over previous so-called algebraic side-
channel attacks which use solvers (e.g. SAT solvers). Many intermediate values including
their algorithmic dependencies are modeled through a factor graph. Algorithms from
information theory, like belief propagation algorithms, are used to combine the probability
information from different values to derive better probabilities on key parts. Grosso
and Standaert [GS14] compare SASCA to algebraic attacks and to the straightforward
divide and conquer approach. They conclude that SASCA requires less traces if the
implementation leaks additional intermediate values with known functional dependencies.

However, even after propagating beliefs, the correct key may not be the most likely.
Hence, an attacker needs key enumeration to find the correct combination of parts based
on the updated probabilities. Belief Propagation can therefore be used to recover marginal
probabilities of variables that are independent but not directly observable through leakage.
Usually for any encryption scheme the secret is chosen uniformly at random and it should
be possible to achieve a suitable representation. Since currently published (optimal) key
enumeration algorithms assume independent variables as input, they can be applied directly.
However, information loss must be expected for cases where the secret is not represented
by independent variables and consequently the marginals remain dependent.

Simultaneous leakage. Another reason to look into more complex algorithms for the
classification of individual parts and the combination to derive a final secret could be if
parts of the secret leak simultaneously. Then, the leakage of different parts cannot be
observed independently because the template attack is affected by switching noise from
the unprofiled parts of the key, i.e. the unprofiled key values generate signals which act
as noise. If the number of bits with overlapping signals in the side-channel observation is
small enough, they can be classified at once. In this manner, the leakage signal of all bits
is exploited together and the effect of switching noise prevented.

If it is not possible to profile the entire secret at once, a selection of bits should be made
by attempting to maximize SNR or correlations of subkeys. How parts of a secret can be
classified properly and combined to an entire secret, including a possibility for enumeration,
highly depends on the kind of leakage of the individual parts. See Section 3.1 for more
discussion on how the kind of leakage affects the approach to achieve key enumeration.

A.5 Key rank estimation
The previously described template attacks provide classification probabilities for candidates
of subkeys to match the observed traces. All popular and recent contributions assume
independence of subkey probabilities. From lists of probabilities for subkey candidates,
they allow to enumerate the key candidates in an optimal order based on the combined
classification probability for the entire key. The number of trials to find the correct key
is called the key rank. The logarithm of the key rank is the security level in bit and
describes the remaining entropy of the key after the attack. For security evaluations
it is usually sufficient to estimate the security level directly without enumerating the
keys. There are several proposals for rank estimation algorithms based on estimating
the joint probabilities of the subkeys using histograms, starting with the work of Veyrat-
Charvillon et al. [VCGRS12]. We use a convolution based variation of the algorithm
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by Glowacz et al. [GGP+15]. An alternative approach is based on path counting and
was proposed by Martin et al. [MOOS15]. In their follow-up papers [MMO18], [MM18],
they argue that both approaches are mathematically similar and optimal. Clearly, due to
the algorithmic differences, they still differ in computational and numerical performance.
Martin and Martinoli [MM18] also show how path counting and convolution algorithms
can be parallelized.

Li et al. [LWWW17] describe a key enumeration (not rank estimation) algorithm which
handles multiple resulting score lists from different side-channel attacks for the same key
bits. For example they combine recovered key byte probabilities from a regular CPA
with recovered byte XOR-difference probabilities from a correlation-enhanced collision
attack. Those two are obviously dependent and common enumeration algorithms are
unable to exploit both results jointly. An alternative approach in such situations is to
propagate probabilities (beliefs) for the same subkeys within a factor graph to derive
marginal probabilities for variables, which are independent.

A.6 High-precision EM measurement setup
We use a Langer ICR HH high-precision EM probes with diameters 500 µm, 250 µm, 150 µm,
and 100 µm. In addition to the built-in 30 dB amplifier of the probe, another Langer PA303
30 dB pre-amplifier is employed. We use a LeCroy WavePro 725Zi oscilloscope with 2.5 GHz
bandwidth and a sampling rate of 5 GS/s, 2.5 GS/s, or 1 GS/s. We take measurements in
a grid, with step sizes of 50 µm to 200 µm.


	Introduction
	Related work
	Hu et al., Ciphertext and Plaintext Leakage Reveals the Entire TDES Key, 2016
	Wagner et al., Comparative Study of Various Approximations to the Covariance Matrix in Template Attacks, 2016
	Wagner and Heyse, Single-Trace Template Attack on the DES Round Keys of a Recent Smart Card, 2017.
	Wagner et al., Brute-Force Search Strategies for Single-Trace and Few-Traces Template Attacks on the DES Round Keys of a Recent Smart Card, 2017
	Wagner and Heyse, Improved Brute-Force Search Strategies for Single-Trace and Few-Traces Template Attacks on the DES Round Keys, 2018
	Summary

	Profiled attacks to recover key bit values - Leakage models, classification, enumeration
	Different possible leakage models of key bits
	Distinguishing XOR and value leakage

	DES key schedule and templates for implementations with exclusive XOR leakage
	Leakage of the DES key schedule
	Templates for exclusive XOR leakage
	Comparison to AES

	Empirical study: Security controller
	Chip preparation, measurement setup, and alignment
	Leakage test, measurement position, and POIs
	Leakage model
	Evaluating attack success
	Results from profiled template attacks
	Generalization through 'noiseless' simulation

	Impact on triple-DES
	Recap on the cryptanalytic security of triple-DES
	Side-channel security of 3-key triple-DES allowing a meet-in-the-middle advantage
	Triple-DES estimates based on measurement data

	Empirical study: General purpose microcontroller
	Empirical study: Second Security Controller
	Conclusion
	Background on tools, analysis, and measurements
	Alignment
	Assessing the amount of side-channel leakage
	Dimensionality reduction
	Template attacks
	Key rank estimation
	High-precision EM measurement setup


