
Strong Authenticity with Leakage under Weak and

Falsifiable Physical Assumptions

Francesco Berti1, Chun Guo2, Olivier Pereira1,
Thomas Peters1, and François-Xavier Standaert1

1 ICTEAM/ELEN/Crypto Group, UCL, Louvain-la-Neuve, Belgium
2 School of Cyber Science and Technology and Key Laboratory of Cryptologic

Technology and Information Security, Ministry of Education, Shandong University

Abstract. Authenticity can be compromised by information leaked via side-channels (e.g., power
consumption). Examples of attacks include direct key recoveries and attacks against the tag verification
which may lead to forgeries. At FSE 2018, Berti et al. described two authenticated encryption schemes
which provide authenticity assuming a leak-free implementation of a Tweakable Block Cipher (TBC).
Precisely, security is guaranteed even if all the intermediate computations of the target implementation
are leaked in full but the TBC long-term key. Yet, while a leak-free implementation reasonably models
strongly protected implementations of a TBC, it remains an idealized physical assumption that may
be too demanding in many cases, in particular if hardware engineers mitigate the leakage to a good
extent but (due to performance constraints) do not reach leak-freeness. In this paper, we get rid of
this important limitation by introducing the notion of Strong Unpredictability with Leakage for BC’s
and TBC’s. It captures the hardness for an adversary to provide a fresh and valid input/output pair
for a (T)BC, even having oracle access to the (T)BC, its inverse and their leakages. This definition is
game-based and may be verified/falsified by laboratories. Based on it, we then provide two Message
Authentication Codes (MAC) which are secure if the (T)BC on which they rely are implemented in a way
that maintains a sufficient unpredictability. Thus, we improve the theoretical foundations of leakage-
resilient MAC and extend them towards engineering constraints that are easier to achieve in practice.

1 Introduction

Message Authentication Codes (MAC) are widely used to authenticate data. Efficient MAC
are usually constructed from conceptually simpler symmetric primitives such as (tweakable)
block ciphers (e.g., CBC [5]) and hash functions (e.g., HMAC [5,4]), and enjoy reliable
“provable security guarantees”, i.e., security reductions to the underlying primitives.

Side-channel attacks, since introduced in the 1990s [21,22], have now been recognized
as one of the main real-world security threats (e.g., see [2, chapter 1.2]). In response, var-
ious implementation-level countermeasures have been proposed and even formally proved
effective. However, they typically induce significant overheads. As a complementary, the
methodology of leakage-resilience was proposed [14] and followed by many (see [20] for a sur-
vey). Schemes proved leakage-resilient enjoy security even if a moderate amount of sensitive
information is leaked via side-channels. Consequently, their implementations could leverage
less protected circuits and thus reduce the overall overheads.

It is not a surprise that with leakages, classical MAC such as CBC and HMAC are not se-
cure at all, even if leakages only contain the input/output values of the underlying functions
(see, e.g., [12]). This means their implementations have to be heavily protected when used in
sensitive settings such as the IoT, which may be hard to achieve given application cost con-
straints. Therefore, exploring the construction of leakage-resilient MAC is a natural direction,

which was initiated in [18,24,25,8] and later improved in [9,3,7] to achieve security in the
presence of both tag generation and verification leakages.1 We remark that the premises used
in these works are significantly different. For example, [24,3] leveraged bilinear maps in the
generic group model to ease secret-sharing/masking-based implementations of their MAC,
while [25,8,9,7] model a heavily protected (tweakable) block cipher (e.g., using high-order
masking [15,19]) as leak-free and focus on making the other mode-level leakages harmless.

From the efficiency viewpoint, sticking with simple symmetric primitives is naturally
desirable.2 Yet, a drawback of the aforementioned papers [25,8,9,7] is the use of leak-free
cipher model. Despite it is theoretically possible to reach very high security levels with
masking (approaching black box security [15,19]), it implies (very) high overheads that may
not be acceptable in practice. Besides, the leak-free assumption (that is, nothing is leaked
about the key used and the outputs remain pseudorandom) cannot be accompanied by any
well-defined security game—somewhat resembling the random oracle model.

Our contribution. The goal of this paper is to bridge the above theory gap (i.e., seeking for
some well-defined leakage assumptions on the block cipher that allows the leakage-resilient
MAC security reductions) while also enabling more modular security guarantees that may
degrade gracefully when the physical assumption is respected only to some extent. Our
answer to this challenge is Strong Unpredictability in the presence of Leakages for a (T)BC,
henceforth abbreviated as SUL2. In detail, it captures the hardness of providing a fresh
input/output pair for the (T)BC even having access to its leaking oracle and leaking inverse
oracle (following the notations of [17], the variant without leaking inverse oracle would be
SUL1). It can be viewed as a natural extension of the unpredictable block cipher assumption
introduced by Dodis and Steinberger [12,13].

With this new assumption, we revisit existing (tweakable) block cipher-based leakage-
resilient MAC. We first consider the simplest Hash-then-BC scheme τ = Fk(H(m)), the leakage
security of which was analyzed by Berti et al. [8,9]. While the security reduction seems
straightforward, Berti et al. [9] changed the verification process of Vrfyk(m, τ) from “If τ =
F∗k(H(m)), then return 1” to “If H(m) = F∗,−1k (τ), then return 1” (i.e., leveraging the inverse
F∗,−1k to avoid leaking sensitive information).3 As a result, they achieve better mode-level
leakage-resilience as the intermediate value F∗,−1k (τ) does not have to be protected: even
given this additional value it is still hard to forge a tag. However, their proof relies on leak-
free block ciphers. We show that the SUL2 assumption for F∗ is actually sufficient to obtain
similar guarantees, further assuming an ideal hash H.4 We then revisit the recently proposed
Hash-then-TBC scheme [7], which was also used in the NIST AE submission Spook [6]. In
detail, its tag generation is Tagk(m) = τ = F∗k(h1, h2), where h2 is the tweak of F∗ and
h1‖h2 = H(m) (i.e., the 2n-bit output of H is divided into two halves h1 and h2), while
for verification Vrfyk(m, τ) we compute h̃1 = F∗,−1k (τ, h2) and compare it with h1, with

1 Note that some MACs were parts of authenticated encryption (AE) proposals.
2 The MAC of [24,3] consumes ≈ 4 seconds to generate a tag on a 32-bit ARM.
3 F∗ means that the BC F is implemented in a leak-free way
4 This idealized assumption is used for simplifying our analyzes, since our focus is on the leak-free blocks. We leave

its relaxation as an interesting open problem.

2

h1‖h2 = H(m). We show that using a 2n-bit hash, we can improve the birthday bound of
the previous Hash-then-BC construction.

Both schemes are natural, extremely simple and should be easy to implement for practical
uses. We expect the block cipher based construction (next: HBC) to be slightly more efficient
than the tweakable version (next: HTBC) as a secure TBC typically consumes more rounds
than a secure BC. However, we also note that HBC admits forgery attacks with lower data
complexity (simply utilizing a hash collision), while HTBC solves this problem by doubling
the size of the hash and using a TBC (that has a larger input size) to absorb the digest.

In summary, our results improve the theory foundations for existing efficient (tweakable)
block cipher-based leakage-resilient MAC. We believe the SUL2 assumption could find more
applications in future leakage-resilient analyses. In practice, unpredictability is widely be-
lieved to be more relaxed than PRP [12].5 Thus it potentially enables using reduced-round
(tweakable) BCs for MAC. As the heavily protected ciphers are much more costly than the
hash functions (that do not need protection), they are expected to be the performance bottle-
neck, and reducing the number of rounds may significantly improve the overall performance
(e.g., in terms of latency and energy consumption).

Related work. The idea of basing MAC security on unpredictable ciphers is not new, dating
back to [1] and witnessing recent achievements [12,28,13]. In fact, as argued in [12], it is
natural to consider reducing the unpredictability of the “bigger” MAC to the unpredictability
of the “smaller” ciphers.

2 Background

Notations. A (q1, ..., qd, t)-adversary A in an experiment against Π is an algorithm A having
oracle access to Algo1, ...,Algod, making at most qi queries to oracle Algoi, running in time
bounded by t, and outputting a finite string of bits. The leakage function due to the imple-
mentation of an algorithm Algo is denoted LAlgo. This function might be non deterministic.
A leaking query to Algo is denoted LAlgo and results in running both Algo and LAlgo on the
same input.

The set of binary strings of length n is denoted by {0, 1}n, while the set of all finite
strings by {0, 1}∗. Given two strings, x and y, we let x||y denote the concatenation of these
two strings.

The view of a game consists of all queries made by the adversary to his oracles, the
oracles’ answers and the final output of the adversary. In a transcript every oracle query is
immediately followed by its answer. A value is fresh if it has never appeared in the view.

2.1 Multi-Collisions

Let 1 ≤ s ≤ q ≤ N . We consider the experiment where we uniformly throw q balls at random
into N bins. MultiColl(N, q) ≥ s denotes the event that at least one bin contains at least s
balls. We recall a useful upper-bound on the probability of multi-collisions.

5 Indeed, Unpr can be based on weaker complexity assumptions [11].

3

Theorem 1 ([26]).

Pr[MultiColl(N, q) ≥ s] ≤ 1

N s−1

(
q

s

)
.

We also need the following technical result.

Lemma 1. If 2q ≤ N ,

q∑
s=1

(s− 1) · Pr[MultiColl(N, q) ≥ s] ≤ 1

N

(
q

2

)(
1 +

2q

N

)
.

Proof. Looking at the generic term for s ≥ 3 after applying the theorem leads to

s− 1

N s−1

(
q

s

)
≤ 1

N s−2

(
q

s− 1

)
· q
N
≤ 1

N

(
q

2

)
·
(q
N

)s−2
.

Then, the whole sum is upper-bounded by

1

N

(
q

2

)
·

q∑
s=2

(q
N

)s−2
≤ 1

N

(
q

2

)
N

N − q
=

1

N

(
q

2

)(
1 +

q

N − q

)
.

Hence, the result since q ≤ N − q. ut

2.2 Cryptographic Primitives

Tweakable block ciphers A tweakable block cipher [23] (TBC) is a function F : K×T W×
X 7−→ Z, where K and T W are respectively called the key space and the tweak space, and
such that for any key k ∈ K and any tweak tw ∈ T W , the function Ftw

k : X 7→ Z;x 7→
Ftw
k (x) := Fk(tw, x) := F(k, tw, x) is a permutation. We denote the inverse of this function

by F−1k,tw so that, if Ftw
k (x) = y, then F−1k (tw, y) := F−1k,tw(y) = x. A Block Cipher (BC) is a

TBC with an empty tweak space: the only tweak is the “empty string”.

Message authentication codes with leakage A message authentication code (MAC) is
a couple of algorithms (Tag,Vrfy), Tag : K ×M 7−→ T and Vrfy : K ×M× T 7−→ {0, 1},
where K, M and T are respectively called the key space, the message space and the tag
space, and such that for any key k ∈ K and any message m ∈M, 1← Vrfyk(m,Tagk(m)).

Definition 1. A MAC = (Tag,Vrfy) is (qT , qV , t, ε) strongly existentially unforgeable against
chosen-message and verification attacks, or simply (qT , qV , t, ε)-suf-vcma for short, if for all
(qT , qV , t)-adversary A, we have

Pr[FORGEsuf-vcma
A,MAC = 1] ≤ ε

where the FORGEsuf-vcma experiment is defined in Tab. 1.

4

FORGEsuf-vcma
MAC,A experiment.

Initialization: Oracle Tag(m):

k
$← K τ ← Tagk(m)

S ← ∅ S ← S ∪ {(m, τ)}
Return τ

Finalization:

(m, τ)← ATag(·),Vrfy(·,·) Oracle Vrfy(m, τ):
If (m, τ) ∈ S Return 0 Return Vrfyk(m, τ)
Return Vrfyk(m, τ)

Table 1. The FORGEsuf-vcma experiment.

To model the ability of an adversary to get leakage on tag generation and verification,
we extend the FORGEsuf-vcma experiment by allowing the oracles to additionally return the
evaluation of LTag and LVrfy, where L = (LTag, LVrfy) is the leakage function pair due to an
implementation of the MAC. Given an adversary A, we write AL to specify that the adversary
knows the implementation and that it can learn the leakage for chosen keys, which models
any leakage learning phase on other devices with the same implementation.

Definition 2. A MAC = (Tag,Vrfy), whose implementation has leakage function pair L =
(LTag, LVrfy) is (qT , qV , qL, t, ε) strongly existentially unforgeable against chosen message and
verification attacks with leakage in tag-generation and verification, or (qT , qV , qL, t, ε)-suf-L2,
if for any (qT , qV , qL, t)-adversary A, we have

Pr[FORGE-L2suf-vcma
A,MAC,L = 1] ≤ ε,

where the FORGE-L2suf-vcma experiment is defined in Tab. 2, and where AL makes at most qL
queries to L.

FORGE-L2suf-vcma
MAC,A experiment.

Initialization: Oracle LTag(m):

k
$← K τ ← Tagk(m), `m ← LTag(k,m)

S ← ∅ S ← S ∪ {(m, τ)}
Return (τ, `m)

Finalization:

(m, τ)← ALTag(·),LVrfy(·,·),L Oracle LVrfy(m, τ):
If (m, τ) ∈ S, return 0 `v ← LVrfy(k,m, τ)
Return Vrfyk(m, τ) Return (Vrfyk(m, τ), `v)

Table 2. The FORGE-L2suf-vcma experiment.

Note that the L2 notation is for leakage during both tag generation and verification (the
variant without tag verification leakage would use L1, following [17]).

Unbounded leakage In the rest of this paper, we will consider that all the components
of our system, except for the BC/TBC, have an unbounded leakage. That is, all the I/Os of
these components (the compression function of hash functions, for instance) are offered by
the leakage function. Our paper then focuses on the single component that is not expected to

5

leak its I/Os in full and is used once per MAC computation or tag verification (independently
of the length of the message to be authenticated): the BC/TBC.

3 Unpredictability of leaking TBC

Dodis and Steinberger [12] introduced the definition of unpredictability with leakage for BC.
At a high level, the definition says it is unfeasible to produce a valid input-output couple of
the BC even if we got the leakage besides of the outcome of the computation of the BC on
chosen inputs. We extend this notion by granting the adversary with the inverse oracle of
the BC and its leakage. To save some place, we directly describe this notion for TBCs. We
get the corresponding notion for BCs by removing all the tweaks in the definition below.

We denote by L = (LEval, LInv) the leakage function pair associated to an implementation
of the TBC, where LEval(k, tw, x) (resp. LInv(k, tw, z)) is the leakage resulting from the com-
putation of Fk(tw, x) (resp. F−1k (tw, z)). We also allow the adversary A to profile the leakages
and write AL as before, like in [25].

Definition 3. A tweakable block cipher F : K × T W × X 7−→ Z with leakage function
pair L = (LEval, LInv) is (qE, qI , qL, t, ε) strongly unpredictable with leakage in evaluation and
inversion, or (qE, qI , qL, t, ε)-SUL2, if for any (qE, qV , qL, t)-adversary A, we have

Pr[SUL2A,F,L ⇒ 1] ≤ ε,

where the SUL2 experiment is defined in Tab. 3, and where AL makes at most qL (offline)
queries to L.

SUL2A,F,L experiment.

Initialization: Oracle LEval(tw, x):

k
$← K z = Fk(tw, x)

L ← ∅ `e = LEval(k, tw, x)
L ← L ∪ {(x, tw, z)}

Finalization: Return (z, `e)

(x, tw, z)← ALEval(·,·),LInv(·,·),L

If (x, tw, z) ∈ L Oracle LInv(tw, z):
Return 0 x = F−1

k (tw, z)
If z == Fk(tw, x) `i = LInv(k, tw, z)

Return 1 L ← L ∪ {(x, tw, z)}
Return 0 Return (x, `i)

Table 3. Strong unpredictability with leakage in evaluation and inversion experiment.

4 First leakage-resilient MAC: HBC

We now revisit one of the most common designs to build a MAC from a hash function H
and a block cipher F. This MAC is the well-known hash-then-BC scheme, named here HBC,
except that we analyze it in a leakage setting and through the lens of the unpredictability of

6

F. As we want to show the security of HBC even when F leaks its inputs and outputs in full,
we just have to tweak the usual verification algorithm by using the inversion of the BC to
avoid leaking valid tags just by processing invalid pairs (m, τ). As mentioned in introduction,
our analysis models H as a random oracle for simplicity and since our focus is on the leak-free
blocks. Yet, it does not suggest any reason why an ideal object would be needed, and its
relaxation is an interesting open problem.

4.1 HBC description

Let M = {0, 1}∗ and X = Z = {0, 1}n. Considering a hash function H : M 7→ X and a
block cipher F : K ×X 7→ Z, we build HBC = (Tag,Vrfy):

Tagk(m): compute h = H(m), then compute and output τ = Fk(h).
Vrfyk(m, τ): compute h = H(m) and h̃ = F−1k (τ), then

output 1 if h = h′, and 0 otherwise.

We highlight that Tag only evaluates F while Vrfy only computes its inverse. This feature
is at the core of the argument showing that unbounded leakages do not decrease the unforge-
ability of this hash-then-BC design. This idea was already used for the authentication part
of the AE modes DTE2, EDT and FEMALE [9,17]. We illustrate HBC in Fig. 1.

Fig. 1. The leakage resilient MAC HBC. Leakage reveals the orange value.

4.2 Security of HBC

In the unbounded leakage model, the adversary receives all the ephemeral values computed
during the tag generation and the verification. Only the key of the BC, which is the key of the
MAC, remains hidden as implicitly defined by the leakage function pair of its implementation
L = (LEval, LInv). More precisely, the unbounded leakage function pair L∗ = (L∗Tag, L

∗
Vrfy) of HBC

is thus:

7

L∗Tag(k,m): return h = H(m) and LEval(k, h);

L∗Vrfy(k,m, τ): return h = H(m) and h̃ = F−1k (τ) as well as LInv(k, τ).

Despite H is a public function, we explicitly include its outputs in the leakage. It can be
considered as redundant but, as we rely on a random oracle to prove the security of HBC,
we prefer making them fully available to avoid any confusion.

Theorem 2. Let F : K × {0, 1}n 7−→ {0, 1}n be a (qT , qV , qL, t, εSUL2)-strongly unpredictable
block cipher in the presence of leakage, and H : S × {0, 1}∗ 7−→ {0, 1}n be a hash function
modeled as a random oracle that is queried at most qH times, then, HBC is a (qT , qV , qL, t, ε)-
strongly unforgeable MAC in the unbounded leakage setting, with L∗ = (L∗Tag, L

∗
Vrfy) defined

above, where

ε ≤ (qH + qV + 1)(qV + 1)εSUL2 + (qH + qT + qV + 1)2/2n,

and tH(qH + qT + qV + 1) + (qT + qL − q)tF + (qV + q)tF−1 ≤ t for any q ≤ qL, and where
we assume that all the H-query involved in the qL queries are already among the qH queries,
and if qV ≤ qH (which can be artificially fulfilled at the end of the experiment).

The advantage is bounded by 2qHqV εSUL2 + 4q2H2−n under the natural assumption qT +
qV + 1 ≤ qH (since qT and qV correspond to online queries while qH corresponds to offline
queries, it is expected to hold comfortably). The leading term is 2qHqV εSUL2: for εSUL2 = 2−128,
it implies that security holds up to qH = 264 and qV = 263 (i.e., slightly below the birthday
bound). For a more realistic εSUL2 = 2−96, it only holds with a stronger limit on the number
of verification queries (e.g., qH ≈ 264 and qV = 231). Note that the factor qHqV may be
due to the reduction proof technique, as it relates to a case where the adversary is likely to
produce a forgery early in the experiment and therefore much of the computational power
of the reduction seems useless to the adversary. Hence, it might be possible to obtain tighter
bounds using a different reduction approach. It would also be interesting to explore the
possibility of making a proof based on standard assumptions on the hash function. Such
assumptions would require to exclude damaging and implausible interactions between the
hash function and the PRF, and would be an interesting area for future research.

Idea of the proof. Assuming that an adversary A succeeds in the FORGE-L2suf-vcma
A,HBC,L∗ exper-

iment by making a total of qT leaking tag queries and qV leaking verification queries, let
(m, τ) be the forgery, i.e., the couple returned by A in the finalization phase. To bound this
winning probability, we partition this event into sub events: (1) The tag τ appears in the
answer to a leaking tag query (and thus, as an output of Fk); (2) The tag τ never appears in
the answer to a leaking tag query (and thus, τ can only be involved as an input of F−1k) and:
(a) m appears as an input of H before F−1k (τ) was ever computed in the experiment; (b) τ
appears as an input of F−1k before H(m) was ever computed in the experiment. We cover
all the cases since when both m and τ are fresh in a verification query, we always compute
(or ask the computation of) H(m) first so that we can say that m appears “before” (the
computation of F−1k on input) τ , and since we view the last verification in the finalization as
the (qV + 1)-th verification query.

8

The goal of the proof is to show that the collision resistance of H ensures that winning
in case 1 is negligible, the unpredictability of F ensures that winning in case 2a is negligible
and that preimage resistance of H ensures that winning in case 2b is negligible as well.

In case 1, there is a tag query on m′ which defines τ = Fk(H(m′)). Since (m, τ) is a
forgery we have Fk(H(m)) = τ with m 6= m′. Then, m and m′ produce a collision as Fk is a
permutation: H(m) = F−1k (τ) = H(m′).

In case 2a, we assume that F is SUL2-secure. Since m appears before τ , as a challenger
we have to use the value h = H(m) and we “wait” for the good tag in a verification query
to win the SUL2 game. We do not have to consider the message for which A makes a tag
query. However, we cannot know in advance what will be the right tag and we cannot wait
until the finalization of the unfogeability experiment because even if A’s output (m, τ) is the
right pair, τ may have been already used in a previous verification query. If so, the challenger
should have already made a leaking inverse query of the block cipher with input τ to get
h̃ = F−1k (τ) and `i ← LInv(k,m) to simulate LVrfy(m, τ), and it could no more win the game
against F with τ . Therefore, for all possible m involved in a H-query or a verification query,
we have to guess what will be the right τ in verification. Then, we need to consider all the
possible such pairs and we thus have to make at most (qH + qV + 1)(qV + 1) reductions.

In case 2b, the reduction can generate the key k itself and then evaluate F and its inverse
by itself. The first time τ appears (in a leaking verification query) we define the H-target
h̃ = F−1k (τ) since the winning corresponding m is still not hashed by assumption. Note that
we even do not care whether h̃ already appeared or not in a response to an H-query since
fresh queries will result in independent hashes. Therefore, the validity of (m, τ) means that
m is a preimage of h̃, as H(m) = F−1k (τ), while H(m) is random.

Proof. To prove the theorem, we use a sequence of games. Given an adversary A, we start
with Game 0 which is the FORGE-L2suf-vcma

A,HBC,L∗ experiment and we end with a game where all
the leaking verification queries deem the given input pair (mi, τi) invalid, including the last
verification at the finalization which is the (qV + 1)-th verification query by convention.

Game 0. This game is depicted in Tab 2. Let E0 be the event that the adversary AL∗ wins
this game, that is, the output of the experiment is 1.

Game 1. We introduce a failure event F1 with respect to Game 0, where F1 occurs if among
the at most (qH + qT + qV + 1) hash computations there is at least one collision. In Game 1,
if F1 occurs we abort the game and return 0. We let E1 be the event that the adversary AL

wins this game.

Bounding |Pr[E0]− Pr[E1]|. Since Game 0 and Game 1 are identical as long as F1 does not
occur, if Q = qH + qT + qV + 1, we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1] ≤ Q(Q+ 1)/2n+1.

Note: from now on, A wins if τ never appears in a leaking tag query. Moreover, h̃ = F−1k (τ)
is fresh when τ appears in a leaking verification query for the first time if m was never used
as input of H at that time. (See above.)

9

Game 2. We modify the winning condition of the previous game. In the finalization, once
A outputs (m, τ) we say that A does not win and return 0 if A fails as before or if m appears
as an input of H before the first apparition of τ during a leaking verification query. If we call
F2 the event that makes the adversary winning in Game 1 but loosing in Game 2, we have
|Pr[E2]− Pr[E1]| ≤ Pr[F2], where E2 is the event that A wins in this game.

Bounding Pr[F2]. If we call Vi the event that (m, τ) appears for the first time in the i-th
leaking verification query (mi, τ i), we just have to bound Pr[F2∩Vi], for all i = 1 to qV +1. By
considering all the input-output pairs defined by H before the i-th leaking verification query,
except those defined during a leaking tag query, we can build straightforwards reduction to
the SUL2-security of F. We thus have, Pr[F2 ∩ Vi] ≤ (qH + qV + 1)εSUL2 and finally

Pr[F2] =

qV +1∑
i=1

Pr[F2 ∩ Vi] ≤ (qH + qV + 1)(qV + 1)εSUL2.

Note: in Game 2, the adversary wins only if τ appears before m and τ first appears in a
leaking verification. The random value of H(m) is still undefined at that time.

Game 3. In this game we follow the specification of FORGE-L2suf-vcma
A,HBC,L∗ except that we always

output 0 at the end of the game.

Bounding |Pr[E3] − Pr[E2]| = Pr[E2]. From the last note, we know that h̃ = F−1k (τ) must
be reached from a fresh computation of H. Since any fresh H evaluation results in a uniform
output which is thus independent of the view of τ , Pr[H(m′) = h̃] = 1/2n for all hash eval-
uations on some m′ appearing after τ in a H-query or in a LVrfy query. But the number of
targets h̃ during the game is actually the number of different τ ′ in the LVrfy queries when
considering the hash evaluations after each such τ ′. Then Pr[E2] ≤ qV (qH + qV)/2n.

To summarize, we have

Pr[E0] ≤ (qH + qV + 1)(qV + 1)εSUL2 +
qV (qH + qV)

2n
+
Q(Q+ 1)

2 · 2n

from which the result follows as 2qV (qH + qV) ≤ Q(Q− 1). ut

In the next section we show how to improve the security bound.

5 Second leakage-resilient MAC: HTBC

The design of our second construction is similar to that of HBC. The main difference in HTBC
is that the hash function has a double output length. A TBC replaces the BC to use the tweak
as a support for the additional part of the digest. The primary goal of this modification is to
get a better bound, even in the unbounded leakage setting. However, we analyze this design
under the perspective of the unpredictability of the TBC for the first time.

10

5.1 HTBC description

Let M = {0, 1}∗ and T W = X = Z = {0, 1}n. Considering a hash function H : M 7→
X ×T W = {0, 1}2n and a tweakable block cipher F : K×T W ×X 7→ Z, we build HTBC =
(Tag,Vrfy):

Tagk(m): first compute h1‖h2 = H(m) and τ = Fk(h2, h1) and output τ .
Vrfyk(m, τ): first compute h1‖h2 = H(m) and h̃1 = F−1k,h2

(τ), then

output 1 if h1 = h̃1, and 0 otherwise.

We stress again that Tag only evaluates F while Vrfy only computes its inverse. HTBC was
proposed as the authenticator of TEDT [7] (also adopted in [16,6]), with the motivation to
break the birthday security barrier in the Hash-then-Block-cipher HBC. As the hash digest
has been increased to 2n bits, the standard hash collision-based attack turns unfeasible. We
illustrate HTBC in Fig. 2.

Fig. 2. The leakage resilient HBC-scheme.

5.2 Security of HTBC

The unbounded leakage function pair L∗ = (L∗Tag, L
∗
Vrfy) of HTBC is defined as

L∗Tag(k,m): return h1‖h2 = H(m) and LEval(k, h2, h1);

L∗Vrfy(k,m, τ): return h1‖h2 = H(m) and h̃1 = F−1k,h2
(τ) as well as LInv(k, h2, τ).

As we rely on the random oracle model to prove the security of HTBC, we include the digests
in the leakage to capture the fact that H is actually a public function.

Theorem 3. Let H : {0, 1}∗ 7−→ {0, 1}n × {0, 1}n be a hash function modeled as a random
oracle, and F∗ : K × {0, 1}n × {0, 1}n 7−→ {0, 1}n be a (qT , qV , qL, t + t3, εSUL2)-strongly un-
predictable tweakable block cipher with leakage L = (LEval, LInv), then HTBC is a (qT , qV , t, ε)-
suf-L2 strongly unforgeable MAC with unbounded leakage function pair L∗ = (L∗Tag, L

∗
Vrfy) as

11

defined above, where

ε ≤ (qH + qT + qV)2

22n
+ (qV + 1) · εSUL2 +

q2HqV
2n
· εSUL2 +

qV (qH + qV)

22n
,

and tH(qH + qT + qV + 1) + (qT + qL − q)tF + (qV + q)tF−1 ≤ t for any q ≤ qL, and where we
assume that all the H-query involved in the qL queries are already among the qH queries, as
long as 4 ≤ qH + qT + qV , 4qV ≤ qH and 10qH ≤ 2n.

The leading term in the security bound is εSUL2 · q2HqV 2−n. This time, for n = 128 and
εSUL2 ≈ 2−96, security holds up to qH ≈ 280 and qV = 264. As for Theorem 2, we are not
aware of a realistic matching attack (i.e., if a reasonable hash function and TBC are used in
the construction). Investigating whether the additional qH2−n factor that we gain compared
to the BC-based construction can get closer to 2−n is an interesting open problem.

The structure of the proof for HTBC is different from that of HBC. The main reason is that
the collision resistance of H does not cover all the winning cases when the adversary’s τ of the
forgery appears in an LTag query. Indeed, we might have H(m) = h1‖h2 6= h′1‖h′2 = H(m′)
such that Fk(h2, h1) = τ = Fk(h′2, h

′
1) with m′ in an LTag query. That is because Fk,h2 and

Fk,h′2
can be seen as two different permutations given that h2 6= h′2: an output τ defines many

possible tweak-input pairs. As we will see the distribution and the freshness of (h2, τ) will
play an important role in the proof.

Idea of the proof. Let (m, τ) be a forgery and write H(m) = h1‖h2. If no triple of the form
(?, h2, τ) appears during the computation of all the evaluations and inversions of F, (h1, h2, τ)
is a valid fresh triple for F which breaks the unpredictability of the TBC. However, if it is
not the case, the triple (?, h2, τ) appears either in the evaluation of F during an LTag query
or only in the inversion of F in an LVrfy query. In the former case, as the answer to an
LTag query is necessarily valid, the triple (?, h2, τ) must actually be (F−1k (h2, τ), h2, τ), i.e.
(h1, h2, τ). Of course, if the adversary has made an LTag query on m, it cannot win. If the
adversary is successful, it means that it managed to request the computation of a hash value
which collides on H(m), which only occurs with a beyond-birthday probability. We can thus
focus on the latter case where the triple (?, h2, τ) only appears when answering an LVrfy
query, i.e. in an inversion of F.

We split the remaining winning conditions into: (1) m appears as an input of H before
ever computing a TBC inversion on input (h2, τ) when answering a leaking verification query;
(2) m appears strictly after the first computation of a TBC inversion on input (h2, τ) when
answering a leaking verification query; no matter whether τ appears first in an LTag answer
or in an LVrfy query. We note that we no more need to consider the H computation in the
LTag queries as we already dealt with H-collisions. In a nutshell, the first case means the
adversary chooses τ depending on the view of the hash value h1‖h2 and hence it relates to the
unpredictability of F. In the second case, the target h1‖h2 is fixed in the leaking verification
query while the output of H(m) remains uniformly random and independent of the view at
that time. By convention, if m and τ first appear for the first time together in an LVrfy query,

12

we first compute H(m) so that we always consider that m appears “before” τ . In addition,
we consider the forgery as the (qV + 1)-th LVrfy query.

In case 1, H(m) = h1‖h2 appears before the computation of a TBC triple (?, h2, τ) which
will first be run when answering a leaking verification query. We want to build an adversary
B against F which ends by sending (h1, h2, τ). To make B successful, we have to prevent B
from making an LInv query on input (h2, τ) earlier, since otherwise (h1, h2, τ) is not a winning
triple at the end. Such a query can happen only if A manages to make an LVrfy query on
some (m′, τ) such that H(m′) = h′1‖h′2 with h′2 = h2. Of course, this happens if m = m′ and,
indeed, A can win if (m, τ) appears in an LVrfy query before the (qV + 1)-th one. However, it
can also happen if m′ 6= m, but then h′1 6= h1. Fortunately, if the first time (h2, τ) appears in
an LVrfy query is with m′ 6= m, we know that m appeared in a hash computation earlier for
the first time (and it cannot be in an LTag query). To sum up, we cannot build a single B but
by considering all the hash computations in the H queries and the LVrfy queries to combine
with all the tags in the LVrfy queries, we have at most (qH + qV + 1)(qV + 1) reductions to
build to cover all the possibilities. Fortunately, we only have to consider the messages m′

with H(m′) = h′1‖h′2 such that h′2 appears in a subsequent LVrfy query. Furthermore, we can
see when this happens before having to invert the TBC with tweak h′2. We will see in the
proof that the probability of multi-collision on the hi2-value involved in the i-th LVrfy query
will decrease the probability by a factor of roughly qH/2

n, which gives us a beyond birthday
term eventually.

In case 2, the adversary outputs a forgery (m, τ) while (h2, τ) appears in a leaking verifi-
cation query before the first computation of H(m). Here, we simply pick the key of the TBC
to simulate the forgery experiment. If (h2, τ) already appears in an LVrfy query the valid
triple (h̃1, h2, τ) is already fixed in the answer to that query (necessarily invalid). Therefore
H(m) which is still uniformly random and independent of the view at that time will have to
match the target (h̃1, h2). This match thus happens with probability 1/22n for each future
hash evaluation in a H-query or in a next LVrfy query. Of course we do not know what will be
the right (h2, τ) until the adversary output its forgery in the finalization phase. So, if (hi2, τ

i)
denotes the input of the inversion of F in the i-th leaking verification query, we actually
defines qV targets (h̃i1, h

i
2, τ

i), since i < qV + 1 here. Therefore, the probability that this case
occurs is upper-bounded by qV (qH + qV)/22n.

Proof. To prove the theorem, we use a sequence of games. Given an adversary A, we start
with Game 0 which is the FORGE-L2suf-vcma

A,HTBC,L∗ experiment and we end with a game where all
the leaking verification queries (mi, τ i) are deemed invalid, including the last and (qV +1)-th
verification which tests the validity of the potential forgery (m, τ). In the sequel, we note
H(m) = h1‖h2.

Game 0. This game is depicted in Tab 2. Let E0 be the event that the adversary AL∗ wins
this game, that is, the output of the experiment is 1.

Game 1. We introduce a failure event F1 with respect to Game 0, where F1 occurs if among
the at most (qH + qT + qV + 1) distinct hash computations there is at least one collision.

13

In Game 1, if F1 occurs we abort the game and return 0. We let E1 be the event that the
adversary AL wins this game.

Bounding |Pr[E0]− Pr[E1]|. Since Game 0 and Game 1 are identical as long as F1 does not
occur, and 4 ≤ qH + qT + qV , we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1] ≤ (qH + qT + qV)2/22n.

Note: from now on, in the case of a winning adversary, no TBC triple of the form (?, h2, τ)
appears when answering to an LTag query.

Game 2. We modify the winning condition of the previous game. In the finalization, once A
outputs (m, τ) we say that A does not win and returns 0 if A fails as before or if H(m) = h1‖h2
appears before the first apparition of (h2, τ) as input to F−1k in a leaking verification query.
If we call F2 the event that makes the adversary winning in Game 1 but loosing in Game 2,
we have |Pr[E2]− Pr[E1]| ≤ Pr[F2], where E2 is the event that A wins in this game.

Bounding Pr[F2]. If we call Vi the event that the first time (h2, τ) appears during the com-
putation of the answer to a leaking verification query is in the i-th leaking verification query
(mi, τ i), we just have to bound Pr[F2 ∩ Vi], for all i = 1 to qV + 1. The event F2|Vi means
m appears before mi (m = mi included) and, if H(mi) = hi1‖hi2, we have (hi2, τ

i) = (h2, τ)
while this never happens before in a previous LVrfy query. If m = mi, F2|Vi reduces to the
strong unpredictability of F with leakage. Indeed, it is easy to emulate LTag and LVrfy from
LEval and LInv and to output the final triple (hi1, h

i
2, τ

i) against F at the time the i-th query
is made in order to win with the same probability since (hi1, h

i
2) was never a LEval query (as

m was never a LTag query in F2 and there is no more collision since Game 1) and (hi2, τ
i)

was never a LInv query before by definition of Vi. However, when m 6= mi, we cannot follow
such a simple strategy. Since m 6= mi we know that h1 6= hi1 as there is no collision by
assumption and (hi1, h

i
2 = h2, τ

i = τ) is not a winning triple against F. Of course, we could
simply make an LInv query on (hi2, τ

i) to emulate the i-th LVrfy query but in that case we
will actually “consume” our chance to win against F with (h1, h2, τ) because the input (h2, τ)
for inversion will be no more fresh after answering the i-th LVrfy query, and the reduction
will fail. Fortunately, at the time we should emulate the i-th LVrfy query, we now that the
history of the hash evaluations already contains the forged message m, that h2 collides with
hi2, and that τ i is its valid tag. We thus have to make several hybrids on the collisions with
hi2 to anticipate the right m′ to win against F with the triple (h′1, h

′
2 = hi2, τ

i). This number
of hybrids is the number of collisions with hi2 which remains small with high probability as
it implies multi-collision in {0, 1}n. We note that only the hash evaluations of a H-query or
of an LVrfy query matter. In the following, we write H2(m

′) = h′2 when H(m′) = h′1‖h′2 for
some h′1.

Concretely, if qi is the number of H evaluations made from all the H-queries and the LVrfy
queries until the i-th LVrfy query, including H(mi), and if Si is the random variable counting

14

the number of H2-collisions with hi2, for i = 1 to qV , we have

Pr[F2 ∩ Vi] =

qi∑
s=1

Pr[F2 | Vi ∩ Si = s] · Pr[Vi ∩ Si = s]

≤ Pr[F2 | Vi ∩ Si = s ∩
⋃qi

s=1Hi,s]

+

qi∑
s=2

s−1∑
j=1

Pr[F2 | Vi ∩ Si = s ∩Hi,j] · Pr[H2-Coll(qi) ≥ s]

where Hi,j is the event that among the s distinct messages that H2-collide on hi2 the j-th
one is the forged message m. By convention, we always see mi as the s-th and last such
message even if the computation of H(mi) appears earlier than in the i-th LVrfy query6. The
case

⋃qi
s=1Hi,s thus corresponds to mi = m and the related probability in the expression is

upper-bounded by εSUL2 as explained above. Moreover, for each j = 1 to s− 1, it is now easy
to see that the event F2 | Vi ∩ Si =s ∩ Hi,j reduces to SUL2 by using the j-th message and
τ i as our guess against the TBC. Therefore,

Pr[F2 ∩ Vi] ≤ εSUL2 + εSUL2

qi∑
s=2

(s− 1) · Pr[H2-Coll(qi) ≥ s]

≤ εSUL2 + εSUL2 ·
1

2n

(
qi
2

)(
1 +

2qi
2n

)
by lemma 1, since 2qi ≤ 2(qH + qV) ≤ 2n−2 ≤ 2n by assumption on the number of queries.
In addition, 1 + 2qi/2

n ≤ 5/4. Summing on all the i’s, with Pr[F2 | VqV +1] ≤ εSUL2, gives

Pr[F2] ≤ (qV + 1) · εSUL2 + εSUL2 ·
1

2n
· 5

4
·

qV∑
i=2

(
qi
2

)
.

Some basic computation shows that
∑qV

i=1

(
qi
2

)
≤
∑qV

i=1

(
qH+i

2

)
≤ 1

2
q2HqV (1 + 2qV

qH
), if qV ≤ qH .

But then, as qV ≤ qH/4 by assumption, we have

Pr[F2] ≤ (qV + 1) · εSUL2 +
q2HqV

2n
· εSUL2.

Game 3. In this game we follow the specification of FORGE-L2suf-vcma
A,HBC,L∗ except that we always

output 0 at the end of the game.

Bounding |Pr[E3] − Pr[E2]| = Pr[E2]. We end by showing that winning while the TBC
input (h2, τ) for inversion appears when answering a leaking verification query before the
computation of H(m) is negligible. For each (hi2, τ

i) that appears when answering a leaking

6 This is without loss of generality as the enumeration only matters in the reduction at the time we get the adversary’s
i-th LVrfy query (mi, τ i). The choice of (which is) the j-th message colliding on hi

2 can be made once the s messages
are known. At that time, if (hi

2, τ
i) = (h2, τ) as implied by Vi, F

−1
k (h2, τ) was never computed anyway.

15

verification query and before m′ the only way for the adversary to win with the pair (m′, τ ′) is
to “hope” that H(m′) = h̃i1‖hi2. However, before the computation of H(m′) its value remains
independent of the adversary’s view. Therefore, the probability that the random output
of H(m′) hits the full target h̃i1‖hi2 is 1/22n. We now count the number of tries a winning
adversary can make in it that case. Clearly, we do not have to count the tries related to any
LTag. Considering the event Vi as in the previous analysis of Game 2, in E2∩Vi there at most
qH+qV +1−i hash evaluations left after the i-th LVrfy query. Then, Pr[E2 | Vi] ≤ (qH+qV)/22n

for i = 1 to qV . Note that Pr[E2 | VqV +1] = 0 by definition. Finally, we get

Pr[E2] ≤
qV (qH + qV)

22n
.

Hence, the bound of the theorem. ut

6 Conclusion and open problems

We revisit the security proofs of MACs based on the “Hash-then-(T)BC” construction, an
approach that has often been adopted in the context of leakage-resilient cryptography. While
previous works have been modeling the (T)BC as a leak-free component, we only require
that the (T)BC remains unpredictable in the presence of leakage, an assumption that has
the major advantage of being easy to test on any implementation. We show that unpre-
dictability with leakage is a suitable assumption for the analysis of the leakage-resilience of
two standard MAC constructions, a result that has a direct impact on several recent con-
structions of AE modes of operation that are based on this approach. Apart from making
security proofs more satisfactory, relying on unpredictability of the (T)BC rather than on
its pseudorandomness prompts for investigating whether block cipher implementations that
only seek to offer unpredictability with leakage could also require less rounds and, as a result,
deliver better efficiency and cheaper protection against side-channel attacks.

As discussed in the paper, our bounds may not be tight due to some additional computa-
tions that are required in our reductions that actual adversaries may not need. Investigating
whether these bounds can be improved is therefore an interesting challenge. Besides, for sim-
plicity we model our hash function as an ideal random object (but do not require any form
of progammability or other conveniences that come with the random oracle model). This fits
well with many applications, for instance when the hash function is based on a sponge that
is also traditionally modeled as an ideal permutation. Still, our analysis does not suggest
any reason why an ideal object would be needed, and it would therefore be interesting to
investigate whether and how this assumption could be relaxed.

As a final note, we conjecture that strong unpredictability with leakage may also be suf-
ficient to prove confidentiality under ideal oracle (e.g., cipher, permutation) assumptions,
assorted with oracle-free leakage functions, as introduced in [27] for block ciphers and re-
cently used for the analysis of sponge-based designs [16,10]. Indeed, in such models the
leakage about a key is useless as long as it does not lead to a full key-recovery. But as a

16

result, the interpretation of this unpredictability assumption in terms of quantitative secu-
rity degradation (e.g., in the situation where an implementation is not leak-free but has high
enough unpredictability with leakage) is also more delicate: the ideal objects transform an
unpredictable value into something that is indistinguishable from random, hence possibly
hiding the level of security degradation caused by the leakage.

Acknowledgments. Thomas Peters and François-Xavier Standaert are respectively post-
doctoral researcher and senior research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS). This work has been funded in parts by the European Union through the ERC
project SWORD (724725) and the Walloon Region FEDER USERMedia project 501907-
379156. Chun Guo was partly supported by the Program of Qilu Young Scholars of Shandong
University.

References

1. Jee Hea An and Mihir Bellare. Constructing vil-macsfrom fil-macs: Message authentication under weakened
assumptions. In CRYPTO, volume 1666 of LNCS, pages 252–269. Springer, 1999.

2. Jean-Philippe Aumasson, Steve Babbage, Daniel J. Bernstein, Carlos Cid, Joan Daemen, Orr Dunkelman, Kris
Gaj, Shay Gueron, Pascal Junod, Adam Langley, David McGrew, Kenny Paterson, Bart Preneel, Christian
Rechberger, Vincent Rijmen, Matt Robshaw, Palash Sarkar, Patrick Schaumont, Adi Shamir, and Ingrid Ver-
bauwhede. CHAE: Challenges in Authenticated Encryption. ECRYPT-CSA D1.1, Revision 1.05, 1 March 2017.
https://chae.cr.yp.to/whitepaper.html.

3. Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenticated encryption in the face of
protocol and side channel leakage. In ASIACRYPT (1), volume 10624 of LNCS, pages 693–723. Springer, 2017.

4. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In CRYPTO,
volume 1109 of LNCS, pages 1–15. Springer, 1996.

5. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message authentication
code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

6. Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien Duval, Chun Guo, Gregor Lean-
der, Gaëtan Leurent, Itamar Levi, Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert,
and Friedrich Wiemer. Spook: Sponge-based leakage-resilient authenticated encryption with a masked tweakable
block cipher. Submission to NIST Lightweight Cryptography, https: // www. spook. dev/ , 2019.

7. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Tedt, a leakage-
resilient AEAD mode for high (physical) security applications. IACR Cryptology ePrint Archive, 2019:137, 2019.

8. Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Ciphertext
integrity with misuse and leakage: Definition and efficient constructions with symmetric primitives. In AsiaCCS,
pages 37–50. ACM, 2018.

9. Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. On leakage-resilient authenti-
cated encryption with decryption leakages. IACR Trans. Symmetric Cryptol., 2017(3):271–293, 2017.

10. Christoph Dobraunig and Bart Mennink. Leakage resilience of the duplex construction. IACR Cryptology ePrint
Archive, 2019:225, 2019.

11. Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message authentication, revisited. In EU-
ROCRYPT, volume 7237 of LNCS, pages 355–374. Springer, 2012.

12. Yevgeniy Dodis and John P. Steinberger. Message authentication codes from unpredictable block ciphers. In
CRYPTO, volume 5677 of LNCS, pages 267–285. Springer, 2009.

13. Yevgeniy Dodis and John P. Steinberger. Domain extension for macs beyond the birthday barrier. In EURO-
CRYPT, volume 6632 of LNCS, pages 323–342. Springer, 2011.

14. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302. IEEE
Computer Society, 2008.

15. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in software? In EUROCRYPT
(1), volume 10210 of LNCS, pages 567–597, 2017.

16. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Towards low-energy leakage-resistant
authenticated encryption from the duplex sponge construction. IACR Cryptology ePrint Archive, 2019:193.

17

https://chae.cr.yp.to/whitepaper.html
https://www.spook.dev/

17. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Authenticated encryption with
nonce misuse and physical leakage: Definitions, separation results and first construction - (extended abstract).
11774:150–172, 2019.

18. Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient cryptography from minimal
assumptions. In EUROCRYPT, volume 7881 of LNCS, pages 160–176. Springer, 2013.

19. Anthony Journault and François-Xavier Standaert. Very high order masking: Efficient implementation and
security evaluation. In CHES, volume 10529 of LNCS, pages 623–643. Springer, 2017.

20. Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptography. IACR Cryptology ePrint
Archive, 2019:302, 2019.

21. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In CRYPTO,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

22. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO, volume 1666 of
LNCS, pages 388–397. Springer, 1999.

23. Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block ciphers. In CRYPTO, volume 2442 of
LNCS, pages 31–46. Springer, 2002.

24. Daniel P. Martin, Elisabeth Oswald, Martijn Stam, and Marcin Wójcik. A leakage resilient MAC. In IMA Int.
Conf., volume 9496 of LNCS, pages 295–310. Springer, 2015.

25. Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-resilient authentication and encryption
from symmetric cryptographic primitives. In ACM Conference on Computer and Communications Security,
pages 96–108. ACM, 2015.

26. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for multi-collisions. In
ICISC, volume 4296 of LNCS, pages 29–40, 2006.

27. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical leakage-resilient pseudorandom
generators. In ACM Conference on Computer and Communications Security, pages 141–151. ACM, 2010.

28. Liting Zhang, Wenling Wu, Peng Wang, Lei Zhang, Shuang Wu, and Bo Liang. Constructing rate-1 macs from
related-key unpredictable block ciphers: PGV model revisited. In FSE, volume 6147 of LNCS, pages 250–269.
Springer, 2010.

18

