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Abstract. We present a generalization of Maurer’s unified zero-knowledge (UZK) protocol, namely
a unified generic zero-knowledge (UGZK) construction. We prove the security of our UGZK protocol
and discuss special cases. Compared to UZK, the new protocol allows to prove knowledge of a vector
of secrets instead of only one secret. We also provide the reader with a hash variant of UGZK and the
corresponding security analysis. Last but not least, we extend Cogliani et al.’s lightweight authentication
protocol by describing a new distributed unified authentication scheme suitable for wireless sensor
networks and, more generally, the Internet of Things.

1 Introduction

Zero knowledge proofs (ZKPs) are closely related with one of the main cryptographic goals, entity authen-
tication. Applying ZKPs, researchers are able to propose clever solutions to a variety of practical problems
mainly in the fields of digital cash, auctioning, Internet of Things (IoT), password authentication and so on.

A standard zero knowledge protocol involves a prover Peggy possessing a piece of secret information x
associated with her identity and a verifier V ictor which has to check that Peggy indeed owns x. Two classical
examples of such constructions are the Schnorr [18] and the Guillou-Quisquater [11] protocols. Raising the
level of abstraction, Maurer shows in [13] that the previously mentioned protocols are actually instantiations
of the same one.

Building on Maurer’s result, we considered of great interest providing the reader with a generalized
perspective of the Unified Zero-Knowledge (UZK) protocol as well as a hash variant of it. An important
consequence of our generic approach is the unification of Maurer’s [13], Feige-Fiat-Shamir’s [3] and Chaum-
Everste-Van De Graaf’s [1] protocols. Moreover, a special case of our protocol’s hash version is the h-variant
of the Fiat-Shamir scheme [7,9].

Practical implications which motivated our research. As the IoT paradigm arised, lightweight devices3 became
more and more popular. Due to the open and distributed nature of the IoT, proper security is needed for
the entire network to operate accordingly. Now let us consider the case of online wireless sensor networks
(WSNs). The lightweight nature of sensor nodes heavily restricts cryptographic operations. Thus, the need for
specific cryptographic solutions becomes obvious. The Fiat-Shamir-like distributed authentication protocol
presented in [2] represents such an example. Based on this previous construction we propose a unified generic
zero-knowledge protocol. Just as the result described in [2], our protocol can be applied for securing WSNs
and, more generally, IoT-related solutions. Nonetheless, our construction offers flexibility when choosing the
assumptions on which its security relies. A secondary feature of our scheme is the possibility of reusing
existing certificates when implementing the distributed authentication protocol.

3low-cost devices with limited resources, be it computational or physical
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Structure of the paper. We establish notations and recall zero-knowledge concepts in Section 2. Inspired
by Maurer’s UZK construction, in Section 3 we present our main result, a Unified Generic Zero-Knowledge
(UGZK) protocol, and prove it secure. We provide the reader with various special cases of UGZK in Section 4.
A hash variant of our core protocol is tackled in Section 5 together with its security analysis. Following
Cogliani et al.’s lightweight authentication protocol ideas, in Section 6 we describe a distributed unified
Fiat-Shamir-based protocol, discuss security and complexity aspects and present implementation trade-offs
which arise from small variations of the proposed result. We conclude in Section 7 and underline future work
proposals.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinality of a set S. The subset {0, . . . , s} ∈
N is denoted by [0, s]. The action of selecting a random element x from a sample space X is represented by
x

$←− X, while x← y indicates the assignment of value y to variable x.

2.1 Groups

Let (G, ⋆) and (H,⊗) be two groups. We assume that the group operations ⋆ and ⊗ are efficiently computable.
Let f : G→ H be a function (not necessarily one-to-one). We say that f is a homomorphism if f(x⋆y) =

f(x) ⊗ f(y). Throughout the paper we consider f to be a one-way function, i.e. it is infeasible to compute
x from f(x). To be consistent with [13], we denote by [x] the value f(x). Note that given [x] and [y] we can
efficiently compute [x ⋆ y] = [x]⊗ [y], due to the fact that f is a homomorphism.

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗ × {0, 1}∗ → {true, false} be a predicate. Given a value z, Peggy will try to convince Victor
that she knows a value x such that Q(z, x) = true.

We further base our reasoning on both a definition from [3, 13] and a definition from [10, 13] which we
recall next.

Definition 1 (Proof of Knowledge Protocol). An interactive protocol (P, V ) is a proof of knowledge
protocol for predicate Q if the following properties hold

– Completeness: V accepts the proof when P has as input a value x with Q(z, x) = true;
– Soundness: there exists an efficient program K (called knowledge extractor) such that for any P̄ (possibly

dishonest) with non-negligible probability of making V accept the proof, K can interact with P̄ and output
(with overwhelming probability) an x such that Q(z, x) = true.

Definition 2 (Zero Knowledge Protocol). A protocol (P, V ) is zero-knowledge if for every efficient
program V̄ there exists an efficient program S, the simulator, such that the output of S is indistinguishable
from a transcript of the protocol execution between P and V̄ . If the indistinguishability is perfect4, then the
protocol is called perfect zero-knowledge.

4i.e. the probability distribution of the simulated and the actual transcript are identical
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Peggy V ictor

Knows x. Knows z.
Computes z = [x].

Choose k
$←− G.

Compute t← [k].
t−−−−−−−−−−−→

Choose c
$←− C ⊂ N.

c←−−−−−−−−−−−
Compute r ← k ⋆ xc.

r−−−−−−−−−−−→
If [r] = t⊗ zc return true.
Else return false.

Fig. 1. Maurer’s Unified Zero-Knowledge (UZK) Protocol.

According to [13], the UZK protocol presented in Figure 1 is a zero-knowledge protocol if the conditions
mentioned in Theorem 1 are satisfied.

Theorem 1. Let C be the challenge space. If values ℓ ∈ Z and u ∈ G are known such that

– gcd(c0 − c1, ℓ) = 1 for all c0, c1 ∈ C with c0 ̸= c1,
– [u] = zℓ,

then by running the protocol described in Figure 1 for m rounds we obtain a proof of knowledge protocol if
1/|C|m is negligible, and a zero-knowledge protocol if |C| is polynomially bounded.

Remark 1. If C is small, then several 3-move rounds are needed to make the soundness error negligible.

2.3 Hash Functions

In the following, we consider the definitions from [9]. These concepts are further applied in Section 5 within
the security proof of our proposed generalization of the h-variant protocol [7].

Definition 3. Let λ ≥ 2 be an integer. An λ-collision for a hash function h is an λ-tuple {mi}i∈[1,λ] such
that h(m1) = h(m2) = . . . = h(mλ).

Definition 4. Let λ ≥ 2 be an integer. A hash function is λ-collision resistant if it is computationally
infeasible to find a λ-collision.

3 The Main Protocol

Inspired by Maurer’s UZK protocol [13], we describe a UGZK protocol (Figure 2). Note that the UZK scheme
is a special case of the UGZK construction. We also prove the security of our proposed construction in a
Feige-Fiat-Shamir manner [3].
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3.1 Description

Let n be a positive integer and let i ∈ [1, n]. For a given vector {zi}i∈[1,n], the protocol in Figure 2 is a proof
of knowledge5 of a vector {[xi]}i∈[1,n] such that zi = [xi]. The challenge spaces Ci for the elements ci are
chosen as arbitrary subsets of N, for all i ∈ [1, n]. For the sake of uniformity, we assume that all the challenge
spaces Ci are equal and we denote them by C. If |C| is chosen to be small, then several rounds are needed in
order to reduce the soundness error up to the point of being negligible.

When n = 1 we obtain the UZK protocol introduced in [13]. Note that in this case G and H need not be
commutative.

Peggy V ictor

Knows {xi}i∈[1,n]. Knows {zi}i∈[1,n].
Computes {zi}i∈[1,n] = {[xi]}i∈[1,n].

Choose k
$←− G.

Compute t← [k].
t−−−−−−−−−−−→

Choose c = {ci}i∈[1,n]
$←− Cn ⊂ Nn.

c←−−−−−−−−−−−
Compute r ← k ⋆ (⋆ni=1x

ci
i ) .

r−−−−−−−−−−−→
If [r] = t⊗ (⊗n

i=1z
ci
i ) return true.

Else return false.

Fig. 2. A Unified Generic Zero-Knowledge (UGZK) Protocol.

3.2 Security Analysis

Theorem 2. Let H be a commutative group and let j ∈ [1, n]. If values ℓj ∈ Z and uj ∈ G are known such
that

– gcd(c′′j − c′j , ℓj) = 1 for all c′j , c′′j ∈ C with c′j ̸= c′′j ,
– [uj ] = z

ℓj
j ,

then by running the protocol described in Figure 2 for m rounds we obtain a proof of knowledge protocol if
1/|C|nm is negligible, and a zero-knowledge protocol if |C|n is polynomially bounded.

Proof. Let s = |C|. To prove that P ’s proof always convinces V , we evaluate the verification condition:

[r] = [k ⋆ (⋆ni=1x
ci
i )] = [k]⊗ (⊗n

i=1[xi]
ci) = t⊗ (⊗n

i=1z
ci
i ) .

Note that a corrupt P̄ can cheat V with a negligible probability s−nm per iteration by guessing the {ci}i∈[1,n]

vector, preparing t = [k]⊗
(
⊗n

i=1z
−ci
i

)
in the first step, and providing r = k in the last step.

Next, we show that whenever V accepts P̄ ’s proof with non-negligible probability, there exists a knowledge
extractor K that can print out all the xis with overwhelming probability. Let T be the truncated execution
tree of (P̄ , V ) for input I and random tape RA. As in [3, Theorem 3], the algorithm we construct explores
this tree by repeatedly resetting P̄ to the root, providing the necessary steering requests and verifying which

5provided that the conditions of Theorem 2 are satisfied
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one of the s sons of each explored vertex corresponds to a correct answer. V may ask sn possible questions
at each stage and, thus, the vertices in T may have polynomially many sons in terms of |I|. A vertex is
called heavy if its degree is larger than sn−1 (i.e. if more than sn−1 executions of (P̄ , V ) at this state are
successful). Our goal in this part of the proof is to show that all the xis can be computed from the sons of
a heavy vertex and that a PPT K can find a heavy vertex in T with overwhelming probability.

Let H be any heavy vertex in T and let Q be the set of queries in the form of vectors {ci}i∈[1,n] which
are properly answered by P̄ . It is easy to show that for any 1 ≤ j ≤ n a set Q of more than sn−1 vectors
(having the length n) must contain two vectors {c′i}i∈[1,n] and {c′′i }i∈[1,n] in which c′j ̸= c′′j and c′i = c′′i for
all i ̸= j. Since both queries were properly answered, the two verification conditions imply

[r′j ] = t′j ⊗
(
⊗n

i=1z
c′i
i

)
and [r′′j ] = t′′j ⊗

(
⊗n

i=1z
c′′i
i

)
.

However, P̄ must choose t before he obtains V ’s query and, thus, t′j = t′′j . From r′j and r′′j we can obtain
x̃j such that [x̃j ] = zj , as

x̃j = u
aj

j ⋆ (r′′−1
j ⋆ r′j)

bj ,

where aj and bj are computed using Euclid’s extended gcd algorithm such that ℓjaj + (c′′j − c′j)bj = 1.
By rewriting the equations we get

[r′′−1
j ⋆ r′j ] = [r′′−1

j ]⊗ [r′j ]

=
(
⊗1

i=nz
−c′′i
i

)
⊗ t′′−1

j ⊗ t′j ⊗
(
⊗n

i=1z
c′i
i

)
=

(
⊗j

i=nz
−c′′i
i

)
⊗

(
⊗n

i=jz
c′i
i

)
= z

c′j−c′′j
j ,

where for obtaining the last equality we used the commutative property of H. Thus,

[x̃j ] = [u
aj

j ⋆ (r′′−1
j ⋆ r′j)

bj ]

= [uj ]
aj ⊗ ([r′′−1

j ⋆ r′j ])
bj

= (z
ℓj
j )aj ⊗ (z

c′j−c′′j
j )bj

= z
ℓjaj+(c′j−c′′j )bj
j

= zj .

Now we show that at least half the vertices in at least one of the levels in T must be heavy. Let αi be the
ratio between the number of vertices at level i+1 and the number of vertices at level i in T . If αi ≤ (1/2s)sn

for all 1 ≤ i ≤ m, then the total number of leaves in T (which is the product of all these αi) is bounded by
(1/2s)msnm, which is a negligible fraction of the snm possible leaves. Since we assume that this fraction is
polynomial, αi > (1/2s)sn for at least one i, and thus at least half the vertices at this level must contain
more than sn/s sons.

To find a heavy vertex in T , K chooses polynomially many random vertices at each level, and determines
their degrees by repeated resets and executions of P̄ . To ensure a uniform probability distribution in spite
of the uneven degrees of the vertices, M should explore random paths in the untruncated tree, and restart
from the root whenever the path encounters an improperly answered query. Since a non-negligible fraction of
the leaves is assumed to survive the truncation, this blind exploration of T can be carried out in polynomial
time.

The last part of the proof deals with the zero-knowledge aspect of the protocol. By using resettable
simulation in the sense of [10], the simulator S described in Algorithm 1 can mimic the communication in
(P, V̄ ) with an indistinguishable probability distribution in O(msn) expected time, which is polynomial by
our assumptions on sn.

⊓⊔
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Algorithm 1: The simulator S.
Input: The public key {zi}i∈[1,n]

Output: A transcript L
1 foreach j ∈ [1,m] do
2 Choose c = {ci}i∈[1,n] at random from Cn

3 Select a random number r
$←− G

4 Compute t← [r]⊗
(
⊗1

i=nz
−ci
i

)
5 Call V̄ with input t and obtain a challenge c′

6 if c = c′ then
7 L← L ∪ {(t, c, r)}
8 end
9 else

10 Reset V̄ ’s state and repeat this round with new random choices
11 end
12 end
13 return L

4 Special Cases of the UGZK protocol

In this section we describe a number of protocols as instantiations of our main UGZK construction. Note
that when n = 1 we obtain the UZK protocol from [13]. Thus, some schemes described in [13] are further
reconsidered, while some examples are specific to our UGZK protocol. Although in the original paper [13]
Maurer shows how to use UZK to prove the knowledge of a vector of secrets, our protocol UGZK is better
in terms of transcript size.

4.1 Proofs of Knowledge of a Multiple Discrete Logarithm

Let p = 2q + 1 be a prime number such that q is also prime. Select an element h ∈ Hp of order q in some
multiplicative group of order p − 1. The multiple discrete logarithm of a vector {zi}i∈[1,n] ∈ Hn

p is a vector
of exponents {xi}i∈[1,n] such that zi = hxi , for all i ∈ [1, n]. We further describe a protocol for proving the
knowledge of a multiple discrete logarithm.

A protocol for proving knowledge of a multiple discrete logarithm can be obtained as a special case of
UGZK where (G, ⋆) = (Zq,+) and H = ⟨h⟩. The one-way group homomorphism is defined by [x] = hx, while
the challenge space C can be any arbitrary subset of [0, q − 1]. The conditions of Theorem 2 are satisfied for
ℓj = q and uj = 0, where j ∈ [1, n]. When n = 1 we obtain the Schnorr protocol [18]6. In the case n ≥ 1 and
C = {0, 1} we obtain the multiple logarithm protocol described in [1].

Next we discuss a variation6 of the previously presented protocol. Let p = 2fp′ + 1 and q = 2fq′ + 1
be prime numbers such that f , p′ and q′ are distinct primes. Select an element h ∈ Z∗

N of order f , where
N = pq. Note that p and q are secret.

Using the UGZK notations we have (G, ⋆) = (Zf ,+) and H = ⟨h⟩. The one-way group homomorphism is
defined by [x] = hx and the challenge space C can be any arbitrary subset of [0, f − 1]. We can observe that
the conditions of Theorem 2 are satisfied for ℓj = f and uj = 0, where j ∈ [1, n]. When n = 1 we obtain the
Girault protocol [8].

4.2 Proofs of Knowledge of a Multiple eth-root

Let p and q be two large prime numbers. Compute N = pq and choose a prime e such that gcd(e, φ(N)) = 1.
A multiple eth-root of a vector {zi}i∈[1,n] ∈ (Z∗

N )n is a base vector {xi}i∈[1,n] such that zi ≡ xe
i mod N .

6This proof can be seen as a more efficient version of a proposal made by Chaum et al. [1].
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Note that the multiple eth-root is not unique. We further describe a protocol for proving the knowledge of
a multiple eth-root.

Such a protocol can be obtained from UGZK with (G, ⋆) = (H,⊗) = (Z∗
N , ·). The one-way group homo-

morphism is defined by [x] = xe mod N and the challenge space C can be any arbitrary subset of [0, e − 1].
The conditions of Theorem 2 are satisfied for ℓj = e and uj = z, where j ∈ [1, n]. We stress that when
e = 2 we obtain the protocol introduced by Feige, Fiat and Shamir [3]. In the case n = 1 we obtain the
Guillou-Quisquater protocol [11]7.

4.3 Proofs of Knowledge of a Multiple Discrete Logarithm Representation

Let p = 2q+1 be a prime number such that q is also prime. Select α elements {hj}j∈[1,α] ∈ Hα
p of order q in

some multiplicative group of order p−1. A multiple discrete logarithm representation of a vector {zi}i∈[1,n] ∈
(⟨h1, . . . , hα⟩)n is a vector of exponent vectors ({x1,j}j∈[1,α], . . . , {xn,j}j∈[1,α]) such that zi = h

xi,1

1 . . . h
xi,α
α ,

for all i ∈ [1, n]. Note that multiple discrete logarithm representations are not unique. We further describe a
protocol for proving the knowledge of a multiple discrete logarithm representation.

A protocol for proving the knowledge of a multiple representation can be instantiated from UGZK by
setting G = Zα

q with ⋆ defined as a component-wise addition operation and H = ⟨h1, . . . , hα⟩. The one-way
group homomorphism is defined by [(x1, . . . , xα)] = hx1

1 . . . hxα
α and the challenge space C can be any arbitrary

subset of [0, q− 1]. The conditions of Theorem 2 are satisfied for ℓj = q and uj = (0, . . . , 0), where j ∈ [1, n].
When n = 1 we obtain a protocol proposed by Maurer in [13] which is a generalization of the protocols
presented by Okamoto in [15] and Chaum et.al. in [1].

Chaum et al. [1] also provide a protocol variant for a composite n. Thus, by adapting the protocol pre-
sented in Section 4.1 and tweaking the previously described one, we can obtain a similar version for composite
numbers. Using the notations from the protocol in Section 4.1, we set G = Zα

f and H = ⟨h1, . . . , hm⟩, where
h1, . . . , hα ∈ Z∗

n are elements of order f . The one-way group homomorphism is defined by [(x1, . . . , xα)] =
hx1
1 . . . hxα

α and the challenge space C can be any arbitrary subset of Zf . It is easy to see that ℓj = f and
uj = (0, . . . , 0), where j ∈ [1, n].

4.4 Proofs of Knowledge of a Multiple eth-root Representation

Let p and q be two large prime numbers. Compute N = pq and choose primes e1, . . . , eα such that
gcd(ei, φ(N)) = 1, for i ∈ [1, α]. A multiple eth-root representation of a vector {zi}i∈[1,n] ∈ (Z∗

N )n is a
vector of bases vector ({x1,j}j∈[1,α], . . . , {xn,j}j∈[1,α]) such that zi ≡ xe1

i,1 . . . x
eα
i,α mod N , for all i ∈ [1, n].

Note that multiple eth-root representations are not unique. We further describe a protocol for proving the
knowledge of a multiple eth-root representation.

A protocol for proving the knowledge of a multiple eth-root representation can be obtained from UGZK
if we set G = (Z∗

N )α with ⋆ defined as multiplication applied component-wise and (H,⊗) = (Z∗
N , ·). The one-

way group homomorphism is defined by [(x1, . . . , xα)] = xe1
1 . . . xeα

α mod N and the challenge space C can be
any arbitrary subset of [0, e−1], where e is a prime such that gcd(e, ϕ(N)) = 1. Since all ei are coprime then
there exist βis such that β1e1 + . . . + βαeα = 1. Then, it is easy to see that ℓj = 1 and uj = (zβ1

j , . . . , zβα

j ),
where j ∈ [1, n]. When n = 1 we obtain a protocol introduced in [19].

5 Hash Protocol Variant

In order to decrease the number of communication bits, Peggy can hash t and send Victor the result. This
method was proposed by Fiat and Shamir [7] and later analyzed in [9]. We employ the same technique for
the protocol presented in Figure 2 and analyze its security.

7This proof is a generalization of a protocol introduced by Fiat and Shamir [7].
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5.1 Description

Let H be a hash function that maps elements from H into bit streams. The hash variant of the protocol
works as follows: in the first step Peggy sends H(t) to Victor (instead of t) and the last step becomes

If H(t) = H
(
[r]⊗

(
⊗n

i=1z
−ci
i

))
return true.

Else return false.

5.2 Security Analysis

Theorem 3. Let s = |C|. If there exists a PPT algorithm P̄ such that the probability that P̄ is accepted by
an honest verifier is greater than (λ− 1)|C|−n + ε, where ε > 0, then there exists a PPT algorithm P̃ which,
with overwhelming probability, either inverts [·] or finds a λ-collision for h.

Proof. Let Ω be the set of p̃ elements in which P̃ picks its random values and E be the set Cn, both of them
characterized by the uniform distribution. For each value (ω, e) ∈ Ω ×E, P̃ passes the protocol (and we say
it is a success) or not. Let S be the subset Ω×E composed of all possible successes. Our assumption is that

|S|
|Ω × E|

> (r − 1)|C|−n + ε

with ε > 0 and |Ω × E| = p̃ · sn.
Let Er = {e ∈ E | (ω, e) is a success} and Ωr = {ω ∈ Ω | |Er| ≥ r}. We have that

|S| ≤ |Ωr| · sn + (r − 1) · (p̃− |Ωr|).

Thus,

|S|
|Ω × E|

≤
[
|Ωr|
|Ω|

+ (r − 1) ·
(
s−n − |Ωr|

|Ω × E|

)]
≤ |Ωr|
|Ω|

+ (r − 1) · s−n

which implies

|Ωr|
|Ω|
≥ ε.

Let P̂ be the PPT algorithm obtained by resetting P̃ ε−1 times. With constant probability, P̂ picks ω
in Ωr and the probability can be made close to 1 by repeating the execution of P̂ . At the end, λ values
{ri}i∈[1,λ] are found such that, for distinct challenges {ci}i∈[1,λ] ∈ (Cn)λ

H
(
[r1]⊗

(
⊗n

i=1z
−ci,1
i

))
= H

(
[r2]⊗

(
⊗n

i=1z
−ci,2
i

))
= . . . = H

(
[rλ]⊗

(
⊗n

i=1z
−ci,λ
i

))
.

Now, we have two possibilities. In the first case, two of the values, say [r1] ⊗
(
⊗n

i=1z
−ci,1
i

)
and [r2] ⊗(

⊗n
i=1z

−ci,2
i

)
, are equal before hashing. Let C− = {−c | c ∈ C}. Then, [r1r−1

2 ] =
(
⊗n

i=1z
c′i
i

)
, where c′ ∈ C−∪C.

This contradicts the intractability of [·]. In the second case, all these values are pairwise distinct and a λ-
collision for H has been found. This contradicts our assumption regarding H. ⊓⊔

Remark 2. This result suggests the use of hash-functions which are only resistant to λ-collisions (with λ > 2),
such that the hash values computed in the first pass can be made much shorter. Indeed, the decrease of the
security level can be balanced by sending a slightly larger value of c in the second pass. More precisely, if
λ = sn

′ , we choose c ∈ Cn+n′ instead of c ∈ Cn.
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6 A Distributed Unified Protocol

A Fiat-Shamir-like distributed authentication protocol was proposed in [2]. Given our UGZK construction,
we describe a generic collective authentication protocol which can be seen as a natural follow up of the main
result in [2].

6.1 Description

Let us consider an n-node network consisting of N1, ...,Nn. The nodes Ni can be seen as users and the base
station T as a trusted center. To achieve the authentication of the entire network, we propose a unified
Fiat-Shamir-like construction which we detail next.

1. Let xi be a secret piece of information given to node Ni. First, the network topology has to converge and
a spanning tree needs to be constructed (e.g. with an algorithm similar with the one presented in [14]).
Then, T sends an authentication request message to all the Nis directly connected to it, a message
which contains a commitment to c (see 3.) to ensure the protocol’s zero-knowledge property even against
dishonest verifiers.

2. After receiving an authentication request message:
– Each Ni generates a private ki and computes ti ← [ki];
– The Nis send authentication messages to all their (existing) children;
– After the children respond, nodes Ni compute ti ← ti⊗(⊗jtj) and send the result up to their parents.

Note that the tjs are sent by the nodes’ children.
Such a construction permits the network to compute the ⊗ operation of all the tis and send the result tc
to the top of the tree in d steps, where d represents the degree of the spanning tree. We refer the reader
to Figure 3 for a toy example of this step.

3. T sends a random c ∈ Cn as an authentication challenge to the Ni directly connected to it.
4. After receiving an authentication challenge c:

– Each Ni computes ri ← ki ⋆ x
ci
i ;

– The Nis then send the authentication challenge to all their (existing) children;
– After the children respond, the Nis compute ri ← ri ⋆ (⋆jrj) and send the result to their parents.

Note that the rjs are sent by the nodes’ children.
The network therefore computes collectively the ⋆ operation of all the ri’s and transmits the result rc to
T . Again, we refer the reader to Figure 3 for a toy example of this step.

5. After receiving rc, T checks that [rc] = tc⊗(⊗n
i=1z

ci
i ), where z1, . . . , zn are the public keys corresponding

to x1, . . . , xn respectively.

Remark 3. The protocol we have just described may be interrupted at any step and such an action results
in a failed authentication.

6.2 Security Analysis

Theorem 4. Let H be a commutative group and let j ∈ [1, n]. If an adversary corrupts n′ < n nodes and if
values ℓj ∈ Z and uj ∈ G are known such that

– gcd(c′′j − c′j , ℓj) = 1 for all c′j , c′′j ∈ C with c′j ̸= c′′j ,
– [uj ] = z

ℓj
j ,

then by running the protocol described in Section 6.1 for m rounds we obtain a proof of knowledge protocol
if 1/|C|(n−n′)m is negligible, and a zero-knowledge protocol if |C|(n−n′) is polynomially bounded.

Proof. If an adversary corrupts n′ nodes, then n′ secret keys xi are known to him. Thus, the protocol is
equivalent with a UGZK protocol with n−n′ secrets. Hence, using Theorem 2 we obtain our statement. ⊓⊔
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T tc = t4

N4 t4 = [k4]⊗ t1 ⊗ t2 ⊗ t3

N2

t2 = [k2]

N3

t3 = [k3]

N1

t1 = [k1]

T rc = r4

N4 r4 = k4 ⋆ x
c4
4 ⋆ r1 ⋆ r2 ⋆ r3

N2

r2 = k2 ⋆ x
c2
2

N3

r3 = k3 ⋆ x
c3
3

N1

r1 = k1 ⋆ x
c1
1

Fig. 3. The proposed algorithm running on a network consisting of 4 nodes: computation of tc (left) and of rc (right).

6.3 Complexity Analysis

The number of operations necessary for authenticating the whole network depends on the topology. Precise
complexity evaluations are given in Table 1. Note that each node performs in average only a few operations
(a constant number).

Operation Number of computations
[·] (n+ 1)m

Exponentiation nm

⊗ ≤ 2nm

⋆ ≤ 2nm
Table 1. Complexity Computations.

Let d be the degree of the minimum spanning tree of the network. Then, only O(d) messages are sent and,
if we do not consider atypical cases, d = O(log n). Put differently, throughout the authentication process
only a logarithmic number of messages is sent.

6.4 Variations

When implementing the distributed zero knowledge protocol several trade-offs are possible. Note that when
doing so any combination of the trade-offs described below may be used.

Hash based variant. A distributed version of the UGZK protocol’s hash variant (presented in Section 5)
can be constructed. Using this “short commitment” version reduces somewhat the number of communicated
bits, at the expense of a reduced security.

Short challenges variant. In our protocol, the challenge c is sent throughout the network to all nodes.
Assuming the use of an ideal hash function h, we may use shorter challenge without affecting security.

– A short c is sent to the nodes Ni;
– Each Ni computes ci ← h(c∥i), and uses ci as a challenge;
– The base station T computes ci and uses it to check authentication.
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Multiple-secret variant. Each node Ni could use a set of secret values {xi,j}j∈[1,ℓ] instead of only one xi.
For the algorithm to be as efficient as possible the supplementary secrets can be expanded from a concealed
seed. For clarity purposes we describe the multiple secret variant for a single node.

When receiving a challenge ci, each node computes a response

ri ← ki ⋆
(
⋆ℓj=1x

ci,j
i,j

)
.

This result be checked by the verifier by applying the next formula:

[ri] = ti ⊗
(
⊗ℓ

i=1z
ci,j
i,j

)
.

In the case of multiple nodes, the modified protocol we obtain is a proof of knowledge if 1/|C|(n−n′)ℓm is
negligible and a zero-knowledge protocol if |C|(n−n′)ℓ is polynomially bounded.

Practical aspects. Applying the multiple-secret variant, the trade-off between memory and communication
can be adjusted, as the security level is ℓm (single-node compromission). Let µ be an integer. Therefore,
if ℓ = µ it suffices to authenticate once to get the same security as t = µ authentications with ℓ = 18. It
is obvious that such an approach significantly reduces bandwidth usage, a clearly desirable fact in the IoT
context.

7 Conclusions and Further Development

We proposed a UGZK protocol and analyzed its security. We provided various special cases of our core
protocol, described a hash variant of UGZK and discussed security details. We also presented a distributed
unified Fiat-Shamir-based protocol, tackled security and complexity aspects and presented implementation
trade-offs.

Future work. In order to take advantage of our main protocol’s characteristics, we suggest applying it for
obtaining generic versions of digital signature schemes [12, 16, 17] and legally fair contract signing protocols
[4, 12]. More generally, our proposal could be useful for future works on cryptographic protocol design. In
the case of failed network authentication an interesting research direction would be to devise new batch
verification algorithms or adapt the ones constructed for digital signatures [5, 6] for finding compromised
nodes.
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