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Abstract. In this work, we propose new predicate encryption schemes for zero inner-product en-
cryption (ZIPE) and non-zero inner-product encryption (NIPE) predicates from prime-order bilinear
pairings, which are both attribute and function private in the public-key setting.

• Our ZIPE scheme is adaptively attribute private under the standard Matrix DDH assumption
for unbounded collusions. It is additionally computationally function private under a min-entropy
variant of the Matrix DDH assumption for predicates sampled from distributions with super-
logarithmic min-entropy. Existing (statistically) function private ZIPE schemes due to Boneh et
al. [Crypto’13, Asiacrypt’13] necessarily require predicate distributions with significantly larger
min-entropy in the public-key setting.

• Our NIPE scheme is adaptively attribute private under the standard Matrix DDH assumption, al-
beit for bounded collusions. It is also computationally function private under a min-entropy variant
of the Matrix DDH assumption for predicates sampled from distributions with super-logarithmic
min-entropy. To the best of our knowledge, existing NIPE schemes from bilinear pairings were
neither attribute private nor function private.

Our constructions are inspired by the linear FE constructions of Agrawal et al. [Crypto’16] and the
simulation secure ZIPE of Wee [TCC’17]. In our ZIPE scheme, we show a novel way of embedding two
different hard problem instances in a single secret key - one for unbounded collusion-resistance and
the other for function privacy. With respect to NIPE, we introduce new techniques for simultaneously
achieving attribute and function privacy. We also show natural generalizations of our ZIPE and NIPE
constructions to a wider class of subspace membership, subspace non-membership and hidden-vector
encryption predicates.

1 Introduction

Predicate encryption (PE) [14, 5, 30] is a modern public-key primitive that enables fine-grained role-based
access control on encrypted data, which makes it desirable for a number of real-life applications. In a PE
scheme, a single master secret key msk is used to derive several secret keys of the form skf , where f is a
Boolean function over Σ. A ciphertext corresponds to an attribute-message pair (I,M) ∈ Σ×M, where Σ is
a pre-defined set of attributes andM is a set of payload messages. Decryption of a ciphertext corresponding
to (I,M) by skf reveals M if and only if f(I) = 1. Based on the security notion achieved, a PE scheme may
be classified into one or more of the categories described below.

Public Attribute PE. In a public attribute PE system, a ciphertext ct on (I,M) leaks no informa-
tion about the message M to an adversary possessing secret-keys that do not decrypt ct (i.e., skf such
that f(I) = 0). The attribute I, on the other hand, is public. Such schemes are often nomenclatured as
attribute-based encryption (ABE). Concrete ABE schemes have been proposed for a wide range of Boolean
predicates, including equality/identity testing (IBE) [10, 24], keyword search [9, 1], Boolean formulae [29],
regular languages [35], general polynomial-size circuits [22, 11, 27], and even Turing machines [25].

Attribute Private PE. In an attribute private PE, the ciphertext ct leaks no information about either
the attribute I or the message M to an adversary possessing secret-keys that do not decrypt ct. Concrete
instantiations of private attribute PE have been achieved for hidden vector encryption (HVE) [14] that



supports, in addition to equality, conjunctive, range and subset predicates, and also for zero-inner-product
encryption (ZIPE) [30, 33]. ZIPE has been realized using bilinear maps [30, 33] and also from lattice-based
techniques [5, 2, 6].

In a more recent work [36], Wee demonstrated many new techniques for achieving selectively simulation-
secure attribute private PE from prime-order bilinear groups under the standard Matrix DDH assumption.
The main result of this work is a partially hiding predicate encryption scheme for functions that compute
an arithmetic branching program on public attributes, followed by an inner product predicate on private
attributes. In the realm of lattices, Gorbunov et al. [28] showed how to construct attribute private PE for
all circuits from the learning with errors (LWE) assumption.

Although attribute privacy has been realized for many different predicates from bilinear pairings, it
remains open to construct pairing-based attribute private PE for certain simple predicates such as non-zero
inner-product encryption (NIPE) [7] and its natural generalization to a broader class of subspace non-
membership encryption (SNME) predicates.

Function Private PE. In a function private PE, a secret-key skf reveal no information beyond the absolute
minimum about the underlying predicate f . Note that the notions of attribute and function privacy for a PE
are mutually exclusive in the sense that one does not necessarily imply the other. In the setting of private-key
PE, there already exist function private constructions from pairings for predicates such as ZIPE [8, 20]. In
fact, using techniques introduced by Brakerski et al. [15], any private-key PE can be made function private in
a generic manner. However, in the setting of public-key PE, formalizing a realistic notion of function privacy
is significantly more challenging [12, 13].

Consider, for example, an adversary against an IBE scheme who is given a secret-key skid corresponding
to an identity id. As long as the adversary has some apriori information that id belongs to a set S such that
|S| is at most polynomial in the security parameter λ, it can fully recover id from skid : it can simply resort
to encrypting a random message M under each identity in S, and decrypting using skid to check for a correct
recovery.

Hence, in the setting of public-key PE, function privacy can only hold under the minimal assumption
that each predicate is sampled from a distribution with min-entropy at least super logarithmic in the security
parameter λ [12, 13]. Under similar assumptions, function private public-key constructions have been reported
for IBE [12], ZIPE [3] and subspace membership encryption (SME) [13], which is essentially a generalization
of ZIPE. These works throw open several interesting questions. We discuss them below.

1. The PE schemes proposed in [12, 13] are inherently restricted to satisfying a statistical notion of function
privacy. For a vast majority of applications, a relaxed computational notion of function privacy suffices.
It is currently open to design public-key PE schemes with function privacy in this relaxed computational
setting.

2. The function private PE schemes in [12, 13] necessarily assume predicate distributions with min-entropy
k ≥ λ (where λ is the security parameter). 1 This is a rather stringent assumption in the context of
real-world predicates. An interesting question is whether a public-key PE scheme can be function private
for predicate distributions with only super-logarithmic min-entropy.

There are several real-world applications that warrant the study of PE schemes which are simultaneously
attribute and function private. These include searching on encrypted data, secure information retrieval,
secure mail gateways and payment gateways, and many others. The reader is referred to [12] for an elaborate
discussion of these applications.

1.1 Our Contributions

We focus on the following questions discussed in the previous section:

Is it possible to design attribute private PE from bilinear maps for the non-zero inner product functionality?

1 The PE schemes in [12, 13] are not function private, even in the weaker computational setting, if the min-entropy
requirements are relaxed any further.
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What is a meaningful definition of function privacy against resource-bounded adversaries?

Can the min-entropy requirements on the underlying predicate distributions be restricted to a bare minimum
while defining function privacy?

Are there constructions for public-key PE that are provably function private, with respect to the relaxed
definition, under standard computational assumptions?

In this paper, we answer these questions in the affirmative by first presenting a relaxed definition of function
privacy taking into account resource bounded adversaries and restricting the min-entropy requirements of the
underlying predicate distributions to ω(log λ). We then present new pairing-based constructions in the public
key setting for subspace membership encryption (SME) and subspace non-membership encryption (SNME)
that generalize ZIPE and NIPE respectively. Our constructions are adaptively attribute private and com-
putationally function private in tandem, under variants of the well-known matrix Diffie-Hellman (MDDH)
assumption.

Our ZIPE scheme is the first to achieve computational function privacy for predicates with super-
logarithmic min-entropy. As already mentioned, existing (statistically) function private ZIPE schemes due
to Boneh et al. [13] necessarily require predicate distributions with significantly larger min-entropy in the
public-key setting. Our NIPE scheme is first to achieve both attribute and function privacy under group-
theoretic assumptions, albeit in the bounded collusion setting. Existing constructions for NIPE based on
group-theoretic assumptions [7, 16] were neither attribute nor function private, even in the bounded collu-
sion setting.

Our key technical contributions may be summarized as follows.

• Relaxing function privacy definition to account for resource-bounded adversraries and underlying predi-
cates sampled from distributions with min-entropy k = ω (log λ) (λ being the security parameter).
• Introduction of a min-entropy variant of MDDH assumption where the matrix provided in the instance

does not have the uniform distribution but guaranteed to have ω(log λ) min-entropy.
• Simple and efficient constructions for ZIPE and NIPE from prime-order asymmetric bilinear pairings,

that are simultaneously attribute and function private under the presumed hardness of matrix DDH
and its min-entropy variant, respectively, so long as the predicates are sampled from distributions with
super-logarithmic min-entropy.

• Generalizations of the aforementioned constructions to a broader class of predicates, namely SME and
SNME.

Our constructions are inspired by the linear FE constructions of Agrawal et al. [6] and the simulation
secure ZIPE of Wee [36]. In our SME (and hence ZIPE) scheme, we show a novel way of embedding two
different hard problem instances in a single secret key - one for unbounded collusion-resistance and the
other for function privacy. With respect to SNME (and hence NIPE), we introduce new techniques for
simultaneously achieving attribute and function privacy, albeit in the bounded collusion setting.

1.2 Overview of Results and Techniques

In this section, we briefly explain the core ideas of our attribute private and function private SME/SNME
in terms of the simplest cases, namely, ZIPE/NIPE. The security of our constructions follow from different
variants of the Matrix DDH assumption over both source groups of a bilinear pairing.

The Matrix DDH assumption in a group G of prime order q given by a generator g requires distinguishing

between two distributions – (gA, gAr) and (gA, gu) – where A ∈ Z(k+1)×k
q , r ∈ Zkq and u ∈ Zk+1

q are sampled
uniformly and independently from their respective domains (here k ≥ 1 and it is assumed that A has full
rank with overwhelming probability). For the function privacy proofs we rely on a special form of the MDDH
assumption parameterized by (m,n) – an instance (with respect to a group G = 〈g〉) consists of gW, gu where

W
R←− V∗ for some source distribution V∗ over Zm×nq of min-entropy ω(log λ) and the task is to determine

if u = WT · y for y
R←− Zmq or u is randomly distributed in Znq .
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Denote an asymmetric pairing by the 7-tuple G = (G1,G2,GT , q, g1, g2, e) where |G1| = |G2| = |GT | = q,
g1, g2 respectively generate G1,G2 and e : G1×G2 → GT is a non-degenerate, efficiently computable bilinear
map. Call G Matrix DDH-hard if the Matrix DDH assumption holds in both G1 and G2.

Zero Inner-Product Encryption (ZIPE). Our attribute and function private ZIPE construction, named
ΠZIPE, is inspired by the simulation secure ZIPE scheme of Wee [36]. The public parameters and the master
secret key in ΠZIPE are given by

pp =

(
g1, g

A
1 , g

S0·A
1 , gS1·A

1 , . . . , gSn·A
1 , e(g1, g2)K·A

)
,

msk = (g2,S0,S1, . . . ,Sn,K,B0) ,

where A
R←− Z(k+1)×k

q , S0,S1, . . . ,Sn
R←− Z(2k+1)×(k+1)

q , K
R←− Z1×(k+1)

q and B0
R←− Z(2k+1)×k

q are sampled
uniformly. A ciphertext ct on attribute vector x = (x1, . . . , xn) ∈ Znq and message M is given by

ct =
(
c0, {cj}nj=1, cn+1

)
=

(
g

(A·r)T

1 ,
{
g

((xj ·S0+Sj)·A·r)T

1

}n
j=1

,M · e(g1, g2)(K·A·r)T
)
,

for r
R←− Zkq . The secret key skw on a vector w = (w1, . . . , wn) ∈ Znq is defined as

skw =
(
h0, {hj}nj=1

)
=

(
g
K+y

∑n
j=1 wj ·t·Sj

2 ,
{
g
ywjt
2

}n
j=1

)
,

where y
R←− Zq and t = (B0 · s)T for s

R←− Zkq .
For correctness, we restrict the message spaceM to an exponentially smaller subset of GT . The decryption

algorithm computes

M = cn+1 ·

 n∏
j=1

e(cj , hj)

/e(c0, h0),

which returns the correct message if 〈x,w〉 = 0. When 〈x,w〉 6= 0 the message thus computed is uniformly
distributed in GT and with high probability will be outside M. In such a case, the decryption algorithm
may return a symbol ⊥ indicating failure.

We prove that ΠZIPE is adaptively attribute private assuming the hardness of the decisional MDDH
problems in G1 and G2. The attribute privacy game asks an adversary to distinguish between encryptions
to attribute vectors x0 and x1. Or in other words, the adversary is given a challenge ciphertext for xb where

b
R←− {0, 1} and its task is to guess b. Essentially, we need to argue that the components {cj}nj=1 in the

challenge ciphertext hide the attribute x.
The proof relies on the dual system proof methodology and proceeds through a sequence of games, each

changing the distribution of challenge ciphertext and keys. The key steps in the proof are listed below.

1. The reduction first embeds an instance of MDDH in G1 in the challenge ciphertext to make it semi-
functional. At this stage, the exponent of ciphertext component c0 is no longer correlated to A and this
is consistent with the other components.

2. In a series of subsequent games, we turn each secret key provided to the adversary upon a key extract
query to semi-functional form by embedding MDDH instances in the group G2. This step is crucial for
unbounded collusion resistance.

3. Once the distribution of all keys are modified, we apply a “change of basis” to the challenge ciphertext,
and argue that xb is information theoretically hidden from the adversary.

We prove the indistinguishability of each pair of consecutive games by resorting to a set of techniques involving
dual bases in prime-order bilinear groups (similar techniques have been used in prior works, notably [23, 26,
17]). The reader may refer to Section 4 and Appendix ?? for the detailed proof.

For showing function privacy of ΠZIPE, we rely on the min-entropy variant of the MDDH assumption. In
the function privacy experiment, the adversary picks two vector distributions, each component of which is an
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ω(log λ)-source over Zq. The challenger samples a vector w according to one of the distributions, computes a
secret key skw for vector w and gives it to the adversary. The adversary’s task is to determine the distribution
of w looking at skw. To prove that the secret key hides the distribution from which w was sampled, we embed
an instance of the min-entropy variant of the MDDH assumption in the challenge secret key provided to
the adversary. If the instance is sampled from the correct distribution, the secret key is well-formed. On the
other hand, if the instance is uniformly random, the secret key perfectly hides the distribution from which
w was sampled. The reader may refer to Section 4 for the detailed proof.

Note that our ZIPE scheme essentially embeds two different problem instances in the same secret key
- an MDDH problem instance over G2 that is exploited to achieve unbounded collusion-resistance in the
attribute privacy experiment, and a min-entropy MDDH instance over G2, which is the basis for the proof
of function privacy. We believe that this “simultaneous embedding” strategy is of independent interest, and
may be useful in other applications.

Non-Zero Inner-Product Encryption (NIPE). Our NIPE scheme is inspired by the linear FE con-
struction of Agrawal, Libert and Stehlé [6] referred to as LinFE in what follows. A LinFE ciphertext ct is
created by encrypting a vector x of length n. Decryption of ct by a secret key, generated for a linear function
(given by a length n vector w), returns the value of the inner-product 〈x,w〉.

In a NIPE scheme, a ciphertext is associated with a payload message Mand a vector x while a secret
key corresponds to a vector y. to be encoded in the ciphertext. Decryption algorithm should be designed to
return M iff 〈x,w〉 6= 0. To derive NIPE from LinFE, we use two instantiations of the LinFE with independent
master secret keys. The public parameters and master secret key for the resulting scheme would be

pp =
(
g, gA, gS1 , gS2

)
msk = (S1,S2).

The ciphertext for (x,M) will result from encoding x and M · x using the two individual schemes as shown
below:

ct =
(
gAr1 , gx+S1Ar1 , gAr2 , gM ·x+S2Ar2

)
.

Here r1, r2 are sampled uniformly at random from Zkq . A secret key skw = (wTS1,w
TS2) helps in recovering

gM〈x,w〉 and g〈x,w〉 with respect to g. One may recover M by simply computing the discrete logarithm of
gM〈x,w〉 by g〈x,w〉 which is possible only when 〈x,w〉 6= 0. The restriction on the inner-products now shifts
to the messages that is, the messages have to lie in a polynomial-sized subset of Zq. A similar technique has
been previously used in [4] to construct public revocation and traitor-tracing from LinFE and revocation,
in particular, can be seen as a special case of NIPE. However, our naive construction is not sufficient to
(simultaneously) achieve attribute privacy and function privacy since the secret key already reveals too
much information about w.

To circumvent the problem, we adapt the construction to the bilinear map setting. This is because
functions are associated with secret keys and a basic step to ensure privacy of the function encoded in
the secret key components is to hide them in the exponents of elements coming from a discrete log hard
group. Ciphertext components already live in a cyclic group. Decryption requires combining the ciphertext
and key components to recover the message which can be facilitated if the two groups are equipped with a
pairing/bilinear map. Furthermore, the secret key is additionally randomized with y ∈ Zq (for the generalized
case of SNME, this would be a vector y ∈ Zmq where w is replaced by a matrix W ∈ Zm×nq ). Randomization is
essential for the function privacy proof, which exploits the hardness of a min-entropy variant of the MDDH
assumption. We now discuss the construction of a NIPE scheme possessing both attribute and function
privacy.

Let G = (G1,G2,GT , q, g1, g2, e) denote an asymmetric bilinear map ensemble. The public parameters
and master secret key for our modified scheme ΠNIPE would be similar to the naive scheme we described
earlier except that pp components now live in G1.

pp =
(
g1, g

A
1 , g

S1
1 , gS2

1

)
msk = (g2,S1,S2) .

Similarly, the ciphertext for (x,M) for ΠNIPE is given by

ct =
(
gAr1

1 , gx+S1Ar1
1 , gAr2

1 , gM ·x+S2Ar2
1

)
,
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where r1, r2 are uniformly distributed in Zkq . Secret key for w would now be defined as

skw =
(
gy·w2 , gy·w

TS1

2 , gy·w
TS2

2

)
randomized by y sampled uniformly from Zq. During decryption, ciphertext and key components are paired
to obtained e(g1, g2)My〈x,w〉 and e(g1, g2)y〈x,w〉. Message M can be recovered by computing the discrete
logarithm of the former with respect to the latter, conditioned on 〈x,w〉 6= 0.

Unlike the SME case, we can only prove attribute privacy of our SNME scheme in the bounded collusion
model. More precisely, an adversary is allowed to query at most n− 1 secret keys, so that the master secret
key components S0,S1 . . . ,Sn retain sufficient entropy from the adversary’s point of view. The proof then
proceeds via a sequence of two hybrid experiments, in each of which the proof embeds a fresh MDDH instance
in the challenge ciphertext.

We argue that when these instances are sampled from the “random” distribution instead of the “real” dis-
tribution, the challenge ciphertext perfectly hides which attribute-message pair among (x0,M0) and (x1,M1)
is being encrypted. The argument for perfect hiding relies on hash proof systems [18, 19], similar to those
used by Agrawal et al. in proving the security of their linear FE scheme [6]. Finally, the scheme is adaptively
secure because the reduction knows the master secret key at any time, which allows it to answer all secret
key queries without knowing the challenge attributes beforehand. The reader may refer to Section 5 and
Appendix ?? for the detailed proof.

To prove function privacy, we again rely on the min-entropy variant of the MDDH assumption over the
group G2. This proof is technically very similar to the proof of function privacy for our SME scheme. The
reader may refer to Section 5 for the detailed proof.

Hidden Vector Encryption (HVE). We extend our techniques to construct a hidden vector encryption
wherein a secret key for a vector y ∈ (Σ∪{?})n allows decryption of a ciphertext on attribute vector x ∈ Σn

if for each j ∈ [1, n], either yj = xj or yj = ?. Although attribute-private HVE is implied by attribute-private
SME, the implication does not extend to function privacy. In fact, defining function privacy for HVE itself
is tricky given the presence of wildcard characters. We overcome this issue by presenting a weaker notion of
function privacy for HVE that allows revealing positions of the wildcard (?) characters in a given predicate
vector, while hiding the contents of the other “non-wildcard” positions. Also presented is a construction of
HVE that is provably function private in this weaker model from bilinear maps. The construction is quite
similar to our SME construction, except for certain minor tweaks to account for the presence of wildcard
characters. The proofs of attribute and function privacy (in the weak model) also follow analogously.

1.3 Open Problems

Several interesting questions remain unanswered. The construction of NIPE/SNME we present have a re-
striction – attribute privacy only holds in the bounded collusions model. It would be interesting to obtain
constructions free of this restriction. Another problem is to construct efficient function-private PE for richer
functionalities such as Boolean and arithmetic span programs from standard assumptions.

1.4 Organization of the Paper

In Section 2, we present the notation, a quick review of bilinear maps and related assumptions followed by
definitions of PE and associated security notions. This is followed by a description of min-entropy variants
of MDDH assumption required for our proofs. We formalize the relaxed computational notion of function
privacy and discuss related issues in Section 3. In Section 4, we present our SME construction followed by
proofs of attribute privacy and function privacy. Section 5 describes our construction of SNME. Due to lack
of space, we provide details of some proofs in Appendices ?? and ??. In addition, we describe the function
private hidden vector encryption and its proof idea in Appendix 6.

2 Background and Preliminary Definitions

In this section, we fix notation, present background material on predicate encryption and recall certain
standard computational assumptions in bilinear groups. We also introduce certain min-entropy variants of
these assumptions useful for our proofs.
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2.1 Notation

This section summarizes the notations used throughout the rest of the paper. We write x
R←− χ to represent

that an element x is sampled uniformly at random from a set/distribution X . The output a of a deterministic
algorithm A is denoted by x = A and the output a′ of a randomized algorithm A′ is denoted by x′ ← A′.

We refer to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ) and negl(λ) any generic (un-
specified) exponential function, polynomial function and negligible function in λ respectively. Note that a
function f : N→ N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when λ is
sufficiently large.

For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set of integers lying between a and b (both inclusive).
For a finite field Fq (q being a λ-bit prime) and m,n ∈ N, we denote by Fm×nq the space of all m×n matrices
W with elements from Fq. We use the short-hand notation Fmq to represent the vector space Fm×1

q . The

transpose of a matrix W ∈ Fm×nq is denoted as WT. The symbol 0 is used to denote an all-zero matrix of
appropriate dimension.

Finally, the min-entropy of a random variable Y is denoted as H∞(Y) and is evaluated as H∞(Y) =
− log (maxy Pr[Y = y]). A random variable Y is said to be a k-source if H∞(Y) ≥ k.

2.2 Predicate Encryption

Definition 1. (Predicate Encryption). A predicate encryption (PE) scheme for a class of predicates
F over an attribute space Σ and a payload-message space M is a quadruple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec), defined as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm generates the public parameter pp
and the master secret key msk.
• KeyGen(pp,msk, f): On input the public parameter pp, the master secret key msk and a predicate f ∈ F ,

the key-generation algorithm outputs a secret key skf .
• Enc(pp, I,M): On input the public parameter pp, an attribute I ∈ Σ and a payload message M ∈ M,

the encryption algorithm outputs a ciphertext ct.
• Dec(pp, skf , ct): On input the public parameter pp, a ciphertext ct and a secret key skf , the decryption

algorithm outputs either a payload-message M ∈M or the symbol ⊥.

Correctness. A PE scheme is said to be functionally correct if for any security parameter λ ∈ N, any
predicate f ∈ F , any attribute I ∈ Σ, and any payload message M ∈ M, letting (pp,msk) ← Setup(1λ),
skf ← KeyGen (pp,msk, f) and ct← Enc (pp, I,M), the following hold:

1. If f(I) = 1, Pr [Dec (pp, ct, skf ) = M ] = 1,
2. If f(I) = 0, Pr [Dec (pp, ct, skf ) = ⊥] with overwhelmingly large probability,

where the probabilities are computed over the randomness of the Setup,KeyGen and Enc algorithms.

Attribute Privacy. Define the experiment Expt
(b)
AP,Π,A(λ) as in Fig. 1 for a PE Π =

(Setup,KeyGen,Enc,Dec), a security parameter λ ∈ N and a bit b ∈ {0, 1}. Let AdvAP
Π,A(λ) denote the

advantage of the adversary A in the aforementioned experiment, defined as

AdvAP
Π,A(λ) :=

∣∣∣∣Pr
[
Expt

(0)
AP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
AP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 2. (Attribute Private PE.) A PE scheme Π is said to be attribute private if for all security
parameters λ ∈ N and for all PPT adversaries A, it holds that AdvAP

Π,A(λ) ≤ negl(λ).

Note that a stronger definition of attribute privacy allows the adversary A in the attribute privacy
experiment to query secret keys that can decrypt the challenge ciphertext ct∗, subject to the restriction that
the challenge messages M0 and M1 are identical. A PE scheme that is attribute private under this definition
is said to be strongly attribute private.
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Experiment Expt
(b)
AP,Π,A(λ):

1. The challenger samples (pp,msk)← Setup(1λ) and provides pp to A.
2. The adversaryA adaptively issues key-generation queries. For each query predicate f , the challenger responds

with
skf ← KeyGen (pp,msk, f) .

3. The adversary A outputs attribute-message pairs (I0,M0) and (I1,M1), such that for each predicate f
queried, it holds that

f(I0) = f(I1) = 0.

The challenger responds to the adversary A with the ciphertext

ct← Enc (pp, Ib,Mb) .

4. The adversary A continues to adaptively issue key-generation queries, subject to the aforementioned restric-
tions. The challenger responds as above.

5. Eventually, the adversary A outputs a bit b′.

Fig. 1. The Attribute Privacy Experiment for Predicate Encryption

2.3 Sub-Classes of Predicate Encryption

In this subsection, we recall definitions of certain sub-classes of predicate encryption that are used in the
rest of the paper.

Inner Product Encryption. An inner product encryption (IPE) scheme [30, 33] is a PE over an attribute
space Σ = Fnq (q being a λ-bit prime) and a set of Boolean predicates fy : Fnq −→ {0, 1} such that for each
y ∈ Fnq and x ∈ Fnq , we have

fy(x) =

{
1 if 〈y,x〉 = 0

0 otherwise.

where 〈·, ·〉 denotes the inner product (equivalently, scalar product) of two vectors over Zq.

Subspace Membership Encryption. Subspace membership encryption (SME) [13] is a generalization of
IPE to accommodate general linear subspaces as opposed to only vector spaces. Formally, an SME scheme is
is a PE over an attribute space Σ = Fnq (q being a λ-bit prime) and a set of Boolean predicates fW : Fnq −→
{0, 1} such that for each W ∈ Fm×nq and x ∈ Fnq , we have

fW(x) =

{
1 if W · x = 0

0 otherwise.

Non-Zero IPE. Non-zero IPE (NIPE) [7, 16] is the dual of IPE in the sense that it is a PE over an attribute
space Σ = Fnq (q being a λ-bit prime) and a set of Boolean predicates fy : Fnq −→ {0, 1} such that for each
y ∈ Fnq and x ∈ Fnq , we have

fy(x) =

{
1 if 〈y,x〉 6= 0

0 otherwise.

Subspace Non-Membership Encryption. Subspace non-membership encryption (SNME) is a general-
ization of NIPE and the dual of SME in the sense that it is a PE over an attribute space Σ = Fnq (q being a
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λ-bit prime) and a set of Boolean predicates fW : Fnq −→ {0, 1} such that for each W ∈ Fm×nq and x ∈ Fnq ,
we have

fW(x) =

{
1 if W · x 6= 0

0 otherwise.

2.4 Bilinear Maps and Matrix Diffie-Hellman Assumptions

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter λ, and outputs a tuple
of the form (G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are distinct cyclic groups of order q (q being a
λ-bit prime), g1 is a generator for G1, g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently
computable non-degenerate asymmetric bilinear map. Also, let W ∈ Zm×nq be an m× n matrix with entries
{wi,j}i∈[1,m],j∈[1,n]. Throughout the paper, we use the following notations:

• gW1 : set of group elements {gwi,j

1 }i∈[1,m],j∈[1,n] ∈ Gm×n1

• gW2 : set of group elements {gwi,j

2 }i∈[1,m],j∈[1,n] ∈ Gm×n2

• e(g1, g2)W: set of group elements {e(g1, g2)wi,j}i∈[1,m],j∈[1,n] ∈ Gm×nT

Observe the following statements for any m,n, l ≤ poly(λ):

• For any W1 ∈ Zm×nq and W2 ∈ Zm×nq , gW1+W2
1 is efficiently computable given the tuple

(
gW1

1 , gW2
1

)
.

Analogous statement holds for gW1+W2
2 .

• For any W1 ∈ Zm×nq and W2 ∈ Zn×lq , gW1·W2
1 is efficiently computable given one of the following tuples:(

gW1
1 ,W2

)
or
(
W1, g

W2
2

)
. Analogous statement holds for gW1·W2

2 .

• For any W1 ∈ Zm×nq and W2 ∈ Zn×lq , the pairing output e(g1, g2)W1·W2 is efficiently computable given

the tuple
(
gW1 , gW2

)
.

Note that the pairing expressions e(g1, g2)W1·W2 and e
(
gW1

1 , gW2
2

)
are used interchangeably in the sequel.

We now review the matrix Diffie-Hellman (MDDH) assumption over the source groups G1 and G2 of a
bilinear map.

The Dm,n-MDDH Assumption. Let m,n ∈ N such that m > n, and let Dm,n denote a matrix distribution

over Zm×nq such that a matrix W
R←− Dm,n has full rank n with overwhelmingly large probability. The Dm,n-

MDDH assumption [21] holds over the group Gi (for i = 1, 2) if the distribution ensembles:

{(
gWi , gW·yi

)}
W

R←−Dm,n, y
R←−Zn

q

and
{(
gWi , gui

)}
W

R←−Dm,n, u
R←−Zm

q

are computationally indistinguishable.

The Um,n-MDDH Assumption. The Um,n-MDDH assumption is a special instance of the Dm,n-MDDH
assumption where the matrix distribution Dm,n is the uniform distribution over Zm×nq .

2.5 A “Min-Entropy” Variant of the MDDH Assumption

In this subsection, we introduce another special instance of the Dk1,k2-MDDH assumption where the matrix
distribution Dk1,k2 is not uniform, but an ordered collection of m× n independent ω(log λ)-sources over Zq.
We first state and prove the following lemma.

Lemma 2.1 Let Wk1,k2 =
[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a matrix of independently distributed random variables

such that each random variable Wi,j for i ∈ [1, k1] and j ∈ [1, k2] is an ω (log λ)-source over Zq. Then, any

matrix W
R←−Wk1,k2 has full rank n with overwhelmingly large probability.

9



Proof. Let Wk1,k2 =
[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a tuple of (k1× k2) independently distributed random variables

such that each random variable Wi,j for i ∈ [1, k1] and j ∈ [1, k2] is a t-source over Zq. Let W
R←− Wk1,k2 ,

and let W̃ be any arbitrary k2 × k2 sub-matrix of W. Then, the probability of the event that W̃ has a zero
determinant may be quantified as:

Pr
[
Det(W̃) = 0

]
= 1−

( k2−1∏
j=1

(
1− 2−j·t

))
≤ 1−

(
1− 2−t

)(k2−1) ≤ (k2 − 1) · 2−t,

which is negligible for t = ω(log λ). This completes the proof of Lemma 2.1.

The Min-Entropy-MDDH Assumption. Let k1, k2 ∈ N with k1 > k2, and let Wk1,k2 =[
Wi,j

]
i∈[1,k1],j∈[1,k2]

be a tuple of independently distributed random variables such that each random variable

Wi,j for i ∈ [1, k1] and j ∈ [1, k2] is an ω (log λ)-source over Zq. The (k1, k2)-min-entropy-MDDH assumption
holds over the group Gi (for i = 1, 2) if the distribution ensembles:

{(
gWi , gW·yi

)}
W

R←−Wk1,k2
, y

R←−Zn
q

and
{(
gWi , gui

)}
W

R←−Wk1,k2
, u

R←−Zm
q

are computationally indistinguishable.
All proofs of function privacy for the schemes presented in this paper are based on the Wm,n-MDDH as-
sumption over the group G2.

2.6 Dual Bases

We briefly recall the concept of “dual bases” [16], along with some useful lemmas that are used in the rest
of the proof. Fix some integers k0, k1, k2 ≥ 1, and let k = k0 + k1 + k2. We denote by “basis” a uniformly
sampled tuple of matrices

(B0,B1,B2)
R←− Zk×k0q × Zk×k1q × Zk×k2q .

The corresponding “dual basis” is the tuple of matrices

(B∗0,B
∗
1,B

∗
2) ∈ Zk×k0q × Zk×k1q × Zk×k2q ,

such that the following “non-degeneracy” conditions hold:

BT
0 ·B∗0 = I0 mod q, BT

1 ·B∗1 = I1 mod q, BT
2 ·B∗2 = I2 mod q,

where I0, I1 and I2 are identity matrices of appropriate dimensions, and the following “orthogonality” con-
ditions hold:

BT
i ·B∗j = 0 mod q for i, j ∈ {0, 1, 2}, i 6= j.

We also recall some useful lemmas related to dual bases. These lemmas have been used in many prior works,
notably [23, 26, 17].

Lemma 2.2 Let (B0,B1,B2) be a uniformly sampled basis as described above with corresponding dual basis
(B∗0,B

∗
1,B

∗
2). Any arbitrary vector u ∈ Zkq may be uniquely decomposed as u = u0 + u1 + u2 such that

u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2,

for (s0, s1, s2) ∈ Zk0q × Zk1q × Zk2q . Additionally, the following holds for each i ∈ {0, 1, 2}:

uT ·Bi = uT
i ·Bi.
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Lemma 2.3 Let (B0,B1,B2) be a uniformly sampled basis as described above with corresponding dual basis

(B∗0,B
∗
1,B

∗
2). Let a uniform vector u

R←− Zkq be decomposed as u = u0 + u1 + u2 such that

u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2,

for (s0, s1, s2) ∈ Zk0q × Zk1q × Zk2q . Then, for each i ∈ {0, 1, 2} and for uniform s′i
R←− Zkiq , it holds that the

distributions of the tuples

(ui, {uj}j 6=i) and ((ui + B∗i · s′i), {uj}j 6=i)

are statistically indistinguishable.

To see that the aforementioned lemma holds, fix an arbitrary i ∈ {0, 1, 2}, set u′ = u+B∗i ·s′i for uniform

s′i
R←− Zkiq , decompose u′ = u′0 + u′1 + u′2 and observe that:

• For each j ∈ {0, 1, 2} \ {i}, we have u′j = uj by the orthogonality property.

• The distributions of ui and (ui + B∗i · s′i) are statistically indistinguishable whenever the vectors u and
s′i are uniformly random.

Lemma 2.4 Let (B0,B1,B2) be a uniformly sampled basis as described above with corresponding dual basis

(B∗0,B
∗
1,B

∗
2). Let (i0, i1, i2) be a fixed but arbitrary permutation of the set {0, 1, 2}. Let B̂i0,i1 be a basis for

the span of the matrices
[
B∗i0 | B

∗
i1

]
and let B̂i2 be a basis for the span of the matrix B∗i2 . Let

t0 = (Bi0 · s0)
T
, t1 = (Bi0 · s1,0 + Bi1 · s1,1)

T
,

where s0, s1,0, s1,1 are uniformly sampled vectors of appropriate dimensions. If the U(ki0+ki1 ),ki0
-MDDH as-

sumption holds over the bilinear group G2, then for all PPT adversaries A, we have∣∣Pr
[
A
(
D, gt02

)
= 1
]
− Pr

[
A
(
D, gt12

)
= 1
]∣∣ ≤ negl(λ),

where D :=
(
g
B∗0
2 , g

B∗1
2 , g

B∗2
2 , B̂i0,i1 , B̂i2

)
.

Note that Lemma 2.4 is essentially the prime-order analog of the well-known subgroup decision assumption
over composite order groups, which has classically been used for dual system encryption [32]. The reader
may refer to [17] for the proof of this lemma.

3 Function Privacy of SME and SNME

In this section, we define the indistinguishability-based framework for the function privacy of sub-
space membership encryption (SME) and subspace non-membership encryption (SNME). Let Π =

(Setup,KeyGen,Enc,Dec) be an SME (equivalently, SNME) scheme. Define the experiment Expt
(b)
FP,Π,A(λ)

as in Fig. 2 for a security parameter λ ∈ N and a bit b ∈ {0, 1}. Let AdvFP
Π,A(λ) denote the advantage of the

adversary A in the aforementioned experiment, defined as

AdvFP
Π,A(λ) :=

∣∣∣∣Pr
[
Expt

(0)
FP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
FP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 3. (Function Private SME.) An SME scheme Π is said to be function private if for all security
parameters λ ∈ N and for all PPT adversaries A, it holds that AdvFP

Π,A(λ) ≤ negl(λ).

Definition 4. (Function Private SNME.) An SNME scheme Π is said to be function private if for all
security parameters λ ∈ N and for all PPT adversaries A, it holds that AdvFP

Π,A(λ) ≤ negl(λ).
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Experiment Expt
(b)
FP,Π,A(λ):

1. The challenger samples (pp,msk)← Setup(1λ) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each queried predicate matrix W, the chal-

lenger responds with
skW ← KeyGen (pp,msk,W) .

3. The adversary A outputs circuits of the form

W0 =
[
W

(0)
i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W

(1)
i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Fm×nq , with the following restrictions:

(a) For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j represents an ω(log λ)-source over Fq.

(b) For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j and W

(b̃)

i′,j′ represent mutually independent
distributions.

The challenger samples W
R←−Wb and responds to the adversary A with the secret-key

skW = KeyGen(msk,W).

4. The adversary A continues to adaptively issue key-generation queries. The challenger responds as above.
5. Eventually, the adversary A outputs a bit b′.

Fig. 2. The Function Privacy Experiment for SME and SNME

The Mutual Independence Condition. Observe that the function privacy experiment requires the adver-
sarially chosen distributions W0 and W1 to be constructed such that the individual component distributions
are both “mutually independent” and “sufficiently unpredictable”. A stronger notion of function privacy
could allow these components to be “arbitrarily correlated”, so long as they are “individually” sufficiently
unpredictable. As shown in [13], such a notion is impossible to satisfy. In other words, if arbitrary correlations
were allowed, the adversary A in the function privacy experiment can always create challenge distributions
that satisfy the unpredictability requirement, but secret keys for matrices from these distributions are easily
distinguishable. We present a brief illustration here for the sake of completeness.

Consider an IPE scheme (equivalently, an SME scheme of dimension m = 1) and an adversary A in the
function privacy experiment that chooses the challenge distributions as:

W0 =
[
W

(0)
1 , 2W

(0)
1 ,W

(0)
2 , . . . ,W

(0)
n−1

]
, W1 =

[
W

(1)
1 ,W

(1)
2 , . . . ,W

(1)
n−1, 2W

(1)
n−1

]
,

where for each j ∈ [1, n − 1] and b̃ ∈ {0, 1}, W
(b̃)
j represents a uniform source over Fq. Clearly, each

individual distribution has min-entropy log q = ω(log λ); yet, secret keys for vectors sampled from W0 can
be distinguished from secret keys for vectors sampled from W1 with non-negligible advantage as follows:
encrypt a message M under two attribute vectors x0 and x1 defined as:

x0 = (2,−1, 0, . . . , 0) , x1 = (0, . . . , 0, 2,−1) ,

and see which of the two ciphertexts decrypts correctly under the challenge secret key. This justifies the
mutual independence criteria imposed in the function privacy experiment.

Multi-Challenge vs. Single-Challenge. Observe that the aforementioned function privacy definition for
SME/SNME is “single-challenge” in the sense that the function privacy experiment allows the adversary
a single challenge query. In fact, as the adversary is also given access to the key-generation oracle, the
“single-challenge” definition is polynomially equivalent to a “multi-challenge” variant where the adversary
is allowed polynomially many challenge queries. This equivalence may be proved by a hybrid argument
(originally proposed in [13]), where the hybrids are constructed such that only one query is forwarded to the
function privacy oracle, and all other queries are answered using the key-generation oracle.
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4 Function Private SME

In this section, we present the construction of an SME scheme that achieves computational function privacy
whenever the predicate matrices are sampled from distributions with min-entropy ω(log λ). In contrast, the
SME scheme of Boneh et al. [13] is statistically function private, albeit for predicate matrices sampled from
distributions with min-entropy slightly larger than λ.

Attribute and function privacy guarantees of our scheme follow from variants of the general D-MDDH
assumption in the standard model. More specifically, attribute privacy can be based on the Uk+1,k-MDDH
assumption in G1 and U2k,k-MDDH assumption in G2, while function privacy follows from theWm,n-MDDH
assumption described in Section 2.4. The scheme is described below, while the proofs of attribute and function
privacy are presented subsequently.

4.1 The Construction

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter λ ∈ N, and outputs the tuple
(G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are cyclic groups of prime order q (q being a λ-bit prime),
g1 is a generator for G1, g2 is a generator for G2, and e : G1 × G2 −→ GT is an efficiently computable
non-degenerate asymmetric bilinear map. Our scheme ΠSME is parameterized by m,n = poly(λ) in the sense
that it supports predicate matrices of the form W ∈ Zm×nq , and attribute vectors of the form x ∈ Znq .
Finally, the payload message space M is assumed to a “super-polynomially smaller” subset of GT , namely
|M| < |GT |1/2. Our scheme works as follows. 2

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e)← GroupGen(1λ). Also, uniformly sample

A
R←− Z(k+1)×k

q , S0,S1, . . . ,Sn
R←− Z(2k+1)×(k+1)

q ,

K
R←− Z1×(k+1)

q , B0
R←− Z(2k+1)×k

q

for some constant k > 0. Output

pp =

(
g1, g

A
1 , g

S0·A
1 , gS1·A

1 , . . . , gSn·A
1 , e(g1, g2)K·A

)
,

msk = (g2,S0,S1, . . . ,Sn,K,B0) .

• KeyGen(pp,msk,W): Parse the predicate matrix W ∈ Zm×nq as

W =
[
wi,j

]
i∈[1,m],j∈[1,n]

.

Uniformly sample s
R←− Zkq and set t = (B0 · s)

T
. Finally, pick uniform y1, . . . , ym

R←− Zq and output

skW =
(
{hj}j∈[0,n]

)
where

h0 = g
(K+

∑m
i=1 yi·(

∑n
j=1 wi,j ·t·Sj))

T

2 ,

hj = g
(
∑m

i=1 yi·wi,j ·t)
T

2 for j ∈ [1, n].

• Enc(pp,x,M): Given an attribute vector x =
[
x1 . . . xn

]T ∈ Znq and a message M ∈ M ⊂ GT , uniformly

sample r
R←− Zkq and output ct =

(
{cj}j∈[0,n+1]

)
where

c0 = g
(A·r)T

1

cj = g
((xj ·S0+Sj)·A·r)T

1 for j ∈ [1, n]

cn+1 = M · e(g1, g2)(K·A·r)T

2 The restriction on the size of the message space M is necessary for correctness as explained subsequently. Note
that this restriction does not prevent M from being exponentially large.
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• Dec(pp, skW, ct): Parse the ciphertext as ct =
(
{cj}j∈[0,n+1]

)
and the secret key as skW =

(
{hj}j∈[0,n]

)
.

Compute

M =

(
cn+1 ·

n∏
j=1

e (cj , hj)

)/
e (c0, h0) .

If M ∈M, output M . Otherwise, output ⊥.

Correctness. To see that the aforementioned scheme is functionally correct, observe the following.

n∏
j=1

e (cj , hj) =

n∏
j=1

e(g1, g2)(
∑m

i=1 yi·wi,j ·t·(xj ·S0+Sj)·A·r)
T

= e(g1, g2)((
∑n

j=1

∑m
i=1 yi·wi,j ·xj ·t·S0+

∑n
j=1

∑m
i=1 yi·wi,j ·t·Sj)·A·r)

T

= e(g1, g2)(
∑m

i=1 yi·
∑n

j=1 wi,j ·xj ·t·S0·A·r)
T

· e(g1, g2)(
∑m

i=1 yi·(
∑n

j=1 wi,j ·t·Sj)·A·r)
T

= e(g1, g2)(
∑m

i=1 yi·
∑n

j=1 wi,j ·xj ·t·S0·A·r)
T

· e
(
g

(A·r)T

1 , g
(
∑m

i=1 yi·(
∑n

j=1 wi,j ·t·Sj))
T

2

)
= M · (cn+1)

−1 · e (c0, h0) · e(g1, g2)((y·W·x)·t·S0·A·r)T

where y =
[
y1 . . . ym

]
. Hence, when W · x = 0 mod q, the decryption algorithm recovers M correctly. On

the other hand, when W ·x 6= 0 mod q the distribution of M such that M satisfies the decryption equation
is uniformly random over GT , and hence, with overwhelmingly large probability over the randomness of
KeyGen and Enc, the decryption algorithm returns ⊥. 3

4.2 Attribute Privacy

We state and prove the following theorem.

Theorem 4.1 If the Uk+1,k-MDDH assumption holds over the group G1 and the U2k,k-MDDH assumption

holds over the group G2, then for all PPT adversaries A, we have AdvAP
ΠSME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with the “real” attribute privacy
experiment and ending with an experiment where the adversary has no advantage. We consider a variant
of the “real” attribute privacy experiment where the challenge messages M0 and M1 are chosen to be equal
by the adversary. One can reduce the case for M0 6= M1 to this case by arguing that an encryption of Mb

for b ∈ {0, 1} is indistinguishable from an encryption of M0 [16, 36]. Hence, it is sufficient to assume that
M0 = M1 in the hybrid experiments presented next.

Expt-0. This is the “real” experiment. In this experiment, the adversary A is given the public parameter
pp. The adversary chooses two (distinct) vector-message pairs (x0,M0), (x1,M1) ∈ Znq ×M, such that

xb =
[
x1,b x2,b . . . xn,b

]T
for each b ∈ {0, 1}.

and M0 = M1. In addition, the adversary (adaptively) issues a maximum of Q key generation queries (for
some fixed polynomial Q = Q(λ)) corresponding to predicate matrices the form W1, . . . ,WQ ∈ Zm×nq ,
subject to the restriction that

(W` · x0 6= 0 mod q) ∧ (W` · x1 6= 0 mod q) for each ` ∈ [1, Q].

It receives in response
(
ct∗, skW1 , . . . , skWQ

)
, where

ct∗ ← Enc(pp,xb,M0) for some random b
R←− {0, 1},

skW`
← KeyGen(pp,msk,W`) for each ` ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

3 The argument follows from the fact that both y and r are uniformly random vectors in Zmq and Zkq , respectively,

and |M| < |GT |1/2.
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Expt-1. This experiment is identical to Expt-0 except for the manner in which the challenge ciphertext ct∗

is generated. Namely, the challenger B uniformly samples r
R←− Zkq and uses the master secret key components

S0,S1, . . . ,Sn,K to generate the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = g
(A·r)T

1 ,

{
cj = (c0)

(xj,b·S0+Sj)T
}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

.

Note that for each j ∈ [1, n], we essentially have cj = g

(
v
(1)
j

)T

1 , where

v
(1)
j = (xj,b · S0 + Sj) ·A · r.

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-1. Observe that the challenge ciphertext ct∗ in Expt-1 has the same distribution as in Expt-0. Hence,
we have PA,1 = PA,0.

Expt-2. This experiment is identical to Expt-1 except for the manner in which the challenge ciphertext

ct∗ is generated. Namely, the challenger B uniformly samples u
R←− Zk+1

q , and generates the ciphertext

ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = (c0)

(xj,b·S0+Sj)T
}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

.

Note that for each j ∈ [1, n], we essentially have cj = g

(
v
(2)
j

)T

1 , where

v
(2)
j = (xj,b · S0 + Sj) · u .

Let PA,2 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-2. We state the following lemma.

Lemma 4.1 For all PPT adversaries A, |PA,2 − PA,1| ≤ negl(λ).

The proof of this lemma follows directly from the Uk+1,k-MDDH assumption over the group G1. More
specifically, given a PPT adversary A that can distinguish between between its views in Expt-1 and Expt-
2 with non-negligible probability, one can construct a PPT algorithm that can distinguish between the
ensembles {(

gA1 , g
A·r
1

)}
A

R←−Z(k+1)×k
q ,r

R←−Zk
q

and
{(
gA1 , g

u
1

)}
A

R←−Z(k+1)×k
q , u

R←−Zk+1
q

with non-negligible probability. Quite evidently, the existence of such a PPT algorithm violates the Uk+1,k-
MDDH assumption over the group G1.

Expt-3. This experiment is identical to Expt-2 except for the manner in which the challenge ciphertext ct∗

is generated. Namely, the challenger B uniformly samples a basis

(B0,B1,B2) ∈ Z(2k+1)×k
q × Z(2k+1)×1

q × Z(2k+1)×k
q ,

with corresponding dual basis (B∗0,B
∗
1,B

∗
2), and uses B0 as part of the master secret key msk. It samples

u
R←− Zk+1

q and decomposes S0 · u ∈ Z2k+1
q as

S0 · u = u0 + u1 + u2,

such that
u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2 for some s0, s2 ∈ Zkq , s1 ∈ Zq.
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Note that such a decomposition always exists by Lemma 2.2. The challenger B then generates the ciphertext

ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(3)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(3)
j = xj,b · u0 + xj,1−b · u1 + xj,b · u2 + Sj · u.

Let PA,3 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-3. We state the following lemma.

Lemma 4.2 For all unbounded adversaries A, |PA,3 − PA,2| ≤ negl(λ).

Proof Sketch. We begin with a brief sketch of the proof argument. The detailed proof is presented subse-
quently. To prove Lemma 4.2, it is sufficient to prove that for each j ∈ [1, n] and for all x0,x1 ∈ Znq , the

distributions of v
(2)
j and v

(3)
j are statistically close. Informally, the proof is based on the following observations

and a simple application of Lemma 2.3.

1. If one were to decompose Sj · u for j ∈ [1, n] as

Sj · u = uj,0 + uj,1 + uj,2,

such that
uj,0 = B∗0 · sj,0, uj,1 = B∗1 · sj,1, uj,2 = B∗2 · sj,2,

for some sj,0, sj,2 ∈ Zkq , sj,1 ∈ Zq, then the public parameter pp and the secret keys skW1
, . . . , skWQ

statistically hide uj,1 for j ∈ [1, n]. In other words, in the view of an unbounded adversary, the
distribution of uj,1 is statistically indistinguishable from that of a uniformly random vector in the span
of B∗1. The reasoning behind this observation is detailed in Appendix ??

2. For each j ∈ [1, n], for all x0,x1 ∈ Znq and for all u1 in the span of B∗1, the distributions of

(xj,b · u1 + uj,1) and (xj,1−b · u1 + uj,1)

are statistically indistinguishable whenever uj,1 is uniform in the span of B∗1.

Detailed Proof. To prove that |PA,3 − PA,2| ≤ negl(λ), it is sufficient to prove that for each j ∈ [1, n] and for

all x0,x1 ∈ Znq , the distributions of v
(2)
j and v

(3)
j are statistically close, where

v
(2)
j = xj,b · u0 + xj,b · u1 + xj,b · u2 + Sj · u,

v
(3)
j = xj,b · u0 + xj,1−b · u1 + xj,b · u2 + Sj · u.

Now, applying Lemma 2.2, decompose Sj · u for j ∈ [1, n] as

Sj · u = uj,0 + uj,1 + uj,2,

such that

uj,0 = B∗0 · sj,0, uj,1 = B∗1 · sj,1, uj,2 = B∗2 · sj,2 for some sj,0, sj,2 ∈ Zkq , sj,1 ∈ Zq.

and rewrite v
(2)
j and v

(3)
j as

v
(2)
j = (xj,b · u0 + uj,0) + (xj,b · u1 + uj,1) + (xj,b · u2 + uj,2) ,

v
(3)
j = (xj,b · u0 + uj,0) + (xj,1−b · u1 + uj,1) + (xj,b · u2 + uj,2) .
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Given the public parameter pp an unbounded adversary A gains the following information regarding the
master secret key components S1, . . . ,Sn:

{Sj ·A}j∈[1,n] .

Since u is uniformly random in Zk+1
q (and hence, independent of A), the public parameter pp reveals no

information uj,1 for j ∈ [1, n] with overwhelmingly large probability.
Similarly, given the secret keys skW1

, . . . , skWQ
, an unbounded adversaryA potentially gains the following

information regarding the master secret key components S1, . . . ,Sn:
n∑
j=1

(t`) · Sj =

n∑
j=1

(B0 · s`)T · Sj


`∈[1,Q]

.

By the “orthogonality” property of dual bases discussed in Lemma 2.2, we have

(uj,1)
T ·B0 = 0

for each j ∈ [1, n]. Hence, with overwhelmingly large probability, the secret keys also reveal no information
about uj,1 for j ∈ [1, n].

The aforementioned observations now allow us to claim the following: in the view of an unbounded
adversary, the distribution of uj,1 is statistically indistinguishable from that of a uniformly random vector
in the span of the basis matrix B∗1. Again, for each j ∈ [1, n], for all x0,x1 ∈ Znq and for any vector u1 in
the span of B∗1, the distributions of

(xj,b · u1 + uj,1) and (xj,1−b · u1 + uj,1)

are statistically indistinguishable whenever uj,1 is sampled uniformly from the span of B∗1. Finally, applying

Lemma 2.3, for each j ∈ [1, n], the distributions of v
(2)
j and v

(3)
j are statistically indistinguishable. This

completes the proof of Lemma 4.2. ut

Expt-4-`. For each ` ∈ [0, Q], the experiment Expt-4-` is identical to Expt-3 except for the manner in which
the first ` secret key queries are answered by the challenger B. More specifically, B uniformly samples a basis
(B0,B1,B2) with corresponding dual basis (B∗0,B

∗
1,B

∗
2), and uses B0 as part of the master secret key msk.

For each `′ ∈ [1, `], B uniformly samples s`′,0
R←− Zkq and s`′,1

R←− Zq, and sets

t`′ = (B0 · s`′,0 + B1 · s`′,1)
T
.

In other words, the vector (t`′)
T now lies in the span of

[
B0 | B1

]
and not in the span of B0, as in the real

experiment. The challenger B then generates the secret key corresponding to the predicate matrix W`′ as

skW`′ =
(
{hj,`′}j∈[0,n]

)
where

h0,`′ = g
(K+

∑m
i=1 y`′,i·(

∑n
j=1 wi,j ·t`′ ·Sj))

T

2 ,

hj,`′ = g
(
∑m

i=1 y`′,i·wi,j ·t`′)
T

2 for j ∈ [1, n].

where y`′,1, . . . , y`′,m
R←− Zq.

Let PA,4,` denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-4-`. We state the following lemma.

Lemma 4.3 For all PPT adversaries A,
∣∣PA,4,` − PA,4,(`−1)

∣∣ ≤ negl(λ) for each ` ∈ [1, Q].

Proof. The proof proceeds through another sequence of hybrid experiments, beginning with an experiment
identical to Expt-4-(` − 1) and ending with an experiment identical to Expt-4-`. Each experiment in this
sequence differs from its predecessor in one of two ways: either the `th secret key sk` is generated in a
different manner, or the challenge ciphertext ct∗ is generated in a different manner. The corresponding
indistinguishability arguments between pairs of successive experiments rely heavily on Lemmas 2.2, 2.3
and 2.4. The details of the hybrid sub-experiments are presented next.
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Expt-4-(`− 1, 1). For each ` ∈ [1, Q], this experiment is identical to Expt-4-(`− 1) except for the manner
in which the `th secret key query is answered by the challenger B. More specifically, B uniformly samples

s`,0, s`,2
R←− Zkq , and sets

t` = (B0 · s`,0 + B2 · s`,2)
T
.

In other words, the vector (t`)
T now lies in the span of

[
B0 | B2

]
and not in the span of B0. The challenger

B then generates the secret key corresponding to the predicate matrix W` as skW`
=
(
{hj,`}j∈[0,n]

)
where

h0,` = g
(K+

∑m
i=1 y`,i·(

∑n
j=1 wi,j ·t`·Sj))

T

2 ,

hj,` = g
(
∑m

i=1 y`,i·wi,j ·t`)
T

2 for j ∈ [1, n].

where y`,1, . . . , y`,m
R←− Zq.

Let PA,4,(`−1,1) denote the probability that b = b′, where b′ is the bit output by the adversary A at
the end of Expt-4-(` − 1, 1). Assuming that the U2k,k-MDDH assumption holds over the group G2, it
follows from Lemma 2.4 (for the permutation (i0, i1, i2) = (0, 2, 1)) that for each ` ∈ [1, Q], we must
have

∣∣PA,4,(`−1,1) − PA,4,(`−1)

∣∣ ≤ negl(λ). More specifically, if there exists an adversary A such that∣∣PA,4,(`−1,1) − PA,4,(`−1)

∣∣ is non-negligible, then one can construct a PPT algorithm B′ such that∣∣Pr
[
B′
(
D, gt02

)
= 1
]
− Pr

[
B′
(
D, gt12

)
= 1
]∣∣ ≤ negl(λ),

where D :=
(
g
B∗0
2 , g

B∗1
2 , g

B∗2
2 , B̂0,2, B̂1

)
and

t0 = (B0 · s0)
T
, t1 = (B0 · s1,0 + B2 · s1,1)

T
,

for uniformly random vectors s0, s1,0, s1,1.
The reduction is fairly straightforward so we provide a brief intuition here. The algorithm B′ receives as

input the tuple
(
D, gtb2

)
and needs to output a guess for the bit b ∈ {0, 1}. It then simulates Expt-4-(`−1, 1),

wherein it embeds gtb2 in its response to the `th secret key query. More specifically, it generates the secret

key corresponding to the predicate matrix W` as skW`
=
(
{hj,`}j∈[0,n]

)
where

h0,` = gK
T

·
(
g
tTb
2

)∑m
i=1 y`,i·(

∑n
j=1 wi,j ·Sj)

T

,

hj,` =
(
g
tTb
2

)∑m
i=1 y`,i·wi,j

for j ∈ [1, n].

where y`,1, . . . , y`,m
R←− Zq.

Additionally, when generating the challenge ciphertext ct∗, it creates the vector u ∈ Zk+1
q as follows: it

samples u0,u1,u2 from Z2k+1
q such that (u0 + u2) is uniform in the span of

[
B∗0 | B∗2

]
and u1 is uniform in

the span of B∗1, and solves for some u such that S0 · u = (u0 + u1 + u2) mod q.
Observe that when b = 0, the simulation is identical to Expt-4-(`− 1), while when b = 1, the simulation

is identical to Expt-4-(`− 1, 1).

Expt-4-(`− 1, 2). For each ` ∈ [1, Q], this experiment is identical to Expt-4-(`− 1, 1) except for the manner
in which the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly samples a basis

(B0,B1,B2) ∈ Z(2k+1)×k
q × Z(2k+1)×1

q × Z(2k+1)×k
q ,

with corresponding dual basis (B∗0,B
∗
1,B

∗
2), and uses B0 as part of the master secret key msk. It samples

u
R←− Zk+1

q and decomposes S0 · u ∈ Z2k+1
q as

S0 · u = u0 + u1 + u2,
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such that
u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2 for some s0, s2 ∈ Zkq , s1 ∈ Zq.

Note that such a decomposition always exists by Lemma 2.2. The challenger B then generates the ciphertext

ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(4,`−1,2)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(4,`−1,2)
j = xj,b · u0 + xj,1−b · u1 + xj,1−b · u2 + Sj · u.

Let PA,4,(`−1,2) denote the probability that b = b′, where b′ is the bit output by the adversary A at the end

of Expt-4-(` − 1, 2). We claim that
∣∣PA,4,(`−1,2) − PA,4,(`−1,1)

∣∣ ≤ negl(λ). To see this, apply Lemma 2.2 to
decompose Sj · u for j ∈ [1, n] as

Sj · u = uj,0 + uj,1 + uj,2,

such that

uj,0 = B∗0 · sj,0, uj,1 = B∗1 · sj,1, uj,2 = B∗2 · sj,2 for some sj,0, sj,2 ∈ Zkq , sj,1 ∈ Zq,

and observe the following facts:

• For an unbounded adversary A, the only sources of information about u2 and uj,2 are the challenge
ciphertext ct∗ and the `th secret key. The argument for this observation closely resembles the argument
presented in the proof of Lemma 4.2 in Appendix ??. More specifically, observe that every secret key
other than sk` embeds a vector in the span of B0, which is orthogonal to both u2 and uj,2 (which lie in
the span of B∗2). On the contrary, the secret key sk` embeds a vector in the span of

[
B0 | B2

]
, which is

not orthogonal to either u2 or uj,2.

• For all x0,x1 ∈ Znq , for any queried matrix W` ∈ Zm×nq such that

(W` · x0 6= 0 mod q) ∧ (W` · x1 6= 0 mod q) ,

and for any vector u2 in the span of B∗2, it holds that the distributions of

(xj,b · u2 + uj,2) and (xj,1−b · u2 + uj,2)

are statistically indistinguishable whenever uj,2 is sampled uniformly from the span of B∗2 for each
j ∈ [1, n], even given

n∑
j=1

n∑
i=1

y`,i · w`,i,j · uj,2,

which an unbounded adversary can infer given the secret key skW`
. This is argued as follows: for all

x = (x1, . . . , xn) ∈ Znq , program
ũj := (xj · S0 + Sj) · u

for u
R←− Zk+1

q , and observe that the following distributions are statistically indistinguishable: 4{(xj · S0 + Sj) · u}j∈[n] ,

n∑
j=1

n∑
i=1

w`,i,j · Sj · u

 , and

{ũj}j∈[n] ,

n∑
j=1

n∑
i=1

w`,i,j · ũj −

 n∑
j=1

n∑
i=1

w`,i,j · xj

 · S0 · u

 .

This in turn implies that the first tuple should be distributed identically for all x and W` such that
W` · x 6= 0 mod q, since the vector u in the second tuple hides the subspace membership information.
This immediately proves that

∣∣PA,4,(`−1,2) − PA,4,(`−1,1)

∣∣ ≤ negl(λ).
4 This argument was used implicitly in Wee’s selectively simulation-secure IPE [36].
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Expt-4-(`− 1, 3). For each ` ∈ [1, Q], this experiment is identical to Expt-4-(`− 1, 2) except for the manner
in which the `th secret key query is answered by the challenger B. More specifically, B uniformly samples

s`,0, s`,2
R←− Zkq and s`,1

R←− Zq, and sets

t` = (B0 · s`,0 + B1 · s`,1 + B2 · s`,2)
T
.

In other words, the vector (t`)
T now lies in the span of

[
B0 | B1 | B2

]
and not in the span of

[
B0 | B2

]
.

The challenger B then generates the secret key corresponding to the predicate matrix W` as skW`
=(

{hj,`}j∈[0,n]

)
where

h0,` = g
(K+

∑m
i=1 y`,i·(

∑n
j=1 wi,j ·t`·Sj))

T

2 ,

hj,` = g
(
∑m

i=1 y`,i·wi,j ·t`)
T

2 for j ∈ [1, n].

where y`,1, . . . , y`,m
R←− Zq.

Let PA,4,(`−1,3) denote the probability that b = b′, where b′ is the bit output by the adversary A at
the end of Expt-4-(` − 1, 3). Assuming that the Uk+1,k-MDDH assumption holds over the group G2, 5

it follows from Lemma 2.4 (for the permutation (i0, i1, i2) = (2, 1, 0)) that for each ` ∈ [1, Q], we must
have

∣∣PA,4,(`−1,3) − PA,4,(`−1,2)

∣∣ ≤ negl(λ). More specifically, if there exists an adversary A such that∣∣PA,4,(`−1,3) − PA,4,(`−1,2)

∣∣ is non-negligible, then one can construct a PPT algorithm B′ such that∣∣Pr
[
B′
(
D, gt02

)
= 1
]
− Pr

[
B′
(
D, gt12

)
= 1
]∣∣ ≤ negl(λ),

where D :=
(
g
B∗0
2 , g

B∗1
2 , g

B∗2
2 , B̂0,2, B̂1

)
and

t0 = (B2 · s0)
T
, t1 = (B2 · s1,0 + B1 · s1,1)

T
,

for uniformly random s0, s1,0, s1,1.
The reduction is fairly straightforward so we provide a brief intuition here. The algorithm B′ receives as

input the tuple
(
D, gtb2

)
and needs to output a guess for the bit b ∈ {0, 1}. It then simulates Expt-4-(`−1, 3),

wherein it embeds g
(tb+t̃)
2 in its response to the `th secret key query, where t̃ is a uniform vector in the span

of the basis matrix B0. More specifically, it generates the secret key corresponding to the predicate matrix

W` as skW`
=
(
{hj,`}j∈[0,n]

)
where

h0,` = gK
T

·
(
g

(tb+t̃)T

2

)∑m
i=1 y`,i·(

∑n
j=1 wi,j ·Sj)

T

,

hj,` =
(
g

(tb+t̃)T

2

)∑m
i=1 y`,i·wi,j

for j ∈ [1, n].

where y`,1, . . . , y`,m
R←− Zq.

Additionally, when generating the challenge ciphertext ct∗, it creates the vector u ∈ Zk+1
q as follows: it

samples u0,u1,u2 from Z2k+1
q such that (u2 + u1) is uniform in the span of

[
B∗2 | B∗1

]
and u0 is uniform in

the span of B∗0, and solves for some u such that S0 · u = (u0 + u1 + u2) mod q.
Observe that when b = 0, the simulation is identical to Expt-4-(`−1, 2), while when b = 1, the simulation

is identical to Expt-4-(`− 1, 3).

Expt-4-(`− 1, 4). For each ` ∈ [1, Q], this experiment is identical to Expt-4-(`− 1, 3) except for the manner
in which the challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly samples a basis

(B0,B1,B2) ∈ Z(2k+1)×k
q × Z(2k+1)×1

q × Z(2k+1)×k
q ,

5 The Uk+1,k-MDDH assumption is implied by the U2k,k-MDDH assumption.
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with corresponding dual basis (B∗0,B
∗
1,B

∗
2), and uses B0 as part of the master secret key msk. It samples

u
R←− Zk+1

q and decomposes S0 · u ∈ Z2k+1
q as

S0 · u = u0 + u1 + u2,

such that
u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2 for some s0, s2 ∈ Zkq , s1 ∈ Zq,

and generates the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(4,`−1,2)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(4,`−1,2)
j = xj,b · u0 + xj,1−b · u1 + xj,b · u2 + Sj · u.

Let PA,4,(`−1,4) denote the probability that b = b′, where b′ is the bit output by the adversary A at the

end of Expt-4-(`− 1, 4). We claim that
∣∣PA,4,(`−1,4) − PA,4,(`−1,3)

∣∣ ≤ negl(λ). The argument for this claim is
essentially identical to the principal argument for the indistinguishability of Expt-4 − (` − 1, 2) and Expt-
4− (`− 1, 1).

Expt-4-(`− 1, 5). For each ` ∈ [1, Q], this experiment is identical to Expt-4-(`− 1, 4) except for the manner
in which the `th secret key query is answered by the challenger B. More specifically, B uniformly samples a
basis (B0,B1,B2) with corresponding dual basis (B∗0,B

∗
1,B

∗
2), and uses B0 as part of the master secret key

msk. It uniformly samples s`,0
R←− Zkq and s`,1

R←− Zq, and sets

t` = (B0 · s`,0 + B1 · s`,1)
T
.

In other words, the vector (t`)
T now lies in the span of

[
B0 | B1

]
and not in the span of

[
B0 | B1 | B2

]
.

The challenger B then generates the secret key corresponding to the predicate matrix W` as skW`
=(

{hj,`}j∈[0,n]

)
where

h0,` = g
(K+

∑m
i=1 y`,i·(

∑n
j=1 wi,j ·t`·Sj))

T

2 ,

hj,` = g
(
∑m

i=1 y`,i·wi,j ·t`)
T

2 for j ∈ [1, n].

where y`,1, . . . , y`,m
R←− Zq.

Let PA,4,(`−1,5) denote the probability that b = b′, where b′ is the bit output by the adversary A at
the end of Expt-4-(` − 1, 5). Assuming that the U2k,k-MDDH assumption holds over the group G2, it
follows from Lemma 2.4 (for the permutation (i0, i1, i2) = (0, 2, 1)) that for each ` ∈ [1, Q], we must
have

∣∣PA,4,(`−1,5) − PA,4,(`−1,4)

∣∣ ≤ negl(λ). More specifically, if there exists an adversary A such that∣∣PA,4,(`−1,5) − PA,4,(`−1,4)

∣∣ is non-negligible, then one can construct a PPT algorithm B′ such that∣∣Pr
[
B′
(
D, gt02

)
= 1
]
− Pr

[
B′
(
D, gt12

)
= 1
]∣∣ ≤ negl(λ),

where D :=
(
g
B∗0
2 , g

B∗1
2 , g

B∗2
2 , B̂0,2, B̂1

)
and

t0 = (B0 · s0)
T
, t1 = (B0 · s1,0 + B2 · s1,1)

T
,

for uniformly random s0, s1,0, s1,1.
The reduction is fairly straightforward so we provide a brief intuition here. The algorithm B′ receives as

input the tuple
(
D, gtb2

)
and needs to output a guess for the bit b ∈ {0, 1}. It then simulates Expt-4-(`−1, 5),
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wherein it embeds g
(tb+t̃)
2 in its response to the `th secret key query, where t̃ is a uniform vector in the span

of the basis matrix B1. More specifically, it generates the secret key corresponding to the predicate matrix

W` as skW`
=
(
{hj,`}j∈[0,n]

)
where

h0,` = gK
T

·
(
g

(tb+t̃)T

2

)∑m
i=1 y`,i·(

∑n
j=1 wi,j ·Sj)

T

,

hj,` =
(
g

(tb+t̃)T

2

)∑m
i=1 y`,i·wi,j

for j ∈ [1, n].

where y`,1, . . . , y`,m
R←− Zq.

Additionally, when generating the challenge ciphertext ct∗, it creates the vector u ∈ Zk+1
q as follows: it

samples u0,u1,u2 from Z2k+1
q such that (u0 + u2) is uniform in the span of

[
B∗0 | B∗2

]
and u1 is uniform in

the span of B∗1, and solves for some u such that S0 · u = (u0 + u1 + u2) mod q.
Observe that when b = 0, the simulation is identical to Expt-4-(`−1, 5), while when b = 1, the simulation

is identical to Expt-4-(` − 1, 4). Finally, the proof of Lemma 4.3 follows immediately from the observation
that Expt-4-(`− 1, 5) and Expt-4-` are in fact identical by definition. ut

Expt-5. This experiment is identical to Expt-4-Q except for the manner in which the challenge ciphertext

ct∗ is generated. More specifically, the challenger B samples u,u′,u′′
R←− Zk+1

q and uses the dual basis to
decompose these as

S0 · u = (u0 + u1 + u2)

S0 · u′ = (u′0 + u′1 + u′2)

S0 · u′′ = (u′′0 + u′′1 + u′′2)

It then generates the ciphertext ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(5)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(5)
j = xj,0 · (u′0 + u′1) + xj,1 · (u′′0 + u′′1) + xj,b · u2 + Sj · u.

Let PA,5 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-5. We state and prove the following lemma.

Lemma 4.4 For all unbounded adversaries A, |PA,5 − PA,4−Q| ≤ negl(λ).

Proof Sketch. We begin with a brief sketch of the proof argument. The detailed proof is presented subse-
quently. To prove this lemma, we employ the standard “change of basis” technique used in dual pairing
vector spaces [31, 33, 34]. More specifically, we argue that the distributions of

(u1,u2) and ((u′0 + u′1), (u′′0 + u′′1))

are statistically indistinguishable whenever the vectors u,u′,u′′ and the basis matrices B0,B1 are uniformly
random. Informally, the argument follows from the following observations:

• The randomness ti in each secret key skWi for i ∈ [1, Q] statistically hides the span of
[
B0 | B1

]
. This

allows for an alternative simulation of Expt-4, where the basis matrices B0,B1 are “changed”, i.e.,
replaced by two other specially constructed basis matrices, such that the replacement matrices are also
distributed uniformly.

• The alternative simulation of Expt-4 is statistically indistinguishable from the original simulation of
Expt-4.

• The alternative simulation of Expt-4 with respect to the changed basis matrices is statistically indistin-
guishable from the simulation of Expt-5 with respect to the original basis matrices.
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Detailed Proof. Consider the following alternative simulation of Expt 4-Q. The challenger B samples a basis

(B̃0, B̃1,B2) ∈ Z(2k+1)×k
q × Z(2k+1)×1

q × Z(2k+1)×k
q ,

with corresponding dual basis (B̃∗0, B̃
∗
1,B

∗
2). Now, suppose that B additionally samples a uniformly random

invertible matrix R ∈ Z(k+1)×(k+1)
q and sets the following:[
B0 | B1

]
=
[
B̃0 | B̃1

]
·R,

[
B∗0 | B∗1

]
=
[
B̃∗0 | B̃∗1

]
·
(
R−1

)T
.

where B0,B
∗
0 ∈ Z(2k+1)×k

q and B1,B
∗
1 ∈ Z(2k+1)×1

q . Note that the distribution of B0,B1,B
∗
0,B

∗
1 is as in

Expt-4-Q.

Next, suppose that for each ` ∈ [1, Q], B uniformly samples (t`)
T from the span of

[
B̃0 | B̃1

]
, and

generates the secret key corresponding to the predicate matrix W` as skW`
=
(
{hj,`}j∈[0,n]

)
where

h0,` = g
(K+

∑m
i=1 y`,i·(

∑n
j=1 wi,j ·t`·Sj))

T

2 ,

hj,` = g
(
∑m

i=1 y`,i·wi,j ·t`)
T

2 for j ∈ [1, n].

Note that although (t`)
T is sampled from the span of

[
B̃0 | B̃1

]
, its distribution over the span of

[
B0 | B1

]
is also uniform, as required, and hence the distribution of skW`

is as in Expt-4-Q.

Finally, suppose that B samples u
R←− Zk+1

q , decomposes S0 · u ∈ Z2k+1
q as

S0 · u = u0 + u1 + u2,

such that

u0 = B∗0 · s0, u1 = B∗1 · s1, u2 = B∗2 · s2 for some s0, s2 ∈ Zkq , s1 ∈ Zq.

and generates ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(3)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(3)
j = xj,b · u0 + xj,1−b · u1 + xj,b · u2 + Sj · u.

Again, the ciphertext ct∗ is distributed exactly as in Expt-4-Q w.r.t the dual basis (B∗0,B
∗
1,B

∗
2). However,

observe that [
u0 | u1

]
=
[
B∗0 | B∗1

]
·
[
s0

s1

]
=
[
B̃∗0 | B̃∗1

]
·
(
R−1

)T · [s0

s1

]
.

Since R is uniformly random,
(
R−1

)T ·[s0 | s1

]T
is also uniformly distributed over Z2×(k+1)

q . In other words,

the challenger B could equivalently sample uniform u0 and u1 from the span of B̃∗0 and B̃∗1 when creating
the challenge ciphertext, while adhering to the required distribution w.r.t. Expt 4-Q. This in turn implies
that the distributions of

(u1,u2) and ((u′0 + u′1), (u′′0 + u′′1))

are statistically indistinguishable. In other words, the aforementioned simulation of Expt-4-Q w.r.t. basis
(B0,B1,B2) is statistically indistinguishable from a simulation of Expt-5 w.r.t. the basis (B̃0, B̃1,B2). Hence,
we must have |PA,5 − PA,4−Q| ≤ negl(λ). ut
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Expt-6. This experiment is identical to Expt-5 except for the manner in which the challenge ciphertext ct∗

is generated. Namely, the challenger B uniformly samples u,u′,u′′
R←− Zk+1

q and generates the ciphertext

ct∗ =
(
{cj}j∈[0,n+1]

)
as

c0 = gu
T

1 ,

{
cj = g

(
v
(6)
j

)T

1

}
j∈[1,n]

, cn+1 = M0 · e (c0, g2)
KT

,

where for each j ∈ [1, n], we have

v
(6)
j = xj,0 · S0 · u′ + xj,1 · S0 · u′′ + Sj · u.

Let PA,6 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-6. We state and prove the following lemma.

Lemma 4.5 For all unbounded adversaries A, |PA,6 − PA,5| ≤ negl(λ).

Proof. The proof is similar to the proof of indistinguishability of Expt 2 and Expt 3. More specifically, to
prove that |PA,6 − PA,5| ≤ negl(λ), it is sufficient to prove that for each j ∈ [1, n] and for all x0,x1 ∈ Znq ,

the distributions of v
(5)
j and v

(6)
j are statistically close, where

v
(5)
j = xj,0 · (u′0 + u′1) + xj,1 · (u′′0 + u′′1) + xj,b · u2 + Sj · u,

v
(6)
j = xj,0 · (u′0 + u′1 + u′2) + xj,1 · (u′′0 + u′′1 + u′′2) + Sj · u.

Again, applying Lemma 2.2, decompose Sj · u for j ∈ [1, n] as

Sj · u = uj,0 + uj,1 + uj,2,

such that

uj,0 = B∗0 · sj,0, uj,1 = B∗1 · sj,1, uj,2 = B∗2 · sj,2 for some sj,0, sj,2 ∈ Zkq , sj,1 ∈ Zq.

Using an argument very similar to that used to prove the indistinguishability of Expt 2 and Expt 3, one can
show that for each j ∈ [1, n], for all x0,x1 ∈ Znq and for all u2 in the span of B∗2, the distributions of

(xj,b · u2 + uj,2) and (xj,0 · u′2 + xj,1 · u′2 + uj,2)

are statistically indistinguishable whenever uj,2 is sampled uniformly from the span of B2. This in turn

implies that for each j ∈ [1, n] and for all x0,x1 ∈ Znq , the distributions of v
(5)
j and v

(6)
j are statistically

indistinguishable, as desired. ut
Finally, observe that in Expt-6, the adversary A has no advantage in guessing b, since the ciphertext ct∗

is entirely independent of b. In other words, for all PPT adversaries A, we must have PA,6 = 1/2.
This completes the proof of Theorem 4.1. ut

4.3 Function Privacy

We state and prove the following theorem.

Theorem 4.2 If the (n,m)-min-entropy-MDDH assumption holds over the group G2, then for all PPT
adversaries A, we have AdvFP

ΠSME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with the “real” function privacy
experiment and ending with an experiment where the adversary has no advantage.
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Expt-0. This is the “real” function privacy experiment. In this experiment, the adversary A is given the
public parameter pp. The adversary chooses two circuits corresponding to matrix distributions of the form

W0 =
[
W

(0)
i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W

(1)
i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Zm×nq , subject to the following restrictions:

1. For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j represents an ω(log λ)-source over Fq.

2. For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j and W

(b̃)
i′,j′ represent mutually independent

distributions.

The adversary A also (adaptively) issues key generation queries corresponding to predicate matrices the

form W1, . . . ,WQ ∈ Zm×nq for some Q = poly(λ). The challenger samples W∗ R←− Wb for some random

b
R←− {0, 1}, where

W∗ =
[
w∗i,j

]
i∈[1,m],j∈[1,n]

,

and uses the master secret key msk = (g2,S0,S1, . . . ,Sn,K,B0) to set the challenge secret key skW∗ =(
{hj}j∈[0,n]

)
where

h0 = g
(K+

∑m
i=1 yi·(

∑n
j=1 w

∗
i,j ·t·Sj))

T

2 ,

hj = g
(
∑m

i=1 yi·w
∗
i,j ·t)

T

2 for j ∈ [1, n],

where y1, . . . , ym
R←− Zq and t = (B · s)

T
for some s

R←− Zkq . The adversary A receives(
skW∗ , skW1 , . . . , skWQ

)
, where

skW`
← KeyGen(pp,msk,W`) for each ` ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which the challenge secret key

skW∗ is generated. Namely, the challenger B uniformly samples u1, . . . , un
R←− Zq and sets the challenge

secret key skW∗ =
(
{hj}j∈[0,n]

)
as follows:

h0 = g
(K+

∑n
j=1 uj ·t·Sj)

T

2 ,

hj = g
(ujt)

T

2 for j ∈ [1, n],

where t = (B · s)
T

for some s
R←− Zkq . Let PA,1 denote the probability that b = b′, where b′ is the bit output

by the adversary A at the end of Expt-1. By the (n,m)-min-entropy-MDDH assumption, we must have
|PA,2 − PA,1| ≤ negl(λ).

Finally, observe that the challenge secret key skW∗ in Expt-1 is independent of the bit b chosen by the
challenger. Hence, for all PPT adversaries A, we must have PA,1 = 1/2.

This completes the proof of Theorem 4.2. ut

Note 1. Note that our SME scheme essentially embeds two different problem instances in the same secret
key - a subspace indistinguishability problem that is exploited to achieve unbounded collusion-resistance in
the attribute privacy experiment, and a min-entropy MDDH instance, which is the basis for the proof of
function privacy. We believe that this “simultaneous embedding” strategy is of independent interest, and
may be useful in other applications.
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5 Function Private SNME

In this section, we present an SNME scheme that is (computationally) function private whenever the predi-
cate matrices are sampled from distributions with super-logarithmic min-entropy. Similar to the SME scheme,
attribute privacy of our SNME scheme can be based on the Uk+1,k-MDDH assumption, albeit in the bounded
collusion setting, while function privacy follows from the min-entropy-MDDH assumption described in Sec-
tion 2.4.

5.1 The Construction

Let GroupGen(1λ) be a PPT algorithm that takes as input a security parameter λ ∈ N, and outputs the tuple
(G1,G2,GT , q, g1, g2, e), where G1, G2 and GT are cyclic groups of prime order q (q being a λ-bit prime),
g1 is a generator for G1, g2 is a generator for G2, and e : G1 ×G2 −→ GT is an efficiently computable non-
degenerate asymmetric bilinear map. Our scheme ΠSNME is parameterized by m,n = poly(λ) in the sense
that it supports predicate matrices of the form W ∈ Zm×nq , and attribute vectors of the form x ∈ Znq . The
payload message spaceM for this scheme is assumed to be a “small” subset of Zq such that |M| ≤ poly(λ).

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e) ← GroupGen(1λ). Also, uniformly sample A
R←−

Z(k+1)×k
q and S1,S2

R←− Zn×(k+1)
q for some constant k > 0. Output

pp =

(
g1, g

A
1 , g

S1·A
1 , gS2·A

1

)
, msk =

(
g2,S1,S2

)
.

• KeyGen(pp,msk,W): Given a predicate matrix W ∈ Zm×nq , sample y
R←− Zmq and output skW =

(h0, h1, h2), where

h0 = gW
T·y

2 , h1 = g
(W·S1)T·y
2 , h2 = g

(W·S2)T·y
2 .

• Enc(pp,x,M): Given an attribute vector x ∈ Znq and a message M ∈M ⊂ Zq, uniformly sample r1, r2
R←−

Zkq and output ct = (c1,0, c1,1, c2,0, c2,1) where

c1,0 = g
(A·r1)T

1 , c1,1 = g
(x+S1·A·r1)T

1 ,

c2,0 = g
(A·r2)T

1 , c2,1 = g
(M ·x+S2·A·r2)T

1 .

• Dec(pp, skW, ct): Parse the ciphertext as ct = (c1,0, c1,1, c2,0, c2,1) and the secret key as skW = (h0, h1, h2).
Check if there exists a unique M ∈M such that

e (c2,1, h0) · e (c2,0, h2)
−1

=

(
e (c1,1, h0) · e (c1,0, h1)

−1

)M
.

If yes, return M . Else return ⊥.

Correctness. To see that the aforementioned scheme is functionally correct, observe the following.

e (c1,1, h0) · e (c1,0, h1)
−1

= e (g1, g2)(
yT·W·(x+S1·A·r1)−yT·W·S1·A·r1)

T

= e (g1, g2)(
yT·W·x)

T

e (c2,1, h0) · e (c2,0, h2)
−1

= e (g1, g2)(
yT·W·(M ·x+S2·A·r2)−yT·W·S2·A·r2)

T

= e (g1, g2)
M ·(yT·W·x)

T

When W · x 6= 0 mod q, we have yT ·W · x 6= 0 mod q with overwhelmingly large probability over the
randomness of KeyGen, and the decryption algorithm correctly recovers the message M . But when W ·x = 0
mod q, the message M cannot be uniquely recovered and the decryption algorithm returns ⊥.
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5.2 Attribute Privacy

We state the following theorem.

Theorem 5.1 If the Uk+1,k-MDDH assumption holds over the group G1, then for all PPT adversaries A that

issue as most (n− 1) secret key queries during the attribute privacy experiment, we have AdvAP
ΠSNME,A(λ) ≤

negl(λ).

Proof Sketch. The proof essentially relies on hash proof systems [18, 19], and uses arguments similar to
those used by Agrawal et al. in proving the security of their linear FE scheme [6]. The analysis exploits the
following fact: given the public parameter pp and no more than (n − 1) secret keys, the master secret key
components S0,S1 . . . ,Sn retain sufficient entropy from an (unbounded) adversary’s point of view. This in
turn ensures that at some stage, if the challenge ciphertext is generated using the master-secret-key instead
of the public parameter, it will perfectly hide which attribute-message pair among (x0,M0) and (x1,M1) is
encrypted.

Finally, the scheme is adaptively secure because the reduction knows the master secret key at any time,
which allows it to answer all secret key queries without knowing the challenge attributes beforehand. This
feature is common to nearly all security proofs relying on hash proof systems [18, 19].

Detailed Proof. The proof proceeds through a sequence of experiments, beginning with the “real” attribute
privacy experiment and ending with an experiment where the adversary has no advantage.

Expt-0. This is the “real” experiment. In this experiment, the adversary A is given the public parameter
pp. The adversary chooses two (distinct) vector-message pairs (x0,M0), (x1,M1) ∈ Znq ×M, and (adaptively)
issues at most (n−1) key generation queries corresponding to predicate matrices the form W1, . . . ,Wn−1 ∈
Zm×nq , subject to the restriction that Wi · x0 = Wi · x1 = 0 mod q for each i ∈ [1, n − 1]. It receives in

response
(
ct∗, skW1

, . . . , skWn−1

)
, where

ct∗ ← Enc(pp,xb,Mb) for some random b
R←− {0, 1},

skWi
← KeyGen(pp,msk,Wi) for each i ∈ [1, n− 1].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which the challenge ciphertext

ct∗ is generated. Namely, the challenger B uniformly samples r1, r2
R←− Zkq and uses the master secret key

components S1,S2 to output ct∗ = (c1,0, c1,1, c2,0, c2,1) as

c1,0 = g
(A·r1)T

1 , c1,1 = g
xT
b

1 · (c1,0)
ST

1 ,

c2,0 = g
(A·r2)T

1 , c2,1 = g
Mb·xT

b
1 · (c2,0)

ST
2 .

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-1. Observe that the challenge ciphertext ct∗ in Expt-1 has the same distribution as in Expt-0. Hence,
we have PA,1 = PA,0.

Expt-2. This experiment is identical to Expt-1 except, again, for the manner in which the challenge ci-

phertext ct∗ is generated. Namely, the challenger B uniformly samples u1
R←− Zk+1

q and r2
R←− Zkq , and uses

master secret key components S1,S2 to output ct∗ = (c1,0, c1,1, c2,0, c2,1) as

c1,0 = g
uT

1
1 , c1,1 = g

xT
b

1 · (c1,0)
ST

1 ,

c2,0 = g
(A·r2)T

1 , c2,1 = g
Mb·xT

b
1 · (c2,0)

ST
2 .

Let PA,2 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-2. By the Uk+1,k-MDDH assumption, we must have |PA,2 − PA,1| ≤ negl(λ).
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Expt-3. This is the final experiment and is identical to Expt-2 except, again, for the manner in which the

challenge ciphertext ct∗ is generated. Namely, the challenger B uniformly samples u1,u2
R←− Zk+1

q and uses
the master secret key components S1,S2 to output ct∗ = (c1,0, c1,1, c2,0, c2,1) as

c1,0 = g
uT

1
1 , c1,1 = g

xT
b

1 · (c1,0)
ST

1 ,

c2,0 = g
uT

2
1 , c2,1 = g

Mb·xT
b

1 · (c2,0)
ST

2 .

Let PA,3 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-3. Again, by the Uk+1,k-MDDH assumption, we must have |PA,3 − PA,2| ≤ negl(λ).

The proof of Theorem 5.1 now follows from the following lemma.

Lemma 5.1 For all PPT adversaries A that issue as most (n − 1) secret key queries during the attribute
privacy experiment, we have PA,3 = 1/2.

Proof. To prove this lemma, it is sufficient to prove that the challenge ciphertext ct∗ in Expt-3 is independent
of the bit b chosen by the challenger B. To prove this, first observe that given the challenge ciphertext ct∗,
an unbounded adversary A can infer the following tuples and nothing more.

(u1,v1 := (xb + S1 · u1)) , (u2,v2 := (Mb · xb + S2 · u2)) . (1)

Hence, it is sufficient to prove that both v1 and v2 hide the bit b perfectly whenever u1 and u2 are uniformly

random in Z(k+1)
q . Define x∗ := (x0−x1) mod q, and deterministically generate a Zq-basis W⊥ ∈ Z(n−1)×n

q

for the subspace
{w ∈ Znq : 〈w,x∗〉 = 0 mod q}.

Let w∗ ∈ Znq be a vector (also deterministically chosen) outside this subspace, and define the invertible
matrix

W =

[
W⊥

(w∗)
T

]
∈ Zn×nq .

Since the rows of the matrix W are deterministically generated from x∗, they are known to the adversary
A. Hence, to prove that v1 and v2 perfectly hide the bit b chosen by the challenger, it suffices to prove that
the following vectors in Znq are independent of b:

W · v1 =

[
W⊥

(w∗)
T

]
· v1, W · v2 =

[
W⊥

(w∗)
T

]
· v2 .

Again, W⊥ · v1 and W⊥ · v2 are clearly independent of b, as W⊥ · x0 = W⊥ · x1 mod q by construction.
Hence, it remains to prove that the following expressions are independent of b:

〈w∗,v1〉 = 〈w∗,xb〉+ (w∗)
T · S1 · u1

〈w∗,v2〉 = 〈w∗,Mb · xb〉+ (w∗)
T · S2 · u2.

Suppose that the adversary A issues (n − 1) key-generation queries on predicate matrices W1, · · · ,WQ ∈
Zm×nq , subject to the restriction that

W` · x0 = W` · x1 = 0 mod q for each ` ∈ [1, n− 1],

Even an unbounded A learns nothing more than the following information from pp and the secret keys
skW1 , . . . , skWn−1 :

S1 ·A, S2 ·A,
{

(W` · S1)T · y`, (W` · S2)T · y`
}
`∈[1,n−1]

.

Let S∗1,S
∗
2 ∈ Zn×(k+1)

q be arbitrary matrices satisfying the aforementioned system of equations, and let

a⊥ ∈ Zk+1
q be a vector such that

(
a⊥
)T · A = 0 mod q. Since all queries issued by A involve predicate

matrices whose rows are in W⊥, the distribution of (S1,S2) in A’s view is{
S∗1 + µ1 · (x0 − x1) ·

(
a⊥
)T

, S∗2 + µ2 · (x0 − x1) ·
(
a⊥
)T}

µ1,µ2
R←−Zq
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which is precisely the uniform distribution over Zq × Zq since

(w∗)
T · (x0 − x1) 6= 0 mod q

by construction, and we have(
a⊥
)T · u1 6= 0 mod q and

(
a⊥
)T · u2 6= 0 mod q

with overwhelmingly large probability whenever the vectors u1,u2 are uniformly random in Zq. In other
words, v1 and v2 hide the bit b perfectly. This completes the proof of Lemma 5.1 and Theorem 5.1. ut

5.3 Function Privacy

We state and prove the following theorem.

Theorem 5.2 If the (n,m)-min-entropy-MDDH assumption holds over the group G2, then for all PPT
adversaries A, we have AdvFP

ΠSNME,A(λ) ≤ negl(λ).

Proof. The proof proceeds through a sequence of experiments, beginning with the “real” function privacy
experiment and ending with an experiment where the adversary has no advantage.

Expt-0. This is the “real” function privacy experiment. In this experiment, the adversary A is given the
public parameter pp. The adversary chooses two circuits corresponding to matrix distributions of the form

W0 =
[
W

(0)
i,j

]
i∈[1,m],j∈[1,n]

, W1 =
[
W

(1)
i,j

]
i∈[1,m],j∈[1,n]

,

representing joint distributions over Zm×nq , subject to the following restrictions:

1. For each i ∈ [1,m], j ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j represents an ω(log λ)-source over Fq.

2. For each i, i′ ∈ [1,m], j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, W
(b̃)
i,j and W

(b̃)
i′,j′ represent mutually independent

distributions.

The adversary A also (adaptively) issues key generation queries corresponding to predicate matrices the

form W1, . . . ,WQ ∈ Zm×nq for some Q = poly(λ). The challenger samples W∗ R←− Wb for some random

b
R←− {0, 1}, and and uses the master secret key msk =

(
S1,S2

)
to set skW∗ = (h0, h1, h2), where

h0 = g
(W∗)T·y
2 , h1 = g

(W·S∗1)T·y
2 , h2 = g

(W·S∗2)T·y
2 ,

where y
R←− Zmq . The adversary A receives

(
skW∗ , skW1

, . . . , skWQ

)
, where

skW`
← KeyGen(pp,msk,W`) for each ` ∈ [1, Q].

Finally, it outputs a bit b′. Let PA,0 denote the probability that b = b′.

Expt-1. This experiment is identical to Expt-0 except for the manner in which the challenge secret key

skW∗ is generated. Namely, the challenger B uniformly samples u
R←− Znq and uses the master secret key

msk = (g2,S1,S2) to output skW∗ = (h0, h1, h2) where

h0 = gu2 , h1 = g
(S1)T·u
2 , h2 = g

(S2)T·u
2 .

Let PA,1 denote the probability that b = b′, where b′ is the bit output by the adversary A at the end of
Expt-1. By the (n,m)-min-entropy-MDDH assumption, we must have |PA,2 − PA,1| ≤ negl(λ).

Finally, observe that the challenge secret key skW∗ in Expt-1 is independent of the bit b chosen by
the challenger. Hence, for all PPT adversaries A, we must have PA,1 = 1/2. This completes the proof of
Theorem 5.2. ut
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6 Function Private Hidden Vector Encryption

In this section, we present a function private HVE scheme. Although attribute private SME is known to
imply attribute private HVE [30], the same implication does not hold w.r.t. function privacy. In particular,
the presence of wildcard characters in HVE implies that the function privacy definitions for SME do not
naturally apply to HVE. This necessitates separate definitions for function private HVE, which we present
before our construction.

Hidden Vector Encryption. Hidden-vector encryption (HVE) [14], also known as “wildcard IBE”, is a PE
scheme that supports conjunctive equality, range-membership and subset-membership predicates. Formally,
an HVE scheme is a PE over an attribute space Σn (Σ being an alphabet), a “wildcard” symbol ? /∈ Σ,
and a set of Boolean predicates fv : Σ −→ {0, 1} such that for each y =

[
y1 . . . yn

]
∈ (Σ ∪ {?})n and

x =
[
x1 . . . xn

]
∈ Σn, we have

fy(x) =

{
1 if (yj = xj) ∨ (yj = ?) for each j ∈ [1, n]

0 otherwise.

6.1 Function Privacy of HVE

Let ΠHVE = (Setup,KeyGen,Enc,Dec) be an HVE scheme. Define the experiment Expt
(b)
FP,ΠHVE,A(λ) as in

Fig. 3 for a security parameter λ ∈ N and a bit b ∈ {0, 1}. Let AdvFP
ΠHVE,A(λ) denote the advantage of the

adversary A in the aforementioned experiment, defined as

AdvFP
ΠHVE,A(λ) :=

∣∣∣∣Pr
[
Expt

(0)
FP,ΠHVE,A(λ) = 1

]
− Pr

[
Expt

(1)
FP,ΠHVE,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ).

Definition 5. (Function Private HVE.) A HVE scheme ΠHVE is said to be function private if for all
security parameters λ ∈ N and for all PPT adversaries A, it holds that AdvFP

ΠHVE,A(λ) ≤ negl(λ).

The Wildcard Characters. Note the aforementioned definition of function privacy for HVE is weak in
the sense that it does not require the secret key sky to hide the positions of the wildcard characters in the
vector y. While a stronger notion of function privacy that also hides the positions of the wildcard characters
is desirable, our HVE construction only satisfies the weaker notion of function privacy as described above.
We leave it open to design a function private HVE scheme where the secret key also hides the location of
the wildcard characters. It is interesting to note that even in the non-function private setting, all known
constructions of HVE [14, 30] have secret keys that reveal the positions of the wildcard characters.

Multi-Challenge vs. Single-Challenge. As in the case of SME/SNME, the function privacy definition for
HVE is also “single-challenge”. Once again, as the adversary is also given access to the key-generation oracle,
this definition is polynomially equivalent to a “multi-challenge” variant where the adversary is allowed poly-
nomially many challenge queries. This equivalence follows by the same hybrid argument as for SME/SNME,
where the hybrids are constructed such that only one query is forwarded to the function privacy oracle, and
all other queries are answered using the key-generation oracle.

6.2 A Function Private HVE Scheme

We now construct an HVE scheme that is function private under this definition. The scheme uses techniques
similar to the function private SME scheme that was described in Section 4, with subtle differences to account
for the presence of the wildcard characters.
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Experiment Expt
(b)

FP,ΠHVE,A(λ):

1. The challenger samples (pp,msk)← Setup(1λ) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each query vector y, the challenger responds

with
sky ← KeyGen (pp,msk,y) .

3. The adversary A outputs a set S ⊂ [1, n] and circuits of the form

Y0 =
[
Y

(0)
j

]
j∈[1,n]

, Y1 =
[
Y

(0)
j

]
j∈[1,n]

,

representing joint distributions over Σn, subject to the following restrictions:

(a) For each j ∈ [1, n] and b̃ ∈ {0, 1}, Y
(b̃)
j represents an ω(log λ)-source over Σ.

(b) For each j, j′ ∈ [1, n] and b̃ ∈ {0, 1}, Y
(b̃)
j and Y

(b̃)

j′ represent mutually independent distributions.

The challenger samples y = (y1, . . . , yn)
R←− Yb and creates a new vector ỹ = (ỹ1, . . . , ỹn) such that for each

j ∈ [1, n], the following holds:

ỹj =

{
yj if j ∈ S
? otherwise.

The challenger then responds to the adversary A with the secret-key

skỹ = KeyGen(msk, ỹ).

4. The adversary A continues to adaptively issue key-generation queries. The challenger responds as above.
5. Eventually, the adversary A outputs a bit b′.

Fig. 3. The Function Privacy Experiment for HVE

The Scheme. Our scheme ΠHVE is parameterized by n = poly(λ) in the sense that it supports predicate
vectors of the form y ∈ (Zq ∪ {?})n, and attribute vectors of the form x ∈ Znq . The payload message spaceM
for this scheme is assumed to a “small” subset of GT , namely |M| < |GT |1/2. The scheme works as follows.

• Setup(1λ): Uniformly sample (G1,G2,GT , q, g1, g2, e) ← GroupGen(1λ). Also, uniformly sample A
R←−

Z(k+1)×k
q , S0,S1, . . . ,Sn,K

R←− Z(2k+1)×(k+1)
q and B

R←− Z(2k+1)×k
q for some constant k > 0. Output

pp =

(
g1, g2, g

A
1 , g

S0·A
1 , gS1·A

1 , . . . , gSn·A
1 , e(g1, g2)K·A

)
,

msk = (S0,S1, . . . ,Sn,K,B) .

• KeyGen(pp,msk,y): Given a predicate vector y ∈ (Zq ∪ {?})n, parse it as y =
[
y1 . . . yn

]
and collect all

non-wildcard indices of y in the set S as

S = {j ∈ [1, n] : yj 6= ?} :=
{
j1, j2, . . . , j|S|

}
,

Create the truncated vector

yS =
[
yj1 . . . yj|S|

]T ∈ Z|S|q .

Next, sample a random invertible matrix U
R←− Z|S|×|S|q and set

Wy =
[
U | U · yS

]
:=
[
wi,j

]
i∈[1,|S|],j∈[1,|S|+1]

31



Uniformly sample s
R←− Zkq and set t = (B · s)

T
. Finally, pick uniform z1, . . . , z|S|

R←− Zq and output

sky =
(
S, {hj}j∈[0,|S|+1]

)
where

h0 = g

(
K+

∑|S|
i=1 zi·

(∑|S|+1
j=1 wi,j ·t·Sj

))T

2 ,

hj = g

(∑|S|
i=1 zi·wi,j ·t

)T

2 for j ∈ [1, |S|+ 1].

• Enc(pp,x,M): Given x =
[
x1 . . . xn

]T ∈ Znq and M ∈ M ⊂ GT , set an additional component xn+1 to

(q − 1), uniformly sample r
R←− Znq and output ct =

(
{cj}j∈[0,n+2]

)
where

c0 = g
M ·(A·r)T

1

cj = g
((xj ·S0+Sj)·A·r)T

1 for j ∈ [1, n+ 1]

cn+2 = M · e(g1, g2)(K·A·r)T

• ΠHVE · Dec(pp, skW, ct): Parse the ciphertext as ct =
(
{cj}j∈[0,n+2]

)
and the secret key as sky =(

S, {hj}j∈[0,|S|]

)
. Compute

M =

(
cn+1 ·

(∏
j∈S

e (cj , hj)

)
· e
(
cn+1, h|S|+1

))/
e (c0, h0) .

If M ∈M, return M . Else return ⊥.

Correctness. Given a predicate vector y ∈ (Zq ∪ {?})n and an attribute vector x ∈ (Zq ∪ {?})n, let

S = {j ∈ [1, n] : yj 6= ?} :=
{
j1, j2, . . . , j|S|,

}
,

yS =
[
yj1 . . . yj|S|

]T
xS =

[
x̃j1 . . . x̃j|S| xn+1

]T
:=
[
x̃1 . . . x̃|S| x̃|S|+1

]T
.

Observe the following.(∏
j∈S

e (cj , hj)

)
· e
(
cn+1, h|S|+1

)
=

|S+1|∏
j=1

e(g1, g2)

(∑|S|
i=1 zi·wi,j ·t·(x̃j ·S0+Sj)·A·r

)T

= e(g1, g2)

((∑|S+1|
j=1

∑|S|
i=1 zi·wi,j ·x̃j ·t·S0+

∑|S+1|
j=1

∑|S|
i=1 zi·wi,j ·t·Sj

)
·A·r

)T

= e(g1, g2)

(∑|S|
i=1 zi·

∑|S+1|
j=1 wi,j ·x̃j ·t·S0·A·r

)T

· e(g1, g2)

(∑|S|
i=1 zi·

(∑|S+1|
j=1 wi,j ·t·Sj

)
·A·r

)T

= e(g1, g2)

(∑|S|
i=1 zi·

∑|S+1|
j=1 wi,j ·x̃j ·t·S0·A·r

)T

· e
(
g

(A·r)T

1 , g

(∑|S|
i=1 zi·

(∑|S+1|
j=1 wi,j ·t·Sj

))T

2

)
= M · (cn+1)

−1 · e (c0, h0) · e(g1, g2)((z·Wy·xS)·t·S0·A·r)T

where z =
[
z1 . . . zm

]
. Recall that when fy(x) = 1, we must have

(yj = xj) ∨ (yj = ?) for each j ∈ [1, n],

which in turn implies that the following hold:

xS =

[
yS
xn+1

]
=

[
yS
q − 1

]
,

Wy · xS =
[
U|U · yS

]
·
[
yS
q − 1

]
= 0 mod q
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Hence, when fy(x) = 1, the decryption algorithm recovers M correctly with overwhelmingly large probability.
Again, when fy(x) = 0, the distribution of M ′ satisfying the decryption equation is uniformly random over
Zq, and hence, with overwhelmingly large probability over the randomness of KeyGen and Enc, the decryption
algorithm returns ⊥.

Attribute and Function Privacy. The attribute and function privacy guarantees of the HVE scheme
essentially follow from the corresponding guarantees for the SME scheme presented in Section 4.
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