
Designated-ciphertext Searchable Encryption

Zi-Yuan Liu1, Yi-Fan Tseng1?, Raylin Tso1, and Masahiro Mambo2

1 Department of Computer Science, National Chengchi University, Taipei 11605, Taiwan
{zyliu, yftseng, raylin}@cs.nccu.edu.tw

2 Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
mambo@ec.t.kanazawa-u.ac.jp

Abstract. Public-key encryption with keyword search (PEKS), proposed by Boneh et al., allows users to
search encrypted keywords without losing data privacy. Although extensive studies have been conducted on
this topic, only a few have focused on insider keyword guessing attacks (IKGA) that can reveal a user’s sensitive
information. In particular, after receiving a trapdoor used to search ciphertext from a user, a malicious insider
(e.g., a server) can randomly encrypt possible keywords using a user’s public key, and then test whether
the trapdoor corresponds to the selected keyword. This paper introduces a new concept called designated-
ciphertext searchable encryption (DCSE), which provides the same desired functionality as a PEKS scheme
and prevents IKGA. Each trapdoor in DCSE is designated to a specific ciphertext, and thus malicious insiders
cannot perform IKGA. We further propose a generic DCSE scheme that employs identity-based encryption
and a key encapsulation mechanism. We provide formal proofs to demonstrate that the generic construction
satisfies the security requirements. Moreover, we provide a lattice-based instantiation whose security is based
on NTRU and ring-learning with errors assumptions; the proposed scheme is thus considered to be resistant
to the quantum-computing attacks.

Keywords: Quantum-resistant · Searchable Encryption · Insider Keyword Guessing Attack · Designated-
ciphertext · Lattices

1 Introduction

With the development of the 5G and Internet of Things (IoT), the importance of cloud storage is increasing.
However, because the cloud providers cannot be easily trusted, to avoid data leakage or abuse, data owners need to
ensure the privacy of sensitive data. A straightforward method is data encryption before upload to cloud servers.
However, encrypted data loses its processing flexibility and cannot be used for useful operations, such as sorting
or searching. Specifically, search functionality is important for cloud storage. If a data owner wants to search for
some specific files among large encrypted data sets, it becomes necessary to download and decrypt all the data
to search, which is impractical and resource-consuming. To resolve this issue, Song et al. [45] proposed the first
searchable encryption (SE) that allows the ciphertext to be searched using the corresponding trapdoor. However,
because their construction is based on a symmetric key primitive, only the owner of a particular secret key can
generate any corresponding ciphertext and trapdoor. Hence, as with a symmetric cryptosystem, their work faces
the key distribution problem when it is deployed in public cloud environments.

1.1 Public-key Encryption with Keyword Search

To circumvent the issue of the symmetric searchable encryption and allow multiple data owners to easily gen-
erate different ciphertexts for a single data receiver, Boneh et al. [10] proposed the first public-key encryption
with keyword search (PEKS). The scheme, unlike Song et al.’s work [45], is built on a public-key cryptosystem.
The PEKS scheme has three entities: data owner (Alice), data receiver (Bob), and cloud server. Consider the
following scenario: Alice wants to store files that can be accessed and searched by Bob without any leakage of
information to the cloud server. Therefore, in addition to encrypting files using Bob’s public key pk, she also
encrypts the related keywords of the files using a PEKS algorithm that allows ciphertexts to be searched, e.g.,
Enc(pk,file)‖PEKS(pk, “pkc”)‖ · · · ‖PEKS(pk, “crypto”); she uploads the encrypted keywords to the cloud server.
If Bob would like to request the cloud server to search for any encrypted files containing the keyword “crypto,” he
first generates a trapdoor for “crypto” by using his private key, and then sends the trapdoor to the cloud server.
Using this trapdoor, the cloud server can test the value of all PEKS, determine which value is generated by the
keyword “crypto”, and return the corresponding encrypted file to Bob.

? Corresponding author.

2 Z.-Y. Liu et al.

Compared with symmetric searchable encryption, PEKS is more suitable for purposes such as cloud services,
IoT, and email. In the first two decades of the twenty-first century, numerous PEKS schemes suitable for different
scenarios that provide notable functionality were proposed.

1.2 Motivation

Even though numerous PEKS schemes have been advanced, their security precautions are inadequate. For instance,
as most of the proposed schemes assume the insider (e.g., cloud server, mail server, or IoT gateway) to be trustworthy
and thus do not consider possible attacks from insiders. In actual fact, because of the small number of commonly
used keywords, a insider can guess some keywords from a trapdoor and obtain some useful information; this attack is
called an insider keyword guessing attack (IKGA). More concretely, after receiving a trapdoor from the authorized
data receiver, a malicious insider can encrypt possible keywords using the data receiver’s public key. Then, the
insider can test whether the trapdoor corresponds to the selected keywords.

On the other hand, Shor [44, 43] demonstrates the existence of quantum algorithms that can break some difficult
assumptions in number theory (i.e., the discrete logarithm assumption and the integer factoring assumption), the
potential threat of quantum computers to modern cryptography is foreseeable. Arute et al. [8] recently proposed
a 53-qubit quantum computer. Scholars believe that quantum computing will become mature in the twenty-first
century. Although many studies on quantum-resistant PEKS [9, 47, 35, 48] to resist quantum computing attacks
have been proposed, only Mao et al. [35] is IKGA secure. The security of this scheme is based on the learning-with-
errors assumption, which has been proven to be as difficult as solving worst-case lattice problems [40]. However,
this scheme not sufficiently practical because of size constraints; public keys and private keys would thus be as large
as hundreds of megabytes.

Actually, Abdalla et al. [6] proved that an IND-ANON-ID-CPA secure identity-based encryption (IBE) scheme
can obtain a secure PEKS scheme. However, how to support IKGA security based on it is still unknown. In this
paper, we consider the following question:

Can we instantiate a cryptographic primitive that is quantum-resistant and supports search functionality as well as
the strength against IKGA using IND-ANON-ID-CPA secure IBE scheme as a building block?

1.3 Our Results

To answer our question, we first introduce a new cryptographic primitive, called “designated-ciphertext searchable
encryption” (DCSE), to provide the same functionality as a PEKS scheme with additional strength against IKGA.

In contrast to PEKS, each trapdoor in DCSE is designated to a ciphertext. Thus, an adversarial insider cannot
adaptively select keywords to generate various ciphertexts and then test these ciphertexts with the trapdoor received.
In addition, by combining a key encapsulation mechanism (KEM) with a pseudorandom generator, we use IBE to
formalize a generic construction of our DCSE scheme under the standard model. Moreover, we implemented a
lattice-based DCSE based on NTRU and ring-learning with errors (ring-LWE) assumptions; our implementation is
more efficient, more secure, and more practical than other advanced schemes.

Designated-ciphertext Searchable Encryption. Attacks against conventional PEKS schemes succeed because
insiders can adaptively generate ciphertext for any keyword. Therefore, our strategy, in DCSE, is to prevent insiders
from producing valid ciphertexts themselves that can be effectively tested against trapdoor received from the
authorized data receiver. Consider a scenario where Alice wants to encrypt some files and upload them to a cloud
server, and she wants these encrypted files to be searchable within the cloud. In addition, she wants to avoid any
IKGAs. Alice first executes DCSE(pk, wi) for keywords w1, · · · , wn to generate the pairs of a ciphertext ci and
a tag vi of the ciphertext that hides some private information, where pk is Bob’s public key and the DCSE is
discussed in later passages. Similar to the PEKS algorithm, the DCSE output is searchable using the trapdoors
generated from the data receiver. However, to resist IKGAs, DCSE additionally generates a tag for the ciphertext,
and only the specified data receiver (i.e., Bob) can extract private information from the tag, which can be linked
to a ciphertext. In addition to sending Enc(pk,file)‖c1‖ · · · ‖cn) to the cloud server, Alice publicly sends the tags
(v1, · · · , vn) to Bob. Bob first uses his private key to retrieve private information from the tag vi, and then uses this
information to generate a trapdoor ti for the ciphertext corresponding to the tag. In other words, we can consider
a trapdoor as having been designated to a ciphertext. Bob then submits (vi, ti) to the cloud server for searching.
Using the trapdoor, the cloud server returns the matched encrypted files to Bob. Because the cloud server cannot
randomly select a keyword to generate a ciphertext matching this trapdoor, the design provides no further method

Designated-ciphertext Searchable Encryption 3

to identify the keyword the data receiver is searching for. Furthermore, unlike PEKS, must test every ciphertext,
the cloud server in the proposed scheme can quickly find all the matching ciphertexts by using the tag vi as the
index value.

For DCSE, we define two security models: indistinguishability under chosen-keyword attack (IND-CKA) and
indistinguishability under insider-keyword-guessing attack (IND-IKGA). In particular, IND-CKA security and IND-
IKGA security ensure that no adversary can retrieve any information about the keyword from the ciphertext and
the trapdoor, even if that adversary can query a polynomial-time trapdoor oracle. Because the ability of a malicious
insider exceeds that of a malicious outsider, we only consider IND-IKGA against DCSE.

Generic Formulation and Its Security. We present a generic formulation for DCSE with a pseudorandom
generator F (·), an IND-ANON-ID-CPA secure IBE scheme IBE = (KeyGen,Extract ,Enc,Dec), and an IND-CCA2
secure KEM scheme KEM = (KeyGen,Encaps,Decaps). The high-level idea is as follows: To encrypt a keyword w
for an authorized data receiver, the data owner first uses KEM to generate a random key k and its corresponding
encapsulation e using the data receiver’s public key, that is (k, e)← KEM.Encaps(pk). The data owner then defines
the output of pseudorandom generator f ← F (k‖w) as an identity and use it to encrypt another random message
r, that is ct ← IBE .Enc(pk, f, r). Here, we can view the encapsulation e as a tag of the ciphertext ct. Only the
authorized data receiver can decap e using her/his private key to obtain the private information, key k. That data
receiver then generates the trapdoor t for the “identity” f ← F (k‖w). In this way, the trapdoor actually links to a
tag related to a ciphertext. Therefore, a malicious insider cannot randomly generate ciphertext to test the trapdoor.

Additionally, we provide rigorous proofs to demonstrate that this generic construction satisfies the criteria of
IND-CKA and IND-IKGA security. Our main idea for proving security levels is a sequence of games, which slightly
modify our origin protocol so that the challenge message contains no information of the keyword in the final game.
Consequently, the strategy by which an adversary wins the games can only be guessed at, that is, the adversary
cannot gain any advantage by attacking our construction.

Lattice-based Instantiation. We provide an instantiation utilizing two efficient and secure lattice-based con-
structions: the NTRU-based IBE [22] and the NTRU-based KEM [29]. The security of these constructions is based
on the ring-LWE and NTRU assumptions that in turn makes our instantiation quantum-resistant. We also ex-
perimentally evaluated the performance of the instantiation on a modern laptop. Each encryption, trapdoor, test
algorithm only required approximately 1, 0.3, 0.01 (ms), respectively. In comparison with other state-of-the-art
schemes, our scheme is not only more efficient and practical, it also provides more robust security.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we describe the related works of PEKS. In Section
3, we introduce some notations and preliminaries. In Section 4, we introduce three cryptographic building blocks:
pseudorandom generator, KEM scheme, and IBE scheme. In Section 5, we introduce a new notion, “designated-
ciphertext searchable encryption,” and define its system model and security requirements. In Section 8, we formalize
DCSE from the IBE scheme and KEM scheme, and provide its security proofs. In Section 7, an efficient lattice-based
DCSE is proposed. Finally, in Section 8, we provide the conclusion.

2 Related Works

Byun et al. [15] first reported IND-IKGA and indicated that Boneh et al.’s work [10] could not withstand such an
attack. The schemes that are resist to IKGAs can be separated into the following three categories.

2.1 Designated-tester Public-key Encryption with Keyword Search

Some studies first utilized another server to perform the test algorithm, that is, decentralizing the power of the
insider so that when the two insiders do not collude, the schemes can fend off IKGA. Rhee et al. [41] therefore
proposed an enhanced security model for public key searchable cryptography called ”trapdoor indistinguishability,”
to obtained the scenario of the IKGA. Then, the authors also proposed a secure public key searchable encryption
scheme with a designated tester, and proved that the scheme is secure under the enhanced security model. Chen
et al. [17, 18, 16] proposed “dual server” public key searchable encryption, which can withstand IKGA if the two
servers do not collude with each other. Mao et al. [35] followed the idea of the designated tester to introduce the
first lattice-based searchable encryption that protected against IKGA.

4 Z.-Y. Liu et al.

2.2 Public-key Authenticated Encryption with Keyword Search

By adding a test server or designating an additional server, the malicious insider cannot obtain the private infor-
mation (i.e., trapdoor) required for the test, so IKGA can be effectively avoided. However, adding another server
may increase other communication overhead in an actual environment. Moreover, scholars do not presently know
how to ensure that a designated server is trustworthy and will not collude with malicious insiders. Consequently,
some studies have begun to investigate how to authenticate ciphertext let trapdoors only be valid for authenticated
ciphertext.

Fang et al. [23, 24] proposed the first public key searchable encryption using a one-time signature and proved
its security without random oracle. Huang and Li [28] introduced a new notion called “public-key authenticated
encryption with keyword search (PAEKS),” to resist IKGAs. In their schemes, the data sender not only encrypts the
keyword, but also authenticates it, and the trapdoor generated by the data receiver is only valid for the ciphertext
authenticated by the data sender. Therefore, the malicious server cannot adaptively generate ciphertext to perform
IKGA. However, Noroozi and Eslami [37] show that Huang and Li’s scheme even insecure to outsider keyword
guessing attacks; thus, they provide an improvement without adding the cost complexity.

Based on the concept of authenticating the ciphertext, Zhang et al. [48] proposed a forward secure lattice-based
keyword search to protect against IKGAs. However, Liu et al. [32] recently demonstrated the security model in
the work does not capture the IKGAs, and thus it is insecure. Additionally, Pakniat et al. [38] proposed the first
certificateless PAEKS scheme.

Additionally, Qin et al. [39] and Li et al. [31] further consider the leakage of the information about the data
receiver’s query pattern. In other words, they ensure that only server can execute the test algorithm to avoid that
an adversary can decide whether two ciphertexts share some identical keywords or not.

2.3 Witness-based Searchable Encryption

Ma et al. [34] introduced cryptographic primitive called “witness-based searchable encryption” in which the trapdoor
is valid only when the ciphertext have a witness relation to the trapdoor. Chen et al. [19] further gave an improvement
to reduce the complexity of the size of the trapdoor.

3 Preliminary

3.1 Notations

For simplicity and readability, we use the following notations throughout the paper. Let λ be the natural security
parameter. We use standard notations, O and o, to classify the growth of functions. The notation negl(n) is denoted
as an arbitrary function f is negligible in n, where f(n) = o(n−c) for every fixed constant c. The notation poly(n)
denotes an arbitrary function f(n) = O(nc) for some constant c. By N (resp. Z and R) we denote the set of positive
integers (resp. integers and reals). In addition, for a prime q, Zq denotes a finite field (or Galois field) with order q.
For a power-of-two n, R = Z[x]/(xn + 1) and Rq = Zq[x]/(xn + 1). The PPT is short for probabilistic polynomial-
time. For two string a, b, the concatenation of a and b is denoted as a‖b. Matrices are denoted by bold capital letters
(e.g., X). For a vector x and a matrix X, the Euclidean norm of x and X is denoted by ‖x‖ and ‖X‖ respectively.
For a finite set Q, a ← Q denotes that a is sampled from Q with uniform distribution. For two vectors a, b, the
inner product of a and b is denoted as 〈a, b〉.

3.2 Lattices

The formalization of our instantiation is based on the NTRU lattices. In this section, we first briefly introduce
lattice theory, and then review some lattice hardness assumptions.

A m-dimension lattice Λ is an additive discrete subgroup of Rm. Basically, a lattice is the set of all the integer
combinations of some linearly independent vectors, called the basis of the lattice. The formal definition of a lattice
is as follows.

Definition 1 (Lattice). Let B = [b1| · · · |bn] ∈ Rm×n be an m × n matrix, where b1, · · · , bn ∈ Rm are n linear
independent vectors. The m-dimensional lattice Λ generated by B is the set,

Λ(B) = Λ(b1, · · · , bn) =

{ n∑
i=1

biai|ai ∈ Z
}

.

In addition, we call a lattice full-rank when n = m.

Designated-ciphertext Searchable Encryption 5

Hardness Assumptions. Regev introduced a new lattice hardness assumption, called learning with errors (LWE);
he demonstrated that several worst-case lattice problems can be reduced to the LWE problem [40]. In addition, he
proposed the first public-key cryptosystem based on the hardness of the LWE assumption.

Definition 2 (LWE Assumption). Given n,m ∈ N, q as a prime, a probability distribution χ over Zq. Suppose
there exists an oracle Ons that outputs m samples of the form (a, 〈a, s〉 + e) where a ∈ Znq and e ∈ χ are chosen
freshly at random for each sample, and s ← Znq is the same for every sample. The search-LWE assumption is to
find the s. In addition, let Or be an oracle that outputs samples (a, b) ← (Znq × Znq) uniformly at random. The
decision-LWE assumption is to guess whether you are interacting with Ons or Or.

After Regev’s seminal work, many LWE-based cryptosystems have been proposed [25, 26, 7, 13, 14]. However,
these cryptosystems encountered practical problems, because of their overly large key sizes and inefficiency. To
solve the issue, in 2009, Lyubashevsky et al. introduced a new algebraic variant of the LWE assumption from [46],
and called it ring-LWE [33]. The ring-LWE assumption is the LWE assumption specifically for polynomial rings
over finite fields that can also be stated in “search” version and “decision” version that are defined as follows.

Definition 3 (Ring-LWE Assumption). Given n,m ∈ N, let q be a prime, a probability distribution χ over Rq.
Suppose there exists an oracle Os that outputs m samples of the form (a, 〈a, s〉+e) where a ∈ Rq and e ∈ χ is chosen
freshly at random for each sample, and s← Rq is the same for every sample. The search-Ring-LWE assumption is
to find the s. In addition, let Or be an oracle that outputs samples (a, b) ← (Rq ×Rq) uniformly at random. The
decision-Ring-LWE assumption is to guess whether the user is interacting with Os or Or.

Another lattice hardness assumption is the NTRU assumption, defined in [27].

Definition 4 (NTRU Assumption). Let χ be a probability distribution over Rq. The NTRU assumption is to
distinguish the following two distributions. The first distribution sample is a polynomial h = g/f , where f, g ← χ
and f is invertible, and the second distribution uniformly samples a polynomial h over Rq.

3.3 Public Key Encryption with Keyword Search

In this section we introduce the system model of the PEKS that was proposed by Boneh et al. [10]. A PEKS scheme
consists of a set of four-tuple PPT algorithms PEKS = (KeyGen, PEKS, Trapdoor, Test), described as follows:

– KeyGen(1λ): Taking the security parameter λ as input, this algorithm outputs a master private key msk and
a master public key mpk.

– PEKS(mpk, w): Taking the master public key mpk and a keyword w, this algorithm produces a searchable
encryption c of w.

– Trapdoor(msk, w): Taking the master private key msk and a keyword w, this algorithm generate a trapdoor t.

– Test(mpk, c, t): Taking the master public key, a searchable encryption s = PEKS(mpk, w), and a trapdoor
t = Trapdoor(msk, w′), this algorithm output 1 if w = w′ and 0 otherwise.

Definition 5 (Correctness of PEKS). Let λ be a security parameter. We say that a PEKS scheme is correct if:

Pr[Test(mpk, PEKS(mpk, w), T radpoor(msk, w)) = 1] = 1− negl(λ),

where (msk,mpk)← KeyGen(1λ).

4 Cryptographic Building Blocks

In this section, we recall three crucial cryptographic primitives used as building blocks in our generic construction.
They are the pseudorandom generator, IBE, and KEM.

6 Z.-Y. Liu et al.

4.1 Pseudorandom Generator

In our generic construction, we use a pseudorandom generator to generate a “pseudorandom.” Informally, we say
that a distribution D is pseudorandom if any polynomial-time distinguisher that can distinguish a string s← D from
a string s chosen randomly and uniformly does not exits. We recall the definition of the pseudorandom generator
in [30] Definition 3.15.

Definition 6 (Pseudorandom Generator). Let F : {0, 1}n → {0, 1}n′
be a deterministic polynomial-time algo-

rithm, where n′ = poly(n) and n′ > n. We say that F is a pseudorandom generator if it satisfies the following two
conditions:

– Expansion: For every n, it holds that n′ > n.
– Pseudorandomness: For all PPT distinguishers D,

|Pr[D(r) = 1]−Pr[D(F (s)) = 1]| ≤ negl(n),

where r is chosen randomly and uniformly from {0, 1}n′
, the seed s is chosen randomly and uniformly from

{0, 1}n, and the probabilities depend on the random coins used by D and the choice of r and s.

4.2 Identity-based Encryption (IBE)

IBE is an essential primitive of public key encryption, in which the public key of a user is information that can
identify the user (such as e-mail address, name, and social security number). Its concept was first proposed by
Shamir [42] as early as 1984. However, the first construction was realized by Cocks [20] based on the quadratic
residuosity problem. Later, Boneh and Franklin [11, 12] proposed a more practical and secure IBE using the pairing
technique.

An IBE scheme is a four-tuple of PPT algorithms IBE = (Setup,Extract ,Enc,Dec), described as follows:

– Setup(1λ): Taking the security parameter λ as input, this algorithm outputs a master private key msk and
master public key mpk.

– Extract(msk, id): Taking the master private key msk and an identity id as input, this algorithm outputs the
corresponding private key skid for the identity.

– Enc(mpk, id,m): Taking the master public key, mpk, an identity id, and a message m as input, this algorithm
outputs a ciphertext ct encrypted by id.

– Dec(skid, ct): Taking a private key skid, and a ciphertext ct as input, this algorithm outputs a decrypted message
m′.

Definition 7 (Correctness of IBE).
We say that an IBE scheme, IBE, is correct if

Pr[Dec(skid,Enc(mpk, id,m)) = m] = 1− negl(λ),

where (mpk,msk)← Setup(1λ) and skid ← Extract(msk, id).

Moreover, an IBE scheme must satisfy the indistinguishability under any adaptive chosen-identity chosen-
plaintext attack (IND-ID-CPA), defined using the following game between a challenger B and an adversary A.
Game IND-ID-CPA:

– Setup. In this stage, B runs the Setup(1λ) algorithm to generate the master public key mpk and master private
key msk. Then, B keeps msk secret, and sends mpk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Extract oracle on any identity id, and B
returns a private key skid to A.

– Challenge. In this stage, A sends two challenge messages, m0,m1, and a challenge identity, id∗, to B, where
id∗ has never been queried to Extract oracle. After receiving the messages and identity, B chooses a random bit,
b← {0, 1}, and generates the challenge ciphertext, ct∗ ← Enc(mpk, id∗,mb). Finally, B returns ct∗ to A.

– Phase 2. A can continue to ask for the Extract oracle the same as in Phase 1. The only restriction is that A
cannot issue an Extract query on the challenge identity id∗.

– Guess. A outputs its guess b′. The adversary is said to win the game if b′ = b. The advantage of A is as follows:

AdvIND-ID-CPA
IBE,A (λ) = |Pr[b′ = b]− 1

2 |.

Designated-ciphertext Searchable Encryption 7

Definition 8 (IND-ID-CPA secure IBE).
We say that an IBE scheme IBE is IND-ID-CPA secure, if no PPT adversary A can win the aforementioned

game with an advantage exceeding negl(λ).

Moreover, we say that an IBE scheme IBE is anonymous if it satisfies the following stronger notion of security:
Game IND-ANON-ID-CPA:

– Setup. In this stage, B runs the Setup(1λ) algorithm to generate the master public key mpk and master private
key msk. Then B keeps msk secret, and sends mpk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Extract oracle on any identity id, and B
returns a private key skid to A.

– Challenge. In this stage, A sends a challenge message m, and two challenge identities id0, id1 to B, where id0
and id1 have never been queried to Extract oracle. After receiving the messages and identities, B chooses a
random bit, b ← {0, 1}, and generates the challenge ciphertext, ct∗ ← Enc(mpk, idb,m). Finally, B returns ct∗

to A.
– Phase 2. A can continue to ask for the Extract oracle, the same as in Phase 1. The only restriction is that A

cannot issue an Extract query on the challenge identities id0 and id1.
– Guess. A outputs its guess b′.

We say that the adversary wins the game, if b′ = b. The advantage of A is defined as follows:

AdvIND-ANON-ID-CPA
IBE,A (λ) = |Pr[b′ = b]− 1

2 |.

Definition 9 (IND-ANON-ID-CPA secure IBE). We say that an IBE scheme IBE is IND-ANON-ID-CPA
secure if no PPT adversary A can win the aforementioned game with an advantage exceeding negl(λ).

4.3 Key Encapsulation Mechanism (KEM)

KEM, first proposed by Cramer and Shoup [21], is a variant of the public key encryption. Rather than encrypting
a message, KEM “encaps” a random value using public key, and outputs an encapsulation. With the corresponding
private key, anyone can “decaps” the encapsulation to obtain the same random value.

A KEM scheme is a three-tuple of PPT algorithms, KEM = (KeyGen,Encaps,Decaps), described as follows.

– KeyGen(1λ): Taking the security parameter λ as input, this algorithm outputs a public key pk and a private
key sk.

– Encaps(pk): Taking the public key pk as input, this algorithm outputs a key k and an encapsulation e.
– Decaps(sk, e): Taking the private key sk and an encapsulation e as input, this algorithm outputs the correspond-

ing key k, or an invalid symbol ⊥.

Definition 10 (Correctness of KEM). We say that a KEM scheme, KEM, is correct, if

Pr[Decaps(sk, e) = k : (k, e)← Encaps(pk)] = 1− negl(λ),

where (pk, sk)← KeyGen(1λ).

Indistinguishability under the adaptive chosen-ciphertext-attack (IND-CCA2) security of a KEM is defined using
the following game between a challenger B and an adversary A.
Game IND-CCA2:

– KeyGen. In this stage, B runs the KeyGen(1λ) algorithm to generate the public/private key pair (pk, sk).
Then, B sends pk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Decaps oracle on any encapsulation e; B
returns a key k or invalid symbol ⊥ to A.

– Challenge. In this stage, B chooses a random bit b ← {0, 1}. Then, B generates (e∗, k∗0) ← Encaps(pk), and
randomly chooses k∗1 from the key space K. Finally, B returns the challenge ciphertext (e∗, k∗b) to A.

– Phase 2. A can continue to ask for the Decaps oracle, same as in Phase 1. The only restriction is that A
cannot issue a Decaps query on e∗.

– Guess. A outputs its guess b′.

We say that the adversary wins the game, if b′ = b. The advantage of A is defined as

AdvIND-CCA2
KEM,A (λ) = |Pr[b′ = b]− 1

2 |.

Definition 11 (IND-CCA2 of KEM). We say that a KEM scheme KEM is IND-CCA2 secure, if there is no
PPT adversary A that can win the aforementioned game with an advantage exceeding negl(λ).

8 Z.-Y. Liu et al.

5 Designated-ciphertext Searchable Encryption (DCSE)

In this section, we formalize the system model of a DCSE scheme and its security models.

5.1 System Model

We extend the system model of Boneh et al.’s work [10]. In DCSE, the trapdoor is linked not only to a keyword,
but also to a ciphertext. More specifically, each ciphertext has a corresponding tag that the data receiver uses along
with the keyword to generate a trapdoor for the search.

Let λ be a security parameter, W be a keyword space, C be a ciphertext space, and V be a tag space. A DCSE
scheme is a four-tuple of PPT algorithms DCSE = (KeyGen, DCSE , Trapdoor , Test), described as follows.

– KeyGen(1λ): Taking the security parameter λ as input, this algorithm outputs a public key pk and a private
key sk.

– DCSE (pk, w): Taking a public key pk, and a keyword w ∈ W, this algorithm outputs a searchable ciphertext
c ∈ C and a tag v ∈ V of the ciphertext.

– Trapdoor(sk, w′, v′): Taking a private key sk, a keyword w′ ∈ W, and a tag v′ ∈ V of the ciphertext, this
algorithm outputs a trapdoor t.

– Test(c, t): Taking a searchable ciphertext c, and a trapdoor t as input, this algorithm outputs 1, if t and c share
the same keyword and the t is actually generated from the tag corresponding to c. Otherwise, it output 0.

Definition 12 (Correctness of DCSE). Let λ be a security parameter, W be a keyword space, (pk, sk) ←
KeyGen(1λ), and (c, v) be a pair of a searchable ciphertext and its corresponding tag generated from DCSE (pk, w),
where w ∈ W. We say that a DCSE scheme is correct if:

Pr[Test(c,Trapdoor(sk, w, v)) = 1] = 1− negl(λ).

5.2 Security Models

We require that the proposed DCSE scheme satisfy the following two security requirements: indistinguishability
under chosen-keyword attack (IND-CKA) and indistinguishability under insider keyword guessing attack (IND-
IKGA), which are modeled through the following two games executed by an adversary A and a challenger B. Note
that because the ability of a malicious insider exceeds that of a malicious outsider, we only consider the IND-IKGA
here.

Indistinguishability under Chosen-keyword Attack. The IND-CKA security ensures that the adversary can-
not obtain any information on the keyword from a ciphertext and its corresponding tag.

Game IND-CKA:

– KeyGen. In this stage, B runs the KeyGen(1λ) algorithm to generate the user’s public key pk and private key
sk. Then, B sends sk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Trapdoor oracle. When A issues such a
query on (w, v), B returns a trapdoor t to A using Trapdoor algorithm with the private key sk.

– Challenge. A sends two challenge keywords w0, w1 ∈ W, where w0, w1 have not been queried in Phase 1. B
chooses a random bit b← {0, 1}, generates the challenge ciphertext c∗ and the corresponding challenge tag v∗

from DCSE (pk, wb), and returns (c∗, v∗) to A.
– Phase 2. A can continue to ask for the Trapdoor oracle, same as in Phase 1. The only restriction is that A

cannot issue a Trapdoor query on w0 or w1.
– Guess. A outputs its guess b′.

We say that the adversary wins the game, if b′ = b. The advantage of A wins this game is defined as

AdvIND-CKA
DCSE,A (λ) = |Pr[b′ = b]− 1

2 |.

Definition 13 (IND-CKA of DCSE). We say that a DCSE scheme DCSE is IND-CKA secure if there is no
PPT adversary A that can win the aforementioned game with an advantage exceeding negl(λ).

Designated-ciphertext Searchable Encryption 9

Indistinguishability under Insider-keyword-guessing Attack. The IND-IKGA security ensures that the ad-
versary cannot obtain any information about the keyword from a trapdoor.

Game IND-IKGA:

– KeyGen. In this stage, B runs the KeyGen(1λ) algorithm to generate the user’s public key pk and private key
sk. Then, B sends pk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Trapdoor oracle. When A issues such a
query on (w, v), B returns a trapdoor t to A using Trapdoor algorithm with private key sk.

– Challenge. A sends two challenge keywords w0, w1 ∈ W, where w0, w1 have not been queried in Phase 1. B
first randomly chooses a tag v∗ from V. Then, it chooses a random bit b ← {0, 1} and generates the challenge
trapdoor t∗ ← Trapdoor(sk, wb, v

∗). Finally, B returns t∗ to A.
– Phase 2. A can continue to ask for the Trapdoor oracle, same as in Phase 1. The only restriction is that A

cannot issue a Trapdoor query on w0 or w1.
– Guess. A outputs its guess b′.

We say that the adversary wins the game, if b′ = b. The advantage of A wins this game is defined as

AdvIND-IKGA
DCSE,A (λ) = |Pr[b′ = b]− 1

2 |.

Definition 14 (IND-IKGA of DCSE). We say that a DCSE scheme DCSE is IND-IKGA secure, if there is no
PPT adversary A, that can win the aforementioned game with an advantage exceeding negl(λ).

6 Efficient Generic Construction of DCSE

In this section, we first propose a generic construction of DCSE from an IND-ANON-ID-CPA secure IBE scheme
and an IND-CCA2 secure KEM scheme. Then, we present rigorous proofs to demonstrate that this construction
satisfies the correctness and security requirements defined in Section 5.

6.1 Generic Construction

To construct a DCSE scheme DCSE , we first set the following parameters. Let IBE = (Setup,Extract ,Enc,Dec) be
an IND-ANON-ID-CPA IBE scheme, and KEM = (KeyGen,Encap,Decaps) be an IND-CCA2 secure KEM. LetW
and C be the keyword space and ciphertext space of DCSE , respectively, and let K be the key space of KEM. Let
F : X → Y be a pseudorandom generator with appropriate domain X and range Y. Here, the domain X includes
the set of any keyword w ∈ W concatenating any key k ∈ K. That is, X = {w‖k | w ∈ W ∧ k ∈ K}. Furthermore,
let the range Y include an appropriate length of randomness used by the algorithm IBE .Extract . In addition, let H
be a collision-resistant hash function defined on {0, 1}∗ ×{0, 1}∗ → {0, 1}∗. We then present a generic construction
of DCSE from Algorithm 1 to Algorithm 4.

Algorithm 1 KeyGen(1λ)

Input: a security parameter λ
Output: user’s key pair (pk, sk)
1: (pk1, sk1)← KEM.KeyGen(1λ)
2: (pk2, sk2)← IBE .Setup(1λ)
3: Set public key pk = (pk1, pk2), private key sk = (sk1, sk2)
4: Output a key pair (pk, sk)

In this construction, the data receiver’s public key and private key are generated from the IBE .KeyGen(1λ)
and KEM.KeyGen(1λ). To generate a searchable ciphertext c for a keyword w, the data owner first use KEM to
randomly generate a key k and its corresponding encapsulation e using the public key of data receiver, (e, k) ←
KEM.Encaps(pk). He then runs f ← F(w‖k) to obtain a pseudorandom which can be considered as an “identity”.
Next, he chooses a random value r and encrypts it using identity f , that is ct← IBE .Enc(pk, f, r), and computes a
hash value h = H(ct, r). Finally, he outputs a searchable ciphertext c = (ct, h) and a tag v = e. Here, we note that

10 Z.-Y. Liu et al.

Algorithm 2 DCSE (pk, w)

Input: data receiver’s public key pk = (pk1, pk2) and a keyword w ∈ W
Output: a ciphertext c and the tag v of the ciphertext
1: (e, k)← KEM.Encaps(pk1)
2: Randomly choose r ← {0, 1}∗
3: f ← F (w‖k)
4: ct← IBE .Enc(pk2, f, r)
5: Compute h = H(ct, r)
6: Output a ciphertext c = (ct, h) and tag v = e

if data owner wants to encrypt different keywords for the same data receiver, he can re-use the same key k without
re-running the encapsulation algorithm to reduce the computation cost.

To generate a trapdoor to search a ciphertext encrypted by a keyword w, the data receiver first obtains the key
hidden in the tag, k ← KEM.Decaps(sk, v), and computes “identity” f ← F (w‖k). He then generates a trapdoor t
for the identity f , t← IBE .Extract(sk, f), and sends it to the server.

Algorithm 3 Trapdoor(sk, w, v)

Input: user’s private key sk = (sk1, sk2), a keyword w ∈ W, and its corresponding tag v = e
Output: a trapdoor t for keyword w and tag v
1: k ← KEM.Decaps(v, sk1)
2: if k = ⊥ then
3: Set trapdoor t to be an invalid symbol ⊥
4: else
5: f ← F (w‖k)
6: Set trapdoor t← IBE .Extract(sk2, f)
7: end if
8: Output a trapdoor t

After receiving the trapdoor, because the ciphertext is actually encrypted by an identity, the server first decrypts
the ciphertext to obtain the plaintext r ← IBE .Dec(t, ct). The can then check whether H(ct, r) = h. If it matches,
output 1. Otherwise, output 0. In a real-world scenario, the data receiver could not only sends the trapdoor but
also sends an additional tag that she or he uses. The server can then use the tag as an index to quickly find any
ciphertext that might need to be tested.

Algorithm 4 Test(c, t)

Input: a ciphertext c = (ct, h), and a trapdoor t
Output: 1 if t matches c or 0 otherwise
1: if t = ⊥ then
2: Output 0
3: else
4: r ← IBE .Dec(t, ct)
5: Output 1 if H(ct, r) = h and 0, otherwise
6: end if

6.2 Correctness and Security Proofs

Theorem 1. The proposed construction is correct, according to Definition 12.

Proof (Proof of Theorem 1). Let (c = (ct, h), v)← DCSE (pk, w) be a valid ciphertext and its corresponding tag, and
let t← Trapdoor(sk, w, v) be a valid trapdoor, where (pk, sk)← KeyGen(1λ). Because t is actually the private key
of identity F (w‖k) in the IBE scheme, and ct is a ciphertext that encrypts a random value r using identity F (w‖k).
With the correctness of the IBE scheme (Definition 7), one can obtain r ← IBE .Dec(t, ct) with overwhelming
probability. Therefore, H(ct, r) = h; thus, we have Test(c, t) = 1.

Designated-ciphertext Searchable Encryption 11

In the following, we prove that the proposed generic construction is IND-CKE secure and IND-IKGA secure.
At a high level, our strategy is to use a series of games: we gradually modify the structure of the challenge phase
so that the challenge does not contain any keywords in the final game. Therefore, the advantages of an attacker for
winning the IND-CKE and IND-IKGA games are no higher than mere speculation.

Theorem 2. The proposed scheme DCSE is IND-CKA secure if the underlying KEM scheme KEM is IND-CCA2
secure, the IBE scheme IBE is IND-ANON-ID-CPA secure.

Proof (Proof of Theorem 2). We prove Theorem 2 using a sequence of games, defined as follows.

– Game0: This is the original IND-CKA game, as shown in Section 5.2.
– Game1: We now make a minor change to the aforementioned game. Rather than obtain k fromKEM.Encaps(pk1),

we choose k′ from the range of the output of KEM.Encaps(pk1) randomly.
– Game2: We now transform Game1 into Game2. In this game, let f = F (w‖k′); we substitute the value

ct← IBE .Enc(f, r) with ct← IBE .Enc(f ′, r), where f ′ is chosen randomly from Y, and Y is the output range
of F .

Let Advi denote the adversary’s advantage for winning in Gamei. We have the following claims.

Claim. For all the PPT algorithms A01, |Adv0 − Adv1| is negligible, if the underlying KEM scheme KEM is
IND-CCA2 secure.

Proof (Proof of Claim 6.2). Suppose that there exists an adversary A01 such that |Adv0−Adv1| is non-negligible,
then, there exists another challenger B01 that can win the IND-CCA2 game in the underlying KEM scheme KEM
with non-negligible advantage.

– KeyGen. B01 first invokes the IND-CCA2 game of KEM to obtain pk1. Next, B01 computes (pk2, sk2) ←
IBE .Setup(1λ). Finally, B01 sets the public key pk = (pk1, pk2), and sends pk to A01.

– Phase 1. In this phase, A01 can make polynomially many Trapdoor queries with (pk, w, v), and B01 responds
as follows. B01 first invokes KEM.Decaps oracle on v. The oracle returns an invalid symbol ⊥ or a valid key
k. If the oracle returns ⊥, B01 also responds with ⊥ to A01. Otherwise, B01 computes f ← F (w‖k) and
t← IBE .Extract(sk2, f). Finally, t is returned to A01.

– Challenge. A01 sends two challenge keywords w0, w1 ∈ W, where w0, w1 have not been queried in Phase 1.
After receiving these challenge keywords, B01 chooses a random bit b← {0, 1}, and runs the following steps:

• Invoke the Challenge phase of the IND-CCA2 game to obtain the challenge ciphertext (e∗, k∗).
• Pick r∗ ← {0, 1}∗
• Compute f∗ ← F (wb‖k∗).
• Compute ct∗ ← IBE .Enc(f∗, r∗)
• Compute h∗ = H(ct∗, r∗).
• Set v∗ = e∗.

Then, B01 returns (c∗ = (ct∗, h∗), v∗) to A01.
– Phase 2. A01 can continue to make Trapdoor queries, same as in Phase 1. The only restriction is that A01

cannot make a Trapdoor query on w0 or w1.
– Guess. A01 outputs its guess b′. Then B01 outputs b′.

Note that, if k∗ is a valid key, B01 gives the view of Game0 to A01; if k∗ is a random element, then B01 gives the
view of Game1 to A01. If |Adv0 −Adv1| is non-negligible, B01 must also have non-negligible advantage against
the IND-CCA2 game of the underlying KEM scheme. Therefore,

|Adv0 −Adv1| ≤ nege(λ).

Claim. For all the PPT algorithms, A12, |Adv1 −Adv2| is negligible, if the underlying IBE scheme IBE is IND-
ANON-ID-CPA.

Proof (Proof of Claim 6.2). Suppose that there is an adversary A12 such that |Adv1 − Adv2| is non-negligible,
then, there exists another challenger B12 that can win the IND-ANON-ID-CPA game of the underlying IBE scheme
IBE with non-negligible advantage. B12 constructs a hybrid game interacting with an adversary A12 as follows:

– KeyGen. B12 first invokes the IND-ANON-ID-CPA game of IBE to obtain pk2; then, B12 computes (pk1, sk1)
← KEM.KeyGen(1λ). Finally, B12 sets the public key pk = (pk1, pk2), and sends pk to A12.

12 Z.-Y. Liu et al.

– Phase 1. In this phase, A12 is able to make polynomially many Trapdoor queries with the (pk, w, v), and B12
responds as follows. B12 first obtains k ← KEM.Decaps(v, sk1). If k is an invalid symbol ⊥, B12 returns ⊥ to
A12. Otherwise, B12 invokes IBE .Extract oracle on F (k‖w) to obtain a trapdoor t. Finally, B12 sends t to A12.

– Challenge. A12 sends two challenge keywords w0, w1, where w0, w1 have not been queried in Phase 1. B12
chooses a random bit b← {0, 1}, and performs the following steps:
• Compute (e∗, k∗)← KEM.Encaps(pk1).
• Randomly choose k′∗ from the range of the output of KEM.Encaps(pk1).
• Randomly choose f ′ ← Y.
• Pick r∗ ← {0, 1}∗.
• Invoke the Challenge phase of the IND-ANON-ID-CPA game using F (wb‖k′∗, r∗) and (f ′, r∗) to obtain the

challenge ciphertext ct∗.
• Compute h∗ = H(ct∗, r∗).
• Set v∗ = e∗.

Then, B12 returns (c∗ = (ct∗, h∗), v∗) to A12.
– Phase 2. A12 can continue to make Trapdoor queries, similar to Phase 1. The only restriction is that A12

cannot make a Trapdoor query on w0 or w1.
– Guess. A12 outputs its guess b′. Then, B12 outputs b′.

Note that if ct∗ is generated from (F (wb‖k′∗), r∗), B12 gives the view of Game1 to A12; if ct∗ is generated
from (f ′, r∗), then B12 gives the view of Game2 to A12. If |Adv1 −Adv2| is non-negligible, B12 must also have
non-negligible advantage in the IND-ANON-ID-CPA game of the underlying IBE scheme. Therefore,

Adv1 −Adv2 ≤ negl(λ).

Claim. Adv2 = 0.

Proof (Proof of Claim 6.2). The proof of Claim 6.2 is intuitive. Because the ciphertext c∗ is irrelevant to the
keywords w0, w1, the ciphertext reveals nothing about the information of the keywords. The adversary A2 can only
return b′ by guessing. Therefore,

Adv2 = 0.

Combining Claim 6.2, Claim 6.2, and Claim 6.2, we can conclude that the advantages of the adversary of the
three adjacent games are negligibly close, and thus |Adv0−Adv2| is negligibly close to 0. This completes the proof
of Theorem 2.

Theorem 3. The proposed scheme is IND-IKGA secure, if the underlying KEM scheme KEM is IND-CCA2
secure, and pseudorandom generator F satisfies pseudorandomness.

Proof (Proof of Theorem 3). We prove Theorem 3 through a sequence of games, defined as follows.

– Game0: This is the original IND-IKGA game, as shown in Section 5.2.
– Game1: This game is identical to Game0, except that k is randomly chosen from the output range of
KEM.Encaps(pk1), rather than being computed from KEM.Encaps(pk1).

– Game2 This game is the same as Game1, except that f is chosen randomly from Y, instead of being computed
from F (wb‖k).

Let Advi denote the adversary’s advantage in Gamei. We have the following claims.

Claim. For all the PPT algorithms, A01, |Adv0 − Adv1| is negligible, if the underlying KEM scheme KEM is
IND-CCA2 secure.

Proof (Proof of Claim 6.2). Suppose that there exists an adversary A01 such that |Adv0−Adv1| is non-negligible,
then, there exists another challenger B01 that can win the IND-CCA2 game of the underlying KEM scheme KEM
with non-negligible advantage.

– KeyGen. B01 first invokes the IND-CCA2 game of KEM to obtain pk1. Next, B01 computes (pk2, sk2) ←
IBE .Setup(1λ). Finally, B01 sets the public key pk = (pk1, pk2), and sends pk to A01.

– Phase 1. In this phase, A01 can make polynomially many Trapdoor queries with (pk, w, v), and B01 responses
as follows. B01 first invokes KEM.Decaps oracle on v. The oracle returns an invalid symbol ⊥ or a valid key
k. If the oracle returns ⊥, B01 also responses ⊥ to A01. Otherwise, B01 computes f = F (w‖k) and t ←
IBE .Extract(sk2, f). Finally, t is returned to A01.

Designated-ciphertext Searchable Encryption 13

– Challenge. A01 sends two challenge keywords w0, w1 ∈ W, where w0, w1 have not been queried in Phase 1.
B01 chooses a random bit b← {0, 1}, and runs the following steps:

• Invoke the Challenge phase of the IND-CCA2 game to obtain the challenge (e∗, k∗).
• Compute f∗ ← F (wb‖k∗).
• Compute t∗ ← IBE .Extract(sk2, f).

Then, B01 returns t∗ to A01.
– Phase 2. A01 can continue to make Trapdoor queries, same as in Phase 1. The only restriction is that A01

cannot make a Trapdoor query on w0 or w1.
– Guess. A01 outputs its guess b′. Then, B01 outputs b′.

Note that if k∗ is a valid key, B01 gives the view of Game0 to A01; if k∗ is a random element, then, B01 gives
the view of Game1 to A01. If |Adv0−Adv1| is non-negligible, B01 must also have non-negligible advantage in the
IND-CCA2 game. Therefore,

|Adv0 −Adv1| ≤ negl(λ).

Claim. For all the PPT algorithms, A12, |Adv1 −Adv2| is negligible, if F is a secure pseudorandom generator.

Proof (Proof of Claim 6.2). We prove the claim by describing a PPT reduction algorithm B12 that plays a pseudo-
random generator security game. Given a challenge string T ∈ Y and the description of a pseudorandom generator
F , B12 constructs a hybrid game, interacting with an adversary A12 as follows.

– KeyGen. B12 chooses the public parameters, as described in Section 6.1, except that, instead of choosing a
proper pseudorandom generator from the pseudorandom generator family, B12 sets F as the public parameter.
Then, B12 generates the key pair (pk, sk) ← KeyGen(1λ), and sends pk to A12. Note that B12 has full control
of the private key sk.

– Phase 1. In this phase, A12 can make polynomially many Trapdoor queries using (pk, w, v). Due to the knowl-
edge of sk, B12 answers the queries by simply running the Trapdoor algorithm.

– Challenge. A12 sends two challenge keywords w0, w1 ∈ W, where w0, w1 have not been queried in Phase 1.
B12 chooses a random bit b← {0, 1}, and runs the following steps:

• Set f∗ = T .
• Compute t∗ ← IBE .Extract(sk2, f

∗).

Then, B12 returns t∗ to A12.

Note that, if T is generated from F , B12 provides the view of Game1 to A12; if T is a random string sampled
from Y, then B12 provides the view of Game2 to A12. If |Adv1 − Adv2| is non-negligible, B12 must also have
non-negligible advantage against the pseudorandom generator security game. Therefore,

|Adv1 −Adv2| ≤ negl(λ).

Claim. Adv2 = 0.

Proof (Proof of Claim 6.2). The proof of Claim 6.2 is intuitive. Because the trapdoor t∗ is irrelevant to the keywords,
w0 and w1, the trapdoor reveals nothing about the information of the keywords. The adversary A2 can only return
b′ by guessing. Therefore,

Adv2 = 0.

Combining Claim 6.2, Claim 6.2, and Claim 6.2, we can conclude that the advantages of the adversary of three
adjacent games are negligibly close, and, thus, |Adv2 −Adv0| is negligibly close to 0. This completes the proof of
Theorem 3.

7 Efficient Instantiation and Comparison

In this section, we first propose an DCSE instantiation based on NTRU lattices. Then, we compare different aspects
in our instantiation with other state-of-the-art schemes.

14 Z.-Y. Liu et al.

Table 1: Comparison with related schemes on the basis of security properties
Schemes Quantum-resistance IKGA security

[10] 7 7

[9] 3 7

[47] 3 7

[48] 3 7

[35] 3 3

Ours 3 3

Table 2: Comparison with related schemes on the basis of Key size, Trapdoor size, and Ciphertext size (in bytes).
Note that |ID| refers to the length of user identity.

Schemes PK SK Trapdoor Ciphertext

[10] 0.38 0.19 0.38 0.57

[9] 27.2 35 27 52

[47] |ID| 560128 113 113

[48] 3657.05 139325.1 142.86 14.28

[35] 3657.42 139325.1 71.42 57.14

Ours 31.88 59.98 38.98 23

Table 3: Time taken (operations per second) by different operations of KeyGen (key generation), Encryption (PEKS
in [10, 9] and DCSE in our scheme), Extract, and Test.

Scheme KeyGen Encryption Extract Test

[10] 84.88 186.48 17.41 100908.17

[9] 0.10 349.28 67.42 174.64

Ours 26.56 3224.35 739.06 63451.77

Fig. 1: Time taken by the key generation algorithm. Fig. 2: Time taken by the extract algorithm.

Designated-ciphertext Searchable Encryption 15

Fig. 3: Time taken by DCSE / PEKS algorithm. Fig. 4: Time taken by the test algorithm.

7.1 Efficient Instantiation

Our instantiation utilizes the IBE of Ducas et al. [22] and KEM of Hülsing et al. [29] (hereafter, referred to as
DLP-IBE and HRSS-KEM, respectively).

The DLP-IBE is the first lattice-based IBE scheme with practical parameters. Its security is based on the NTRU
and Ring-LWE assumptions. In addition, Behnia et al. have also proven that the DLP-IBE is IND-ANON-ID-CPA
secure [9]. The first implementation of the DLP-IBE was provided by Ducas [3], written in C++ based on the
NTL library [2]. Although this implementation is very efficient, it is merely a proof of concept (PoC) without any
optimization. To improve efficiency, McCarthy et al. propose a practical implementation of the DLP-IBE, written
in ANSI C, using the number theoretic transform (NTT) optimizations [36].

The HRSS-KEM is a candidate cryptographic KEM in the Round 2 of the National Institute for Standards
and Technology’s Post-Quantum Project [1]. In the work, Hülsing et al. first provide a OW-CPA secure NTRU-
based encryption scheme with optimized parameters; then, they transform the scheme into a IND-CCA2 secure
NTRU-based KEM under quantum-accessible random oracle model.

For concrete instantiation, we use SHA256 as a secure hash function, and symmetric encryption AES-256 as
a pseudorandom generator. We used open source project software for DLP-IBE [5] and HRSS-KEM [4] to test
the feasibility of our DCSE scheme on an Intel Core i7-8700 3.2-GHz CPU with 10G of RAM. For the DLP-IBE,
we selected parameters n = 1024, q ≈ 227 for 192-bit security level, and for HRSS-KEM, we selected parameters
n = 701, p = 3, q = 8192 for 128-bit security level.

7.2 Comparison

To compare the proposed scheme with other state-of-the-art schemes, we set the parameters as follows. For the
pairing-based PEKS scheme in [10], we chose the 160-bit group order and 2048-bit group elements G,GT . For the
NTRU-based PEKS scheme in [9], we chose n = 1024, q = 227 for 192-bit security level. For the LWE-based PEKS
schemes in [47, 35, 48], we adopted the same secure parameter as in [47], that is n = 256, dimension m = 9753, and
prime q = 4093. In addition, we set the number of distinct keywords k = 1 and unusual keywords k′ = 1 for [35],
and the security level l = 10 for [48].

Table 1 compares of our scheme with other schemes on the basis of its security properties. Only Mao et al.’s work
[35] is quantum-resistant and IKGA secure. However, as illustrated in Table 2, the scheme’s overly large key sizes
make it impractical. We also note that Mao et al.’s scheme require another server to execute test algorithm; thus,
the computation overhead is increased. Furthermore, compared with Mao’s schemes [35], our public and private key
sizes is 1/115 times smaller.

In Table 3, we further compare our instantiation with other two practical PEKS schemes [10, 9] on the basis
of efficiency. Compared with [10], although our instantiation is 0.31x and 0.62x slower than that of the KeyGen
and Test algorithms, respectively, our instantiation is 17x and 42x faster than those of the Encrypt and Extract
algorithms, respectively. As for [9], our instantiation is 245x, 9x, 11x, and 363x faster than those of the KeyGen,
Encrypt, Extract, and Test algorithms, respectively. Additionally, we carefully experimented with the time required
for the algorithms under different execution times (100, 500, 1000, 2000, 5000, 10000), the results are presented in
Figures 1 to 4.

16 Z.-Y. Liu et al.

8 Conclusions

This paper proposed a new cryptographic primitive, DCSE, to counter IKGA in public key searchable encryption.
We first provided a generic formulation of DCSE using an IND-ANON-ID-CPA secure IBE and an IND-CCA2
secure KEM, and then proved its security in the standard model. Furthermore, we provided a quantum-resistant
instantiation from NTRU lattices utilizing the DLP-IBE and HRSS-KEM. In conclusion, this paper provides a novel
solution to IKGA in a searchable encryption. In addition to yielding interesting theoretical results, the proposed
scheme is notably more efficient and safe compared with other state-of-the-art schemes.

9 Acknowledgements

This research was supported by the Ministry of Science and Technology, Taiwan (ROC), under Project Num-
bers MOST 108-2218-E-004-001-, MOST 108-2218-E-004-002-MY2, and by Taiwan Information Security Center at
National Sun Yat-sen University (TWISC@NSYSU).

References

1. NIST: Post-Quantum Cryptography - Round 2 Submissions. https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions, accessed: January, 2019

2. NTL: A Library for Doing Number Theory. http://www.shoup.net/ntl, accessed: December, 2019
3. Open Source Project of Identity-Based Encryption over NTRU Lattices. https://github.com/tprest/Lattice-IBE, ac-

cessed: March, 2019
4. Open Source Project of NTRU-HRSS. https://github.com/ntru-hrss/ntru-hrss, accessed: December, 2019
5. Secure Architectures of Future Emerging Cryptography. https://github.com/safecrypto/libsafecrypto, accessed: Decem-

ber, 2019
6. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi,

H.: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup,
V. (ed.) Annual International Cryptology Conference - CRYPTO’05. pp. 205–222. Springer, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11535218 13

7. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques - EUROCRYPT’10. pp. 553–572.
Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

8. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell,
D.A., et al.: Quantum Supremacy using a Programmable Superconducting Processor. Nature 574(7779), 505–510 (2019).
https://doi.org/10.1038/s41586-019-1666-5

9. Behnia, R., Ozmen, M.O., Yavuz, A.A.: Lattice-based Public Key Searchable Encryption from Experimental Perspectives.
IEEE Transactions on Dependable and Secure Computing (2018). https://doi.org/10.1109/TDSC.2018.2867462, (early
access)

10. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin,
C., Camenisch, J.L. (eds.) International Conference on the Theory and Applications of Cryptographic Techniques -
EUROCRYPT’04. pp. 506–522. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 30

11. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. In: Kilian, J. (ed.) Annual International
Cryptology Conference - CRYPTO’01. pp. 213–229. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 13

12. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. SIAM Journal on Computing 32(3), 586–615
(2003). https://doi.org/10.1137/S0097539701398521

13. Boyen, X.: Attribute-based Functional Encryption on Lattices. In: Sahai, A. (ed.) Theory of Cryptography Conference
- TCC’13. pp. 122–142. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 8

14. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Standard) LWE. SIAM Journal on
Computing 43(2), 831–871 (2014)

15. Byun, J.W., Rhee, H.S., Park, H.A., Lee, D.H.: Off-line Keyword Guessing Attacks on Recent Keyword Search Schemes
over Encrypted Data. In: Workshop on Secure Data Management - SDM’06. pp. 75–83. Springer, Berlin, Heidelberg
(2006). https://doi.org/https://doi.org/10.1007/11844662 6

16. Chen, R., Mu, Y., Yang, G., Guo, F., Huang, X., Wang, X., Wang, Y.: Server-aided Public Key Encryp-
tion with Keyword Search. IEEE Transactions on Information Forensics and Security 11(12), 2833–2842 (2016).
https://doi.org/10.1109/TIFS.2016.2599293

17. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: A New General Framework for Secure Public Key Encryption with
Keyword Search. In: Foo, E., Stebila, D. (eds.) Australasian Conference on Information Security and Privacy - ACISP’15.
pp. 59–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7 4

Designated-ciphertext Searchable Encryption 17

18. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server Public-key Encryption with Keyword Search
for Secure Cloud Storage. IEEE Transactions on Information Forensics and Security 11(4), 789–798 (2015).
https://doi.org/10.1109/TIFS.2015.2510822

19. Chen, Y.C., Xie, X., Wang, P.S., Tso, R.: Witness-based Searchable Encryption with Optimal
Overhead for Cloud-edge Computing. Future Generation Computer Systems 100, 715–723 (2019).
https://doi.org/https://doi.org/10.1016/j.future.2019.05.038

20. Cocks, C.: An Identity Based Encryption Scheme based on Quadratic Residues. In: Honary, B. (ed.) IMA Inter-
national Conference on Cryptography and Coding - IMACC’01. pp. 360–363. Springer, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-45325-3 32

21. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-key Encryption Schemes Secure against Adaptive Chosen
Ciphertext Attack. SIAM Journal on Computing 33(1), 167–226 (2003). https://doi.org/10.1137/S0097539702403773

22. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient Identity-based Encryption over NTRU Lattices. In: Sarkar, P., Iwata, T.
(eds.) International Conference on the Theory and Application of Cryptology and Information Security - ASIACRYPT’14.
pp. 22–41. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 2

23. Fang, L., Susilo, W., Ge, C., Wang, J.: A Secure Channel Free Public Key Encryption with Keyword Search Scheme
without Random Oracle. In: Garay, J., Miyaji, A., Otsuka, A. (eds.) International Conference on Cryptology and Network
Security - CANS’09. pp. 248–258. Springer, Berlin, Heidelberg (2009)

24. Fang, L., Susilo, W., Ge, C., Wang, J.: Public Key Encryption with Keyword Search Secure against Keyword Guessing
Attacks without Random Oracle. Information Sciences 238, 221–241 (2013). https://doi.org/10.1016/j.ins.2013.03.008

25. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford University (2009),
crypto.stanford.edu/craig

26. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In:
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing - STOC’08. pp. 197–206. Association for
Computing Machinery (2008). https://doi.org/10.1145/1374376.1374407

27. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-based Public Key Cryptosystem. In: Buhler, J. (ed.) In-
ternational Algorithmic Number Theory Symposium - ANTS’98. pp. 267–288. Springer, Berlin, Heidelberg (1998).
https://doi.org/10.1007/BFb0054868

28. Huang, Q., Li, H.: An Efficient Public-key Searchable Encryption Scheme Secure against Inside Keyword Guessing
Attacks. Information Sciences 403, 1–14 (2017). https://doi.org/10.1016/j.ins.2017.03.038

29. Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed Key Encapsulation from NTRU. In: Fischer, W., Homma,
N. (eds.) International Conference on Cryptographic Hardware and Embedded Systems - CHES’17. pp. 232–252. pringer,
Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 12

30. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC (2014)

31. Li, H., Huang, Q., Shen, J., Yang, G., Susilo, W.: Designated-server Identity-based Authenticated Encryption with Key-
word Search for Encrypted Emails. Information Sciences 481, 330–343 (2019). https://doi.org/10.1016/j.ins.2019.01.004

32. Liu, Z.Y., Tseng, Y.F., Tso, R.: Cryptanalysis of “FS-PEKS: Lattice-based Forward Secure Public-key Encryption with
Keyword Search for Cloud-assisted Industrial Internet of Things”. Cryptology ePrint Archive, Report 2020/651 (2020),
https://eprint.iacr.org/2020/651

33. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.)
Annual International Conference on the Theory and Applications of Cryptographic Techniques - EUROCRYPT’10. pp.
1–23. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

34. Ma, S., Mu, Y., Susilo, W., Yang, B.: Witness-based Searchable Encryption. Information Sciences 453, 364–378 (2018).
https://doi.org/10.1016/j.ins.2018.04.012

35. Mao, Y., Fu, X., Guo, C., Wu, G.: Public Key Encryption with Conjunctive Keyword Search Secure against Key-
word Guessing Attack from Lattices. Transactions on Emerging Telecommunications Technologies 30(11), e3531 (2019).
https://doi.org/10.1002/ett.3531

36. McCarthy, S., Smyth, N., O’Sullivan, E.: A Practical Implementation of Identity-based Encryption over NTRU Lattices.
In: O’Neill, M. (ed.) IMA International Conference on Cryptography and Coding - IMACC’17. pp. 227–246. Springer,
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7 12

37. Noroozi, M., Eslami, Z.: Public Key Authenticated Encryption with Keyword Search: Revisited. IET Information Security
13(4), 336–342 (2018). https://doi.org/http://dx.doi.org/10.1049/iet-ifs.2018.5315

38. Pakniat, N., Shiraly, D., Eslami, Z.: Certificateless Authenticated Encryption with Keyword Search: Enhanced Security
Model and a Concrete Construction for Industrial IoT. Journal of Information Security and Applications 53, 102525
(2020). https://doi.org/https://doi.org/10.1016/j.jisa.2020.102525

39. Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key Authenticated Encryption with Keyword Search Revisited:
Security Model and Constructions. Information Sciences 516, 515–528 (2020)

40. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Proceedings of the Thirty-
seventh Annual ACM Symposium on Theory of Computing - STOC’05. pp. 84–93. ACM, New York, NY, USA (2005).
https://doi.org/10.1145/1060590.1060603

41. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor Security in a Searchable Public-key Encryption Scheme with a
Designated Tester. Journal of Systems and Software 83(5), 763–771 (2010). https://doi.org/10.1016/j.jss.2009.11.726

18 Z.-Y. Liu et al.

42. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakley, G., Chaum, D. (eds.) Workshop on the
Theory and Application of Cryptographic Techniques - CRYPTO’84. pp. 47–53. Springer, Berlin, Heidelberg (1984).
https://doi.org/10.1007/3-540-39568-7 5

43. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: Proceedings
35th Annual Symposium on Foundations of Computer Science - FOCS’94. pp. 124–134. IEEE (1994).
https://doi.org/10.1109/SFCS.1994.365700

44. Shor, P.W.: Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
SIAM Review 41(2), 303–332 (1999). https://doi.org/10.1137/S0097539795293172

45. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data p. 44 (2000)
46. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: International

Conference on the Theory and Application of Cryptology and Information Security. pp. 617–635. Springer (2009)
47. Xu, L., Yuan, X., Steinfeld, R., Wang, C., Xu, C.: Multi-writer searchable encryption: An lwe-based realization and

implementation. In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security. pp.
122–133. ACM (2019)

48. Zhang, X., Xu, C., Wang, H., Zhang, Y., Wang, S.: FS-PEKS: Lattice-based Forward Secure Public-key Encryption
with Keyword Search for Cloud-assisted Industrial Internet of Things. IEEE Transactions on Dependable and Secure
Computing (2019). https://doi.org/10.1109/TDSC.2019.2914117, (early access)

