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Abstract. In this paper, we propose a new method to launch a more
efficient algebraic cryptanalysis. Algebraic cryptanalysis aims at finding
the secret key of a cipher by solving a collection of polynomial equations
that describe the internal structure of the cipher, while chosen correlated
plaintexts, as what appear in higher order differential cryptanalysis and
its derivatives such as cube attack or integral cryptanalysis, forces many
linear relation between intermediate state bits in the cipher. In this pa-
per, we take these polynomial relations into account, so it become possi-
ble to simplify the equation system arising from algebraic cryptanalysis,
and consequently solve the polynomial system more efficiently. We take
advantage of Universal Proning technique to provide an efficient method
to recover such linear polynomials. Another important parameter in al-
gebraic cryptanalysis of ciphers is to effectively describe the cipher. We
employ FWBW representation of S-boxes together with Universal Pron-
ing to help provide a more powerful algebraic cryptanalysis based on
Gröbner-basis computation. We show our method is more efficient than
doing algebraic cryptanalysis with MQ representation, and also than em-
ploying MQ together with Universal Proning. To show the effectiveness
of our approach, we applied it for the cryptanalysis of several light weight
block ciphers. A by-product of employing this approach is that we have
achieved such an efficiency to algebraic cryptanalyse 12-round LBlock,
6-round MIBS, 7-round PRESENT and 9-round SKINNY light-weight
block ciphers, so far.
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1 Introduction

It is already known that algebraic cryptanalysis of block ciphers in chosen plain-
text scenario, leads to a more efficient cryptanalysis. In [1,2,3,4] a series of al-
gebraic attacks on block ciphers were proposed, which all are based on highly
correlated plaintexts. Some other successful cryptanalysis techniques of block
ciphers are also based on correlated plaintexts, such as differential cryptanal-
ysis [5], integral cryptanalysis or square attack[6], cube attack [7] and recently
division cryptanalysis [8].



It is already known that highly structured plaintexts such as what appears in
integral or cube attacks, impose some correlation between intermediate state bits
with different plaintexts in the structure. For example, the multi-set of correlated
plaintexts in integral cryptanalysis, or cubes in cube attack, cause the sum of
some intermediate states bits over all plaintexts be a constant value, for some
number rounds .

The idea in this paper is to use such relations to improve algebraic attacks
that are based on computation of Gröbner basis. In integral cryptanalysis, these
relations are computed by a specific algebra that is defined for the propagation
of these relations on a multi-set through the block cipher. In cube attack, these
relations are described as Boolean polynomials. With the probabilistic BLR lin-
earity test [9] or its generalized form [7,10], it is possible to mark off them. Then
if such a relation has been found to exist, the polynomial is recovered using
another algorithms introduced in [7,10]. Balancedness is one of properties that
integral crypanalysis examines. Balancedness defines that the sum of some in-
termediate variables for all vectors in the muli-set is equal to zero. This property
is attained by constant superpoly in cube attack. Instead of the conventional
methods to recover such polynomials for these attacks, we use the Universal
Proning technique [11].

After recovering polynomials, we add them to the system that describe the
block cipher. We found that using these polynomials in combination with FWBW
representation of S-boxes, allows a more efficient algebraic cryptanalysis.

In this paper, we propose an improved Gröbner basis based algebraic crypt-
analysis, with employing FWBW representation and Higher-order differential
which is more efficient than previous algebraic cryptanalysis.

Contributions: To show the efficiency of our proposed method, we also employed
our improved Gröbner basis based algebraic cryptanalysis on LBlock [12], MIBS
[13], PRESENT [14] and SKINNY [15]. The main contributions of the work are
as follows:
(a) proposing a new method to launch a more efficient Algebraic Cryptanalysis,

with FWBW representation of S-boxes and Universal Proning.
(b) proposing a framework for evaluation of algebraic attacks on light-weight

ciphers.
(c) presenting first algebraic attack on 12 rounds of LBlock
(d) presenting first algebraic attack on 8 and 9 rounds of SKINNY.
(e) presenting first algebraic attack on 7 rounds of PRESENT.
(f) finding some unbalanced algebraic property for encryption and decryption

of SKINNY family of ciphers.
The paper is organized as follows: At section 2, we review the Higher Order

Differential Cryptanalysis and its derivations integral cryptanalysis and cube at-
tacks. In section 3, we review some different S-box representations for algebraic
cryptanalysis. In section4, we discuss Universal polynomials and Universal Pron-
ing. In section 5, we review some algebraic attacks in the literature, and report
our results for cryptanalysis for four light-weight ciphers. We give conclusions
and future research directions in Section 6.



2 Higher Order Differential Cryptanalysis

Higher order differential is a generalization of ordinary differential cryptanalysis
and is introduced in [16]. Let define XOR as the group operation, then higher
order derivative of binary functions is defined as follows:

Proposition 1 ([16]). Let L[a1, a2, . . . , ai] be the list of all possible linear com-
binations of a1,a2,...,ai. Then,

∆(i)
a1,a2,...,ai

f(x) =
∑

c∈L[a1,a2,...,ai]

f(x⊕ c)

defines the higher order derivative of f on L.

Integral cryptanalysis and cube attack methods somehow take advantage of
higher order derivative of binary functions.

2.1 Integral cryptanalysis

The square or integral attack [17] is first proposed as a dedicated attack for
the Square cipher [17]. The technique study propagation of sum of intermedi-
ate values through the block cipher. The name integral cryptanalysis coined
by Knudsen et. al in [6] . Todo in [8], introduced generalized integral property
to division property. Which not only consider summation of variables but also
summation of monomials of higher degree for example two.

We just review the idea for integral property. Suppose intermediate values
during the computation of block cipher are represented by a Boolean vector. Let
S be a multi-set of vectors v. The integral over the multi-set S is defined as
the sum of all vectors in S. Considering word-based block ciphers such as AES,
the intermediate state is divided into n words. The aim of attacker is to predict
the integrals after some number of rounds of encryption. Three cases may be
distinguished for the word i of the intermediate state vectors.

case 1. For all v in S, we have vi = c. where c is a fixed value (known or
unknown). This condition is denoted by C

case 2. The set of vi’s takes all possible values, for all v in S . This condition
is denoted by A

case 3. The sum vi always lead to fixed value, usually zero. This is denoted by
S

The polynomial expression of the first case would be the set of polynomials such
that:

{∀j : v0i = vji }

The second and third cases could be expressed by the polynomial such that:
m∑
j=0

vji = 0



2.2 AIDA/Cube Cryptanalysis
In block ciphers, any bit of ciphertext could be represented with a polynomial p
on plaintext bits and key variables.

ci = pi(x1, ..., xn, k1, ..., km)

where variables xi denote plaintext bits and variables ki denote key bits. These
polynomials are of high degree and have enormous number of monomials. Let I
be a set of indexes for plaintext variables and tI be the monomial from product
of the variables with indexes in I. Then polynomial pi could be rewritten as
follows:

pi(x1, ..., xn, k1, ..., km) = tIpS(I) + q(x1, ..., xn, k1, ..., km)

where pS(I) is called superpoly of tI in p, and monomials in p does not share
a common variable with tI . The polynomial q does not have a monomial that
contain all of variables in tI .

Cube attack main observation. Let pI denote the sum of polynomial p
over all possible 0/1 assignment to variables with indexes in I. Then we have
pI = pS(I) (Theorem 1 in [7]).

Given the explicit description of pi, it would be easy to factor the term tI ,
but usually due to the cryptographic properties of block ciphers the polynomial
is already unknown or have an exponential length representation . The cube
attack provide an efficient a way to manipulate these polynomials implicitly or
as a black box.

If the pS(I) is linear polynomial or of small degree, we could easily compute
the pS(I) through the computation of pI .

Attacker fixes the public variables that does not appear in tI and then sum
pi over all possible 0/1 assignments to variables in tI .

One problem that arises here is that degree of pS(I) is not known a priori.
Hopefully with BLR test [9] it is possible to check linearity of a polynomial with
implicit description.

The test for linearity of the polynomial pS(I) is as follows: If for a random
assignments x and y to secret variables, the following test is satisfied with a good
probability (> 0.5), the polynomial pS(I) is linear with high probability.

pI [0] + pI [x] + pI [y] + pI [x+ y] = 0

If we repeat the test for sufficiently many times and the test is satisfied in
all cases, we ensure that pS(I) is linear with probability near to one. In [7] a
generalized version of BLR test proposed for detecting polynomials of degree 2.
pI [0] + pI [x] + pI [y] + pI [z] + pI [x+ y] + pI [y + z] + pI [x+ z] + pI [x+ y + z]

It could be also generalized to degree D [10].
Cube attack consists of two parts: Off-line or pre-processing phase and on-

line phase. In off-line phase the attacker collects a set of polynomials in public
(plaintext or ciphertext) and secret (key) variables. In on-line phase, attacker
evaluate these polynomials to derive a system of equations to recover some or
all of key bits.



3 S-box Representation

To attack a block cipher with Gröbner basis, first we need to describe the whole
encryption operation with a set of polynomials. The block ciphers design usu-
ally consists of applying a simple mixing function (round functions) repeatedly
to achieve security. The round function usually consists of a non-linear layer
which also called substitution layer and a diffusion layer which consists of linear
transformations [18,19].

The algebraic description of S-boxes have direct effect on the efficiency of
algebraic attack. n×m S-boxes are vectorial Boolean functions which translate
a Boolean vector of dimension n to a Boolean vector of dimension m.

S-boxes are usually implemented using look-up tables in software and logical
gates in hardware. Yet, it is possible to derive a set of polynomials that relates
input bits of S-box to it output bits, from hardware implementation. Courtois et
al. [20] observe that the AES S-box could have low degree representation with
overdefined Multivariate Quadratic equations. For example, the 4-bit S-box of
PRESENT may be represented by 21 linear-independent equations of degree two
[21].

In [4], the polynomials that relate each output bit of the S-box to some of
input bits, are called Forward Equations. The following system of polynomials
are forward equations for PRESENT cipher S-box.

y0 + x0 + x1x2 + x2 + x3 = 0
y1 + x0x1x2 + x0x1x3 + x0x2x3 + x1x3 + x1 + x2x3 + x3 = 0
y2 + x0x1x3 + x0x1 + x0x2x3 + x0x3 + x1x3 + x2 + x3 + 1 = 0
y3 + x0x1x2 + x0x1x3 + x0x2x3 + x0 + x1x2 + x1 + x3 + 1 = 0

(1)

Conversely, the polynomials that relate each input bit to some of output bits,
are called Backward Equations. The following system of polynomials expresses
backward equations for PRESENT cipher S-box.

x0 + y0 + y1y3 + y2 + 1 = 0
x1 + y0y1y2 + y0y1y3 + y0y2y3 + y0y2 + y0 + y1y3 + y1 + y2y3 + y3 = 0
x2 + y0y1y2 + y0y1y3 + y0y1 + y0y2y3 + y0y2 + y0y3 + y1y2 + y1y3 + y3 + 1 = 0
x3 + y0y1y2 + y0y1 + y0y2y3 + y0 + y1 + y2 + y3 = 0

(2)
The aggregation of Forward and Backward equations is called FWBW represen-
tation [4]. It is experimentally shown in [4] that FWBW representation would
lead to more efficient algebraic cryptanalysis with Gröbner basis computation.
Efficient attacks are also reported on 11-Round LBlock, 6-Round MIBS and 6-
Round PRESENT, following FWBW representation. In this paper, we follow
Forward-Backward approach for algebraic representation of S-boxes.

4 Extracting all linear equations

As mentioned in sections 2.1 and 2.2, both multi-set of plaintexts in integral
cryptanalysis and cubes in cube attack may impose some linear equations in



intermediate states of cipher. In cube attack, these linear polynomials can be
recovered by BLR test. In integral cryptanalysis, these polynomials are derived
from its specific algebra. Utilizing linear algebra, it is possible to recover set of
all linear polynomials containing above-mentioned polynomials.

In [3,11], Universal Proning is proposed to derive the set of all linear equations
that arises from a set of plaintexts/ciphertexts and the structure of the cipher.
The technique is similar to derivation of ANF for an S-box from its lookup
table definition [22]. In this technique, all variables appearing in the system of
equations are assigned to rows of a matrix. For each column, a key is assigned.
Then we extract the values of variables from an encryption oracle, where they
are evaluated under the corresponding key.

In [11,4], it is reported that choosing plaintext samples that are already
employed in a successful cube attack and/or integral cryptanalysis improves the
efficiency of algebraic cryptanalysis. This may be due to the fact that these
samples have a special algebraic structure that cause many linear polynomials
to appear (explicitly or implicitly) in the system of equations. So, we apply the
Universal Proning technique on each set of plaintexts/ciphertexts to extract all
linear equations, that simplify the polynomial system describing the cipher.

Universal Polynomials For this issue, we adopt notations of [11]. Informally,
a Universal Polynomial is a polynomial that describes a relation in the cipher
and evaluates to zero for all choices of encryption keys. Universal Proning is a
technique for finding all such polynomials, however, we are interested specifically
in linear ones. These polynomials allow us to simplify the system for algebraic
cryptanalysis. By SX,Y,k we denote the polynomial system that describes the
cipher for a specific set of plaintexts X and the set of corresponding ciphertexts
Y under the key k.

Therefore, the following ideals can be defined [11]:

– The ideal of universal polynomials for encryption under all keys, considering
all plaintexts x in the set X, is defined as PX =

∩
k

⟨SX,⋆,k⟩.

– The ideal of universal polynomials for decryption under all keys, considering
all ciphertexts y in the set Y , is defined as CY =

∩
k

⟨S⋆,Y,k⟩.

– BX,Y = ⟨SX,Y,⋆⟩: This ideal contains set of all linear polynomials that may
relate intermediate state bits of encryption operation for plaintexts x in the
set X and intermediate state bits of decryption operation for ciphertexts y
in the set Y , when the encryption and decryption are described by equations
on different set of variables, considering the same key. For more detail please
refer to [11].

We extract all linear polynomials belonging to the above three sets by linear
algebra. Algorithm 1 is used to obtain linear polynomials from ideals PX and
CY [11].

In Algorithm 1, the subset B is selected from the set of all variables V . The
elements of the subset K are chosen randomly from the set all of keys. Then,
a matrix M of dimension |B| × |K| is created. For each variable b ∈ B, the



Algorithm 1 Universal Forward/Backward Proning[11]
Input: B ⊆ V : a subset of variables
Input: Oracle← OracleEnc or OracleDec

Output: F : collection of linear polynomials
K ← random subset of key space such that |K| = |B|+ constant.value
M ← matrix of dimension |B| × |K|
for all k ∈ K do

for all b ∈ B do
Mib,jk ← Oraclek(b)

end for
end for
ker ← find left kernel of matrix M
F ← ker ×B
return F

unique index ib is assigned, which refers to a unique row of the matrix. For
key k ∈ K, the jk column is assigned. The entry Mib,jk is the value of variable
b in the encryption/decryption operation under the key k. Then, the basis for
left nullspace of A is computed with Gaussian elimination. The set F , which
contains the linear polynomials that reside in PX or CY , is calculated with the
multiplication ker ×B.

The original algorithm for Universal Proning requires to iterate over all pos-
sible keys, which is not practical. Hence, as mentioned in[11], a small subset of
key space is used and it is expected that with a high probability the recovered
polynomials to be Universal. In our experiments, the number of random samples
are just slightly more than the size of B, which is |K| = |B|+ constant.value .
It should be noted that in [11], |K| = 50× |B|, which may lead to unnecessary
computations. Insufficient number of keys may lead the Algorithm to detect a
non-universal polynomial as a universal one [11]. In our experiments, we set
constant.value = 256. With this number, we did not encounter any inconsis-
tency in the system of equations.

To recover the linear polynomials from ideal BX,Y , we use Algorithm 2 [11].
In this algorithm, for each variable two rows is assigned, one for the value of
variables in the encryption and another row for the decryption. So, the indexes
of variables have following relation: i′b = ib + |B|. In other words, the matrix M
is comprised of two |B|× |K| matrices, where the rows of one of them is indexed
by ib and the rows of other one indexed by i′b.

We break the Proning into three steps:

Step 1. Universal Forward Proning: In this step, Algorithm 1 is run with en-
cryption oracle and recovers linear polynomials resides in PX .

Step 2. Universal Backward Proning: In this step, Algorithm 1 is run with
decryption oracle and recovers linear polynomials resides in CY .

Step 3. Universal Proning: In this step, Algorithm 2 is run and recovers linear
polynomials resides in BX,Y .



Algorithm 2 Universal Proning [11]
Input: B ⊆ V : set of allowed variables
Output: F : collection of linear polynomials

K ← random subset of key space such that |K| = |B|+ constant.value
M ← matrix of dimension 2|B| × |K|
for all k ∈ K do

for all b ∈ B do
Mib,jk ← OracleEnc

k (b)
Mi′

b
,jk
← OracleDec

k (b)
end for

end for
ker ← left kernel of matrix M
F ← ker × (B||B)
return F

We join the recovered linear polynomials to form the set of universal poly-
nomials.

5 Algebraic Cryptanalysis of Lightweight Ciphers

To present effectiveness of our method, we selected four light-weight ciphers
LBlock, MIBS, PRESENT and SKINNY for algebraic cryptanalysis. The two
first ciphers follow Fiestel structure but the two latter are designed based on
SPN.

Table 1 present some results on algebraic attack reported in the literature on
these ciphers [23,3,8,4].

Table 1. Algebraic attacks on LBlock, MIBS, PRESENT and SKINNY , w.r.t rounds

Nr g RunTime Data note work

LBlock

8 0/80 Not Reported 8 CP ElimLin [3]
9 0/80 O(247) 1184 CP Cube Attack Recover 33 bit [23]
10 0/80 Not Reported 16 CP ElimLin [3]
11 0/80 10106 s 128 CP PolyBoRi-FWBW [4]

PRESENT

6 0/80 2009.03 s 32 CP PolyBoRi-FWBW [4]
6 - - 263 CP Integral-Distinguisher [8]

MIBS

6 0/80 68.46 s 12 CP PolyBoRi-FWBW [4]

SKINNY



In this section we report how to algebraic cryptanalyze the above mentioned
ciphers with our method and compare the efficiency of our proposed method.
Experiments are conducted on a desktop computer with 32 GB of RAM, clocked
by a Core i7 4770 processor, and running a single core.

We use PolyBoRi library for comupting Gröbner basis [24]. Instead of using
its recommended Python interface, we call it from our C++ environment. As
the Python implementation for computing the Gröbner basis is more efficient
than its implementation in C++, we also re-implemented the Python version in
C++. We use M4RI C++ package [25] for operation on Boolean matrices. Our
laboratory implementation of the tool can handle the set of plaintexts with up
to 512 texts. We also slightly modified the Gröbner basis computation algorithm
for finding keys, such that it is returned as soon as all key variables have been
found.

After describing a cipher with FWBW representation of S-boxes, we sim-
plify the system of equations by recovering linear polynomials with employing
Proning technique . Then, we solve the final system with Gröbner basis com-
putation. So, the following steps are taken after description of the cipher: First
all linear polynomials are found with Universal Proning technique. Then, much
of variables are eliminated from the system of equations, with recovered linear
polynomials for the cipher. At the end, PolyBoRi is used to solve the resulting
system and find the key.

For efficiency, the Universal Proning step is applied in several stages. The first
type of Proning, i.e., Universal Forward Proning, is applied before on-line phase.
Since the attack is a kind of chosen plain-text, some polynomials might also be
derived without access to encryption oracle. The Universal Backward Proning
and Universal Proning are applied after finding the corresponding ciphertexts.
After each stage of Proning, we can eliminate some of variables from the system.
Therefore, the final system of equations have fewer variables.

In our experiments, in chosen-plaintext scenario attacks, the plaintexts are
selected based on integral characteristic for ciphers, except MIBS cipher. For
MIBS, we just selected highly correlated message with cube structure. For other
ciphers, integral distinguishers are found by the method that proposed in [26].

5.1 Attacking LBlock

Description of LBlock. LBlock [12] is a light-weight 64-bit block cipher with
key sizes of 64/80 bits. The cipher consists of 32 rounds. It is presented in
ACNS 2011 and had been under much algebraic cryptanalysis [27,28,3,4]. The
cipher uses 10 different S-boxes, where 8 S-boxes in round function and 2 in key
schedule algorithm. Its round function consists of S-box layer and a permutation
layer. The right branch is rotated 8 bits to right in each round. The S-box layer
consists the application of 8 different 4-bit S-boxes over the 32-bit word of the
left branch. Table 2, shows the definition of S-boxes of LBlock.



Table 2. LBock S-boxes

s0 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5
s1 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3
s2 1, 14, 7, 12, 15, 13, 0, 6, 11, 5, 9, 3, 2, 4, 8, 10
s3 7, 6, 8, 11, 0, 15, 3, 14, 9, 10, 12, 13, 5, 2, 4, 1
s4 14, 5, 15, 0, 7, 2, 12, 13, 1, 8, 4, 9, 11, 10, 6, 3
s5 2, 13, 11, 12, 15, 14, 0, 9, 7, 10, 6, 3, 1, 8, 4, 5
s6 11, 9, 4, 14, 0, 15, 10, 13, 6, 12, 5, 7, 3, 8, 1, 2
s7 13, 10, 15, 0, 14, 4, 9, 11, 2, 1, 8, 3, 7, 5, 12, 6
s8 8, 7, 14, 5, 15, 13, 0, 6, 11, 12, 9, 10, 2, 4, 1, 3
s9 11, 5, 15, 0, 7, 2, 9, 13, 4, 8, 1, 12, 14, 10, 3, 6

The polynomial system for LBlock cipher is generated by following :

L0,j ⊕Xj |[0:31] for j = 1, . . . , Nm

L1,j ⊕Xj |[32:63] for j = 1, . . . , Nm

SboxPol(Li,j ⊕Ki, P
−1(Li−1,j ≪ 8⊕ Li,j+1))

{
for i = 1, . . . , Nr,
for j = 1, . . . , Nm

LNr,j ⊕ Yj |[32:63] for j = 1, . . . , Nm

LNr+1,j ⊕ Yj |[0:31] for j = 1, . . . , Nm

(3)

In equation (3), and later equations (4),(5) and (6), that describe the above
mentioned ciphers with system of polynomials, we use the following notations. j
denotes the index of the plaintext that is being encrypted or index of the cipher-
text that is being decrypted. i denotes the round number where 1 ≤ i ≤ Nr. Li,j

denotes the intermediate state vector in encryption of j-th plaintext, in the i-th
round of the cipher. P denotes bit or nibble oriented permutation. M denotes
Matrix multiplication operation in round functions. SboxPol denotes the system
of equation that describe the relation between input vector and output vector of
the substitution layer. For LBlock and MIBS, Li,j is a vector of dimension 32.
For PRESENT and SKINNY, its dimension is 64.

We managed to attack the cipher in both chosen plaintext and known plain-
text scenarios. In a chosen-plaintext scenario, we could attack 9, 10, 11 and 12
rounds of LBlock cipher, but in a known-plaintext scenraio, we were able to
break 6 and 7-round versions of LBlock. Table 3 shows the results.

In Table 3, Data denotes the number of plaintexts used in the attack. #vars,
shows the number of variables in the system of equations before elimination.
#lin denotes total number of linear polynomials that recovered by Proning
Techniques. #fw, #bw and #pr present the number of linear polynomials that
recovered from PX , CY and BX,Y , respectively.

#orph denotes the number of linear polynomials that their leading terms
have appeared in other polynomials. Therefore, we need to add them to the
system of equations. TU denotes the average running time of Proning step and
elimination of variables. TG denotes the average running time for solving the
final system.



Table 3. Algebraic attacks on LBlock using FWBW description of S-boxes and Uni-
versal Proning

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

Higher-Order Chosen Plaintext Scenario - FWBW representation

9 4 CP 1040 538 473 60 5 61 2493 0.09 6.43
10 16 CP 4284 3088 2547 536 6 509 10893 0.39 4.42
11 16 CP 4768 3112 2536 564 12 267 11691 0.52 2135.77
12 256 CP 82088 71205 50853 20324 28 9656 206440 123.91 5948.16

Higher-Order Chosen Plaintext Scenario - MQ representation

12 256 CP (2/2) 82088 71248 50883 20342 22 9650 526208 161.71 54934.55

Known Plaintext Scenario - FWBW representation

6 64 KP 8312 7211 3644 3555 11 186 24842 2.70 4444.47
6 96 KP 12408 11311 5963 5336 11 1356 38300 4.68 1981.30
6 128 KP 16504 15404 8764 6628 12 2467 51699 12.63 78.28
7 256 KP 41088 37975 21409 16521 25 1553 116337 70.98 8907.58
7 512 KP 82048 78923 45984 32915 24 1258 230730 226.66 978.47

Known Plaintext Scenario - MQ representation

6 96 KP 12408 11309 5963 5337 12 1364 98342 5.70 110.00
6 128 KP 16504 15406 8769 6625 12 2486 131720 12.13 67.31
7 512 KP (13/15) 82048 78915 45985 32904 25 1250 603614 165.00 6303.87

In a chosen-plaintext scenario, the plaintexts are chosen and already known.
Hence, we can recover polynomials in ⟨Sx,⋆,⋆⟩ before retrieving samples from
target instance of the cipher. As, this step needs to be accomplished only once,
we did not include the time of Universal Forward Proning in TU . The combina-
tion of FWBW representation of S-boxes with Universal Proning enabled us to
successfully attack 12 rounds of LBlock with 256 chosen plaintexts, in average
of 6,072.02 seconds . To our best knowledge, this is the first algebraic attack
on 12-round LBlock. The average running time for Universal Proning is 123.91
seconds and for solving the system and finding the key is about 5948.11 seconds.

We also managed to break 11 rounds of LBlock with 16 chosen plaintexts
and a solving time of 2135.77 seconds in average. This is better than previous
results reported in [4] with 128 plaintexts and 10106 seconds in average.

To investigate whether this results are due to Universal Proning or efficiency
of S-boxes algebraic description, we also did some experiments with MQ repre-
sentation, in both chosen plaintext and known plaintext attacks scenarios. In a
chosen-plaintext attack scenario, we tried to cryptanalyze 12 rounds of LBlock
with Universal Proning and MQ representation of S-boxes. Experiments on only
two instances yield an average running time of 54934 seconds for solving the
system, which is 10 times worse than the results with FWBW representation.

In a known-plaintext attack scenario, the polynomial system of 6-round
LBlock with 96 known plaintexts with FWBW is solved in average 1981.30



seconds, and the same with MQ is solved in just 110 seconds in average. For
128 known plaintexts the two representations, are near to each other in term
of running time of computation of Gröbner basis. However, for 64 plaintexts
with MQ representation the tool were not able to solve polynomial system. For
FWBW, the polynomial system is solved in 4444.47 seconds in average.

Considering a known plaintext attack scenario for 7-round LBlock, the poly-
nomial system with FWBW representation and 256 known plaintexts is solved
in 8907.58, averagely. But, MQ did not yield any result with the same number
of plaintexts. With 512 plaintexts, the system with FWBW representation is
solved in 978.47 seconds in average, but the MQ representation lead to a solving
time of 6303.87 seconds in average. It should be noted that with MQ represen-
tation, PolyBoRi library failed to solve the system for two of instances, in this
case.

With the above observations, we have evidences that FWBW is a better
representation for Gröbner basis based algebraic cryptanalysis. Considering the
results reported in [4], it seems that FWBW representation is the most con-
venient description of S-boxes, among currently proposed representations, for
algebraic cryptanalysis.

5.2 Attacking MIBS

Description of MIBS. MIBS [13] is a 64-bit light-weight block cipher based
on Fiestel structure. It was presented in CANS 2009. Its round function consists
of an S-box layer, a multiplication by 8-by-8 binary matrix and a permutation
layer. This cipher consists of 32-rounds. Table 4 defines the MIBS cipher S-box.

Table 4. MIBS S-box

S 4,15,3,8,13,10,12,0,11,5,7,14,2,6,1,9

The binary matrix, represented with M, is given as follows:

M =



0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1


.

It has a complicated diffusion layer. Some algebraic cryptanalysis of reduced-
round MIBS are reported in [29,30,27,4].



The polynomial system for MIBS cipher is generated as following:

L0,,j ⊕Xj |[0:31] for j = 1, . . . , Nm

L1,j ⊕Xj |[32:63] for j = 1, . . . , Nm

SboxPol(Li,j ⊕Ki, P
−1(M−1(Li,j−1 ⊕ Li,j+1)))

{
for i = 1, . . . , Nr,
for j = 1, . . . , Nm

LNr,j ⊕ Yj |[32:63] for j = 1, . . . , Nm

LNr+1,j ⊕ Yj |[0:31] for j = 1, . . . , Nm

(4)

We managed to attack 5 and 6 rounds of MIBS cipher with 5 and 12 chosen
plaintexts, respectively. Table 5 present our result on MIBS cipher.

Table 5. Algebraic attacks on MIBS using FWBW description of S-boxes and Universal
Proning

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

Higher-Order Chosen Plaintext Scenario

5 5 CP 592 294 298 24 16 68 1748 0.09 7.61
6 12 CP 1656 831 842 292 8 16 4720 0.30 18.14

Using FWBW representation with Universal Proning technique, we were not
able to improve the number of rounds in comparison with [4], but we achieved
better running time for computation of Gröbner basis.

Intuitively it seems that adding more linear polynomials to the system should
make the solving easier, but MIBS cipher was an exception. We found that
adding Backward universal polynomials and Universal polynomials increases the
running time for MIBS, significantly. Therefore, we did not add these polyno-
mials to the final system.

5.3 Attacking PRESENT

Description of Present. PRESENT [14], presented in CHES 2007, is a light-
weight block cipher based on SPN structure. It has block size of 64-bit and key
size of 64/80 bits. Its round function consists of application of 16 4-bit S-boxes
in parallel, then applying a bit oriented permutation. The cipher consists of 31
rounds. Table 6 defines PRESENT S-box.

It is also received much attention for cryptanalysis in the literature [31,32,27,4].

Table 6. PRESENT S-box

S 12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2



The polynomial system for PRESENT cipher is generated by the following :

L0,j ⊕Xj for j = 1, . . . , Nm
SboxPol(L0,j ⊕K1, L1,j) for j = 1, . . . , Nm

SboxPol(P (Li−1,j)⊕Ki, Li,j)

{
for i = 2, . . . , Nr,
for j = 1, . . . , Nm

P (Li,Nr)⊕KNr+1 ⊕ Yj for j = 1, . . . , Nm

(5)

Using FWBW representation together with Universal Proning not only en-
abled us to break 5 and 6 rounds of the cipher more efficient than our previous
results, but also allowed to break 7 rounds of the cipher with 256 chosen plain-
texts. To our best knowledge, this is the first algebraic attack on 7 rounds of
PRESENT. The average running for attacking 6 rounds of the cipher reduced
from around 2000 seconds to 48.7 seconds in average. 7 round version of the
cipher is broken with 256 chosen plaintexts and 59316.72 seconds in average.
Table 7 shows the results.

Table 7. Algebraic attacks on PRESENT using FWBW description of S-boxes and
Universal Proning

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

Higher-Order Chosen Plaintext Scenario

5 6 CP 2020 1466 784 681 2 226 4490 0.14 13.19
6 32 CP 12392 9879 5752 4123 4 715 27387 1.63 47.07
7 256 CP (4) 114796 92141 51496 40461 4 5744 241320 253.27 59316.72

5.4 Attacking SKINNY

Description of SKINNY. SKINNY [15] is a family of lightweight tweak-
able block ciphers following AES design, but with some modification to min-
imize hardware implementation costs. The major difference between AES and
SKINNY is that SKINNY uses a binary matrix for MixColumn operation. The
cipher has two variants: 64-bit and 128-bit versions. The first version operates on
a state matrix with sixteen nibbles but the later version works on state matrix
with sixteen bytes. The 64-bit version uses 4-bit S-boxes and the 128-bit version
uses 8-bit ones. None of those S-boxes posses strong cryptographic properties,
in deal with a light implementations.

Its round function consists of following four operation, similar to AES:

1. SubCells (SC): S-box is applied on nibbles (bytes) in parallel, 4-bit S-
boxes in 64-bit version and 8-bit S-boxes in 128-bit version. The 4-bit S-box
is represented in following Table 8.

2. AddConstants (AC): round constants derived using a 6-bit LFSR are
added into the state.



Table 8. SKINNY 4-bit S-box

S 12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15

3. AddRoundTweakey (ART): For SKINNY round keys depend on both
the master key and the tweak. This operations adds such key material to
half of the internal state.

4. ShiftRows (SR): Similar to AES shift row operation.
5. MixColumns (MC): Each column is multiplied by a binary matrix M

given below.

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

The polynomial system for SKINNY cipher is generated by following :

L0,j ⊕Xj for j = 1, . . . , Nm
SboxPol(L0,j , L1,j) for j = 1, . . . , Nm

SboxPol(M(P (Li−1,j ⊕ Ci−1 ⊕Ki−1)), Li,j)

{
for i = 2, . . . , Nr,
for j = 1, . . . , Nm

M(P (LNr,j ⊕ CNr ⊕KNr))⊕ Yj for j = 1, . . . , Nm

(6)

We applied our method to SKINNY with 64 bit block size and key sizes of
64 and 128 bits. Results are presented in Table 9.

We managed to attack 8 and 9 rounds of SKINNY with 16 and 256 chosen
plaintexts, respectively. The running time for solving the system of equation for
SKINNY-64-64 and SKINNY-64-128, is 1757.58 and 3437.16 seconds in average,
respectively.

We also report attacks in known plaintext scenario on 5 and 6 rounds of
SKINNY. In a known plaintext scenario, we noticed that encryption and de-
cryption of SKINNY exhibit some unbalanced properties. Considering 5 rounds
of SKINNY-64-128, number linear polynomials that recovered from decryption
(backward) direction is more than the number recovered polynomials from en-
cryption (forward) direction. So we tried the attack in a known ciphertext sce-
nario which means recovering linear polynomials in backward direction first. It
shows significant improvement in TG. Considering the observation we have been
able to attack 6 rounds if SKINNY-64-128 with 256 known plaintexts.

5.5 A Comparison

In this section, we provide a comparison for our algebraic attacks of the lightweight
block ciphers LBlock, MIBS, PRESENT and SKINNY. Table 10 summarizes
other previous attacks on the above mentioned ciphers. As the nature of at-
tacks under considerations are different, a comparison of them with our alge-
braic cryptanalysis is not straightforward. For example, differential attacks are



Table 9. Algebraic attacks on SKINNY using FWBW description of S-boxes and
Universal Proning

Nr Data #vars #lin #fw #bw #pr #orph #eqs TU TG

SKINNY-64-64 Higher-Order Chosen Plaintext Scenario

8 16 CP 8256 6819 4377 2431 9 700 18108 0.63 4.01
9 256 CP 147520 134637 85612 48973 46 9188 320484 82.44 1757.58

SKINNY-64-64 Known Plaintext Scenario

5 32 KP 10304 9807 4725 5034 48 681 23209 1.64 14.11
5 32 KC 10304 9806 4016 5742 48 757 15152 1.93 11.90

SKINNY-64-128 Higher-Order Chosen Plaintext Scenario

8 16 CP 8320 6814 4377 2437 0 752 18160 0.80 8.08
9 256 CP 147584 134586 85617 48969 0 9137 254946 101.04 3437.16

SKINNY-64-128 Known Plaintext Scenario

5 40 KP 12928 12315 6087 6228 0 865 29025 2.62 90.80
5 40 KC 12928 12314 5016 7298 0 1129 29289 3.4 27.68
6 256 KC 98432 94519 52171 42348 0 6442 219434 136.13 1501.70

probabilistic and their efficiency can be relatively easily extrapolated, while al-
gebraic attacks are deterministic and their success depends on solving a system
of (nonlinear) relations. So far, a generic algorithm that would solve (efficiently)
any system of nonlinear relations is not known, particularly the system of non-
linear relations arising from block ciphers for large number of rounds. Due to the
behaviour of solving algorithms, it is difficult to derive efficiency measurement,
and tight bounds on data, time and memory requirements of the algorithm are
not known. It is worth noting that algebraic cryptanalysis is still evolving and
many of its aspects are yet to be discovered, and many results in this area are
reported based only on experiments. So, we compare the attacks only based
on the number of required plaintexts to be encrypted and the time needed for
cryptanalysis in the experiments.

Table 10 details previous differential, integral and cube attacks for the ci-
phers.

Let’s consider differential cryptanalysis of LBlock. The best differential char-
acteristics for 11-round LBlock implies at least 22 active S-boxes [12]. If this
characteristics is used in an 12-round key recovery attack, the data complexity
of the attack would be of order O(244). Our algebraic attack requires a much
smaller number of plaintexts, i.e., only 256 plaintexts. The work in [28] reports
an integral attack on 22-round LBlock with data and time complexity of 261

and O(270), respectively, where the attack is based on a 15-round integral dis-
tinguisher.

Z’aba et al. [33] present a bit-pattern-based integral attack on 6 rounds of
PRESENT-80. The attack takes advantage of a 4.5 round integral distinguisher.



Table 10. Some integral and differential cryptanalysis of LBlock, MIBS, PRESENT
and SKINNY

Nr RunTime Data note work

LBlock-80

11 - O(244) CP Differential Characteristics [12]
22 O(270) 261 CP Integral Cryptanalysis [28]

PRESENT-80

6 241.7 222.4 CP Integral Cryptanalysis [33]
7 260 28.3 CP Integral Cryptanlysis [34]
9 260 220.3 CP Integral Cryptanlysis [34]
9 - 260 CP Integral Distinguisher [26]
16 264 264 CP Differential Cryptanalysis [35]

MIBS-80

4 - O(215) CP Differential Characteristics [13]
13 256 261 CP Differential Cryptanalysis [29]

SKINNY-64

7 - O(256) CP Differential Characteristics [15]
10 - 248 CP Integral Characteristics [26]

The data and time complexity of the attack is 222.4 and 241.7, respectively. Our
algebraic cryptanalysis attack requires only 32 chosen plaintexts only and a
running time of about 48.7 seconds on average. We have been also able to attack
7-round PRESENT with just 256 chosen plaintexts. In [34], an integral attack
for 7-round PRESENT is presented. The attack has data and time complexity
of 28.3 and 260, respectively.

For MIBS cipher, the best 4-round differential characteristics has the proba-
bility of O(2−15) [13]. If this characteristics is used in a hypothetical key recovery
attack on 6-round MIBS, it would require a data complexity of at least O(215).
In this paper, however, the 6-round MIBS cipher is broken with only 12 chosen
plaintexts in an algebraic cryptanalysis attack. In [29], a differential cryptanal-
ysis attack is proposed on 13 rounds of MIBS based on a 12-round differential
characteristic, with data and time complexity of 261 and 256, respectively .

Let’s consider differential cryptanalysis of SKINNY. The best differential
characteristics for 7-round SKINNY-64 implies 28 active S-boxes [15]. This would
lead to an attack on 8-round SKINNY-64 with data complexity of 256. While
our attack on 8-round SKINNY-64 needs only 16 chosen plaintexts. Attacking
9-round SKINNY-64 requires only 256 chosen plaintexts. In [26], an integral
distinguisher for 10 rounds of SKINNY is also reported.



6 Conclusion and Discussion

In this paper, we proposed a new method to launch a more efficient Algebraic
Cryptanalysis. In general, algebraic analysis takes two stages. In the first stage,
a cipher is described by a system of equations. Algebraic cryptanalysis aims
at finding the secret key of the cipher by solving the collection of polynomial
equations that describes the cipher, usually in a known plaintext and/or chosen
plaintext scenario. On the other hand, chosen correlated plaintexts, as what
appear in Higher Order Differential Cryptanalysis and its derivatives such as
cube attack or integral cryptanalysis, may force many linear relations between
intermediate state bits in the cipher.

In the second stage, the system is solved using an ”appropriate” algorithm.
There are many algorithms to solve such a system of equations, where computa-
tion of Gröbner basis is one of such an approach. It is already well-known that
the way a cipher is represented with a system of equations has impacts on the
running time to obtain its solution employing a Gröbner-basis computation.

In this paper, we improved algebraic cryptanalysis of block ciphers in both
stages. We employed effective FWBW representation of S-boxes for algebraic
description of ciphers. Then, we showed that combining this representation with
carefully selected plaintexts and Universal Proning in the solving stage improves
the running time for solving the system to find key.

In this work, we have also done experiments on limited number of light-
weight block ciphers with 4-bit S-boxes. These ciphers are designed based on
different strategies and were able to report successful first algebraic attack on
12-round LBlock, 7-round PRESENT and 9-round SKINNY. Although, we do
not yet have a theoretic result for effectiveness of our method, i.e., FWBW with
Universal Proning, for algebraic cryptanalysis in general, but we can expect that
the reported results should be extended to other ciphers as well. Consequently,
our proposed method could be used as a criteria for the evaluation of resistance
of light-weight ciphers against algebraic cryptanalysis, regarding the NIST com-
petition of light-weight cryptography.

In general, Universal Proning technique alone helps to find many linear equa-
tions. Since, these polynomials are universal and satisfied for all keys, they do
not contribute to find the key, but help to simplify the system of equations by
removing much of variables from the system [11]. For example, considering the
attack on LBlock with 256 correlated plaintexts, we could remove 71205 vari-
ables of total 98472 from the system, with universal proning. Hence, the resulting
system of equations is much simplified. This may question the role of effective
representation, for the next step. To answer the question, we also applied our
method with MQ representation of S-boxes. As can be seen in Table 3, the av-
erage running time of TG significantly increased in comparison with FWBW
representation. Therefore, we can conclude that FWBW is an effective method
for description of S-boxes.

We also found some irregular properties in MIBS and SKINNY ciphers. For
MIBS cipher, the running time of TG would exceptionally increase, when the
linear polynomials that found by Universal Backward Proning and Universal



Proning are taken into account. This contrasts the common intuition that re-
moving variables or adding linear equations should result in more efficient solv-
ing time. For SKINNY, we found that the cipher exhibits more linear equations
in Backward (decryption) direction than Forward (encryption) direction, in a
known plaintext scenario. As it is shown in Table 9, this leads to a more efficient
attacks in both known/chosen ciphertext scenario. It’s worth investigating the
effect of this unbalanced algebraic property in other types of attacks.

Our tool could not handle large system of equations that arises from large
number of samples due limitation in employed software and hardware. Therefore,
it is worth improving the implementation in order to better investigate limita-
tions and capabilities of algebraic crypanalysis with Gröbner basis methods.
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