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Abstract. Multi-key fully homomorphic encryption (MKFHE) allows com-
putations on ciphertexts encrypted by different users (public keys), and the
results can be jointly decrypted using the secret keys of all the users involved.
The NTRU-based scheme is an important alternative to post-quantum cryp-
tography, but the NTRU-based MKFHE has the following drawbacks, which
cause it inefficient in scenarios such as secure multi-party computing (MPC).
One is the relinearization technique used for key switching takes up most of
the time of the scheme’s homomorphic evaluation, the other is that each user
needs to decrypt in sequence, which makes the decryption process complicated.
We propose an efficient leveled MKFHE scheme, which improves the efficiency
of homomorphic evaluations, and constructs a two-round (MPC) protocol based
on this. Firstly, we construct an efficient single key FHE with less relinearization
operations. We greatly reduces the number of relinearization operations in ho-
momorphic evaluations process by separating the homomorphic multiplication
and relinearization techniques. Furthermore, the batching technique and a spe-
cialization of modulus can be applied to our scheme to improve the efficiency.
Secondly, the efficient single-key homomorphic encryption scheme proposed in
this paper is transformed into a multi-key vision according to the method in
LTV12 scheme. Finally, we construct a distributed decryption process which
can be implemented independently for all participating users, and reduce the
number of interactions between users in the decryption process. Based on this,
a two-round MPC protocol is proposed. Experimental analysis shows that the
homomorphic evaluation of the single-key FHE scheme constructed in this paper
is 2.4 times faster than DHS16, and the MKFHE scheme constructed in this pa-
per can be used to implement a two-round MPC protocol effectively, which can
be applied to secure MPC between multiple users under the cloud computing
environment.
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1 Introduction

People are increasingly inclined to store large amounts of data on powerful
cloud servers and outsource the cumbersome and complicated data computing
process to the cloud. Although the cloud facilitates the storage and computation
of big data, it is also vulnerable to be attacked by illegal organizations and users
[1], thus triggering a serious issue that cannot be ignored about how to protect
users’ individual privacy and data security?

Fully homomorphic encryption (FHE) [2] allows arbitrary computation on
encrypted data without access to user’s secret key, it has exchangeable properties
for data encryption and computation, and can be used to protect the privacy
and security processing of data in cloud computing environment.

Following the breakthrough blueprint [3] of FHE designed by Gentry in 2009,
FHE has come a long way [4-9]. Traditional FHE is only suitable for scenarios
where the computations of ciphertext involve a single user, since it requires all
the input ciphertext to be encrypted under the same key. However, in many
real-world scenarios, it is often necessary to perform computations on encrypted
data corresponding to different users, while ensuring that the user’s individual
privacy is not exposed.

Multi-key fully homomorphic encryption (MKFHE) [10] allows computations
on ciphertexts encrypted by different parties without trust, and the results can
be jointly decrypted using the secret keys of all the users involved. Meanwhile,
the process of computations on ciphertexts can be outsourced to the cloud offline,
which avoid the interaction between the users, and can be applied to implement
the secure multi-party computing (MPC) [11-14] of multi-users in the cloud
computing environment.

Similar to traditional single-key FHE, the type of current MKFHE mainly
include NTRU type, GSW type and BGV type.

In 2012, L ́opez-Alt et al. first proposed the concept of MKFHE, and con-
struct a MKFHE scheme [LTV12] based on a variant NTRU public key cryp-
tosystem [15], which is a variant of the original NTRU scheme in [16]. Its security
relies on two assumptions: the ring-learning with errors (RLWE) assumption and
the decisional small polynomial ratio (DSPR) assumption. [17] improved the ef-
ficiency of [LTV12] by optimizing parameters, introducing a specialization of
the ring structure and modulus. In PKC2017, Chongchitmate et al. proposed an
NTRU-type MKFHE scheme [18], which can protect the circuit privacy. This
scheme proposes a basic framework for constructing MKFHE with circuit pri-
vacy characteristics, and constructs a basic framework based on this. 3 rounds
of on-the-fly MPC protocol.

Clear and McGoldrick [19] proposed the first GSW-type MKFHE scheme
CM15 based on the learning with error (LWE) problem whose security can be
reduced to the worst-case hardness of problems on ideal lattices. Mukherjee and
Wichs [20] simplified [CM15] and gave a construction of MKFHE scheme MW16
based on LWE. [MW16] can be used to construct a simple 1-round threshold
decryption protocol and a two-round MPC protocol. Both [19] and [20] need
to determine the parties involved in homomorphic computation in advance and
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any new party cannot be allowed to join in during the homomorphic computa-
tion. This type of MKFHE is called single-hop in [21], comparing to multi-hop
MKFHE whose result ciphertext can be employed to further evaluation with new
parties, i.e. any new party can dynamically join the homomorphic evaluation at
any time. Another similar concept named fully dynamic MKFHE was proposed
in [22], which means that the bound of number of users does not need to be
input during the setup procedure.

In TCC2017, Chen et al. proposed a BGV-type multi-hop MKFHE scheme
[23], which supports the Chinese Remainder Theorem (CRT)-based ciphertexts
packing technique, and simplifies the ciphertext extension process in MKFHE.
What’s more, [23] admits a threshold decryption protocol and two-round MPC
protocol.

Comparing to BGV-type and GSW-type MKFHE, NTRU-based MKFHE
scheme is simple and much faster. Furthermore, the ciphertext of NTRU-type
scheme is a polynomial, thus the implementation of NTRU-type scheme is effi-
cient, and the process of ciphertext extension is not required when extending a
single-key NTRU-type FHE scheme to a multi-key vision.

Contributions.In this paper, we propose an efficient leveled MKFHE scheme
which improves the efficiency of homomorphic evaluations, and constructs a two-
round multiparty computation (MPC) protocol based on this.
• Optimized the single-key leveled FHE scheme in DHS16. We reduce the

number of relinearization operations in homomorphic evaluations process by
separating the homomorphic multiplication and relinearization techniques.
• Construct a multi-key leveled FHE scheme. Comparing to LTV12, the

relinearization process are implemented after evaluating two levels circuit, which
can reduce the computational complexity significantly. Besides that, only the
evaluation keys whose corresponding users are existed in at least two ciphertexts
are employed in relinearization process, which is efficient and important in real
applications.
• Construct an efficient two-round MPC based on the multi-key FHE scheme

in this paper. We construct a distributed decryption process which can be im-
plemented independently for all participating users, thus reduce the interaction
processes between users in the decryption process.

2 Background

2.1 Preliminaries

In this paper, the bold upper case letters denote matrices, and the bold lower
case letters denote vectors, and all the vectors are represented as columns. For a
vector a we use a[i] to denote the i-th element in a. For a positive integer n ∈ N,
let [n] = {1, ..., n}. For a distribution A, let x← A denote x is chosen according
to a distribution A.

For security parameter λ, let d = d(λ) be a positive integer, and let φd(x) =
φ(x)=xn + 1 be the d-th cyclotomic polynomial, and the degree n = ϕ(d) is a
power of 2, where ϕ(·) is the Euler’s totient function.
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The polynomial ring used in our scheme is defined as R = Z(x)/φ(x), and all
operations over the ciphertext are performed in Rq = R/qR where the modulus
q = q(λ) is a prime or a power of prime. Elements in Rq are polynomials with
coefficients in [−q/2, q/2)(except for q = 2). We also define a B=B(λ)-bound
error distribution χ over the ring R = Z(x)/φ(x), which means that the coeffi-
cients of polynomial sampled from χ are at most B in absolute value. For a ∈ R,
we use ∥a∥∞ = max0≤i≤n−1 |ai| to denote the standard ∥·∥∞-norm.

The security of our scheme is based on the ring learning with error (RLWE)
assumption and the decisional small polynomial ratio (DSPR) assumption. Here
we give a brief introduction to them.

Definition 1 (Ring Learning With Error (RLWE) Assumption). The
(decisional) RLWE assumption is a variant of learning with error (LWE) as-
sumption. RLWE assumption states that it is infeasible to distinguish the follow-
ing two distributions: First distribution is the uniform samples (ai, bi) ∈ Rn+1

q .
In the second distribution, sampled ai ← Rn

q and s ← Rn
q uniformly, ei ← χ,

and the second distribution is the specialization samples (ai, bi) ∈ Rn+1
q where

bi =< ai, s > +ei.

Definition 2 (Decisional Small Polynomial Ratio (DSPR) Assump-
tion). Given the ring R and Rq, and a B-bound error distribution χ over R,
the (decisional) DSPR assumption states that it is infeasible to distinguish the
following two distributions:

– a polynomial h = tg/f , where f=tf ′+1 is invertible over Rq, and f ′, g ← χ.
– a polynomial h sampled uniformly at random over Rq.

Stehlé and Steinfeld states that the DSPR assumption is hard even for un-
bounded adversaries when the n-th cyclotomic polynomial’s degree n is a power
of 2, and the error distribution χ is a discrete Gaussian distribution DZn,σ for
σ >
√
q · poly(n).

2.2 Two subroutines

Here introduce two subroutines BitDecomp(·) and Powersof 2(·) which are
widely used in FHE schemes. Let β = ⌊log q⌋ + 1, and describe these two sub-
routines as follows.

BitDecomp(x ∈ Rn
q , q): Given a polynomial vector x ∈ Rn

q , write it as x =∑β−1
j=0 2juj with all uj ∈ Rn

2 , and output U = [u0,u1, ...,uβ−1] ∈ {0, 1}n·β .
Powersof 2(y ∈ Rn

q , q): Let vj = 2jy ∈ Rn
q , j ∈ {0, 1, ..., β − 1}, and output

V = [v0,v1, ...,vβ−1] ∈ Rn·β
q .

It’s obviously to verify that ⟨BitDecomp(x, q),Powersof 2(y, q)⟩ = ⟨x,y⟩ mod
q.
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2.3 Basic NTRU homomorphic encryption scheme

Here we give an introduction of the basic NTRU homomorphic encryption
scheme in [10], which is a variant of the original NTRU scheme in [15, 16] to
support homomorphisms and improve its security.

Setup(1λ) : For security parameter, given the following parameters which
have been defined above: a integer n = n(λ), the prime modulus q = q(λ), the
polynomial ring R = Z(x)/xn + 1 and Rq = R/qR, and a B=B(λ)-bound error
distribution χ over the ring R.

KeyGen(1λ) : Sample polynomials f ′, g ← χ, and set f = 2f ′ + 1 ∈ R (If f
is not invertible over Rq, resample f ′) so that f ≡ 1 mod 2. Set the public key
pk := h = 2gf−1 ∈ Rq, and the secret key sk := f ∈ R.

Enc(pk,m)Samples,e← χ

c := hs+ 2e+m ∈ Rq

Enc(pk,m)Sample s, e← χ, and output the ciphertext

c := hs+ 2e+m ∈ Rq

Dec(sk, c)Compute µ = fc ∈ Rq as

µ = fc(modq)

= f(hs+ 2e+m)(modq)

= 2(gs+ fe) + fm ∈ Rq

Since f ≡ 1 mod 2 and |2(gs+ fe) + fm| < q/2, the message is recovered by
m′ = µ mod 2.

Given two ciphertexts c1 = h1s1+2e1+m1 ∈ Rq and c2 = h2s2+2e2+m2 ∈
Rq that encrypt messages m1 and m2 under the same secret key f , it’s not
difficult to verify its homomorphism properties of addition and multiplication.

f(c1 + c2) = f(h1s1 + 2e1 +m1 + h2s2 + 2e2 +m2)

= 2(g1s1 + g2s2 + f(e1 + e2)) + f(m1 +m2)

f2 · c1c2 = f2[(h1s1 + 2e1 +m1)(h2s2 + 2e2 +m2)]

= 2Eerror + f2 ·m1m2

Here we mainly introduce the multikey homomorphic properties which the
basic NTRU scheme naturally has.

Given two ciphertexts c1 = h1s1+2e1+m1 ∈ Rq and c2 = h2s2+2e2+m2 ∈
Rq that encrypt messages m1 and m2 under the public key h1 and h2 respec-
tively, and the corresponding secret key are f1 and f2. Some simple algebraic
expressions (see the expressions [1] and [2]) show that the sum or multiplication
of c1 and c2 can be decrypted by their ”jointly secret key” f1f2:
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f1f2(c1 + c2) = f1f2(h1s1 + 2e1 +m1 + h2s2 + 2e2 +m2)

= 2(f1f2(e1 + e2) + f2g1s1 + f1g2s2) + f1f2(m1 +m2)

= 2eadd + f1f2(m1 +m2)

f1f2(c1c2) = f1f2(h1s1 + 2e1 +m1)(h2s2 + 2e2 +m2)

= 2(2g1s1g2s2 + 2f2g1s1e2 + f2g1s1m2 + 2f1g2s2e1

+ f1g2s2m1) + f1f2(4e1e2 + 2e1m2 + 2e2m1) + f1f2m1m2

= 2emult + f1f2(m1m2)

This shows that decrypting c1 + c2 and c1c2 using the joint secret key f1f2
results in the sum and product of the two messages, assuming that the error
eadd and emult do not grow to be too large. Furthermore, as for some compli-
cated circuit, we can observe that the ciphertext c resulting from evaluating a
multivariate polynomial function on the input ciphertext of N users can be de-
crypted by the jointly secret key

∏N
i=1 f

di
i , where di denotes the degree of the

i-th variable in the polynomial function. In other words, the secret key required
to decrypt the result ciphertext is not only dependent on the involved users, but
also the evaluating circuit. For example, the secret key to jointly decrypt the
evaluated ciphertext c1

2 + c2 is f2
1 f2, which is related to the involved users and

the evaluating function f(x1, x2) = x1
2 + x2.

With the assumption of DSPR, the security of the basic NTRU homomorphic
encryption scheme can be proveRqd under the RLWE assumption following two
steps: 1. Based on the hardness of DSPR assumption, the public key h = 2gf−1

can be replaced by 2h′ for a uniformly sampled h′. 2. Once the step 1 is done,
we can change the ciphertext c=hs + 2e + m to c∗=u + m with the RLWE
assumption, where u is uniformly sampled from Rq. As for arbitrary adversary,
the advantage of distinguish c∗ and c is both 1/2 since u is uniformly distributed
in Rq, which is independent of the message m.

2.4 Cryptographic Definitions of Multi-key FHE

Definition 3 (Multi-key FHE scheme). A leveled multi-key FHE scheme
consists of a set of algorithms described as follows:

– Setup(1λ, 1K , 1L) Given the security parameter λ, a bound K on the number
of keys, a bound L on the circuit depthoutput the public parameter pp .

– Gen(pp)Given the public parameter ppoutput the public key and secret key
of party i(i = 1, ...,K)and output the materials which are required for the
generation of evaluation keys evk.

– Enc(pp,pki,m)Given the public key pki of party i and a message µoutput the
ciphertext cti which contains the index of the corresponding secret key and
the level tag.

– Dec(pp, (ski1 , ski2 , ..., skik), ctS)Given a ciphertext ctS corresponding to a set
of parties S = {i1, i2, ..., ik} ⊆ [K]and their secret keys skS = {ski1 , ski2 , ..., skik},
output the message µ¡
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– Eval(pp, evk, C, (ctS1
, pkS1

), ..., (ctSt
, pkSt

))Given t tuples {(ctSi
, pkSi

)}i=1,...,t

and a boolean circuit C which is needed to be evaluatedeach tuple contains a ci-
phertext ctSi

corresponding to a set of secret keys indexed by Si = i1, ..., iki
⊆

[K]and a set of public keys pkSi = {pkj ,∀j ∈ Si}. Output a ciphertext ct
corresponding to a set of secret keys indexed byS = ∪ti=1Si ⊆ [K]¡

If the input ciphertext of Eval(·) can be fresh ciphertext or intermediate
results after any homomorphic operation, the MKFHE scheme satisfies the multi-
hop property.

Definition 4 (Correctness). A leveled multi-hop MKFHE scheme is correct
if for any circuit C of depth at most L with t input wires and a set of tuples
{(ctSi , pkSi)}i∈{1,...,t}, letting µi = Dec(skSi , ctSi), where skSi = {skj ,∀j ∈
Si},i = 1, ..., t, it holds that

Pr[Dec(skS , Eval(C, (ctS1 , pkS1), ..., (ctSt , pkSt))) ̸= C(µ1, ..., µt)] = negl(λ)

Where S = ∪ti=1Si ⊆ [K], pp ← Setup(1λ, 1K , 1L)(pkj , skj) ← Gen(pp) for
j ∈ [S].

Definition 5 (Compactness). A leveled multi-hop MKFHE scheme is compact
if there exists a polynomial poly(·, ·, ·) such that |ct| ≤ poly(λ,K,L), which means
that the length of ct is independent of the circuit C, but can depend of λ, K and
L.

3 Efficient leveled NTRU-based FHE scheme

3.1 Motivation

Recall the basic NTRU-type homomorphic encryption scheme in section 2.3.
What we already know is that the secret key required to decrypt the result NTRU
ciphertext is not only dependent on the involved users, but also the evaluating
circuit,

In order to eliminate the influence of the circuit evaluated on the decryption
and maintain the consistency of the decrypting form, we can use the relineariza-
tion technology introduced in [5] to transform the ciphertext into one that can
be jointly decrypted by the unified secret key

∏N
i=1 fi of all the involved users

after homomorphic operation.
In RLWE-based leveled FHE scheme BV11a, the ciphertext form is a poly-

nomial vector, thus the ciphertext dimension after homomorphic multiplication
will expand quadratically, which may cause trouble for the storage and operation
of the ciphertext. To handle it, relinearization technique was proposed in [5] to
reduce the dimension of the result ciphertext to the original extent.

However, relinearization is by far the most expensive operation in a leveled
FHE scheme. We noticed that in the NTRU-type FHE scheme, the ciphertext
form is a simple polynomial in R4, so the homomorphic operations on the cipher-
texts does not cause dimension expansion. In other words, we do not have to do
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relinearization after every homomorphic operation. However, in order to main-
tain the consistency of decryption, it is still necessary to perform relinearization
operation to transform the result ciphertext to one under the secret key .

In this paper, we consider to perform relinearization operation on the cipher-
text after k4 homomorphic evaluations to reduce the number of complicated
relinearization operations, thus reducing the computational complexity of homo-
morphic evaluations and improving the scheme’s efficiency. It should be noted
that the modulus-switching operation is still necessary after each homomorphic
evaluation to control the noise in the ciphertext, i.e. we separate the relineariza-
tion technique from the modulus -switching technique to make them no longer
bundle.

3.2 Parameters selection in DHS16

In [17], Doröz et al. optimize the parameters selection in the light of recent
theoretical and experimental results in the field of lattice reduction so as to
reduce the size of public key significantly. Beyond that, the secret key remain
the same for all levels so that the evaluation keys can be computed by the initial
evaluation keys at level 0. In this paper, we follow the method of parameters
selection in DHS16 to improve scheme’s efficiency comparing to LTV12, and
give a simple introduction to it in this section.

Assume that the modulus of each level of the circuit is a decreasing sequence
q0 > q1 > · · · > qL, and set qi = pt−i for i = 0, · · · , t− 1, where p ∈ Z is a prime
integer. The secret key f ∈ Rq0 remains the same for all levels and is invertible
in all rings Zqi .

Lemma 1 (Lemma 3 in [17]). Let p be a prime, and let f be a polynomial.
If f is a unit in Rp, then f is a unit in Rpk for k ⩾ 1. According to lemma 1,
the evaluation keys for level i can be simply computed by ζ(i) = ζ(0) mod qi.

DHS16 introduces batching technology [24] to package multiple input plain-
text into the same ciphertext and realize simultaneous input of multiple plain-
text, thus improving the encryption efficiency and reducing the number of ci-
phertext required for homomorphic operation. Batching technology can also be
applied to our scheme to improve its efficiency. The details of batching process
are presented in section 4.1 in [17].

3.3 Optimized leveled single-key FHE scheme

In this paper, we construct an leveled single-key FHE scheme, which can
homomorphically evaluate the circuit more efficiently than DHS16.

– Setup(1λ) : Given the security parameter λ, an integer n = n(λ), a prime
integer p=p(λ), the prime modulus q = q(λ), the polynomial ring R =
Z(x)/xn+1 and Rq = R/qR, and a B=B(λ)-bound error distribution χ over
the ring R. Define a series of decreasing modulus q0=pt > q1 > ... > qt−1,
one modulus per circuit level, and require that qi=pt−i for i ∈ {0, ..., t− 1}.
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– KeyGen(1λ) : Choose polynomials f ′, g ← χ, and set f = 2f ′+1 so that f ≡
1 mod 2. Set h = 2g/f ∈ Rq0 (If f is not invertible over Rq0 , resample f ′).
Sample s, e← χ⌈log q0⌉, let ζ(0) := hs+2eζ+Powersof 2((f)

3
) ∈ R

⌈log q0⌉
q0 , and

ζ(i→i+2) ≜ ζ(0) mod qi+1. Let f (i)(x) = f(x)
−1

(modqi), thus f(x)f (i)(x) =
1(modqi).
Output:sk := f ∈ Rq0(the secret key f remains the same for all levels),
and pk :=

{
h, ζ(0)

}
, where ζ(0) denotes the evaluation key in level 0, and

evaluation keys of other levels can be computed by ζ(0) and the modulus.
– Enc(h,m): Input the message m, sample s(0), e(0) ← χ, and output the

ciphertext
c(0) := hs(0) + 2e(0) +m ∈ Rq0

– Dec(f, c(l)): Input the ciphertext c(l) ∈ Rql , compute

µ := f · c(l) ∈ Rql

and output the message m′ := µ mod 2.
– (1) Add(c(i−1)

1 , c
(i−1)
2 ) :Input two ciphertexts c

(i−1)
1 and c

(i−1)
2 at level i− 1.

(a) Addition: c̃(i−1)
add = c

(i−1)
1 + c

(i−1)
2 .

(b) Modulus switching: c̃(i)add⌊(qi/qi−1) · c̃(i−1)
add ⌉2, where ⌊·⌉2 denotes c̃

(i)
add =

c̃
(i−1)
add mod 2 (Relinearization is not required as addition doesn’t change the

secret key).
– (2) Mult(c(i−2)

1 , c
(i−2)
2 , c

(i−2)
3 , c

(i−2)
4 ):input i−2 level ciphertext c(i−2)

1 , c(i−2)
2 ,

c
(i−2)
3 , c(i−2)

4 at level (i− 2).
(a) Multiplication: c̃(i−2)

1 =c
(i−2)
1 ×c(i−2)

2 ( mod qi−2);c̃(i−2)
2 =c

(i−2)
3 ×c(i−2)

4 ( mod
qi−2)

(b) Modulus switching: c̃(i−1)
1 = ⌊(qi−1/qi−2) · c̃(i−2)

1 ⌉2,
c̃
(i−1)
2 = ⌊(qi−1/qi−2) · c̃(i−2)

2 ⌉2, where ⌊·⌉2 denotes c̃
(i−1)
1 = c̃

(i−2)
1 mod 2 and

c̃
(i−1)
2 = c̃

(i−2)
2 mod 2.

(c) Multiplication: ˜̃c(i−1)
1 = c̃

(i−1)
1 · c̃(i−1)

2 (modqi−1)
(d) Relinearization:˜̃c(i) =

⟨
BitDecomp(̃̃c(i−1)),ζ(i−2→i)

⟩
( mod qi−1) ∈ Rqi−1

(e) Modulus switching: c̃(i) = ⌊(qi/qi−1) ·˜̃c(i)⌉2

Analysis.
(1)Correctness analysis
Here we mainly analyze the correctness of ciphertext multiplication.
Lemma2:The noise growth of evaluating two levels as a block under average

case is:

Bi,average ≈ v4n1.5B4
i−2κ

3+2v2n2(2B + 1)2B2
i−2κ

2+n log qi(2B
2+6B3)κ+

√
n(2B+1)

where n is the degree, B is the bound of error distribution χ over the ring R,
Bi denotes the error bound of the ciphertext at level i, κ is the reduction scale
of modulus switching.

(a)Multiplication: c̃(i−2)
1 = c

(i−2)
1 × c

(i−2)
2 ; c̃

(i−2)
2 = c

(i−2)
3 × c

(i−2)
4 (modqi−2)
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Suppose that c
(i−2)
k f = 2E

(i−2)
k + fmk(modqi−2) for k ∈ {1, 2, 3, 4}. As the

corresponding secret key of c̃(i−1)
1 and c̃

(i−2)
1 is f2, we have

c̃
(i−2)
1 (x)f2 = 2Ẽ

(i−2)
1 + f2m1m2(modqi−2)

c̃
(i−2)
2 (x)f2 = 2Ẽ

(i−2)
2 + f2m3m4(modqi−2)

(b)Modulus switching
Lemma3: Let q and p be two odd integer, c ∈ Rq, denote c′ = ⌊(p/q) · c⌉2,

where ⌊⌉2 denotes c′ = c mod 2. For arbitrary f that satisfies ||[f2c]q||∞ < q/2−
(q/p) · ||f2||1, we have [f2c′]p = [f2c]q mod 2 and ||[f2c]p||∞ < (p/q)||[f2c]q||∞+
||f2||1.

According to lemma3, we have

c̃
(i−1)
1 (x) = ⌊(qi−1/qi−2) · c̃(i−2)

1 (x)⌉2(modqi−1)⇒

[f2c̃
(i−1)
1 (x)]qi−1

= [f2c̃
(i−2)
1 (x)]qi−2

mod 2 = m1m2;

c̃
(i−1)
2 (x) = ⌊(qi−1/qi−2) · c̃(i−2)

2 (x)⌉2(modqi−1)⇒

[f2c̃
(i−1)
2 (x)]qi−1 = [f2c̃

(i−2)
2 (x)]qi−2 mod 2 = m3m4

(c)Multiplication: ˜̃c(i−1) ≜ c̃
(i−1)
1 × c̃

(i−1)
2 (modqi−1)

As the secret key of ˜̃c(i−1) is f4, we have

˜̃c(i−1)f4 ≜ (c̃
(i−1)
1 f2)(c̃

(i−1)
2 f2) ≜ 2̃̃E(i−1) + f4m1m2m3m4(modqi−1)

(d)Relinearization: ˜̃c(i) =
⟨
BitDecomp(̃̃c(i−1)),ζ(i−2→i)

⟩
(modqi−1) ∈ Rqi−1

As the evaluation key ζ
(i−2→i)
τ is a ciphertext at level (i− 1), i.e.

ζ(i−2→i)
τ f = 2E

ζ
(i−2→i)
τ

+ 2τf4(modqi−1)

then we can get

˜̃c
(i)
(x)f = f(

∑⌊log qi−1⌋

τ=0
˜̃c(i−1)
τ (x)ζ(i−2→i)

τ )(modqi−1)

=
∑⌊log qi−1⌋

τ=0
˜̃c(i−1)
τ (x)(2E

ζ
(i−2→i)
τ

+ 2τf4)(modqi−1)

= 2
∑⌊log qi−1⌋

τ=0
˜̃c(i−1)
τ (x)E

ζ
(i−2→i)
τ

+
∑⌊log qi−1⌋

τ=0
˜̃c(i−1)
τ (x) · 2τf4(modqi−1)

= 2
∑⌊log qi−1⌋

τ=0
˜̃c(i−1)
τ (x)E

ζ
(i−2→i)
τ

+ f4 ·˜̃c(i−1)
(x)(modqi−1)

= 2
∑⌊log qi−1⌋

τ=0
˜̃c(i−1)
τ (x)E

ζ
(i−2→i)
τ

+ 2̃̃E
(i−1)

+ f4m1m2m3m4(modqi−1)

= 2̃̃E′(i−1)
+ f4m1m2m3m4(modqi−1)
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(e)Modulus switching:c(i)(x) = ⌊(qi/qi−1) ·˜̃c(i)(x)⌉2

c(i)f =˜̃c
(i)
(x)f(modqi−1)(mod2)

= 2̃̃E′(i−1)
+ f4m1m2m3m4(mod2)

= m1m2m3m4

(2) Noise growth
In this paper, we set Bi = 212, B = 2, δ = 1.0066, and compute the noise

growth of evaluating one block (one level per block in DHS16 ).The results are
presented in table1.

Table 1. Comparsion of noise growth between DHS16 and our scheme

Log(n) Log(q) Noise growth
in DHS(bit)

Noise growth in
our scheme(bit)

12 155 8.322 8.321
13 331 8.822 8.821
14 622 9.322 9.321
15 1244 9.822 9.821
16 2488 10.322 10.321
17 4976 10.823 10.822

Analysis shows that in the case of two levels per block, the noise growth in
our scheme is almost same as DHS16. Therefor we choose the same number of
levels and modulus as in DHS16.

3.4 Leveled multi-key FHE scheme

In this section, we extend the leveled single-key FHE scheme in section 3.1
to a leveled multi-key FHE scheme based on the framework of LTV12.

– Setup(1λ): For security parameter λ, given the following parameters which
have been defined above: a integer n = n(λ), the prime modulus q = q(λ), the
polynomial ring R = Z(x)/xn + 1 and Rq = R/qR, and a B = B(λ)-bound
error distribution χ over the ring R. Define a series of decreasing modulus
q0 = pt > q1 > · · · > qt−1, one modulus per circuit level, and require that
qi = pt−i for i ∈ {0, ..., t− 1}.

– KeyGen(1λ): Choose polynomials f ′, g ← χ, and set f = 2f ′ + 1(If f is not
invertible over Rq, resample f ′) so that f ≡ 1 mod 2.
Sample sτ , eτ ← χ, and for j ∈ {1, 2, 3}, τ ∈ {0, ..., ⌊log q0⌋}, compute

ζ
(0)
j,τ := hsτ + 2eτ + 2τf j ∈ Rq0

and ζ
(i−2→i)
j,τ can be computed by ζ

(i−2→i)
j,τ ≜ ζ

(0)
j,τ mod qi−1.
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Output sk := f ∈ Rq0(the secret key f remains the same for all levels), and
pk :=

{
h, ζ

(0)
j,τ

}
j∈{1,2,3},τ∈{0,...,⌊log q0⌋}

.

– Enc(pk,m)�Input the message m, sample s(0), e(0) ← χ, and output the
ciphertext

c(0) := hs(0) + 2e(0) +m ∈ Rq0

– Dec(f1, ..., fN , c): Input the ciphertext c ∈ Rp, suppose the corresponding
secret keys of the involved users are f1, ..., fN , compute

µ := (f1 · · · fN ) · c(modp)(mod2)

and output the message µ.
– Eval(C×, c

i−2
1 , ci−2

2 , ci−2
3 , ci−2

4 ): Here we show how to homomorphically mul-
tiply four ciphertexts ci−2

1 , ci−2
2 , ci−2

3 and ci−2
4 at level (i − 2). We assume

that the users associated with each ciphertext is denoted by K1, K2, K3,
and K4 respectively. The public-key set of a fresh encryption is simply the
set {pk} containing the public key under which it was encrypted, and we set
K1 ∪K2 ∪K3 ∪K4 = {pk1, . . . , pkr}.
(1) Multiplication: c̃(i−2)

1 = c
(i−2)
1 ×c(i−2)

2 ( mod qi−2); c̃(i−2)
2 = c

(i−2)
3 ×c(i−2)

4 ( mod
qi−2).
(2) Modulus switching: c̃(i−1)

1 = ⌊(qi−1/qi−2) · c̃(i−2)
1 ⌉2; c̃(i−1)

2 = ⌊(qi−1/qi−2) ·
c̃
(i−2)
2 ⌉2 (3) Multiplication:˜̃c(i−1) = c̃

(i−1)
1 · c̃(i−1)

2 (modqi−1) (4) Relineariza-
tion�For v = 1, ..., r and τ ∈ {0, ..., ⌊log qi−1⌋}, define ˜̃c(i−1)

v−1,τ so that

˜̃c
(i−1)
v−1 =

⌊log qi−1⌋∑
τ=0

˜̃c
(i−1)
v−1,τ2

τ

is the binary representation of ˜̃c(i−1)
v−1 , and ˜̃c(i−1)

0 = ˜̃c(i−1).
(a) If pkv ∈ {K1 ∩K2 ∩K3 ∩K4}, let

˜̃c(i−1)
v =

⌊log qi−1⌋∑
τ=0

˜̃c
(i−1)
v−1,τζ

(i−2→i)
jv=3,τ

(b) If pkv /∈ {K1 ∩K2 ∩K3 ∩K4}, and pkv is exist in any three sets of
K1,K2,K3,K4, let

˜̃c(i−1)
v =

⌊log qi−1⌋∑
τ=0

˜̃c
(i−1)
v−1,τζ

(i−2→i)
jv=2,τ

(c) If pkv /∈ {K1 ∩K2 ∩K3 ∩K4}, and pkv is exist in any two sets of
K1,K2,K3,K4, let

˜̃c(i−1)
v =

⌊log qi−1⌋∑
τ=0

˜̃c
(i−1)
v−1,τζ

(i−2→i)
jv=1,τ
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Finally, we can get ˜̃c(i−1)
r iteratively.

(5) Modulus switching: c̃(i) = ⌊(qi/qi−1) ·˜̃c(i−1)
r ⌉2, and output the result ci-

phertext c̃(i), whose corresponding secret key is f1 · f2 · · · fr.

To see why relinearization works, see the proof below.
Proof : Suppose that the evaluation key of v-th user is ζ

(i−2→i)
jv,τ

= hsτ +

2eτ + 2τ (fv)
jv , thus the corresponding secret key of ˜̃c(i−1)

v−1 can be represented
by f ′ · (fv)jv+1, where f ′generally denotes the combination of other users’ secret
keys, and we show that the new secret key after 1-round relinearization by the
evaluation key ζ

(i−2→i)
jv,τ

is changed to f ′ · fv.

The new ciphertext˜̃c(i−1)
v =

⌊log qi−1⌋∑
τ=0

˜̃c
(i−1)
v−1,τζ

(i−2→i)
jv,τ

, and the decrypting pro-
cess can be represented by:

(f ′ · fv) ·˜̃c(i−1)
v

= (f ′ · fv)
⌊log qi−1⌋∑

τ=0

˜̃c
(i−1)
v−1,τζ

(i−2→i)
jv,τ

(modqi−1)

= f ′ ·
⌊log qi−1⌋∑

τ=0

˜̃c
(i−1)
v−1,τ (2Eζ + 2τ (fv)

jv+1)

=2f ′
⌊log qi−1⌋∑

τ=0

˜̃c
(i−1)
v−1,τEζ + f ′ · (fv)jv+1

⌊log qi−1⌋∑
τ=0

˜̃c
(i−1)
v−1,τ2

τ

= 2f ′
⌊log qi−1⌋∑

τ=0

˜̃c
(i−1)
v−1,τEζ +˜̃c

(i−1)
v−1

(
f ′ · (fv)jv+1

)
(modqi−1)

= 2f ′
⌊log qi−1⌋∑

τ=0

˜̃c
(i−1)
v−1,τEζ +

(
2̃̃E

(i−1)
v−1 + f ′ · (fv)jv+1 · C(m1, ...,mr)

)
(modqi−1)

= 2̃̃E′(i−1)
v−1 + f ′ · (fv)jv+1 · C(m1, ...,mr)(modqi−1)

= C(m1, ...,mr)(mod2)

Finally we can get ˜̃c(i−1)
r iteratively whose secret key is

∏r
v=1 fv.

The optimized multi-key FHE scheme in this section has the following ad-
vantages comparing to LTV12:

(1) Relinearization process are implemented after evaluating two levels cir-
cuit, which can reduce the computational complexity significantly.

(2) Only the evaluation keys whose corresponding users are existed in at
least two ciphertexts are employed in relinearization process, which is efficient
and important in real applications.

(3) An efficient two-round MPC can be constructed based on the multi-key
FHE scheme in this section.

4 Two-round multiparty computation

MKFHE schemes can be used to construct secure MPC protocols. When
executing a MPC protocol, each user involved in homomorphic evaluations is
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usually required to decrypt in sequence, which may cause complicated decryp-
tion process and inevitable interaction between users. However, in many actual
scenarios, we do not want too much interaction, and prefer the final decryption
process is completed by each user independently. That is to say, distributed
decryption, in most cases, is the preferred decryption method in real life.

4.1 Construction
In this paper, according to the particularity of ciphertext form in NTRU-

based leveled FHE scheme, we construct a distributed decryption process which
can be implemented by the involved users independently. In our construction,
each user will firstly receive the result evaluated ciphertext from the cloud server,
and compute the ciphertext with his (her) own secret key to obtain an “inter-
mediate ciphertext”. Secondly, all the “intermediate ciphertext” will be sent to
the user or organization who requires the evaluated results for decryption.

The whole process is relatively simple and intuitive, and we give a formalized
explanation below to demonstrate the feasibility of constructing the distributed
decryption by the NTRU-type FHE scheme.

Suppose that the result ciphertext after homomorphically evaluating the cir-
cuit C is denoted by c ∈ RqL , the user set involved in c is S = {i1, ..., iN}, their
corresponding secret keys skij = fij , and the corresponding message is mij ,
j ∈ [N ]. Then it holds that

(
∏N

j=1
fij ) · c = 2Eerror + C(mi1 , ...,miN )(modqL)

Step 1. After the cloud return the result ciphertext c ∈ Rqt−1
to involved

users, each user firstly semi-decrypt the ciphertext using his own secret key and
get a semi-ciphertext c′ij=fij ·c. As the corresponding secret key of c is

∏N
j=1 fij ,

c′ij doesn’t reveal any information of users’ messages.
Step 2. After all the users return the semi-ciphertexts c′ij to the user or

organization who are going to decrypt, the user or organization firstly compute
c−(N−1) ∈ Rqt−1

, and then compute

c−(N−1) ·
∏N

j=1 c
′
ij = c−(N−1) ·

∏N
j=1 (fij · c)

= c−(N−1) · cN−1 · (
∏N

j=1 fij ) · c
= (

∏N
j=1 fij ) · c(modqL)(mod2)

= 2Eerror + C(mi1 , ...,miN )
∏N

j=1 c
′
ij (mod2)

= C(mi1 , ...,miN )

Note that the modulus switching process is needed to reduce the noise at the
final process of step 2 to ensure correct decryption.

4.2 Applications in secure genomic diagnoses
Here we present an application of MKFHE for secure genomic diagnoses

without revealing patient genomes, which is an optimized vision of [25].
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Genes are codes that direct human activity, thousands of monogenic diseases
have been diagnosed to be caused by ”malignant” mutations in certain genes.
In the diagnosis of such diseases, it is necessary to find the exact location where
these genetic variants occur, and this often requires comparison between the
genes of patients and healthy people. However, genetic data is individual’s pri-
vacy, genome sharing enables discrimination [25], and even causes crime once
genome information is leaked or stolen by malicious and illegal person or organi-
zation. How to analyze the patient’s genetic data while protecting the privacy of
genetic data is a problem worth considering in the current cloud environment.

In [25], Jagadeesh K A et al. apply a cryptographic method called Yao’s
protocol to perform the desired computation without revealing any participant’s
input, and introduce a “two-cloud” model to extend the protocol to N parties.
However, they need to assume there are two non-colluding cloud servers that
facilitate the protocol execution, which is weak in real cloud and is vulnerable
to collusion attacks.

MKFHE can effectively solve the problem of colluding cloud, because the
cloud can only access and compute the ciphertext of the patient’s genetic data.

The process is as follows:
Step1. The medical institution performs gene sequencing on the patients,

after that, each individual will get a variant vector of all possible rare missense
and nonsense variants in the human genome, and privately denote “1” or “0”
to indicate whether they have the specific mutation or not respectively, so that
each individual will get a bit string.

Step2. All patients encrypt their genome bits by MKFHE scheme and upload
them to the cloud.

Step3. The research institution upload the homomorphic evaluating function
of genome data to the cloud.

Step4. The cloud perform the homomorphic evaluating function on the en-
crypted genome data and return the result ciphertext to the patients.

Step5. The result ciphertext is jointly decrypted by all patients and return
the result to the research institution.

5 Experimental results

In this section, we compare the efficiency of our single key holomorphic en-
cryption scheme and DHS16. The results are presented in table 2.

Experimental results show that when we use two layers as a block, the speed
of the 36-level homomorphic multiplication is 1.9 times that of the DHS scheme.
When we use three layers as a block, the speed of the 36-level homomorphic
multiplication is 2.4 times that of the DHS scheme. Therefore, our scheme can
run the homomorphic circuit more efficiently.
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Fig. 1. The flowchart of the secure genomic diagnoses

Table 2. The comparison of homomorphic multiplication between DHS16 and our
scheme

Scheme
Level(s)
for one

relinearization
Number of levels

Total Time for
evaluating

multiplication gate

Average time for
evaluating

multiplication gate
DHS16 1 36 168084 4669

Our scheme 2 36 86832 2412
3 36 68400 1900
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6 Conclutions

In this paper, we propose an efficient leveled MKFHE scheme, which im-
proves the efficiency of homomorphic evaluations, and constructs a two-round
multiparty computation (MPC) protocol based on this. We reduce the number
of relinearization operations in homomorphic evaluations process by separating
the homomorphic multiplication and relinearization techniques. We construct a
distributed decryption process which can be implemented independently for all
participating users, and avoid the interaction between users in the decryption
process. Based on this, a two-round MPC protocol is proposed.
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