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Abstract

We construct non-interactive zero-knowledge (NIZK) arguments for NP from any circular-
secure fully homomorphic encryption (FHE) scheme. In particular, we obtain such NIZKs
under a circular-secure variant of the learning with errors (LWE) problem while only assuming
a standard (poly/negligible) level of security. Our construction can be modified to obtain NIZKs
which are either: (1) statistically zero-knowledge arguments in the common random string model
or (2) statistically sound proofs in the common reference string model.

We obtain our result by constructing a new correlation-intractable hash family [Canetti,
Goldreich, and Halevi, JACM ’04] for a large class of relations, which suffices to apply the
Fiat-Shamir heuristic to specific 3-message proof systems that we call “trapdoor X-protocols.”
In particular, assuming circular secure FHE, our hash function h ensures that for any function
f of some a-priori bounded circuit size, it is hard to find an input z such that h(z) = f(x).
This continues a recent line of works aiming to instantiate the Fiat-Shamir methodology via
correlation intractability under progressively weaker and better-understood assumptions. An-
other consequence of our hash family construction is that, assuming circular-secure FHE, the
classic quadratic residuosity protocol of [Goldwasser, Micali, and Rackoff, SICOMP ’89] is not
zero knowledge when repeated in parallel.

We also show that, under the plain LWE assumption (without circularity), our hash family
is a wuniversal correlation intractable family for general relations, in the following sense: If
there exists any hash family of some description size that is correlation-intractable for general
(even inefficient) relations, then our specific construction (with a comparable size) is correlation-
intractable for general efficiently verifiable relations.
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1 Introduction

Zero-knowledge (ZK) protocols, introduced by [GMRS85], have been ubiquitous in cryptography for
the last 30 years. At a high level, a zero-knowledge protocol II is an interactive protocol between
a prover P and a verifier V', in which the verifier V' is convinced that some statement “x € L”
is true but learns nothing beyond this fact. This “zero knowledge” property is formalized by the
simulation paradigm: proving that an interaction between an honest prover P and any (potentially
dishonest) verifier V* can be simulated given only the verifier V* and its input.

An important and extremely useful variant of zero-knowledge protocols is a non-interactive zero-
knowledge (NIZK) protocol, in which a proof consists of a single message from the prover to the
verifier. While it is known [GO94] that such NIZKs (or even 2 message zero-knowledge argument
systems) for languages outside BPP do not exist in the plain model, we can construct NIZK proof
systems in a setting where the prover and the verifier have access to a common reference string
which is chosen from a predefined distribution, e.g. [BFM88, FLS99, CHK03, GOS12,SW14,BP15].
In this work, we make progress on two related open problems in the study of non-interactive zero-
knowledge protocols.

Lattice-Based Non-Interactive Zero Knowledge. While it is known how to construct NIZKs
for NP under standard number-theoretic assumptions such as factoring and Bilinear Diffie-Helllman
in prime-order elliptic-curve groups [BFM88, FL.S99, CHKO03|, we do not know how to construct
NIZK protocols based on lattice assumptions [Ajt96, AD9I7, Reg09] (except for extremely strong
assumptions that suffice for indistinguishability obfuscation). In particular, we do not know how
to construct NIZK protocols from any known variant of the learning with errors (LWE) prob-
lem [Reg09]. This stands in sharp contrast to the large body of work ( [GPV08, PVW08, Gen09,
BV11, BLMR13, GVW13, GKP*13,BV15, CC17, GKW17a, WZ17, GKW18], to name a few) that
successfully constructed a variety of cryptographic applications from LWE and closely related lat-
tice assumptions — including many applications where LWE-based realizations are the only known
ones. In fact, NIZK has stood out as possibly the exceptional core cryptographic primitive that
can be constructed from the above number-theoretic assumptions (which are notably all broken by
polynomial-time quantum computers) but not lattice assumptions.

NIZK via the Fiat-Shamir Transform. A natural approach to constructing NIZK protocols
is to use the Fiat-Shamir transform [FS86], which prescribes a general way to remove interaction
from public-coin interactive proofs: To transform an interactive proof II to a non-interactive one,
have the verifier first send a hash function h to the prover, and then have the prover compute the
entire transcript of II by itself, replacing the verifier’s challenges by the result of applying the hash
function to the transcript so far (or portions thereof). The prover sends this entire transcript to
the verifier in one message, and the verifier accepts if all checks verify.

Fiat and Shamir proposed to apply this methodology to a three-round identification protocol,
using a fixed hash function such as h(z) = DES,(0), with the goal of obtaining a signature scheme;
later instantiations used SHA and other cryptographic hash functions. As heuristic evidence for its
security, Bellare and Rogaway [BR93] showed that when applied to a three-round honest-verifier
Zero-Knowledge protocol with negligible soundness error, the Fiat-Shamir transform yields a NIZK
protocol for the same language, as long as the hash function is modeled as a random oracle. Still,
while this paradigm seems like a natural and attractive way to construct simple and efficient NIZK



protocols, finding explicit hash functions that suffice to make the approach work under well-defined
hardness assumptions has proved to be elusive.

Furthermore, several works have demonstrated that such a hash function would have impli-
cations elsewhere, and might also be hard to come by. Specifically, [DNRS99] show that if there
is a hash function H instantiating the Fiat-Shamir transform for some three round public coin
interactive proof II, then II is not (general verifier) zero knowledge. [Bar01, GK03] show that there
exists some (artificially constructed) 3-round public-coin computationally sound proof (a.k.a an ar-
gument) II, for which the Fiat-Shamir heuristic fails to preserve soundness no matter what hash
function is used to instantiate it. Furthermore, [BDG"13] show that no hash function family can
be shown to suffice for the Fiat-Shamir via black-box reduction to a game-based assumption, even
if one restrict attention to the case where the initial protocol is a three-round statistically sound
proof. Nevertheless, it remains plausible that the Fiat-Shamir heuristic could be securely instan-
tiated via some explicit hash family for specific classes of protocols. Showing that this is the case
under standard assumptions is a long-standing open problem [BLV03].

Correlation Intractability and Recent Progress. Another hardness property for hash func-
tions, which turns out to be easier to formalize and closely related to “soundness for the Fiat-Shamir
transform,” is correlation intractability (which was defined in [CGHO4] for a different purpose).
Roughly speaking, a hash function family H is correlation intractable (CI) for a relation R(x,y) if
it is computationally hard, given a random hash key k, to find any input « such that (z, Hy(z)) € R.
The most general class of relations typically considered is the set of all sparse relations: a relation
R is sparse if for every z, the set of all y such that (x,y) € R is a negligible faction of all possible
values y. As observed in [HMRO8], CI families (for this broadest possible class of relations) suffice
for the soundness of the Fiat-Shamir transform, whenever the initial protocol is a statistically sound
proof.

Initially this observation was taken as evidence for the hardness of constructing CI functions.
Recently, however, a number of explicit hash function families were shown to be CI for certain classes
of relations under well-defined assumptions [CCR16, KRR17, CCRR18,HL18, CCH"18]. Moreover,
these hash functions were shown to be sound for the Fiat-Shamir transform for large classes of
protocols. While these are significant advancements, the hardness assumptions used in these works
are very strong and not well understood. See more discussion in Section 1.2.

1.1 Owur Contributions

Our main result is a correlation-intractable hash family for a large class of relations, based on
circular-secure fully homomorphic encryption (FHE). This is the first construction based on a
“fully falsifiable” assumption: one defined via a game between an adversary and a polynomial-
time challenger where we assume that every polynomial-time adversary has at most a negligible
advantage in the game. Moreover, it is a cryptographic assumption that is widely used elsewhere; in
particular, it is currently an essential step for obtaining fully (non-leveled) homomorphic encryption
in the first place.

Our correlation-intractable hash family is powerful enough to instantiate the Fiat-Shamir trans-
form for a certain class of public-coin proof systems. The class is quite broad; in particular, it suffices
for obtaining NIZKs for all of NP. We provide two variants of this transformation: one variant
results in NIZK protocol where the zero-knowledge property is statistical, and the CRS is “public
coin” (in fact, it is uniformly distributed). The other variant results in a NIZK with statistical



soundness. The latter variant is especially surprising since, even in the random oracle model, the
Fiat-Shamir transform only provides computational soundness and therefore our hash function has
some advantages even over a random oracle. Furthermore, the two variants have reference strings
that are indistinguishable from each other, so the resulting NIZK protocol has a “dual mode”
property [DNO01, GOS12].

In addition to the NIZK application, we show two other interesting applications of our hash
family. One result — essentially following from [DNRS99] — is that assuming circular-secure FHE,
a class of natural three-message public-coin protocols (which in particular includes the [GMR89]
Quadratic Residuosity protocol) are not zero knowledge when repeated in parallel. This partially
resolves open questions posed in [DNRS99, BLV03].

The other application (or extension) is that our hash family has the following interesting wuni-
versality properties for correlation intractability, assuming only plain LWE: if any one of a class of
hash functions is correlation intractable for all (even inefficiently verifiable) sparse relations, then
our family is correlation intractable for all (efficiently verifiable and sufficiently sparse) relations.
Remarkably, universality holds even for multi-input correlation intractability (namely, when the
relation can depend on multiple inputs to the hash function and the corresponding outputs).

We now describe our contributions in more detail.

1.1.1 Correlation Intractability from Fully Homomorphic Encryption

We focus on obtaining correlation intractability for the following class of relations. First, we
consider relations R where for every x there is a single y such that R(x,y) holds. We let f denote
the function that maps x to the corresponding y that makes R(z,y) hold. That is, R(x,y) = 1 iff
y = f(xz). We say that R is searchable in time T if f is computable in time 7. We then construct,
for each time bound T, a hash function family that is CI with respect to all relations that are
searchable in time 7'. That is:

Theorem 1.1. If there exists a circular secure fully homomorphic encryption scheme, then for
every polynomial time bound T = T(X), every polynomial input size n = n(\) and every constant
€ > 0, there exists a hash family H that is correlation intractable for all relations that are searchable
in time T, with input size n and output size \°.

We emphasize that efficient searchability is quite different than the notions of efficient relations
used in prior work [CCR16,HL18,CCH™18]. Still, we will see that it suffices for our needs. Moreover,
our construction is very different from most prior work on correlation intractability: we show that
a random key k is indistinguishable from a key k' for which there do not exist any x for which
hi(z) = f(x). We call this property “somewhere statistical correlation intractability” in analogy to
the notion of “somewhere statistically binding” hash functions of [HW15]. This statistical property
is also what allows us to modify our NIZK argument system to obtain NIZK proofs rather than
just arguments. See more details in Section 1.3

Universal CI. We also show that our particular hash function h(k,z) with some fixed time
bound T is correlation-intractable for general efficiently verifiable relations of sufficient sparsity,
assuming that:

1. There exists some hash function h'(-,-) of size T' which is correlation-intractable for general
(even inefficiently verifiable) relations of sufficiently smaller sparsity.



2. The FHE scheme is semantically secure (we do not rely on circular security for this result).

In addition, our universality argument even extends to the case of multi-input correlation in-
tractability, about which very little is currently known.

We note that the flavor of universality demonstrated in this work is very different than other
universality results which rely on “Levin’s trick” [Lev73]. Specifically, Levin’s trick involves guessing
the description of a Turing Machine M that securely implements the primitive, and the resulting
universal schemes incur a security loss which is exponential in the length of M. Although this
is only a constant loss, it is likely to be quite large. In contrast, our universal scheme does not
involve guessing a Turing Machine and does not incur the corresponding security loss. In fact, in
contrast to Levin’s trick, our technique even works in the “non-uniform” setting: if we only start
with the premise that there exists a non-uniform constructions of a secure correlation-intractable
hash family, then our construction (which is uniform) is still secure (but the security reduction is
non-uniform).

1.1.2 Applications to Fiat-Shamir and NIZK

By applying our hash family from Theorem 1.1 to a particular 3-round proof system for graph
Hamiltonicity based on [FLS99], we obtain NIZK arguments in the common reference string model
from any (circular-secure) fully homomorphic encryption scheme.

Theorem 1.2. If there exists a circular-secure fully homomorphic encryption scheme, then there
exist (adaptively sound) NIZK arguments for NP in the common reference string model.

In fact, we prove two different strengthenings of Theorem 1.2: we construct (non-adaptively
sound) non-interactive statistical zero-knowledge (NISZK) arguments for NP in the common random
string model, and we construct statistically (and adaptively) sound NIZK proofs for NP in the
common reference string model.

Theorem 1.3. If there exists a circular secure fully homomorphic encryption scheme, then there
exist statistically (and adaptively) sound NIZK proofs for NP in the common reference string model.

Theorem 1.4. Suppose that there exists a circular secure fully homomorphic encryption scheme
with pseudorandom ciphertexts and public keys. Furthermore, suppose that there exists a lossy
public key encryption scheme [KNO8, PVW08, BHY09] with uniformly random lossy public keys.
Then, there exist (non-adaptively sound) NISZK arquments for NP in the common random string
model.

The additional hypotheses of Theorem 1.4 are satisfied under LWE. Interestingly, to the best
of our knowledge, we did not previously have NISZK argument systems in the common random
string model from any standard cryptographic assumption (the [GOS12] NISZK argument system
requires a non-random common reference string). Also, we previously did not have any approach
toward achieving statistically sound proofs via the Fiat-Shamir heuristic.

Note on Adaptively Sound NISZK: An earlier version of this paper erroniously claimed to
construct adaptively sound NISZK arguments; in fact, there are notable barriers to obtaining such
a result [Pas13] and we do not prove that our NIZKs can simultaneously satisfy these two properties
(see footnote 13 regarding Theorem 5.13). To reiterate, our NIZK arguments are shown to satisfy
either adaptive soundness or statistical zero knowledge, but not both simultaneously.



Fiat-Shamir for Trapdoor Y-Protocols As explained above, our hash family H can be used
to soundly instantiate the Fiat-Shamir heuristic for a particular modification of the 3-round proof
system of [FLS99]. More generally, we can apply Fiat-Shamir to “trapdoor X-protocols” (see
Definition 6.2): roughly speaking, these are 3-message protocols II in the common reference /random
string (CRS) model with the following two properties:

o If the statement x is false, then for every first message a, there is a unique challenge e for
which there is an accepting third message z that results in an accepting transcript (a, e, z).

e There is a trapdoor T associated with the CRS that allows us to efficiently compute this “bad
challenge” e from the first message a.

In this language, we modify the [FLS99] 3-round proof system to make it a “trapdoor %-
protocol” by choosing a commitment scheme that has a commitment public key (which we put
in the CRS) for which there exists a trapdoor allowing for extraction. Moreover, we define a
generalization called an “instance-dependent trapdoor X-protocol” (see Definition 6.3), in which
the trapdoor is allowed to depend on the instance z, that also captures the unmodified [GMR89]
protocol. We prove that our hash family suffices to instantiate Fiat-Shamir for all such protocols.
By [DNRS99], this implies that the (parallel repeated) [GMR89] protocol is not zero knowledge.

Corollary 1.5. Suppose that there exists a circular secure fully homomorphic encryption scheme,
and further assume the hardness of quadratic residuosity. Then for any € > 0, the [GMR89] protocol
for quadratic residuosity, repeated \¢ times in parallel, is not zero knowledge.

1.1.3 About the Assumption: Circular Secure FHE

We know how to construct leveled FHE under the learning with errors (LWE) assumption [BV11,
BGV12, Bral2, GSW13, BV14] which is in turn as hard as worst-case lattice problems [Reg09,
BLP'13,PRSD17|. As far as we know, it is reasonable to assume that any of these FHE schemes
is circular secure, meaning that if we encrypt the secret key (one bit at a time) then this is
indistinguishable from encrypting a dummy message consisting of all 0s. This is a “fully falsifiable”
assumption where we only need to assume a standard poly/negligible level of security. In fact, this
assumption is needed to perform bootstrapping [Gen09] and is currently the only known approach!
to get fully (non-leveled) homomorphic encryption. Moreover, circular security appears to be a very
mild assumption: as far as we know all natural encryption schemes that are semantically secure are
also circular secure. In fact, it is highly non-trivial to come up with even contrived constructions of
semantically secure encryption schemes which are not circular secure and we had no such examples
until fairly recently with the works of [Rot13, GKW17b, GKW17a, WZ17]. Although we do not
know how to prove the circular security of any FHE candidate under LWE directly, we consider
circular secure FHE to be a mild, fully falsifiable, lattice-based assumption. Our work achieves
the first constructions of correlation-intractable hash functions, instantiations of Fiat-Shamir and
NIZKs under such assumptions.

Tt has also been shown that indistinguishability obfuscation can be used to bootstrap FHE [CLTV15], but there
are currently no instantiations of IO from standard assumptions.



1.2 Prior Work on Correlation Intractability and Fiat-Shamir
This work continues a recent line of works [CCR16, KRR17, CCRR18, HL18, CCH'18] focused

on constructing correlation-intractable hash families and using them to instantiate the Fiat-Shamir
transform in the standard model. Throughout, we consider and compare the following main aspects
of the constuctions and assumptions in these works (we consider game-based assumptions):

(a) Our level of familiarity with the assumption
(b) Formal characterictics of the assumption, namely:

(b.1) The complexity of the algorithm conducting the security game and deciding whether
a purported adversary won the game (is it exponential in the security parameter?)

(b.2) The bound on the allowed success probability of the adversary (is it exponential in
the security parameter?)

(¢) The class of relations for which correlation intractability is achieved; in particular, whether
the hash family is compact (namely whether the a single family of functions can withstand
relations of arbitrary polynomial size).

The works are described below.

e [CCRI16] constructs hash functions that are correlation intractable for all efficiently verifiable
relations assuming subexponentially secure indistinguishability obfuscation (I0) [BGIT01,
GGH™13] for all circuits as well as input-hiding obfuscation [BCKP14] for all evasive circuits.
Both of these assumptions are non-standard; indeed, IO has no constructions from standard
assumptions, and input-hiding obfuscation is even less understood. The [CCR16] construc-
tion is non-compact: the description size of the hash function depends polynomially on the
maximum description size of the relations covered. Using ideas from [HL18], the [CCR16] con-
struction can be used to instantiate the Fiat-Shamir heuristic for specific 3-message protocols
of interest in a similar way to what is done in later works.

e [KRR17] (independently of [CCR16]) constructs hash functions that are correlation in-
tractable for all sparse relations; in particular, they instantiate the Fiat-Shamir transform
for all constant-round interactive proofs, yielding a construction of NIZK arguments as well
as showing that no constant-round public-coin zero knowledge proofs exist. They do so as-
suming subexponential indistinguishability obfuscation, and in addition a strong variant of
point function obfuscation satisfying a form of “fully exponential KDM security.” Roughly
speaking, this requires that it is fully exponentially hard for a polynomial-time adversary to
recover a point * given an obfuscation of a program that outputs y* = f(x*) on a particular
(random) input z*, for any (possibly inefficient) function f.

e [CCRR18] obtains results similar to [KRR17], with significantly simpler and more efficient
constructions that avoid obfuscation. Furthermore, their assumptions pertain to security
properties of known constructs such as Regev and El-Gamal encryption. Still, their as-
sumptions have the same strong flavors as those of [KRR17]: in particular, they require the
existence of an encryption scheme with the property that it is fully exponentially hard to
recover the secret key sk given a KDM-encryption Enc(sk, f(sk)) for any (possibly inefficient)
function f (where Enc is either Regev or El-Gamal encryption).



Reference Assumes 107 Exotic Exp-time Exponential

(Functionality) Assumption? | Challenger? | Probability?
(Non-Compac‘[c,ngiiﬁlble relations) Yes Yes++ No No
(Compa[cl‘f,iﬁlrz]lations) Yes Yes Yes Yes
(Compigt?lfjl?ifl]ations) No No Yes Yes
(Non-Compact, [iillsl]eable relations) Yes No No Yes

+

(Compact, S[Srggeals]e relations) No No No Yes
(N011—C0111pa$,h;se;1i2£1;b10 relations) No No No No

Figure 1: Constructions of Correlation Intractable Hash Families

[HL18] constructs a correlation-intractable hash family for all relations sampleable in a
bounded polynomial time, assuming subexponential IO and exponentially secure one-way
functions. This removes the KDM-style assumption (as compared to [KRR17]) but retains the
reliance on indistinguishability obfuscation and fully exponential hardness. Their construction
is also non-compact. Still, their hash family suffices to instantiate the Fiat-Shamir heuristic
for a wide class of 3-message protocols — a strictly broader class than the protocols that we
can handle in this work.

[CCH'18] constructs two correlation-intractable hash families for efficiently sampleable re-
lations: a compact one (i.e., a single poly-size family that covers all poly-size relations) and
a non-compact one. Unlike the [CCRR18] constructions, both of these hash families are se-
cure under lattice assumptions that are falsifiable in polynomial time (but with exponentially
small success probability). The compact family requires a form of circular security, whereas
the non-compact one relies on plain search-LWE (albeit with fully exponentially small success
probability). Their non-compact family suffices to instantiate Fiat-Shamir for a broad class
of protocols similarly to [HL18, CCR16]. Furthermore, their compact scheme suffices for ap-
plying the Fiat-Shamir paradigm to the GKR interactive proof [GKRO08], thereby obtaining
a publicly verifiable succinct non-interactive argument for logspace-uniform NC without as-
suming indistinguishability obfuscation or non-interactive knowledge extraction from general
adversaries.

In Fig. 1, we compare key features of the above works. As evident from our description, [KRR17]

and all subsequent works have a “fully exponential success probability” barrier: they can only prove
security under an assumption that polynomial time adversaries cannot solve some problem with
probability significantly better than random guessing. This seems somewhat inherent to the proof

technique used in all of these results.

We note that this work is a direct follow-up to [CCHT18]. Indeed, the results and techniques
of [CCH18] were the initial inspiration for this work.



1.3 Owur Techniques

We give a high-level overview of the proofs of Theorem 1.1, Theorem 1.2, and Corollary 1.5. We
begin with our main contribution: a new correlation-intractable hash family.

CI for Efficiently Searchable Relations. We construct a hash-function family h(k,z) with a
public hash-key k and input x that satisfies correlation-intractability for all “efficiently searchable
relations” with some fixed polynomial time bound 7', meaning the following. For any function f
having circuit size T, if a polynomial time adversary is given a random k, he cannot find an input
x such that h(k,z) = f(z). The output length of the hash function can be as low as A° for any
€ > 0 and the input length can be an arbitrary polynomial in A. Note that our hash family h only
depends on the bound T but not on f; it is correlation intractable for all functions f of size T

At a high level, the idea of the construction is the following. Designing a hash function hs(k, )
that is correlation intractable for a single function f is trivial: simply define hy(k,z) = f(z) + 1
(or, just flip the last bit of f(z)). We will construct a hash function family so that, for any f, a
random function from the family will look indistinguishable from a hash function that is specifically
designed to be correlation intractable with respect to f.

The actual construction is simple:

h(k,z) = FHE.Evalp (U, ct), where k = (pk,ct), ct = FHE.Enc(pk, go), and U,(g) = g(x). (1)

That is, the hash function interprets the hash-key k = (pk, ct) as a public key pk of an FHE scheme,
along with a ciphertext ct encrypting some fixed circuit go with input length |z|, 1-bit output, and
description size m which is related to T' (the specific structure of gg is unimportant; in particular,
it can be the all-zero circuit, i.e. go = 07" for some 1" ). The hash function then interprets its input
x as the universal circuit U,(g) = g(x), and homomorphically evaluates U,(-) over the ciphertext
ct. We note that if the FHE scheme in use has pseudorandom public-keys and ciphertexts, we can
even choose k as a uniformly random string.

Our proof of security is also simple. Assume that an adversary gets k and is able to find x such
that h(k,z) = f(x) with non-negligible probability. We first switch the ciphertext ct in the key k
to be an FHE encryption of the circuit g(z) = Dece(f(x)) @ 1, where sk is the FHE secret key.
In other words, g first computes f(z), then interprets it as an FHE ciphertext of a 1-bit plaintext,
decrypts it and outputs the opposite bit.? We argue that this change is indistinguishable to the
adversary by the security of the FHE; this requires circular security since the circuit g depends on
sk.? Since the adversary cannot distinguish this change, it still outputs x such that h(k,z) = f(x)
with non-negligible probability. So, we have:

F(x) = h(k, z) = FHE.Evaly Uy, ct)
= FHE.Evalyk (Us, Encpi ({Decs (f(+)) ® 1)), (2)

2Without loss of generality, we assume that the decryption algorithm always outputs some bit b € {0, 1}; e.g., if
the decryption algorithm finds a ciphertext to be invalid then it outputs 0.

3In slightly more detail, instead of encrypting g directly we separately encrypt f,sk and then homomorphically
compute g. This allows us to just rely on circular security (encrypting the secret key itself) rather than key-dependent
message security (encrypting functions of the secret key).



where Uy ({Decs(f(+)) @ 1)) = Decsk(f(x)) & 1. However, applying Decg(+) to both sides of (2) we
get
Decek(f(x)) = Decsk (FHE.Evalpk (U, Encpr((Decsk(f(+)) @ 1))) = Dece(f(x)) & 1,

where the last equality follows by correctness of FHE.Eval. In other words, once we switched ct to
be an encryption of g, we ensured that there is no x for which h(k,x) = f(z). This is because we
ensure that h(k,x) outputs a ciphertext that is guaranteed to decrypt to a different value than the
value v obtained by applying the decryption algorithm to f(x). (We stress that we do not assume
any “semantic” meaning to the value v. Indeed, f(z) is in general not a valid ciphertext, so there
are no guarantees as to what v might be. Still, it is a well-defined binary value.)

We note that the above proof actually demonstrates a property stronger than plain correlation
intractability: For any function f of size T', we can switch the hash-key k to a computationally in-
distinguishable hash-key k' = k} such that the hash function is statistically correlation intractable
for f: there does not exist any x such that h(k’,x) = f(z). This is reminiscent of the some-
where statistically binding hashing of [HW15]; we call such hash functions somewhere statistically
correlation intractable.

In terms of parameters, the output size of the hash function needs to be as large as a single
FHE ciphertext encrypting a single bit, which can be set to be as low as A€ for any ¢ > 0. On the
other hand, the size of the key k = (pk,ct) and the time to evaluate h(k,-) depend on T this is
because ct needs to be large enough to encrypt f and U, needs to be large enough to evaluate f.*

NIZKs for NP via Fiat-Shamir. We show that CI for efficiently searchable relations is sufficient
to instantiate the Fiat-Shamir heuristic for a particular ¥-protocol (i.e. 3 round public-coin protocol
with “special soundness”) and get NIZK arguments for NP. This follows the general framework
explored in [HL18] and [CCHT18].

We take the X-protocol of [FLS99] for showing that a graph G has a Hamiltonian cycle. The
prover sends a commitment to a random cycle graph C. The verifier sends a challenge bit. If the
bit is 0, the prover decommits to the entire graph and the verifier checks that it is indeed a cycle.
If the bit is 1, the prover sends a random permutation of G which maps the Hamiltonian cycle
in G to C along with the opening of all the non-edges of the permuted G. We amplify soundness
via parallel repetition. Borrowing an idea from [HL18], we use a public-key encryption scheme to
implement the commitment, where the public key pk is in the CRS.

The above Y-protocol has the following property. If the statement is false, then given the
prover’s first message a, there is a unique “bad” challenge e that for which a valid response z exists.
Furthermore, this “bad” challenge would be efficiently computable if we had all the committed val-
ues. Since we use a public-key encryption scheme as a commitment, we can extract the committed
values from the commitment a using the encryption secret key sk. Combining the above, given the
encryption secret key sk, there is an efficiently computable function fq(a) which maps the prover’s
first message a to the unique “bad” challenge e that has a valid response. The size of the function
fsk is bounded by some bound T

We show that, if we apply the Fiat-Shamir heuristic to the above protocol and use a hash
function which is correlation-intractable for all “efficiently searchable relations” with the bound T,
we get a NIZK argument. Recall that the Fiat-Shamir heuristic adds a hash key k to the CRS and

4If f has a succinct description as a Turing Machine that runs in time T, we can make the key k shorter than T'
by having ct encrypt the Turing Machine description of f and letting U, be a universal circuit which takes as input
a Turing Machine and runs it for T steps. Still, the time to evaluate h(k,-) depends on the run-time 7.



requires the prover to come up with a valid protocol transcript (a, e, z) where e = h(k, a). Since the
hash function is correlation-intractable for all “efficiently searchable relations” with the bound T,
it is in particular correlation-intractable for fsx. This means that an efficient prover cannot come
up with a value a such that h(k,a) = fe(a). But if the statement is false, then the only way a
proof (a, e, z) can be valid is if h(k,a) = e = fu(a). Therefore, the prover cannot come up with any
valid proofs and we have soundness. The zero-knowledge (ZK) property of the NIZK follows from
the honest-verifier zero-knowledge property of the X-protocol.” We elaborate that in the above
argument, we only need the hash function to be correlation-intractable for a particular function
fsk but since sk is secret (releasing it would break zero-knowledge) we rely on the fact that we can
choose the hash key k in a way that does not reveal sk.

We obtain a statistically sound NIZK proof system by using a “statistically correlation in-
tractable” hash key kj, instead of a plain hash key k. This makes use the fact that the function
fsk depends on a trapdoor to the 3-message CRS but not on the instance x. Now, when we argue
zero-knowledge, we make use of the computational property that &y, is indistinguishable from a
random k which does not depend on sk.

Finally, if we use a “lossy encryption” scheme to implement the commitments, we obtain sta-
tistical zero-knowledge. In this variant, we can also make the CRS truly random assuming that we
have FHE where the public-keys and ciphertexts are pseudorandom (implied by circular LWE) and
that we have “lossy encryption” with random public keys (implied by LWE).

Fiat-Shamir for the [GMRS89] Protocol. By a very similar argument to our NIZK con-
struction, we show that the [GMR&9] Quadratic Residuosity protocol is not zero knowledge when
repeated a large number of times in parallel, assuming the existence of correlation-intractable hash
functions for efficiently searchable relations. This takes advantage of the aforementioned [DNRS99]
result that if there exists a hash function that suffices for the Fiat-Shamir transform for a protocol
IT (for a language L ¢ BPP), then II cannot be zero knowledge. In this overview, we use [GMR89]
as an example for the general notion of an “instance-dependent trapdoor Y-protocol” that we
introduce.

Recall the [GMR®&9] protocol: in order to prove that a number y is a quadratic residue modulo
a composite number N = pg, the prover sends to the verifier a random square a = 2 modulo N
the verifier sends a random bit e to the prover, at which point the prover reveals a square root of
a - y° (either r or rx for some square root x of y).

To show that our hash family suffices to instantiate Fiat-Shamir for the [GMRS&9] protocol
(repeated in parallel), we note that the soundness of Fiat-Shamir for this protocol follows from
correlation intractability for the function

fn(@) = e:= (ei = QR(N, a;))i,

where QR(N,a) = 1 if and only if a; is a square modulo N. This function fy simply computes, for
every first message a in the (parallel repeated) [GMR89] protocol, the unique challenge e € {0, 1}
that a cheating prover has any hope of being able to win on (provided that the instance y is not a
quadratic residue).

SFor this to work, we also need the hash function to be I-universal, meaning that for any a the value h(k,a) is
uniformly random over the choice of k. We show that l-universality can be generically added to any correlation-
intractable hash function.
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While fy is not efficiently computable as a function of (N, a), it is efficiently computable given
the factorization N = pg as non-uniform advice, so we can show that our hash family is correlation
intractable for every fy and hence demonstrates our claimed result.

At a high level, the [GMR&9] protocol is similar to our modified [FLS99] protocol in that no-
instances (IV,y) have an associated “bad challenge function” fy and there is a trapdoor (p,q)
making fy efficiently computable. However, in this case, the trapdoor depends on the instance
(N,y) (as opposed to in the [FLS99] modification, where it only depends on the CRS). This moti-
vates our definition of an “instance-dependent trapdoor X-protocol” in Section 6.

Universal CI. We also show that our particular hash function h(k, x) described in (1) with some
fixed time bound T is correlation-intractable for general efficiently decidable relations of sufficient
sparsity, assuming that:

1. There exists some hash function A/(-,-) of description size T" which is correlation-intractable
for general (even inefficient) relations of sufficient (necessarily larger) sparsity.

2. The FHE scheme is semantically secure (we do not rely on circular security for this result).

To see why our construction is “universal”, assume for contradiction that there is some suf-
ficiently sparse and efficiently computable relation R as well as an adversary that, given the key
k = (pk,ct) of our hash function, computes = such that (x,h(k,z)) € R with non-negligible proba-
bility. We first switch ct to be an encryption of the correlation-intractable hash function h'(k', -) for
a random £’. By the semantic security of the encryption, this is indistinguishable and therefore the
adversary still produces x such that (z, h(k,z)) € R with non-negligible probability. Since h'(k’,-)
is correlation-intractable for all sufficiently sparse relations, it is in particular correlation-intractable
for the (inefficient) relation®:

« = {(z,2) : Jy such that (z,y) € R and z = Dec(sk,y)},

But if (z,y = h(k,z)) € R then y = Ency(R/(K',x)) and therefore, for z = Dec(sk,y), we have
(x,z = h' (K, z)) € RY. So the adversary also breaks the correlation intractability of A'(k’,-) with
respect to the relation R, , which should be impossible.

1.4 Subsequent Work

Following this work, Peikert and Shiehian [PS19] give a beautiful construction of a (somewhere
statistically) correlation intractable hash family from the plain LWE assumption, yielding NIZKs
from plain LWE. We briefly provide an interpretation of their construction in light of our high-level
paradigm.

Recall that for our hash family is defined by having an FHE encryption Encp(f) of a function f
in the hash key, and the hash function evaluation on input x consists of homomorphically evaluating
the function U, (f) = Decsk(f(z)) ® 1 under FHE. Note that the function U, (f) depends on sk. In
our work, this evaluation procedure is implemented by releasing an encryption FHE.Enc(sk) of the
FHE secret key sk as part of the hash key, and this forces us to rely on circular secure FHE to
prove security of our hash family. At a high level, the work of [PS19] cleverly shows that one can
homomorphically evaluate U,(f) directly without needing to release an encryption of the secret

5For this argument to work, parameters must be set so that this relation is still sparse.
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key! This is done by switching between two different encryption schemes: the “input” ciphertext
is an encryption of f under the GSW FHE scheme [GSW13], while the “output” ciphertext is
tantamount to an encryption of U (f) = Decs(f(x)) @ 1 under the Regev encryption scheme (with
the same secret key used for both schemes).

At a high level, given a GSW encryption of f, it is possible to compute a GSW encryption of
f(x) using the GSW homomorphic evaluation procedure. One can then “downgrade” the GSW
encryption of f(x) to a Regev ciphertext and, in doing so, incorporate the secret key into the
computation (for some intuition as to why this is possible, note that Regev encryption is circular
secure under the plain LWE assumption and therefore we can get Regev encryptions of the secret key
for free). However, since Regev encryption is no longer “fully homomorphic” but only “additively
homomorphic”, after downgrading to a Regev encryption, only linear functions can be evaluated.
Luckily, this suffices to perform a Regev decryption of f(z) and therefore one can homomorphically
derive a Regev ciphertext encrypting U, (f).

There is a caveat with the above due to the fact that Regev decryption also involves rounding,
which is non-linear. To get around this, one can think of a “noisy Regev” variant that operates
over the message space Z,, and decryption does not perform rounding, but correctness is only
approximate — the decrypted value is close to the encrypted one. One can then define U,(f) =
Deck(f(x)) + |¢/2] where Dec is the linear “noisy Regev” decryption procedure. Using the above
template, given a GSW encryption of f, one can compute an encryption of U, (f) under the “noisy
Regev” scheme. This still ensures that the hash of z, which is a “noisy Regev” encryption of U (f),
cannot be equal to f(z) since they decrypt to values in Z, that are far from each other.

1.5 Organization

The remainder of the paper is organized as follows. In Section 2, we recall basic preliminaries, and
in Section 3, we define correlation intractability [CGHO4] and the specific variants focused on in
this work. In Section 4, we present our main constructions of correlation intractable hash families
from fully homomorphic encryption. Finally, we apply these hash families in Section 5 to obtain
our main results (Theorem 1.2 and its extensions), and in Section 6 to obtain our most general
Fiat-Shamir instantiation.

2 Preliminaries

We say that a function p(X) is negligible if p(A) = O(A™°) for every constant ¢, and that two
distribution ensembles X = {X,} and Y = {Y)} are computationally indistinguishable (X ~.Y")
if for all polynomial-sized circuit ensembles {A)},

| PrlAN(X3) = 1] = PrAn(¥3) = 1] = negl(3).

2.1 (Lossy) Public Key Encryption

Definition 2.1 (Public Key Encryption). A public-key encryption scheme PKE = (Gen, Enc, Dec)
consists of three p.p.t. algorithms:

e Gen(1%) takes as input the security parameter and outputs a public key pk and a secret key
sk.
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e Enc(pk,m) takes as input the public key and a bit” m € {0,1}; it outputs a ciphertext ct.

e Dec(sk, ct) takes as input the secret key and a ciphertext ct; it outputs a message m'.
PKE must furthermore satisfy the following properties.

e Correctness: For all \, all m € {0,1}, and all (pk,sk) in the support of 1*, it holds with
probability 1 that Dec(sk, Enc(pk,m)) = m.

e Semantic Security: The distribution ensembles {(pk,sk) < Gen(1) : (pk, Enc(pk,0))} =
{(pk,sk) < Gen(1*) : (pk, Enc(pk, 1))} are computationally indistinguishable.

We say that a public key encryption scheme PKE has pseudorandom ciphertexts if the distri-
bution ensembles {(pk,sk) < Gen(1*) : (pk, Enc(pk,0))} ~. {(pk,sk) < Gen(1*),u < Ujgnc(pk,0)| :
(pk,u)}, where =, denotes computational indistinguishability, and PKE has pseudorandom public
keys if a public key pk sampled according to Gen(1}) is computationally pseudorandom.

Definition 2.2 (Lossy PKE). A public-key encryption scheme PKE is said to be lossy [KNOS,
PVWO08, BHY09] if there exists a fake key generation algorithm FakeGen such that:

e The (randomized) output ER of FakeGen (1) is computationally indistinguishable from a public
key pk sampled by Gen(1*).

o Encryption under fake keys is statistically hiding. That is,
{(pk. Enc(pk, 0))} = {(pk, Enc(pk, 1))},
where pk FakeGen(1") and ~, denotes statistical indistinguishability.

We say that PKE is lossy with uniformly random lossy public keys if (in addition) FakeGen outputs a
uniformly random string.

In this work, we make use of the fact that public-key Regev encryption [Reg09] is lossy with
uniformly random lossy public keys under the LWE assumption.
2.2 Fully Homomorphic Encryption and Circular Security

Definition 2.3. A fully homomorphic encryption scheme FHE = (Gen, Enc, Dec, Eval) consists of
four p.p.t. algorithms such that (Gen, Enc, Dec) is a public key encryption scheme, and:

e Eval(pk, f,cty,...,cty,) takes as input the public key, a function f (represented by a boolean
circuit), and a vector of ciphertexts (cti,...,ct,); it outputs another ciphertext ct’, which has
size that is polynomial in X (and, without loss of generality, linear in the output length of f).

e For any (pk,sk) < (Gen(1%)), any m1,...,m, € {0,1}, and any circuit C : {0,1}" — {0,1},
it holds with probability 1 that

Dec(sk, Eval(pk, C, Enc(pk,m1), ..., Enc(pk, mn))) =C(ma,...,mp).

" As usual, this extends naturally to encrypting many-bit plaintexts.
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Definition 2.4. A leveled fully homomorphic encryption scheme FHE = (Gen, Enc, Dec, Eval) satisfies
the same syntazx, correctness, and security properties of a FHE scheme, except that

o Gen(1*,19) takes as additional input a circuit depth d.

e Homomorphic evaluation correctness is only guaranteed to hold for circuits of depth at most

d.

o Cliphertexts output by Enc(pk,m) and Eval(pk, f,ct) have size that are polynomial in \ (and
the output length of f), independent of d.

e The decryption algorithm Dec(sk, ct) has a fized poly(\) depth (independent of d).

Leveled fully homomorphic encryption schemes are known to exist from the learning with errors
(LWE) assumption [BV11,BGV12,Bral2, GSW13,BV14]. Fully homomorphic encryption schemes
are known to exist using Gentry’s bootstrapping technique [Gen09], which requires making a circular
security assumption on an LWE-based encryption scheme. In this work, we consider the following
variant of circular security.

Definition 2.5. A public key encryption scheme PKE is said to be circular secure if {(pk,sk) <«
Gen(1%) : (pk, Enc(pk, 01k} ~. {(pk,sk) < Gen(1*) : (pk, Enc(pk,sk))}.
2.3 Non-Interactive Zero Knowledge Arguments (and Proofs)

The following preliminaries are taken (with edits) from [CCHT18].

Definition 2.6. A non-interactive zero knowledge (NIZK) argument system II for an NP relation R
consists of three ppt algorithms (Setup, P, V') with the following syntaz.

o Setup(1™,1*) takes as input a statement length n and a security parameter \. It outputs a
common reference string crs.

o P(crs,z,w) takes as input the common reference string, as well as x and w such that (x,w) €
R. It outputs a proof 7.

o Vcrs,x,m) takes as input the common reference string, a statement z, and a proof w. It
outputs a bit b. If b =1, we say that V accepts, and otherwise we say that V rejects.

The proof system II must satisfy the following requirements for every polynomial function n =
n(A). Recall that L(R) denotes the language {x : Jw s.t. (z,w) € R} and R, denotes the set
RN ({0,1}™ x {0,1}*).

e Completeness. For every (z,w) € R, it holds with probability 1 that V (crs,z,m) = 1 in the
probability space defined by sampling crs < Setup(11*l,1%) and 7 «+ P(crs, z, w).

e Soundness. For every {z, € {0,1}"\ L(R)} and every polynomial size P* = { Py}, there is
a negligible function v such that

Pr [V(crs, zp,m) = 1] <v(N).
crs<Setup(1™,1*)
74P (crs)
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e Zero Knowledge. There is a ppt simulator Sim such that for every ensemble {(zy,wy,) €
R, }, the distribution ensembles

{(crsA, P(crsy, Tn, wy)) }/\

and
{Sim(z, 1)‘))}/\

are computationally indistinguishable in the probability space defined by sampling crsy <—
Setup(1™,1%) (and evaluating P and Sim with independent and uniform randomness).

If the distributions are statistically indistinguishable, then II is said to be statistically zero
knowledge.

A NIZK argument system can also satisfy various stronger properties. We list some important
variants below.

e “Common Random String”: A NIZK argument system in the common random string
model is a NIZK argument system II such that Setup(1”, 1)‘) simply samples and outputs a
uniformly random string.

e Adaptive Soundness: II is adaptively sound if for every polynomial size algorithm P* =
{Py}, there is a negligible function v such that for all A,

Pr [x ¢ L(R) AV (crs,z,m) =1] < v(A).
crs«Setup(1™,1%)
(w,m):=P5 (crs)

e Statistical Soundness: II is statistically sound if there is a negligible function v such that
for all A,

[3(x, 7) such that z ¢ L(R) AV (crs,z,m) = 1] < v(A).

T
crs<Setup(17™,1})
A NIZK argument system satisfying statistical soundness is called a NIZK proof system.

e Multi-Theorem Zero Knowledge: II is multi-theorem zero knowledge if for every polyno-

R CCUIMCEMIVINS

mial function p(\), there is a p.p.t. simulator Sim such that for every ensemble il

the distribution ensembles

)

A
{(crs)\, Plersy, 2™, wf")))?il) })\
and
{Sim(xl, e ,a;p()\)))})\

are computationally indistinguishable. [FLS99] showed a generic transformation from a NIZK
proof or argument system to one satisfying multi-theorem zero knowledge. This transfor-
mation preserves computational zero knowledge in the common random string model and
statistical zero knowledge in the common reference string model.
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e Adaptive Zero Knowledge: II is adaptive zero knowledge if for every p.p.t. verifier V*,
there is a p.p.t. simulator Sim such that the following distribution ensembles are computa-
tionally indistinguishable:

{crs + Setup(1", 1)‘), (x,w,aux) < V*(crs) : (crs, P(crs, x,w), aux)}

and

{sim(1",1")}.

This can (analogously to above) be extended to a definition of adaptive multi-theorem
zero knowledge, which can be obtained generically from adaptive zero-knowledge by [FLS99].

3 Somewhere Statistically Correlation Intractable Hash Families

In this section, we recall the notion of correlation intractability [CGHO04|, which is a particular
security property associated to a hash family H. We then introduce a new strengthening of this
definition, which we call “somewhere statistical correlation intractability” by analogy to the “some-
where statistically binding” hash functions of [HW15].

We also define new classes of relations — “efficiently searchable” and “efficiently enumerable”
relations — for which we later (1) achieve correlation intractability (“somewhere statistical,” in the
case of efficiently searchable relations), and (2) obtain applications of interest.

Definition 3.1. For a pair of efficiently computable functions (n(-), m(-)), a hash family with input
length n and output length m is a collection H = {hy : {0,1}**) x {0,1}"N) — {0,1}™M ey of
keyed hash functions, along with a pair of p.p.t. algorithms:

o 1.Gen(1*) outputs a hash key k € {0,1}5().

e H.Hash(k,z) computes the function hy(k,z). We may use the notation h(k,z) to denote hash
evaluation when the hash family is clear from context.

We cay that H is public-coin® if H.Gen outputs a uniformly random string k < {0, 1}5()‘).

Definition 3.2 (Correlation Intractability). For a given relation ensemble R = {Ry C {0, 1} x
{0,114 hash family H = {hy : {0,1}*X) x {0,1}*N = {0,1}™N} is said to be R-correlation
intractable with security (s, d) if for every s-size A = { Ay},

%H%;n(m [(x, h(k,z)) € R} = O(8()\)).
z—A(k)

We say that H is R-correlation intractable if it is (\°, %)-correlatz’on intractable for all ¢ > 1.
If R is a collection of relation ensembles, then H is said to be uniformly R-correlation intractable
if for every polynomial-size A, there exists a function v(\) = negl(\) such that for every R € R,
Pr [(z,h(k,z)) € R] <v(N).

k+H.Gen(1*)
x—A(k)

8Sometimes “public-coin” hash families are defined to be hash families whose security properties hold even when
the adversary is given the random coins used to sample k + H.Gen(l)‘). For our purposes (e.g. ignoring compactness),
this definition is equivalent to ours.
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As noted in [CGHO04], a random oracle (typically thought of as an “ideal hash function” [BR93])
behaves like an R-correlation intractable for all sparse relations R.

Definition 3.3 (Sparsity). For any relation ensemble R = {Ry C {0,1}™™ x {0,1}™MN}, we say
that R is p(-)-sparse if for A € N and any x € {0,1}",

< .
L P (@) € B <o)

When p is a negligible function, we say that R is sparse.
We now introduce our new notion of “somewhere statistical correlation intractability.”

Definition 3.4 (Somewhere Statistical Correlation Intractability). Given a collection R of relation
ensembles, we say that a hash family H is somewhere statistically correlation intractable with respect
to R if there is an additional key generation algorithm StatGen with the following properties.

e Syntaz: StatGen(1*, auxy) takes as input the security parameter A as well as an auziliary
input auxy. It outputs a hash key k.

e Security: For any relation ensemble R € R, there exists an auziliary input ensemble aux
such that the following two properties hold.

— Key Indistiguishability: An honestly generated key k <+ H.Gen (1) is computationally
indistinguishable from a fake key k < H.StatGen(1*, auxy).
— Statistical Correlation Intractability:

Pr [Elx € {0,1}"WN . (z, h(k,z)) € R;J = negl(\).

k<+H.StatGen(1*,auxy)
That is, with high probability over the choice of k + StatGen(1*,aux,), input-output

pairs satisfying Ry do not exist.

Remark 3.1. By a simple hybrid argument, somewhere statistical correlation intractability with
respect to a family of relations R implies (ordinary) correlation intractability for R.

3.1 Efficiently Searchable Relations

In this work, we focus further on achieving (somewhere statistical) correlation intractability for
relations R with a unique output y = f(z) associated to each input z, and such that y = f(x) is
an efficiently computable function of .

Definition 3.5 (Unique Output Relation). We say that a relation R is a unique output relation
if for every input x, there exists at most one output y such that (x,y) € R.

Remark 3.2. When restricted to the case of unique output relations, correlation intractable hash
functions for output length m immediately imply the existence of correlation intractable hash
functions for any output length m’ > m (by appending zeros).
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Definition 3.6 (Efficiently Searchable Relation). We say that a (necessarily unique-output) relation
ensemble R is searchable in (non-uniform) time T if there exists a function f = fr: {0,1}* —
{0,1}* computable in (non-uniform) time T such that for any input x, if (x,y) € R then y = f(z);
that is, f(x) is the unique y such that (x,y) € R, provided that such a y exists. We say that R is
efficiently searchable if it is searchable in time poly(n).

We now relate our notion of efficient searchability to that of efficient sampleability [HL18,
CCH™18]. Efficiently sampleable relations R are not necessarily unique-output, but it is possible
to sample, given an input z, an (approximately) uniformly random y subject to the condition
(z,y) € R. Correlation intractability for these relations is not required in order for our Fiat-
Shamir applications, but as noted below, we obtain it for sufficiently sparse relations without loss
of generality. In particular, if the relation has sparsity p, we obtain it with a security loss of p - 2™.

Definition 3.7 (Efficiently (Approximately) Sampleable Relation). We say that a relation R is
sampleable in (non-uniform) time 7' if there exists a (non-uniform) time T algorithm Samp(z;)
and a polynomial q(-) such that for any (z*,y*) € R,

PefSamp(a’sr) = 5] > sl e (01" @) € B

Lemma 3.8. Suppose that a hash family H is d-correlation intractable for all relations searchable
in time T'. Then, it is also dp2™-correlation intractable for all p-sparse relations samplable in time
T.

Proof. Let R denote a relation that is sampleable in time 7" with approximation factor ¢(A), and
let Samp(x; ) denote a sampling algorithm for R. Then, for every fixed r, the relation

Ry = {(x,Samp(z; 7))}

is searchable in time T. Moreover, if some adversary A breaks the R-correlation intractability of
a hash family H with probability &', then by an averaging argument, A breaks the R,-correlation
intractability of H with probability MSW for some choice of randomness r. O

In particular, this shows that CI for efficiently searchable relations directly implies CI for effi-
ciently sampleable relations for which every input x has at most polynomially many outputs y for
which (z,y) € R. We call such relations efficiently enumerable, because this is equivalent to the
existence of an efficient algorithm that enumerates all “bad outputs” y for a given input z.

3.2 Programmability

As previously discussed, correlation intractability is useful in proving the soundness of the Fiat-
Shamir transform for certain proof systems, as seen in Section 5 and Section 6. Since we hope to
use our correlation intractable hash families to build NIZK arguments (which in particular must
also be zero knowledge), we would like to have correlation intractable hash families satisfying a
weak notion of programmability.

Definition 3.9. We say that a hash family H is 1-universal if for any X, input x € {0, 1}”()‘), and
output y € {0,1}™N | we have that

P h(k =yl =2""".
ke?—l.GI;n(l/\)[ (k,) = 4]
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We say that a hash family H is programmable if it is 1-universal, and if there exists an efficient
sampling algorithm Samp(1*,z,y) that samples from the conditional distribution k < H.Gen(1*) |
h(k,x) =y.

We describe a simple transformation showing that for reasonable classes of relations (including
efficiently searchable relations), programmability can be obtained without loss of generality.

Construction 3.10. Let H be any hash family. We define the programmable variant H' = HP™8
of H as follows:

o H'.Gen(1?) calls k < H.Gen(1%), samples a uniformly random o < {0,1}™, and outputs
(k, a).

e H'.Hash((k,a),z) outputs H.Hash(k,z) & .

We first remark that H’ is evidently programmable: 1-universality follows from the randomness
of a, and the algorithm Samp(1*,z,y) calls k + H.Gen(1*) and outputs (k, H.Hash(k,z) @ y).
Moreover, we note that if H’ directly inherits correlation intractability properties from H.

Remark 3.3. For any relation class R, if H is (somewhere statistically) correlation intractable for
the class of relations

{RZ = {(a:,y) : (x7y@ a) S R}}RER7

then #H' is (somewhere statistically) correlation intractable for R.

4 Correlation Intractability via Fully Homomorphic Encryption

In this section, we describe a new candidate correlation intractable hash family H that can be based
on any fully homomorphic encryption scheme. We then prove that H satisfies various notions of
correlation intractability under different assumptions. Namely, we show:

e One variant of our hash family is (somewhere statistically) correlation intractable for effi-
ciently searchable relations assuming that the FHE scheme is circular secure.

e Another variant of our hash family is “universal” for correlation intractable hash families (in
a specific sense defined in Section 4.2), assuming that the FHE scheme is semantically secure.
This holds both for single-input and multi-input correlation intractability.

4.1 Correlation Intractability for Efficiently Searchable Relations

Construction 4.1. Let FHE = (Gen, Enc,Dec, Eval) be any circular secure fully homomorphic
circ

encryption scheme. We define the following hash family H = HELE associated to FHE along with
some circuit size bound L(\), input length n(\), and constant € > 0:

e H.Gen(1*) calls Gen(1*), obtaining a pair (pk,sk). It then computes ct; = Enc(pk,O‘Sk‘),
cty = Enc(pk, 0%), and outputs k = (pk, cty, cts).
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e H.Hash(k,z) interprets k = (pk,cty, cta) and outputs
y = Eval(pk, Uy, cty, cta),

where U, denotes the universal circuit for evaluation of circuits of size L(X), single bit output,
and input length |x| + |sk|; that is,

Uz(s,C) = C(z,s).

We note that the output length of this hash function is some fixed polynomial poly()\). By
setting the security parameter \ appropriately (in relation to m), this can result in a hash
function with arbitrary polynomial relationship between input and output length.

Remark 4.1. One could define the above scheme to use a single ciphertext ct (rather than ct; and
ctz) and universal circuit U,(C) = C(z). We take this approach in Section 4.2 when we do not
use circular security. The advantage of the present formulation, where C has an separate input of
length |sk|, is that it allows for a security proof where the decryption key is an input to C rather
than hardcoded into C. This makes it explicit that we only need to assume plain circular security
of the FHE in use, rather than general KDM security.

Theorem 4.2. Suppose that FHE is a circular secure fully-homomorphic encryption scheme, let
n(\) = AW and let T = poly(n, \) be given. Then, H = HYC with input length n()\) and size
parameter L = T + poly(A) is correlation intractable for all relations R that are searchable in time
T (and appropriate input/output lengths).

In fact, H is somewhere statistically correlation intractable for this class of relations, such that
the function StatGen(1*,aux) can use any circuit computing the search function fr as its auziliary
mput.

Proof. Let FHE and R be fixed; recall by the definition of T-searchability, there exists a function
f = fr:{0,1}* — {0,1}* computable in (non-uniform) time 7" such that if (z,y) € R then
f(@)=y.

To show that H is somewhere statistically correlation intractable for all T-searchable relations
R, we define the auxiliary algorithm H.StatGen(1*, aux), which operates as follows:

e Interpret aux as a circuit C' of size T'.

e Call Gen(1*), obtaining a pair (pk,sk). Then, compute ct = Enc(pk, (sk, C")), where
C'(z,sk) = 1 & Dec(sk, C(z)).

e Output k = (pk,ct).

It now suffices to prove that our augmented hash family H satisfies key indistinguishability and
statistical correlation intractability (for keys generated by StatGen).

e Key indistinguishability follows immediately from the circular security of FHE, as the

only difference between 7{.Gen and #.StatGen is that the former samples ct = Enc(pk, 0/5<+1)
while the latter samples ct = Enc(pk, (sk, C")).
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e Statistical correlation intractability holds by the following argument. Let R be any
T-searchable relation, let C be any circuit computing the search function fr, and let k =
(pk,ct) < StatGen(1*,C). Then, for any = € {0,1}" and y = h(k,x), we see that by the
correctness of FHE-evaluation,

Dec(sk, y) = Dec(sk, Eval(U,, ct)) = 1 & Dec(sk, C(x)).

Therefore, if (z,y) € R, then y = fr(x) = C(x) and we obtain the equation Dec(sk,y) =
1 @ Dec(sk,y), a contradiction. Thus, input-output pairs satisfying R (unconditionally) do
not exist.

This completes the proof of Theorem 4.2. O

Remark 4.2. If we assume that FHE is subexponentially secure, then H® is correlation intractable
with security 27 for some ¢ > 0. By Lemma 3.8, this implies that for some ¢ > 0, H™ is

correlation intractable for all efficiently sampleable relations with sparsity 22%

Finally, by applying Remark 3.3, we obtain programmable CI hash functions for efficiently
searchable relations assuming circular-secure FHE.

Corollary 4.3. Fiz functions m(\) = n(A\)®W. If circular-secure FHE exists, then for every
polynomial function T, there exists a programmable hash family H that is somewhere statistically
correlation intractable for the class of relation ensembles R = {Ry C {0,1}*™ x {0,1}MN} that
are searchable in (non-uniform) time T'.

4.2 Universal Correlation Intractability from LWE

We now show that a simplified version of Construction 4.1 yields a hash family satisfying interesting

notions of universality for correlation intractable hash families. We obtain results based on the LWE
8

assumption, either with polynomial or subexponential (that is, 2*°-) security.

Construction 4.4. Let FHE = (Gen, Enc, Dec, Eval) be any (leveled) fully homomorphic encryption
scheme. We define the following hash family H = ’HE}}'IE associated to FHE along with some circuit
size bound L()), input length n()), plaintext length m/(\), and constant € > 0:

e H.Gen(1*) calls Gen(1). It then computes ct = Enc(pk,0%) and outputs k = (pk, ct).
e H.Hash(k,z) interprets k = (pk,ct) and outputs
y = Eval(pk, Uy, ct),

where U, denotes the universal circuit for evaluation of any given circuit C, whose size is
L(\) and whose output length is m/(X\), on input x. That is, Uy(C) = C(z).

We note that the output length of this hash function is not m’ but m(\) = ’Enc(pk,()ml()‘))’ =
m’ - poly(X°).
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Theorem 4.5. Suppose that FHE is a (leveled) fully-homomorphic encryption scheme, and let
R = {R) C {0,1}"™)x {0, 1}N)=m"(Npoly\N pe g relation ensemble that is decidable in polynomial
time. Then, if there exists a hash family Hr, computable by circuits of size at most L, that is
correlation intractable for all relations on {0,1}" x {0,1}™ of the form

« = {(z, 2) : Jy such that (z,y) € R and z = Dec(sk,y)},

then H = H"™V with parameters (L,n,m’ €) is correlation intractable for R. Moreover, if FHE
(with security parameter \°) is secure against 2\ _time adversaries, then the same statement holds
for all relations R decidable in (non-uniform) time 2" _ (1),

Proof. Let FHE and R be fixed. Suppose that some p.p.t. adversary A, given k < H.Gen(1%),
outputs some x € {0,1}" such that (z, h(k,x)) € R with non-negligible probability. Let Hr denote
the correlation intractable hash family hypothesized to exist in the theorem statement.

We first claim that the adversary A still succeeds with non-negligible probability when given
a key k = (pk, Enc(pk, Hr /)), where Hp s is a circuit computing Hr with randomly sampled
key k' < Hp.Gen(1"). This follows immediately from the semantic security of FHE, as A’s win
condition is decidable in the time required to decide R.

We now describe a p.p.t. adversary A’ that breaks the correlation intractability of Hg:

1. A’ samples FHE parameters (pk,sk) < Gen(1*") and declares the relation R, as its challenge.
2. A’ is given a hash key k' <~ Hp.Gen(1%).
3. A’ computes ct < Enc(pk, Hg /), and runs A’((pk, ct)).

4. A’ obtains an input = € {0,1}" and returns z.

By construction, whenever A((pk, ct)) breaks the R-correlation intractability of H, we have that
A’ breaks the R}, -correlation intractability of Hg. To see this, note that if y = h((pk, ct), z) in the
above experiment, then

Dec(sk, y) = Dec(sk, Eval(pk, U,,ct)) = hr(K', z).
Thus, if (z,y) € R, then (z, hg(k',z)) € R This completes the proof of Theorem 4.5. O

As an immediate corollary of Theorem 4.5, we conclude that H"™V is weakly universal for
correlation intractable hash families (for sufficiently sparse relations), in the following sense.

Corollary 4.6. Let v < 1 and § < 1 be arbitrary, and let m'(\) = XD grow at least polynomially

with A. Set 5
_ /
€= <1 —5 logy(m ))

o
ﬁ_l—é'

Finally, suppose that there exists a hash family (computable by a size L circuit) Hg that is cor-
18
2m

om/

and

relation intractable for all relations on {0,1}™ x {0,1}™ with sparsity Then, assuming the

security of FHE, H"Y implemented with parameters (L,n,m’,€) is correlation intractable for all
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7’7’1//[3 m
efficiently decidable relations on {0,1}" x {0, 1}"™ of sparsity 22m = 22—; The same is true for all

(sufficiently sparse) subexponentially decidable relations on {0,1}" x {0,1}™ if FHE is assumed to
be subexponentially secure.

Finally, we note that Theorem 4.2 — our construction of CI for efficiently searchable relations
from circular secure FHE — can be thought of as a twist on the proof of Theorem 4.5. The difference
between the two proofs is that in Theorem 4.2, we use the circular security of FHE to reduce from
the security of H™ for f to the existence of a hash family H sk that is correlation intractable for
single relation that depends on f and sk, the FHE secret key. Moreover, again due to the circular
security assumption, we can use sk in the construction of Hsgc. This allows for an unconditional
construction of the “inner hash function” that we have to assume exists in Theorem 4.5.

4.3 Multi-Input Correlation Intractability

Our universality results even extend to the notion of multi-input correlation intractability, about
which very little is known.”

Definition 4.7 (Multi-Input Correlation Intractability). Let ¢ (possibly depending on \) denote
an arity. For a given relation ensemble R = {Ry C ({0,1}"M)fN) x ({0,1}™N) N} 4 hash
family {hy : {0,1}*N) x {0,1}*N — {0,1}™N} 4s said to be R-correlation intractable if for every
polynomial-size A = { Ay},

Pr [(ml, o xeh(kya1), .. h(k, ) € R] = negl()\)
k+H.Gen(1*)
x=(x1,...,xp)+A(k)
If R is a collection of relation ensembles, then H is said to be uniformly R-correlation intractable
if for every polynomial-size A, there exists a function v(\) = negl(\) such that for every R € R,

Pr (1,0, h(k,z1), ..., h(k,2)) < v(N).
k+H.Gen(1*)
x=(21,...,7¢) < A(k)
Analogously to Theorem 4.5, we observe that Construction 4.4 satisfies interesting notions of
universality for multi-input correlation intractable hash families.

Theorem 4.8. Suppose that FHE is a (leveled) fully-homomorphic encryption scheme, and let
R = {Ry C ({0, 1} x ({0, 1}mN=m"(Npoly XN pe o relation ensemble that is decidable
in polynomial time. Then, if there exists a hash family Hgr, computable by circuits of size at most
L, that is correlation intractable for all relations on ({0,1}")¢ x ({0,1}™)¢ of the form

Ry = {(x,2) : 3y such that (x,y) € R and z = Dec(sk,y)},

then H = H"™V with parameters (L,n,m’ €) is correlation intractable for R. Moreover, if FHE
(with security parameter \°) is secure against 2N _time adversaries, then the same statement holds
for all relations R decidable in (non-uniform) time 22" _ \w(D),

9The only known instantiations of multi-input correlation intractable hash families focus on the special case where
the relation depends only on the output [Zhal6, HL18] or rely on indistinguishability obfuscation [HL18].
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Proof. This is largely identical to the proof of Theorem 4.5, but we include a proof for completeness.

Let FHE and R be fixed. Suppose that some p.p.t. adversary A, given k + H.Gen(1), outputs
some x € ({0,1}")¢ such that (x,h(k,21),...,h(k,7¢)) € R with non-negligible probability. Let
‘Hr denote the correlation intractable hash family hypothesized to exist in the theorem statement.

We first claim that the adversary A still succeeds with non-negligible probability when given
a key k = (pk, Enc(pk, Hpy)), where Hp s is a circuit computing Hr with randomly sampled
key k' < Hp.Gen(1?). This follows immediately from the semantic security of FHE, as A’s win
condition is decidable in the time required to decide R.

We now describe a p.p.t. adversary A’ that breaks the correlation intractability of Hg:

1. A’ samples FHE parameters (pk,sk) < Gen(1*°) and declares the relation R, as its challenge.
2. A’ is given a hash key k' < Hp.Gen(1%).

3. A’ computes ct + Enc(pk, Hg i), and runs A’(pk, ct).

4. A’ obtains an input x € ({0,1}")¢ and returns x.

By construction, whenever A(pk, ct) breaks the R-correlation intractability of H, we have that
A’ breaks the R -correlation intractability of % . To see this, note that if y; = h((pk,ct),z;) in
the above experiment, then

Dec(sk, y;) = Dec(sk, Eval(pk, Uy,,ct)) = hr(k', x;).

Thus, if (x,y) € R, then (x,hg(K',z1),...,hgr(K',xz¢)) € R}. This completes the proof of Theo-
rem 4.8. O

It follows, as a corollary of Theorem 4.8, that if there ezxists a hash family that is correlation
intractable for all (sufficiently sparse) multi-input relations, then for an appropriate parameter
setting, H""Y is correlation intractable for all (efficiently decidable, sufficiently sparse) multi-input
relations.

Although little is known about the existence of general multi-input correlation intractable hash
families, the security reduction in Theorem 4.8 maps output relations (i.e. relations R(x,y) that
depend only on y) to output relations, so we obtain a concrete hash function that combines a family
of candidates from [HL18].!? As an example, we obtain the following corollary.

Corollary 4.9. Assume the hardness of L\WE. In addition, assume that there exists family of
(symmetric, injective) k-one way product functions (OWPFs) with security 9—kn” - negl(n) for
some B < 1.11

Then for arbitrary v < B3, the hash family H"™ (for appropriate parameter settings) using an
LWE-based (leveled) FHE scheme is correlation intractable for efficiently decidable output relations
of sparsity 2Fn—kn,

Note that we only need to assume that the [HL18] OWPFs exist; we do not need an explicit
description of one in the construction of H"™V. This is similar to the obfuscation-based result
of [HL18], but Corollary 4.9 replaces indistinguishability obfuscation with LWE. However, our
result only applies in the regime of fairly low (28" ~*7) sparsity.

9The [Zhal6] construction does not give a hash family that is correlation intractable for all output relations — only
efficiently decidable relations — so we cannot use it as is.
"'We refer the reader to [HL18] for a discussion of OWPFs.
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5 Non-Interactive Zero Knowledge Arguments

In this section, we apply Theorem 4.2 to obtain Theorem 1.2, that is, NIZK arguments for NP
assuming circular secure FHE. This closely follows the framework of [HL18, CCH*18] for obtaining
NIZK arguments from weak forms of correlation intractability, but we apply the framework to the 3-
message [FLS99] protocol for graph Hamiltonicity. This allows us to rely on correlation intractable
hash functions for efficiently searchable relations (as constructed in Theorem 4.2) as opposed to
efficiently samplable relations (as defined in [HL18, CCH™18§]).

We augment our basic NIZK argument system in two different ways:

e By using our somewhere statistically correlation intractable hash functions (Definition 3.4),
we show that our NIZK argument system has a statistically sound mode, yielding NIZK proofs
in the common reference string model.

e By using a lossy public key encryption scheme with uniformly lossy public keys (Defini-
tion 2.2), we show that our NIZK argument system has a statistical zero knowledge mode
in which the CRS is uniformly random, yielding NISZK arguments in the common random
string model.

We begin by recalling the 3-message [FLS99] protocol.

5.1 The [FLS99] Protocol

We construct NIZK arguments by applying the Fiat-Shamir transform to a variant of the 3-message
[FLS99] proof system for graph Hamiltonicity. Recall that the Hamiltonicity language Ly, consists
of all graphs G with a Hamitonian cycle, and the standard NP-relation for L.y, uses a permutation
o as a witness exhibiting a Hamiltonian cycle o~1(C,,) in G. We describe the 3-message protocol
II = Ilgys in Fig. 2. For the purpose of obtaining adaptive zero knowledge, we recall that this
protocol is “delayed input,” namely the prover need to know the graph G and the cycle o only for
computing the third message. In our proof below, we will make use of the following facts.

P(pk,G,0) V(pk,G)
T4 Sn, H=m(Ch) a
a < Com(pk, H)
€ e+ {0,1}
If e = 0, decommit to H. Accept if all decommitments are correct and:
If e =1, reveal m o o and decommit to the edges in H d either b =0 and H is a cycle
corresponding to non-edges of 7o o(G). or b =1 and all edge decommitments are 0.

Figure 2: The Zero Knowledge Proof System Ilrrg for Graph Hamiltonicity.

Fact 5.1. For any computationally hiding commitment scheme Com (potentially in the CRS model),
II is honest-verifier zero knowledge. If Com is a statistically hiding commitment scheme, then 11 is
honest-verifier statistical zero knowledge.
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Finally, 11 is “honest-verifier adaptive zero knowledge”, meaning that Il remains honest-verifier
zero knowledge when the adversary is allowed to choose (x,w) as an (arbitrary) efficient function
of the transcript (crs,a,e) up to the second message.

We emphasize that our variant of the [FLS99] protocol explicitly allows for the commitment
scheme Com to rely on a public commitment key pk.

5.2 Our NIZK Protocol

We start by defining three different modes for our protocol and use them to help prove security.
We use the following tools in our construction.

e A hash family H satisfying two properties:

— Correlation intractability for all (subexponentially sparse) relations that are (non-uniformly)
searchable in a fixed polynomial time T'.

— Programmability, as in Definition 3.9.

In Construction 5.3, we will assume that H is somewhere statistically correlation intractable
for the above class of relations, and that #H.StatGen(1*,C) can use any circuit C' computing
the search function fr as auxiliary input. In Construction 5.4, we will assume that H has
pseudorandom keys, and that the modified hash family H’ using a uniformly random key is
also programmable.!?

e A public key encryption scheme PKE = (Gen, Enc, Dec). In Construction 5.4, we will assume
that PKE is lossy (Definition 2.2) with uniformly random lossy public keys.

Construction 5.2 (Basic NIZK). Let II = Ilprs be the [FLS99] protocol from Section 5.1, in
which we instantiate the commitment scheme Com in the CRS model using PKE in the natural
way: Com(pk, b; p) = Enc(pk,b; p). We apply the Fiat-Shamir transform, using H, to the protocol
II; that is, the protocol II repeated \ times in parallel. We call the resulting protocol I, which is
formally defined as follows.

o Common reference string: a PKE-public key pk along with a hash key k < H.Gen(1?).

e Prover message: given an instance x, witness w, and common reference string crs = (pk, k),
the prover computes a <— II*.P(crs, z,w), e = h(k,a), z = ITI*.P(crs, z,w, a, e), and outputs
(a,e,z).

e The verifier accepts a transcript (crs,z,a,e,z) if e = h(k,a) and 1.V (crs,z,a,e,z) = 1.

Our two modified constructions change only the common reference string distribution.

Construction 5.3 (Statistically Sound Mode). Let IT = Iprg be the [FLS99] protocol from Sec-
tion 5.1, in which we instantiate the commitment scheme Com in the CRS model using PKE. The
statistically sound mode of our protocol llgoung 4s then defined as follows.

12The generic transformation (Construction 3.10) from correlation intractable hash families to programmable cor-
relation intractable hash families guarantees this property.

26



o Common reference string: a PKE-public key pk along with a fake hash key k + H.StatGen (1%, Cyy).
Here, sk is the PKE-secret key associated to pk, and Cgy is a (poly-size) circuit computing the
function fe(a) = e such that for every i € [A], e; = 0 if and only if Dec(sk, a;) is a cycle.

e Prover message: given an instance x, witness w, and common reference string crs = (pk, k),
the prover computes a < II*.P(crs, z,w), e = h(k,a), z = II1*.P(crs, z,w,a, e), and outputs
(a,e,z).

o The verifier accepts a transcript (crs,z,a,e,z) if e = h(k,a) and I’V (crs, z,a,e,z) = 1.

Construction 5.4 (Statistical Zero Knowledge Mode). Let II = Ilprg be the [FLS99] protocol from
Section 5.1, in which we instantiate the commitment scheme Com in the CRS model using PKE.
The statistical zero knowledge mode of our protocol llzx is then defined as follows.

o Common reference string: a (uniformly random) PKE-lossy public key pk < FakeGen(1%*)
along with a uniformly random hash key k.

e Prover message: given an instance x, witness w, and common reference string crs = (pk, k),
the prover computes a < II*.P(crs, z,w), e = h(k,a), z = II*.P(crs, z,w, a, e), and outputs
(a,e,z).

e The verifier accepts a transcript (crs,z,a,e,z) if e = h(k,a) and 1.V (crs,z,a,e,z) = 1.

Theorem 5.5. II is a NIZK argument system for NP in the common reference string model sat-
isfying both adaptive soundness and adaptive zero knowledge. Moreover, Hsound s a NIZK proof
system for NP in the common reference string model satisfying adaptive zero knowledge, and gk
s a non-adaptively sound NISZK argument system for NP in the common random string model.

We now proceed to prove Theorem 5.5 by proving a sequence of lemmas about our construction.
Lemma 5.6. 11 is (adaptively) sound.

Proof. To see this, we argue that I is adaptively sound if H is correlation intractable for all relations
of the form

Ry ={(a,e) :e= fu(a)}.

This holds because if Dec(sk,a;) is not a cycle and e; = 0, then there is no input graph z
and third message z; such that (z,a;,e;, 2z;) is an accepting transcript in the original protocol II.
Similarly, if Dec(sk, a;) is a cycle and e; = 1, then there is no input graph = that is not Hamiltonian
(i.e. there is no false statement x) and third message z; such that (x,a;,e€;, z) is an accepting
transcript in II. These two facts make use of the perfect decryption correctness of PKE and the
standard (adaptive) soundness analysis of II.

From this analysis, we conclude that any adversary A breaking the (adaptive) soundness of I
breaks the correlation intractability of H with respect to some sk (indeed, a random sk sampled
according to PKE.Gen suffices).

Finally, we note that for every secret key sk, Rg is an efficiently searchable relation: indeed, the
function fg is efficiently computable given sk. Thus, since we assumed H is correlation intractable
for all efficiently searchable relations, we conclude that I is adaptively sound. O

Lemma 5.7. 11 is (adaptive) zero knowledge.
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Proof. The proof that II is zero knowledge is almost identical to the proof of zero knowledge in
( [CCH*18] Theorem 7.7). For completeness, we describe a simulator for II:

e Input: a graph z.

Sample (pk,sk) < PKE.Gen(1?).

Call the honest verifier simulator IT*.HVSim(x, pk) associated to the parallel repeated protocol
I1¢, producing (a, e, z).

Sample a hash key k from the conditional distribution k < H.Gen(1*) | h(k,a) = e.

Output (pk, k, a, e, z).

Zero knowledge then follows from Fact 5.1 and the programmability of H (by a standard hybrid
argument).

To see that II is adaptive zero knowledge, we use the fact that II is honest-verifier adaptive
zero knowledge (and use this two-part simulator in place of HVSim above). We refer the reader
to [CCRR18] (Proposition 7.6) for more details on obtaining adaptive zero knowledge using Fiat-
Shamir. O

This completes the proof that Il is an adaptively sound NIZK argument system in the common
reference string model.

Lemma 5.8. ﬁSound is statistically sound.

Proof. Let (pk,sk) « Gen(1%) and k < H.StatGen(1*, Cy) as in Construction 5.3. Then, for any
first message a for the protocol II", if Dec(sk, a;) is not a cycle and e; = 0, then there is no input
graph G and third message z; such that (G,a;,e;, 2;) is an accepting transcript in the original
protocol II. Similarly, if Dec(sk, a;) is a cycle and e; = 1, then there is no input graph G that is not
Hamiltonian (i.e. there is no false statement GG) and third message z; such that (G, a;,e;, 2;) is an
accepting transcript in II. These two facts make use of the perfect decryption correctness of PKE
and the standard (adaptive) soundness analysis of II.

This tells us that any accepting transcript (pk,G,a,e,z) for Igound must satisfy e = fsk(a).
However, by the statistical correlation intractability of H, we know that there does not exist an
input a such that h(k,a) = fw(a), so we conclude that ﬁsound is statistically sound. O

Lemma 5.9. For any p.p.t. verifier V*(crs) outputting a triple (x,w,aux), honestly generated
transcripts in 11 and Ugoung are computationally indistinguishable (even given (x,w,aux)).

Proof. This follows immediately from the key indistinguishability of H. O

Combining Lemma 5.8, Lemma 5.9, and Lemma 5.7, we conclude that Construction 5.3 is a
NIZK proof system for NP in the common reference string model satisfying adaptive zero knowledge.

Lemma 5.10. ﬁZK 1s statistical zero knowledge.
Proof. We define a simulator for ﬁZK as follows.

e Input: a graph z.
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Sample a uniformly random public key BE

Call the statistical honest verifier simulator H)‘.HVSim(ac, pk) associated to the parallel re-
peated protocol IT*, producing (a, e, z).

Sample a hash key k from the conditional distribution k < H’.Gen(1*) | h(k,a) = e, where
H’ is the modified hash family using uniformly random hash keys.

Output (;)T(, k,a,e,z).

Zero knowledge then follows directly from the lossiness of PKE (which implies that the resulting
commitment scheme is statistically hiding), Fact 5.1, and the programmability of H’ (by a standard
hybrid argument). O

Lemma 5.11. The common reference strings in I and Ik are computationally indistinguishable.

Proof. This follows immediately from the key indistinguishability of PKE (between real and lossy
keys) and the pseudorandomness of the H-keys. O

Combining Lemma 5.10, Lemma 5.11 and Lemma 5.6, we conclude that ﬁZK is a non-adaptively
sound!® NISZK argument system for NP in the common random string model. This completes the
proof of Theorem 5.5.

5.3 Obtaining Theorem 1.3, Theorem 1.4, and LWE-based Instantiation

Recall the statements of Theorem 1.3 and Theorem 1.4, our main results on obtaining NIZK
arguments.

Theorem 5.12. Suppose that circular-secure fully homomorphic encryption exists. Then, there
exist NIZK proofs for NP in the common reference string model.

Theorem 5.13. Suppose that there exists a circular-secure fully homomorphic encryption scheme
with pseudorandom cipherterts and public keys. Furthermore, suppose that there exists a lossy
public key encryption scheme [KNOS, PVW08, BHY09] with uniformly random lossy public keys.
Then, there exist (non-adaptively sound) NISZK arguments for NP in the common random string
model.

We obtain these results by a direct combination of Theorem 4.2 and Theorem 5.5. Theorem 5.5
states that (1) the desired NIZK proofs follow from the existence of somewhere statistically corre-
lation intractable hash functions for (subexponentially sparse) efficiently searchable relations, and
(2) under the lossy PKE assumption, the desired NIZK arguments follow from the existence of
correlation intractable hash functions for (subexponentially sparse) efficiently searchable relations
(with pseudorandom hash keys). Theorem 4.2 states that assuming circular secure FHE (with
pseudorandom ciphertexts and public keys), such hash families exist.

13 We only obtain non-adaptive soundness because switching modes (i-e., invoking computational indinguishability
between two CRS distributions) is only guaranteed to preserve non-adaptive soundness. This is because the adver-
sary’s win condition in the adaptive soundness security game — producing (z, 7) such that = ¢ L and 7 is an accepting
proof — is not efficiently checkable; it may not be possible to efficiently verify that « ¢ L. Relatedly, [Pas13] proves a
black-box impossibility result for constructing adaptively sound NISZK arguments from falsifiable assumptions.
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Moreover, we note that both of the generic primitives in Theorem 1.4 can be instantiated from
(circular secure) LWE. Namely, under plain LWE, Regev encryption [Reg09] is a lossy PKE scheme
and has uniformly random lossy public keys, and under various circular security assumptions on
LWE [BV11,BGV12,Bral2, GSW13,BV14], there exist circular secure FHE schemes.

6 Fiat-Shamir for (Instance-Dependent) Trapdoor Y-protocols

In this section, we formalize our notions of “trapdoor Y-protocols” and “instance-dependent trap-
door Y-protocols,” and we prove that our hash family from Theorem 4.2 suffices to instantiate the
Fiat-Shamir heuristic for such protocols. Examples of (instance-dependent) trapdoor X-protocols
include variants of the [Blu86] and [FLS99] protocols for graph Hamiltonicity (in which the com-
mitment scheme is instantiated using public-key encryption as in Section 5) as well as the un-
modified [GMR89] protocol for quadratic residuosity. By the connection between Fiat-Shamir and
(malicious verifier) zero knowledge [DNRS99], we conclude that these protocols cannot be malicious
verifier zero knowledge, assuming the existence of circular-secure FHE and the hardness of deciding
the underlying languages. This partially resolves open questions due to [DNRS99, BLV03].

6.1 Instance-Dependent Trapdoor >-Protocols

We provide the following definition of a 3-protocol, which suffices for our purposes. We do not
require any extractability (“proof of knowledge”) property.

Definition 6.1 (X-Protocol). We say that a three-message honest-verifier zero-knowledge proof
system 11 = (Gen, P, V') in the common reference string model is a X-protocol if for every common
reference string crs, every instance x € L, and every first message a, there is at most one challenge
e := f(crs,xz,a) such that (crs,x,a,e,z) is an accepting transcript for any choice of third message
Z.

We informally call f the “bad-challenge function” associated to I, and note that f may not be
efficiently computable.

We now define a trapdoor ¥-protocol to be, roughly speaking, a >-protocol that has a trapdoor
making the bad-challenge function f efficiently computable.

Definition 6.2 (Trapdoor X-Protocol). We say that a X-protocol II = (Gen, P,V) with bad-
challenge function f is a trapdoor Y-protocol if there are p.p.t. algorithms TrapGen, BadChallenge
with the following syntaz.

° TrapGen(l)‘) takes as input the security parameter. It outputs a common reference string crs
along with a trapdoor T.

e BadChallenge(r,crs, z,a) takes as input a trapdoor T, common reference string crs, instance
x, and first message a. It outputs a challenge e.

We additionally require the following properties.

e CRS Indistinguishability: An honestly generated common reference string crs is compu-
tationally indistinguishable from a common reference string output by TrapGen(11).
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e Correctness: for every instance x ¢ L and for all (crs,7) < TrapGen(1?), we have that
BadChallenge(7, crs, x,a) = f(crs, x,a).

While this definition is enough to capture our modification to the [FLS99] protocol, it is necessarily
limited to ¥-protocols that have a common reference string. To capture the unmodified [GMR89]
protocol, we generalize our definitition so that the trapdoor 7 can depend on the instance zx.

Definition 6.3 (Instance-Dependent Trapdoor X-Protocol). We say that a X-protocol 11 = (Gen, P, V)
with bad-challenge function f is an instance-dependent trapdoor Y-protocol if there are p.p.t. algo-
rithms TrapGen, BadChallenge with the following syntaz.

° TrapGen(l’\,:):,aux) takes as input the security parameter, an instance x, and an auziliary
input aux. It outputs a common reference string crs along with a trapdoor T.

e BadChallenge(T,crs, z,a) takes as input a trapdoor T, common reference string crs, instance
x, and first message a. It outputs a challenge e.

We additionally require the following properties.

e CRS Indistinguishability: For any (x,aux), an honestly generated common reference
string crs is computationally indistinguishable from a common reference string output by
TrapGen(1*, z, aux).

o Correctness: for every instance x & L, there exists an auziliary input aux such that for all
(crs, 7) + TrapGen(1*,z, aux), we have that BadChallenge(,crs, z,a) = f(crs, x,a).

Given this definition, we can now state our result on Fiat-Shamir for instance-dependent trap-
door X-protocols.

Theorem 6.4. Suppose that H is a hash family that is correlation-intractable for all subexponen-
tially sparse relations that are searchable in time T'. Moreover, suppose that I1 = (Gen, P, V, TrapGen,
BadChallenge) is an instance-dependent trapdoor X-protocol with 2=° soundness for some € > 0,
such that BadChallenge(T,crs,z,a) is computable in time T. Then, H soundly instantiates the
Fiat-Shamir heuristic for I1.

Proof. Let IT denote the one-message protocol resulting from applying the Fiat-Shamir transform,
using H, to II. Explicitly, II is defined as follows.

e The common reference string consists of a common reference string crsyy associated to II,
along with a hash key k < H.Gen(1%).

e Prover message: a triple (a, e, z), where a is computed by II.P(crsp, x, w), e = h(k,a), and
z is computed by II.P(crsp, x, w, a, e).

e The verifier accepts a transcript (crsy, k, x, a,e,z) if IL.V (crspp,a,e,z) = 1 and e = h(k, a).

By construction, and by the definition of a ¥-protocol, we know that for every = € L and every
crspr, an accepting Il-transcript (crsp, k, x,a, e, z) must satisfy the condition that h(k,a) = e =
f(crs, z,a).
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Suppose that some efficient prover P*, given z ¢ L and a random crs = (crsp, k), could
find (a,e,z) making the transcript (crs, k,x,a,e,z) accepting with non-negligible probability.
Then, by CRS indistinguishability, the same would be true for crs;; sampled by the algorithm
TrapGen(1*, z, aux) for an auxiliary input aux satisfying the correctness property of Definition 6.3.
In other words, for (crsy, ) « TrapGen(1*,z,aux) and crs = (crsp, k), P*(x,crs) would output
(with non-negligible probability) some a such that h(k,a) = f(crsp, x,a) = BadChallenge(7yy, crspp, z, a).

This directly contradicts the correlation intractability of H for the relation R sz = {(a,€) :
e = BadChallenge(, crsip, z,a)}. In more detail, a correlation-intractability adversary A could
break the correlation intractability of H by sampling (crsyy, 717) itself, declaring the relation R crsyy.z
to be broken, and then running P*(x, crs) after being given k < H.Gen(1*). Since II originally had
272" soundness, the relation R crspy,z indeed has subexponential sparsity, so this contradicts our
assumption on H. Thus, we conclude that H soundly instantiates the Fiat-Shamir heuristic for II,
as desired. O

6.2 Examples and Implications

It is easy to see that the variant of the [FLS99] Hamiltonicity protocol described in Section 5
satisfies Definition 6.2; the (instance-independent) trapdoor generation algorithm simply samples
(pk, sk) < PKE.Gen(1%) and outputs pk as the common reference string and sk as the trapdoor. As
already described, the bad-challenge function associated to Ilpyg is indeed efficiently computable
given sk. Similarly, variants of the [Blu86] Hamiltonicity protocol in which the commitment scheme
is instantiated using public-key encryption also satisfy Definition 6.2.14

We now describe an interesting example of an instance-dependent trapdoor Y-protocol with a
trapdoor that actually depends on the instance: the [GMR89] protocol for quadratic residuosity.
Recall that an input x = (IV,y) to this protocol consists of an integer N = pq that is a product of
two primes along with an element y € Zy. An instance z is in the language QR if y is a quadratic
residue modulo N. A witness w for this fact is a square root of y modulo N. The [GMR89] protocol
II = Ilgmg is described in Fig. 3.

P(N,w) V(y)
r 7Ly a
a=r?
€ e+ {0,1}
z = rw® z If 2% = Ay®, accept.

Figure 3: The Zero Knowledge Proof System IIqygr for Quadratic Residuosity.

We additionally consider the protocol HtGMR repeated ¢ times in parallel for ¢ = Q(A€). Note that
this is indeed a X-protocol (with an empty common reference string) with bad-challenge function
f(z,a) = e such that e¢; = QR(N, a;) for all i, and QR(N,a) is defined to be 1 if and only if a is a
square mod N. This holds because for any z = (N, y) such that y is not a quadratic residue modulo
N, if a € Z} and QR(N,a) = 1, then QR(N,ay) = 0 and hence then “1” challenge associated to

14This requires one further modification: the prover must additionally commit to the hidden permutation 7 and
reveal it when asked to reveal the entire graph. We require this so that the bad-challenge function is computable
given the PKE secret key — naively, the bad-challenge function would require solving a graph isomorphism problem.
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a cannot be answered by any third message z; similarly, if QR(N,a) = 0 then the “0” challenge
associated to a cannot be answered by any third message z.

Finally, we note that the function f(z,a) is efficiently computable given the factorization of
N =p-q, so we conclude that I, is an instance-dependent trapdoor X-protocol with auxiliary
information aux = (p,q) and trapdoor 7 = aux (satisfying subexponential soundness if ¢ > ).
Thus, we conclude

Corollary 6.5. Assuming the existence of circular-secure FHE, for any t > A€, there exists a hash
family H soundly instantiating the Fiat-Shamir heuristic for Ik g .

We obtain Corollary 1.5 as a consequence of Corollary 6.5 along with one of the main results
from [DNRS99] (additionally assuming that QR ¢ BPP), which generalizes to any protocol (not
just kg ):

Theorem 6.6 ( [DNRS99]). If there exists a hash family H that soundly instantiates the Fiat-
Shamir transform for a 3-message protocol Il for a language L & BPP, then 11 is not zero knowledge.

For clarity, we include a proof of Theorem 6.6; we only consider the standard definition of
(auxiliary input) zero knowledge as opposed to the weakenings introduced in [DNRS99], but the
argument extends to such weakenings.

Proof. (sketch) Let H soundly instantiate the Fiat-Shamir transform for II, and suppose for the
sake of contradiction that II is zero knowledge. We the define the following cheating verifier V* for
II:

e Auxiliary input: a hash key k (sampled according to H.Gen).

e Second message: upon receiving the first message a, V* computes e = h(k,a) and sends e to
the prover.

e Output: upon receiving a third message z, V* outputs the transcript (a, e, z).

If IT is (auxiliary input) zero knowledge, then there is a PPT simulator S*(x, k) that produces a
computationally indistinguishable transcript (a,e,z) (for all x € L and for k + H.Gen(1*)). In
particular, this guarantees that transcripts output by S* satisfy (with all but negligible probability)

1. e = Hi(a), and
2. V(z,a,e,z) =1,

because these are both efficiently checkable conditions given (z, k).

Now, since we assumed that L ¢ BPP, there must also exist some z* ¢ L such that S*(z*, k)
produces a transcript (a, e, z) satisfying conditions (1) and (2) with all but negligible probability;
otherwise, we would have a BPP algorithm deciding the language L (sample k, run S*(z, k), and
check if conditions (1) and (2) are satisfied).

This allows us to contradict the soundness of the Fiat-Shamir protocol II defined by II and H:
the simulator S*, given z* and k < H.Gen(1%), exactly breaks the soundness of IT by the previous
paragraph. This completes the proof. O

Theorem 6.6 and Corollary 6.5 directly imply that the (parallel repeated) [GMR89] protocol is
not zero-knowledge (assuming the existence of circular-secure FHE and the hardness of quadratic
residuosity), as desired.
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