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Abstract. HEAAN is a homomorphic encryption (HE) scheme for ap-
proximate arithmetics. Its vector packing technique proved its potential
in cryptographic applications requiring approximate computations, in-
cluding data analysis and machine learning.
In this paper, we propose MHEAAN - a generalization of HEAAN to the
case of a tensor structure of plaintext slots. Our design takes advantage
of the HEAAN scheme, that the precision losses during the evaluation
are limited by the depth of the circuit, and it exceeds no more than one
bit compared to unencrypted approximate arithmetics, such as floating
point operations. Due to the multi-dimensional structure of plaintext
slots along with rotations in various dimensions, MHEAAN is a more
natural choice for applications involving matrices and tensors. We pro-
vide a concrete two-dimensional construction and show the efficiency of
our scheme on several matrix operations, such as matrix multiplication,
matrix transposition, and inverse.
As an application, we implement the first non-interactive Deep Neu-
ral Network (DNN) classification algorithm on encrypted data and en-
crypted model. Due to our efficient bootstrapping, the implementation
can be easily extended to DNN structure with an arbitrary number of
hidden layers.

Keywords. Homomorphic encryption, approximate arithmetics, matrix
operations, bootstrapping, linear transformation, encrypted deep neural
network.

1 Introduction

Homomorphic encryption (HE) [39] allows to perform certain arithmetics op-
erations in encrypted state. Following Gentry’s blueprint [23], a numerous HE
schemes have been proposed [17, 6, 7, 4, 5, 24, 33, 2, 25, 15, 13, 19, 18, 12, 14].
The most asymptotically efficient HE schemes are based on the hardness of
RLWE, and they normally have a common structure of ciphertexts with noised
encryption for security.

With the growth of more complex algorithms, such as deep learning and rec-
ommendation systems which require lots of matrix operations, the possibility of
performing matrix operations is becoming crucial for homomorphic encryptions.
Despite the diversity of HE schemes that achieve a variety of circuit evaluations,



practical matrix operations such as matrix multiplications is still a problem in
HE.

Matrix operations with HE Some works by Duong et al. [20] suggested a
method for a single matrix multiplication using special packing methods, how-
ever its packing structure seems to have problems in extensions to more complex
computations. A following work by Mishra et al. [35] extended [20] to several
matrix multiplications but it requires an exponentially large degree of the base
ring so it not seems to be practical. In another work Hiromasa et al. [30] con-
structed a matrix version of GSW scheme, but it considers only binary matrix
cases and requires a lot of matrix multiplications. Thus it neither seems to be
practical.

Recently Cheon et. al. [12] presented a method of constructing an HE scheme
for arithmetics of approximate numbers (called HEAAN). The idea of the construc-
tion is to treat encryption noise as a part of error occurring during approximate
computations. In other words, a ciphertext ct of a plaintext m ∈ R encrypted
by a secret key sk for an underlying ciphertext modulus q will have a decryption
structure of the form 〈ct, sk〉 = m+e (mod R/qR) for some small error e. HEAAN
is based on an RLWE structure over a power-of-two M = 2 ·N cyclotomic ring
modulo q, R/qR = Zq[X]/(XN + 1). A vector of complex values of size up to
N/2 can be encoded using a variant of canonical embedding map.

HEAAN showed its potential by providing the winning solution of Track 3 (Ho-
momorphic encryption based logistic regression model learning) at the iDASH
privacy and security competition in 2017 [31]. In their solution authors packed
a matrix of inputs in a vector. Even though the authors could provide all com-
putations using matrix to vector packing in that particular task, due to absence
of row-wise matrix rotation functionality they had to circumvent and consume
an additional level during the computations.

1.1 Our contributions.

In this paper we suggest a generalization of HEAAN with a tensor packing method,
along with natural rotations in various dimensions, which is, called the hyper-
cube structure, also applied in HElib [26, 27, 28]. The straightforward attempt
could be based on the Multivariate RLWE (m-PLWE) problem as an underlying
hardness problem, introduced by Pedrouzo-Ulloa et al. [36, 37] as a multivariate
variant of RLWE problem with an underlying ring Z[x0, x1]/(xN0

0 + 1, xN1
1 + 1)

where both N0 and N1 are powers-of-two. However this problem succumbs to
the following evaluation attack: without loss of generality assume N0 ≥ N1, and
substitute x1 = x

N0/N1

0 , then the RLWE problem over Z[x0, x1]/(xN0
0 +1, xN1

1 +1)
reduces to a problem over Z[x0]/(xN0

0 + 1).

Secure scheme So instead, we provide a scheme MHEAAN based on the m-PLWE
problem with indeterminates x0 and x1 (or in general case x0, . . . , xs) satisfy-
ing relations given by cyclotomic polynomials corresponding to relatively prime
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orders. The hardness of the m-PLWE problem over this ring is shown to have re-
duction from the origina RLWE problem. MHEAAN enjoys all the benefits of HEAAN
such as a rescaling procedure, which enables us to preserve the precision of the
message after approximate computations and to reduce the size of ciphertexts
significantly. Thus, the scheme can be a reasonable solution for approximate
computation over the complex values. Moreover, with a multivariable structure
of m-PLWE, we provide a general technique for tensor plaintext slots packing in
a single ciphertext. We provide a concrete two-dimensional construction which
supports matrix operations as well as standard HE operations.

Performance on matrix operations. For two-dimensional case corresponding
to natural matrix structure of plaintext slots, matrix multiplication in MHEAAN
is achieved in very simple way using Fox matrix multiplication algorithm [22].
In contrast to the method of Mishra et al. [35] our method does not require
exponentially large degree of the base ring and we can use matrix multiplication
as a part of more complex algorithms. The matrix size is also not a problem,
as our method preserves matrix structure, and can combined with divide-and-
conquer algorithm. Moreover MHEAAN enjoys other matrix related operations,
like matrix transposition. We examined MHEAAN’s performance on several matrix
operations. It takes about 11 seconds for homomorphic multiplication of two
64× 64 complex matrices, about 88 seconds to evaluate 16-th power of a 64× 64
complex matrix, and about 2 seconds for homomorphic transposition of a 64×64
matrix. Matrix inverse is a more complicated problem even in an unencrypted
case [41, 40]. We provided a method to evaluate the inverse of a matrix for a
special case. It takes about 2 minutes for a 64× 64 complex matrix.

Performance on bootstrapping. MHEAAN supports faster bootstrapping pro-
cedure than that of HEAAN when number of slots is sufficiently large. For base
ring degree N , the bootstrapping procedure for large number of slots in MHEAAN
is approximately requires O(N

1
2(s+1) ) of ciphertext rotations and O(N

1
s+1 ) of

constant multiplications where s + 1 is the number of factors of base ring. The
original HEAAN requires about O(

√
N) of ciphertext rotations and O(N) of con-

stant multiplications. In our implementation s is equal to 1 and the degree of
ring is factored into values close to

√
N , so the bootstrapping complexity is re-

duced from O(
√
N) to O( 4

√
N) rotations and from O(N) to O(

√
N) constant

multiplications. In practice this difference appears to be huge. For example for
215 number of slots HEAAN bootstrapping takes about 24 hours to complete. On
the other side for MHEAAN it takes about 2.5 mins.

Non-interactive DNN Classification. In Section 7, we apply our design to
non-interactive DNN classification algorithm. In our approach not only the input
data but also the model privacy is protected. The encrypted predictions achieve
high accuracy 97.7% 97.8% which is similar to the accuracy 97.9% of the predic-
tions on the plain data. Our approach is flexible and can be generalized to the
DNN architecture with large number of hidden layers.

Previous implementations of encrypted prediction [3, 29] are done over the
plain models, and limited number of hidden layers. The result of [3] has an im-
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pressive performance, but it is restricted only for a binary model, and is expected
to have huge drowning in the efficiency when expanding to a non-binary model.

2 Preliminaries

To avoid an ambiguity, we define tensors following linear algebras :

Definition 1. A tensor is an assign from a multi-indices set to values. A tensor
is of rank k if the multi-indices set consists of k-tuple of indices. A vector is a
rank 1 tensor and a matrix is a rank 2 tensor.

2.1 Basic Notations

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold,
e.g. a, and every vector in this paper will be a column vector. For vectors a and
b we denote by 〈a,b〉 the usual dot product. We denote matrices by bold capital
letters, e.g. A, and general tensors by â. For a real number r, bre is the nearest
integer to r, rounding upwards in case of a tie. For an integer q, we identify the
ring Zq with (−q/2, q/2] as a representative interval and for integer r we denote
by breq the reduction of r modulo q into that interval. We use a← χ to denote
the sampling a according to a distribution χ. If χ is a uniform distribution on a
set D, we use a ← D rather than a ← χ. For rank k tensors â, b̂ ∈ Cn1×···×nk

we denote a component-wise product by â� b̂. For vectors r = (r1, . . . , rk) and
g = (g1, . . . , gk) we denote by gr = (gr11 , . . . , g

rk
k ) component powers, and by

rt(â, r) a tensor obtained from â by cyclic rotation by ri in corresponding index
i. For example, in case of matrices i.e. rank 2 tensors, we have:

A =


a0,0 a0,1 · · · a0,n1−1

a1,0 a1,1 · · · a1,n1−1

...
...

. . .
...

an0−1,0 an0−1,1 · · · an0−1,n1−1



rt(A, (r0, r1)) =


ar0,r1 ar0,r1+1 · · · ar0,r1−1

ar0+1,r1 ar0+1,r1+1 · · · ar0+1,r1−1

...
...

. . .
...

ar0−1,r1 ar0−1,r1+1 · · · ar0−1,r1−1


where indices are taken modulus ni. Denote the security parameter through-

out the paper: all known valid attacks against the cryptographic scheme under
scope should take bit operations.
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2.2 The Cyclotomic Ring and Canonical Embedding

For an integerM consider its decomposition into primesM = 2k0 ·pk11 · · · · ·pkss =∏s
i=0Mi, where M0 = 2k0 , and Mi = pkii for i = 1, . . . , s. We will consider the

cases k0 > 2. Let Ni = φ(Mi) = (1 − 1
pi

)Mi for i = 0, . . . , s, and N = φ(M) =∏s
i=0Ni. Denote tensors N̂ = N0 × N1 × · · · × Ns, N̂h = N0/2 × N1 × · · · ×

Ns, and vectors N = (N0, N1, . . . , Ns), Nh = (N0/2, N1, . . . , Ns). Let ΦM (x)
be M -th cyclotomic polynomial. Let R = Z[x]/ΦM (x) and S = R[x]/ΦM (x).
The canonical embedding τM of a(x) ∈ Q[x]/(ΦM (x)) into CN is the vector
of evaluation values of a(x) at the roots of ΦM (x). We naturally extend it to
the set of real polynomials S, τM : S → CN , so τM (a(x)) will be defined as
(a(ξjM ))j∈Z?

M
∈ CN for any a ∈ R where ξM = exp(−2πi/M) is a primitive

M -th root of unity. The `∞-norm of τM (a(X)) is called the canonical embedding
norm of a, denoted by ‖a‖can∞ = ‖τM (a)‖∞. The canonical embedding norm
‖·‖can∞ satisfies the following properties:

• For all a, b ∈ R, we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞
• For all a ∈ R, we have ‖a‖can∞ ≤ ‖a‖1.
• For all a ∈ R, we have ‖a‖∞ ≤ ‖a‖can∞ .

Refer [16] for more details.

2.3 m-PLWE Problem

Here we set up an underlying hardness problem.

Proposition 1. If M0,M1, · · · ,Ms are pairwisely coprime, then there is a ring
isomorphism

S = R[x]/ΦM (x) ∼= R[x0, . . . , xs]/(ΦM0
(x0), . . . ΦMs

(xs)) = S ′

and the map induces a ring isomorphism

R = Z[x]/ΦM (x) ∼= Z[x0, . . . , xs]/(ΦM0
(x0), . . . ΦMs

(xs)) = R′.

We refers [34] for RLWE-problem.

Definition 2. A decisional RLWE problem RLWER,σ is a distinguishing problem
between uniform distribution (a(x), b(x)) and a distribution (a(x), a(x)s(x) +
e(x)) such that a(x), b(x), s(x) ← R/qR and e(x) is given by the image of a
sample in R whose canonical embedding has components following a Gaussian
distribution of variance σ2 independently.

Definition 3. A decisional multivariate PLWE problem m-PLWER′,σ′ is a dis-
tinguishing problem between uniform distribution (a(x), b(x)) and a distribution
(a(x), a(x)s(x) + e(x)) such that a(x), b(x), s(x) ∈ R′/qR′ and e(x) is given by
the image of a sample in R′ whose coefficients follow a Gaussian distribution of
variance σ′2 independently.
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Since the rings are not power-of-2 cyclotomic, their images under Minkowski
embedding looks non-spherical at first glance. If they are, the distinguishing
problems could be vulnerable attacks such as [21, 8, 38]. Fortunately, the attacks
are valid only when the base ring is not Galois. In particular, in the attack model
the embedded images are not spherical because the defining equation of the rings
do not completely split modulus q.

The m-PLWE problem is suspected to be weak under evaluation attacks
such as in case of the ring Z[x0, x1]/(ΦM0(x0), ΦM1(x1)) for the powers-of-two
M0,M1. The attack also seems to be expanding at least partially to the case
gcd(Mi,Mj) > 1. We design our scheme using relatively prime Mi’s to avoid
this case. Further we show the hardness of our case by devising a reduction from
the original RLWE problem to m-PLWE problem with relatively prime Mi’s.

Lemma 1. (Hardness of m-PLWE) Let R and R′ be given as proposition 1.
Then RLWER,σ reduces to m-PLWER′,cσ, where c2 =

∏s
i=1

(
pi−1
pi
× (2 + 12π

pi
)
)
.

In particular, c is less than
√

3 if pi ≥ 41 > 12π or pi = 3, 37. As p increases,
c tends to be

√
2. The followings are approximations of c :

(pi, c) = (5, 2.8), (7, 2.6), (11, 2.3), (13, 2.2), (17, 2.0),

(19, 2.0), (23, 1.9), (29, 1.8), (31, 1.9)

For pi = 3 and 37, the norm is given 2/
√

3 and bounded by 1.72, respectively.

Remark 1. Our implementation covers cases of s = 1 and p = 17, 257. In these
cases, c2 is approximately 2.06, 2.01, respectively.

Remark 2. Since ‖a‖2 ≤ ‖a‖∞, the distinguishing problem given by `∞ norm
is at least as hard as the problem given by `2 norm. In other words, m-PLWE
sample can be chosen by an error distribution following `∞ norm rather than `2
norm. From now on, the norm of m-PLWE samples, or their errors, are measured
by `∞ norm.

2.4 HEAAN Scheme

The following is the instantiation of the RLWE-based HEAAN scheme [11, 12]. For a
power-of-two N > 4 and M = 2N , denote ΦM (x) = (xN + 1), R = Z[x]/ΦM (x).
For a positive integer `, denote R` = R/2`R = Z2` [x]/ΦM (x) the residue ring
of R modulo 2`. The variant of the canonical embedding map defined as

τ ′N/2 : m(x)→ z = (z0, . . . , zN/2−1)

such that zj = m(ξ5j

M ).

Sparse packing. For a power-of-two n ≤ N/2 consider a subring R(n) =
Z[x′]/(x′2n + 1) ⊂ R where x′ = xN/(2n). For R(n) define an isomorphism
τ ′n : m(x′) = m(xN/(2n)) → z = (z0, . . . , zn−1) such that zj = m(ξ′j), where
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ξ′j = ξ
N/(2n)
j . We can pack n complex values via isomorphism τ ′

−1
n . In this case

if we apply τ ′N/2 to m(x′) ∈ R we will get a vector obtained from z by concate-
nating itself N/n times. For a messagem(x) encoding a vector z and a ciphertext
ct encrypting m(x), ct is also said to be encrypting vector z.

• HEAAN.KeyGen(1λ).

- For an integer L that corresponds to the largest ciphertext modulus level,
22L is the largest modulus, which corresponds to switching keys. Given
the security parameter λ, output the ring dimension N which is a power
of two.

- Set the small distributions χkey, χerr, χenc over R for secret, error, and
encryption, respectively.

- Sample a secret s ← χkey, a random a ← RL and an error e ← χerr.
Set the secret key as sk← (s, 1) and the public key as pk← (a, b) ∈ R2

L

where b← −as+ e (mod 2L).
• HEAAN.KSGensk(s′). For s′ ∈ R, sample a random a′ ← R2·L and an error
e′ ← χerr. Output the switching key as swk ← (a′, b′) ∈ R2

2·L where b′ ←
−a′s+ e′ + 2Ls′ (mod 22·L).
- Set the evaluation key as evk← HEAAN.KSGensk(s2).

• HEAAN.Encode(z, p). For a vector z ∈ Cn, with of a power-of-two n ≤ N/2
and an integer p < L corresponding to precision bits, output the polynomial
m← τ ′

−1
n (2p · z) ∈ R.

• HEAAN.Decode(m, p). For a plaintext m ∈ R, the encoding of a vector con-
sisting of a power-of-two n ≤ N/2 complex messages and precision bits p,
output the vector z← τ ′n(m/2p) ∈ Cn.

• HEAAN.Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output
v · pk + (e0, e1 +m) (mod 2L).
• HEAAN.Decsk(ct). For ct = (c0, c1) ∈ R2

` , output c0 · s+ c1 (mod 2`).

• HEAAN.Add(ct1, ct2). For ct1, ct2 ∈ R2
` , output ctadd ← ct1 + ct2 (mod 2`).

• HEAAN.CMultevk(ct, c, p). For ct ∈ R2
` and c ∈ Cn, compute c← HEAAN.Encode(c; p)

and output ct′ ← c · ct (mod 2`).
• HEAAN.PolyMultevk(ct, g, p). For ct ∈ R2

` and g ∈ R`, output ct′ ← g · ct
(mod 2`).

• HEAAN.Multevk(ct1, ct2). For ct1 = (a1, b1), ct2 = (a2, b2) ∈ R2
` , let (d0, d1, d2) =

(a1·a2, a1·b2+a2·b1, b1·b2) (mod 2`). Output ctmult ← (d1, d2)+b2−L · d0 · evke
(mod 2`).
• HEAAN.ReScale(ct, p). For a ciphertext ct ∈ R2

` and an integer p, output
ct′ ← b2−p · cte (mod 2`−p).

• HEAAN.ModDown(ct, p). For a ciphertext ct ∈ R2
` and an integer p, output

ct′ ← ct (mod 2`−p).

For an integer k co-prime with M , let κk : m(x) → m(xk) (mod ΦM (x)).
This transformation can be used to provide more functionalities on plaintext
slots.
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• HEAAN.Conjugatecjk(ct). Set the conjugation key as cjk← HEAAN.KSGensk(κ−1(s)).
For ct = (a, b) ∈ R2

` encrypting vector z, let (a′, b′) = (κ−1(a), κ−1(b))
(mod 2`). Output ctcj ← (0, b′) + b2−L · a′ · cjke (mod 2`). ctcj is a cipher-
text encrypting z̄ - the conjugated plaintext vector of ct.

• HEAAN.Rotatertk(ct; r). Set the rotation key as rtk← HEAAN.KSGensk(κ5r (s)).
For ct = (a, b) ∈ R2

` encrypting vector z, let (a′, b′) = (κ5r (a), κ5r (b))
(mod 2`). Output ctrt ← (0, b′) + b2−L · a′ · rtke (mod 2`). ctrt is a cipher-
text encrypting rt(z, r) = (zr, . . . , zn−1, z0, . . . , zr−1) - rotated by r positions
plaintext vector of ct.

Refer [12, 10] for the technical details and noise analysis.

2.5 Bootstrapping for HEAAN

Consider a ciphertext ct ∈ R′2` , an encryption of messagem(x) encoding a vector
of size n. Then the coefficients of m(x) are non-zero only at degrees k · N2n for
k = 1, 2, · · · , 2n−1. Consider ct as an element of R′2L for L� `. We can treat ct
as an encryption of m(x) + 2` · I(x) in R′L i.e. Dec(ct) = m(x) + e(x) + 2` · I(x)
(mod R) for some polynomial I(x) of degree < N . With a choice of sparse sk,
coefficients of I(x) are bounded with some constant. Now the bootstrapping
procedure is defined as followings.

• HEAAN.SubSum(ct, n) As the number of slots is n, then nonzero coefficients of
m(x) are only at degrees k· N2n . The output encrypts a messagem(x)+2`·I ′(x)
where I ′(x) derived from I(x) by vanishing the coefficients at degrees other
than multiples of N

2n .

Algorithm 1 SubSum procedure

1: procedure SubSum(ct ∈ R′2L, n | N/2, n ≥ 1)
2: ct′ ← ct
3: for j = 0 to log( N2n )− 1 do
4: ctj ← HEAAN.Rotate(ct′; 2j · n)
5: ct′ ← HEAAN.Add(ct′, ctj)
6: end for
7: ct′′ ← HEAAN.ReScale(ct′; log( N2n ))
8: return ct′′

9: end procedure

Let m(x) + 2` · I ′(x) =
∑N−1
j=0 tjx

j encoding vector z = (z0, . . . , zn−1). Then
for the following matrix Σ we have equation:
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Σ · z =


ξ0
0 ξ1

0 · · · ξn−1
0

ξ0
1 ξ1

1 · · · ξn−1
1

...
...

. . .
...

ξ0
n−1 ξ

1
n−1 · · · ξn−1

n−1

 ·

z0

z1

...
zn−1

 =


t′0 + i · t′n
t′1 + i · t′n+1

...
t′n−1 + i · t′2n−1

 (1)

where ξj = exp( 2πi·5j

2n ) and t′k = tk· N2n
.

• HEAAN.SlotToCoeff(ct). Multiply ct by a matrix Σ−1. The output is the
ciphertext that encrypts coefficients of m(x)+2` ·I ′(x) in real and imaginary
parts: tk· N2n + i · t(k+n)· N2n

in slot k for k = 1, 2, · · · , n− 1.
• HEAAN.RemoveIPart(ct) Extract real and imaginary parts of slots and eval-

uate the polynomial function, close to f(x) = 1
2πi exp( 2πix

2` ) for both parts.
Combine the two ciphertexts to obtain a ciphertext that encrypts coeffi-
cients of m(x) in real and imaginary parts: mk· N2n

+ i ·m(k+n)· N2n
in slot k

for k = 1, 2, · · · , n− 1.
• HEAAN.CoeffToSlot(ct) Multiply ct by a matrix Σ−1. The result is a cipher-

text that encrypts m(x) in a higher power-of-two modulus L′ � `

SlotToCoeff and CoeffToSlot parts of the algorithm require O(
√
n) ci-

phertext rotations and O(n) constant multiplications when performing so-called
‘baby-giant step’ optimization. The algorithm also requires to store O(

√
n) rota-

tions keys, which is impractical for large number of slots. For more details refer
to [10, 11].

3 MHEAAN Scheme

3.1 Structure of MHEAAN

In this section we will use notations from Section 2.2. MHEAAN is a generalization
of HEAAN to a case of non power-of-two M . The encryption process in MHEAAN
scheme can be shown in the following outline: we encode a tensor of complex
values of size N̂ using τ ′−1

Nh
into m(x) ∈ R′. We mask the result with m-PLWE

instance
(
a(x), b(x)

)
in the corresponding ring R′`. For a message m(x) encoding

a tensor ẑ and a ciphertext ct encrypting m(x), we also say that ct encrypts
tensor ẑ.

Sparse packing. For divisors n0 of N0/2 and ni of Ni for i = 1, . . . , s, denote
n̂ = n0×n1×· · ·×ns, n = (n0, n1, . . . , ns). We can imitate sparse tensor packing
similar to the HEAAN case. We can encode a sparse tensor of complex values of
size n̂ using τ ′−1

Nh
applied to a tensor of size N̂h consisting of same blocks of size

n̂. We denote this embedding as τ ′−1
n .

We can treat HEAAN scheme as a special case of MHEAAN with s = 0:
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z =


z0

z1

...
zn0−1

 τ ′−1
n0−−−−→

Encode
m(x)

RLWE−−−−→
Enc

ct

and for two-dimensional packing (s = 1) we have:

Z =


z0,0 z0,1 · · · zn1−1

z1,0 z1,1 · · · z1,n1−1

...
...

. . .
...

zn0−1,0 zn0−1,1 · · · zn0−1,n1−1

 τ ′−1
n0,n1−−−−−→

Encode
m(x0, x1)

m−RLWE−−−−−−→
Enc

ct

3.2 Concrete Construction

For a positive integer ` denote R′` = R′/2`R′ the residue ring of R′ modulo 2`.
For a real σ > 0, DG(σ2) samples a multivariate polynomial in R′ by drawing its
coefficient independently from the discrete Gaussian distribution of variance σ2.
For an positive integer h,HWT (h) is the set of signed binary tensors in {0,±1}N̂
whose Hamming weight is exactly h. For a real 0 ≤ ρ ≤ 1, the distribution ZO(ρ)

draws each entry in the tensor from {0,±1}N̂, with probability ρ/2 for each of
−1 and +1, and probability being zero 1− ρ.

• MHEAAN.KeyGen(1λ).
- Given the security parameter λ, set an integer M that corresponds to a
cyclotomic ring, an integer L that corresponds to the largest ciphertext
modulus level and distribution parameters (ρ, σ, h).

- Set the distributions χenc = ZO(ρ), χerr = DG(σ), χkey = HWT (h)
over R for secret, error, and encryption, respectively.

- Sample a secret s ← χkey, a random a ← R′L and an error e ← χerr.
Set the secret key as sk← (s, 1) and the public key as pk← (a, b) ∈ R′2L
where b← −a · s+ e (mod 2L).

• MHEAAN.KSGensk(s). For s ∈ R′, sample a random a ← R′2·L and an error
e ← χerr. Output the switching key as swk ← (a, b) ∈ R′22·L where b ←
−a · s+ e+ 2Ls (mod R′2·L).
- Set the evaluation key as evk← MHEAAN.KSGensk(s2).

• MHEAAN.Encode(ẑ, p). For a tensor ẑ ∈ Cn̂, an integer p < L−1 corresponding
to precision bits, output the two-degree polynomial m← τ ′n(2p · ẑ) ∈ R′.

• MHEAAN.Decode(m, p). For a plaintext m ∈ R′, the encoding of a tensor
of complex messages ẑ ∈ Cn̂, precision bits p, output the tensor ẑ′ ←
τ ′
−1
n (m/2p) ∈ Cn̂.

• MHEAAN.Encpk(m). For m ∈ R′, sample v ← χenc and e0, e1 ← χerr. Output
ct = v · pk + (e0, e1 +m) (mod R′L).
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• MHEAAN.Decsk(ct). For ct = (c0, c1) ∈ R′2` , output c0 · s+ c1 (mod R′`).
• MHEAAN.Add(ct1, ct2). For ct1, ct2 ∈ R′2` - encryption of tensors ẑ1, ẑ2 ∈ Cn̂

output ctadd ← ct1 + ct2 (mod 2`). ctadd is a ciphertext encrypting tensor
ẑ1 + ẑ2.

• MHEAAN.CMultevk(ct,C, p). For ct ∈ R2
` - encryption of ẑ ∈ Cn̂, and a constant

tensor ĉ ∈ Cn̂, compute c ← MHEAAN.Encode(ĉ, p) the encoding of ĉ and
output ctcmult ← c · ct (mod R′`). ctcmult is a ciphertext encrypting tensor
ẑ� ĉ.

• MHEAAN.PolyMultevk(ct, g, p). For ct ∈ R2
` - encryption of ẑ ∈ Cn̂, and a

constant g ∈ R` output ctcmult ← c · ct (mod R′`). ctcmult is a ciphertext
encrypting tensor ẑ� ĉ, where ĉ is decoding of g.

Multiplication by polynomial is similar to a constant multiplication, however
in the next section we will show why it is important to define it separately.

• MHEAAN.Multevk(ct1, ct2). For ct1 = (a1, b1), ct2 = (a2, b2) ∈ R′2` - encryptions
of tensors ẑ1, ẑ2 ∈ Cn̂, let (d0, d1, d2) = (a1a2, a1b2 + a2b1, b1b2) (mod R′`).
Output ctmult ← (d1, d2) + b2−L · d0 · evke (mod R′`). ctmult is a ciphertext
encrypting tensor ẑ1 � ẑ2.

• MHEAAN.ReScale(ct, p). For a ciphertext ct ∈ R′2` and an integer p, output
ct′ ← b2−p · cte (mod R′`−p).

For an integer vector k = (k0, . . . , ks) with ki co-prime with Mi, let

κk : m′(x)→ m′(xk) (mod R′`)

This transformation can be used to provide conjugation and rotations in different
dimensions on the plaintext matrix.

• MHEAAN.Conjugatecjk(ct). Set the conjugation key as

cjk← MHEAAN.KSGensk(κ−1(s))

For ct = (a, b) ∈ R′2` encrypting matrix Z, let (a′, b′) = (κ−1(a), κ−1(b))
(mod R′`). Output ctcj ← (0, b′)+b2−L · a′ · cjke (mod R′`). ctcj is a cipher-
text encrypting ¯̂z - the conjugated plaintext tensor of ct.

• MHEAAN.Rotatertk(ct; r). Set the rotation key as

rtk← MHEAAN.KSGensk(κgr(s))

For ct = (a, b) ∈ R′2` encrypting matrix Z, let (a′, b′) = (κgr(a), κgr(b))
(mod R′`). Output ctrt ← (0, b′) + b2−L · a′ · rtke (mod R′`). ctrt is a ci-
phertext encrypting rt(ẑ, r) - cyclic rotated plaintext tensor by ri in i-th
dimension.
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Throughout this paper, we use real polynomials as plaintexts for convenience
of analysis. A ciphertext ct ∈ R′2` will be called a valid encryption of m ∈ S
with the encryption noise bounded by δ, and plaintext bounded by µ, if 〈ct, sk〉 =
m + e (mod R′`) for some polynomial e ∈ S with ‖e‖can∞ < δ and ‖m‖can∞ < µ.
We will use a corresponding tuple (ct, δ, µ, `) for such an encryption of m. The
following lemmas give upper bounds on noise growth after encryption, rescaling
and homomorphic operations. Refer to Appendix A for proofs.

Lemma 2 (Encoding & Encryption). For m ← MHEAAN.Encode(ẑ, p) and
ct ← MHEAAN.Encpk(m) the encryption noise is bounded by δclean = 8

√
2 · σN +

6σ
√
N + 16σ

√
hN .

Lemma 3 (Rescaling). Let (ct, δ, µ, `) be a valid encryption of m and ct′ ←
MHEAAN.ReScale(ct, p). Then (ct′, δ/2p + δscale, µ/2

p, `− p) is a valid encryption
of m/2p where δscale = 6

√
N/12 + 16

√
hN/12

Remark 3. We can slightly change the public key generation and the encryption
process to obtain a ciphertext with initial noise reduced from δclean to almost
δscale. For this, as 22L is the largest modulus, which corresponds to switching
keys, we can generate public key in R′22L instead of R′2L. Also in the encryption
process we encode the plaintext m with p + L precision bits, instead of p bits
with the following rescaling of the encryption ct of m by L bits. With a slightly
slower encryption process we end up with a valid encryption in R′2L, with the
initial noise bounded by δclean/2L + δscale ≈ δscale.

Lemma 4 (Addition & Multiplication). Let (cti, δi, µi, `) be encryptions of
mi ∈ R′ and let ctadd ← MHEAAN.Add(ct1, ct2) and ctmult ← MHEAAN.Multevk(ct1, ct2).
Then (ctadd, δ1 +δ2, µ1 +µ2, `) and (ctmult, µ1 ·δ2 +µ2 ·δ1 +δ1 ·δ2 +δmult, µ1 ·µ2, `)
are valid encryptions of m1 +m2 and m1 ·m2, respectively, where δks = 8σN/

√
3

and δmult = 2`−L · δks + δscale.

Lemma 5 (Conjugation & Rotation). Let (ct, δ, µ, `) be encryption of m ∈
R′ that encodes tensor ẑ, r- integer vector, and let ctrt = MHEAAN.Rotatertk(ct; r),
ctcj = MHEAAN.Conjugatecjk(ct). Then (ctrt, δ+ δ∗, µ, `) and (ctcj, δ+ δ∗, µ, `) are
valid encryptions of tensors rt(ẑ, r) and ¯̂z respectively where where δks = 8σN/

√
3

and δ∗ = 2`−L · δks + δscale

Relative Error As discussed in [12] the decryption of a ciphertext is an approx-
imate value of plaintext, so it needs to dynamically manage the bound of noise
of ciphertext. It is sometimes convenient to consider the relative error defined
by β = δ/µ. When two ciphertexts with relative errors βi = δi/µi are added the
output ciphertext has a relative error bounded by maxi(βi). When two cipher-
texts are multiplied with the following rescaling by p bits the output ciphertext
has a relative error bounded by

β′ = β1 + β2 + β1β2 +
δmult + 2p · δscale

µ1µ2
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according to Lemmas 3 and 4. This relative error is close to β1 +β2 which is simi-
lar to the case of unencrypted floating-point multiplication under an appropriate
choice of parameters.

For convenience of analysis, we will assume that for two ciphertexts with
relatives errors β1 and β2 the relative error after multiplication and rescaling is
bounded by β1 + β2 + β∗ for some fixed β∗

4 Bootstrapping for MHEAAN

Similar to HEAAN scheme, consider a ciphertext ct ∈ R′2` as an element of R′2L for
L� `, with Dec(ct) = m(x)+e(x)+2` ·I(x) (mod R′L). For simplicity we only
consider boostrapping for full packing. However some cases of sparse packing
(as sparse packing in dimension corresponding to M0) could be achieved using
similar to HEAAN case techniques.

• MHEAAN.SlotToCoeff(ct). From the equation 2 (in appendix) we notice that
linear transformation can be split into consecutive linear transformations
consisting of Σ from the equation 1 and Σ′i from the equations 3 applying
to different dimensions i of m(x). Output is the ciphertext that encrypts
coefficients of m(x) + e(x) + 2` · I(x) in real and imaginary parts.

• MHEAAN.RemoveIPart(ct) This part of algorithm is same to HEAAN. Extract
real and imaginary parts of slots, evaluate polynomial function, close to
f(x) = 1

2πi exp( 2πix
2` ) for both parts. Combine two ciphertexts to obtain

ciphertext that encrypts coefficients of m(x) in real and imaginary parts.
• HEAAN.CoeffToSlot(ct) Apply consecutively linear transformations Σ−1 and
Σ−1
i . The result is a ciphertext that encrypts same vector as initial ct in a

higher modulus R′2L′ with L′ � `.

The noise, correctness and performance analysis are similar to [10] with the
differences that now SlotToCoeff and CoeffToSlot parts of the algorithm re-
quire O(

∑s
i=0

√
Ni) ciphertext rotations and O(

∑s
i=0Ni) constant multiplica-

tions when performing ‘baby-giant step’ optimization. This is much smaller than
O(
√
N) and O(N) corresponding to HEAAN case for a full slot packing N/2. We

now also have to store only O(
∑s
i=0

√
Ni) rotations keys instead of O(

√
N) keys

for HEAAN case. The only drawback is that when applying consecutively linear
transformations, we use more rescaling operations. For small s such as s = 1,
however, it is not a big issue.

5 Homomorphic Evaluations of Matrix Operations

One of the purposes to design MHEAAN is to run the matrix operations naturally.
Since a matrix multiplication consists of multiplications and additions for each
components, every HE scheme should support the operation. However, the there
is no known general practical result yet. With the structure of MHEAAN we provide
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algorithms for homomorphic evaluation of approximate matrix multiplication,
transposition and inverse functions.

Let n be a divisor of both of N0/2 and N1, in particular n is a power-of-
two. For simplicity we will consider only square power-of-two size matrix case
for multiplication, transposition and inverse. One can keep in mind parameters
(s,M0,M1) = (1, 2k, 257), in which case n can be up to min(2k−2, 256), and
parameters (s,M0,M1) = (1, 2k, 17), in which case n can be up tomin(2k−2, 16).
We start with several simple auxiliary algorithms.

Remark 4. Multiplication and transposition algorithms can be extended to a
non-square matrices case. Also for bigger matrices we can split them into smaller
ones and use divide-and-conquer algorithm. We will omit the details as we need
to consider many cases, although they are essentially similar.

Row and Column Sums Let ctA - encryption of matrix A ∈ Cn×n. Then the
algorithm 2 return the ciphertext encrypting row sums of A. Similarly we can
define algorithm ColSum for column sums of A.

Algorithm 2 Row Sum

1: procedure MHEAAN.RowSum(ctA ∈ R′2`)
2: ctS ← ctA
3: for j = 0 to log n do
4: ctj ← MHEAAN.Rotate(ctS, 2

j , 0)
5: ctS ← MHEAAN.Add(ctS, ctj)
6: end for
7: return ctS
8: end procedure

Diagonal Extraction Let I ∈ Cn×n be the identity matrix with Ik = rt(I, (k, 0)).
We can obtain encryption of shifted diagonal of A by multiplying ctA with Ik.
The procedure is described in Algorithm 3.

Algorithm 3 Diagonal Extraction

1: procedure MHEAAN.Diag(ctA ∈ R′2` , k, p)
2: ctAk

← MHEAAN.CMult(ctA, Ik)
3: ctAk

← MHEAAN.ReScale(ctAk
, p)

4: return ctAk

5: end procedure
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5.1 Matrix by Vector Multiplication

Let ciphertext ctv encrypts vector v as a matrix of size n× 1. Remind that ctv
can be viewed as encryption of matrix of size n× n, consisting of same columns
v. If we multiply ctAT by ctv and apply ColSum algorithm we obtain ciphertext
encryptingwT = (Av)T as a matrix of size 1×n. Matrix by vector multiplication
is stated in algorithm 4. Similarly for wT of size n×1 we can define VecMatMult
algorithm that evaluates encryption of Aw.

Algorithm 4 Matrix by Vector Multiplication

1: procedure MHEAAN.MatVecMult(ctAT , ctv ∈ R′2` , p ∈ Z)
2: ct(Av)T ← MHEAAN.Mult(ctAT , ctv)
3: ct(Av)T ← MHEAAN.ReScale(ct(Av)T , p)
4: ct(Av)T ← MHEAAN.ColSum(ct(Av)T )
5: return ct(Av)T

6: end procedure

5.2 Matrix Multiplication

We adapt Fox matrix multiplication algorithm [22] to encrypted matrix multipli-
cation. For ctA, ctB be encryptions of matrices A,B ∈ Cn×n with power-of-two
n we define Algorithm 5.

Algorithm 5 Matrix Multiplication

1: procedure MHEAAN.MatMult(ctA, ctB ∈ R′2` , p)
2: ctC ← 0
3: for k = 0 to n− 1 do
4: ctBk

← MHEAAN.Diagk(ctB, p)
5: for j = 1 to log(n)− 1 do
6: ctBk

← MHEAAN.Add(ctBk
, MHEAAN.Rotate(ctBk

, (0, 2j))
7: end for
8: ctAk

← MHEAAN.ModDown(MHEAAN.Rotate(ctA, (
N0

2 − k, 0)), p)
9: ctCk

← MHEAAN.Mult(ctAk
, ctBk

)
10: ctC ← MHEAAN.Add(ctC, ctCk

)
11: end for
12: ctC ← MHEAAN.ReScale(ctC, p)
13: return ctC
14: end procedure
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Lemma 6 (Matrix Multiplication). Let (ctA, βA · 2p, 2p, `) and (ctB, βB ·
2p, 2p, `) be encryptions of matrices A,B ∈ Cn×n respectively. The Algorithm 5
outputs (ctC, βC · n · 2p, n · 2p, ` − 2p) the valid encryption of C = AB where
βC = βA + βB + (log n+ 1) · β∗.

Remark 5. The plain matrix multiplication algorithm has complexity O(n3).
The Algorithm 5 requires totally O(n) ciphertext multiplication (each of provides
multiplication in parallel of n2 values) and O(n log n) ciphertext rotations. This
is almost optimal, compare to unencrypted case.

Matrix Multiplications with Permutations We will mention about more
efficient algorithm for matrix multiplication. If we consider the following permu-
tations of matrices B′ and C′′ of B and C = AB respectively.

B′ =


b0,0 b1,n−1 · · · bn−1,1

b0,1 b1,0 · · · bn−1,2

...
. . .

...
b0,n−1 b1,n−2 · · · bn−1,0

 ,C′′ =


c0,0 c0,n−1 · · · c0,1
c1,1 c1,0 · · · c1,2
...

. . .
...

cn−1,n−1 cn−1,n−2 · · · cn−1,0


Then for given encryptions of A and B′, Algorithm 6 outputs encryption of C′′
- permutation of matrix C. The Algorithm 6 requires totally O(n) ciphertext
multiplication (each of provides multiplication in parallel of n2 values) and O(n)
ciphertext rotations. This is asymptotically optimal, compare to unencrypted
case. However this algorithm is seems to be not practical for more complicated
tasks as it does not preserve the matrix structure in slots.

Algorithm 6 Matrix Multiplication with Permutations

1: procedure MHEAAN.MatMultPermute(ctA, ctB′ ∈ R′2` , p)
2: ctC′′ ← 0
3: for k = 0 to n− 1 do
4: ctAk

← MHEAAN.Rotate(ctA, (k, 0))
5: ctB′k ← MHEAAN.Rotate(ctB′ , (k, k))
6: ctC′′k ← MHEAAN.Mult(ctAk

, ctB′k)
7: ctC′′ ← MHEAAN.Add(ctC, ctC′′k )
8: end for
9: ctC′′ ← MHEAAN.ReScale(ctC′′ , p)

10: return ctC′′
11: end procedure
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5.3 Matrix Transposition

With Diag algorithm we can extract all the shifted diagonals of matrixA. We can
notice that transposed matrix AT is actually consist of same shifted diagonals
Ak of matrix A, rotated by (k,−k) slots.

Algorithm 7 Matrix Transposition

1: procedure MHEAAN.MatTranspose(ctA ∈ R′2` , p)
2: ctAT ← 0
3: for k = 0 to n− 1 do
4: ctAk

← MHEAAN.Diagk(ctA, p)
5: ctAk

← MHEAAN.Rotate(ctAk
, (k,−k))

6: ctAT ← MHEAAN.Add(ctAT , ctAk
)

7: end for
8: ctAk

← MHEAAN.ReScale(ctAk
, p)

9: return ctAk

10: end procedure

Lemma 7 (Matrix Transposition). Let (ctA, βA · 2p, 2p, `) be an encryption
of matrix A ∈ Cn×n. The Algorithm 7 outputs (ctAT , βAT ·2p, 2p, `−p) the valid
encryption of AT where βAT = βA + β∗.

5.4 Matrix Inverse

For matrix inverse we can adapt Schulz algorithm [41] to encrypted approximate
inverse circuit. However for MHEAAN we use a matrix version algorithm described
in [9] and adopted in [12] as it more practical due to power-of-two degrees of
matrix in the circuit. The algorithm is described below.

Assume that invertible square matrix A satisfies ‖Ā‖ ≤ ε < 1 for Ā =
I− 1

2tA, for some t ≥ 0 then we get

1

2t
A(I + Ā)(I + Ā2) . . . (I + Ā2r−1

) = 1− Ā2r

We can see that ‖Ā2r‖ ≤ ‖Ā‖2r ≤ ε2
r

, hence 1
2t

∏r−1
j=0(I + Ā2j

) = A−1(1−
Ā2r ) is an approximate inverse of A for ε2

r � 1. We will slightly strengthen the
condition on ε in the following lemma:

Lemma 8 (Matrix Inverse). Let (ctĀ, β · ε2p/n, ε2p/n, `) be an encryption of
matrix Ā ∈ Cn×n, and ‖Ā‖ = ‖I− 1

2tA‖ ≤ ε < n−1
n for some t. The Algorithm 8

outputs (ctVr
, βVr

· n1/n2p−t, n1/n2p−t, `− 2pr− t) the valid encryption of A−1

where βVr
= 2β + (r + 1) · (1 + log n) · β∗. So we have that the output message

bound is close to 2p−t and error growth linearly in r.
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Algorithm 8 Matrix Inverse

1: procedure MHEAAN.MatInv(ctĀ ∈ R′
2
` , r, p ∈ Z)

2: i = MHEAAN.Encode(I, p)
3: ctA0

← ctĀ
4: ctV0

← MHEAAN.ModDown(i+ ctĀ, p)
5: for j = 0 to r − 1 do
6: ctAj ← MHEAAN.ReScale(MHEAAN.MatMult(ctAj−1 , ctAj−1), p)
7: ctVj+1 ← MHEAAN.ReScale(MHEAAN.MatMult(ctVj , i+ ctAj ), p)
8: end for
9: ctVr

← MHEAAN.ReScale(ctVr
, t)

10: return ctVr

11: end procedure

6 Implementation Results

In this section, we provide implementation results with concrete parameter set-
ting. Our implementation is based on the NTL C++ library running over GMP.
Every experimentation was performed on a machine with an Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz processor with 8 CPUs using a parameter set with
80-bit security level.

Parameters Setting The dimensions of a cyclotomic ring R′ are chosen fol-
lowing the security estimator of Albrecht et al. [1] for the learning with errors
problem.

Table 1. Parameter settings for MHEAAN

parameter N = N0 ·N1 σ h Lmax

Set1 213

6.4 64

≈ 155

Set2 214 ≈ 310

Set3 215 ≈ 620

Set4 216 ≈ 1240

We use the discrete Gaussian distribution of standard deviation σ to sample
error polynomials and set the Hamming weight h in a multivariate representation
of a secret key s(x).

We skip the results of the evaluation of component wise operations such as
inverse, exponent, sigmoid functions, etc. Please refer to [12] for more details on
evaluating these circuits.

Bootstrapping In Table 2, we present the parameter setting and performance
results for full slots bootstrapping. Parameters r, p, Lin have the same meaning
as r, log(p), log(q) in [10] and similarly were chosen experimentally based on the
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bootstrapping error. For sufficiently large number r we maintain the precision
of the output plaintext. Lin and Lout corresponds to the number of modulus
bits before and after bootstrapping respectively. The running times are only for
ciphertext operations and exclude encryption and decryption procedures.

Table 2. Implementation results for bootstrapping

parameter N0 N1 r p Lin Lmax Lout precision time amor

Boot1 256 256
7 35 40 1240 517 16 bits 2.5min 4.58ms

Boot2 8 43 50 1240 312 20 bits 2.63min 4.83ms

Evaluation of Matrix Circuits In Table 3, we present the parameter setting
and performance results for matrix multiplication, matrix 16-th power, and in-
verse. Lin and Lout corresponds to the number of modulus bits before and after
operations respectively. The running times are only for ciphertext operations
and exclude encryption and decryption procedures.

The homomorphic evaluation of the circuitM16 can be evaluated by squaring
a matrix 4 times. Computing the matrix inverse homomorphically is done by
evaluating a matrix polynomial up to degree 15 as was shown in Algorithm 8.

Table 3. Implementation results for n× n matrices M, M1, M2

Function n N0 N1 p Lin Lout time

MT

16 512 16

30

65 35
0.15s

16 64 256 0.27s
64 128 256 1.82s

M1M2

16 512 16
100 40

0.51s
16 64 256 0.98s
64 128 256 10.72s

M16

16 1024 16
300 60

6.82s
16 64 256 17.23s
64 128 256 87.65s

M−1

16 1024 16
300 60

10.61s
16 64 256 12.87s
64 128 256 2.1min
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7 Evaluation of Deep Neural Network Classification
Algorithm

As an application of MHEAAN we propose a DNN classification algorithm with an
arbitrary number of layers. Our implementation of algorithm is non-interactive
and keep both data and model itself in encrypted state.

DNN model. We briefly describe the flow of DNN classification algorithm.
DNN model consists of l + 1 number of layers. For simplicity we enumerate the
layers starting from 0. Each layer contains ni number of nodes for i = 0, . . . l. The
layer 0 is input layer, the layer l is output layer, and the others are hidden layers.
Each of the hidden layers and the output layer has a corresponding weight matrix
Wi ∈ Rni×ni−1 and a bias vector bi ∈ Rni . For the input vector a0 ∈ Rn0 , we
consecutively calculate the linear transformation part zi = Wiai−1 + bi, and
the activation part ai = gi(zi) at the each hidden layer. For the output layer
we calculate the linear transformation part zl = Wlal−1 + bl and the index of
largest value in zl is the classification output.

Algorithm 9 Linear Transformation Column to Row

1: procedure MHEAAN.LTColRow(cta, ctWT , ctbT ∈ R′2` , p ∈ Z)
2: ct(Wa)T ← MHEAAN.VecMatMult(cta, ctWT , p)
3: ctzT ← MHEAAN.Add(ct(Wa)T , ctbT )
4: return ctz
5: end procedure

Algorithm 10 Linear Transformation Row to Column

1: procedure MHEAAN.LTRowCol(ctaT , ctW, ctb ∈ R′2` , p ∈ Z)
2: ctWa ← MHEAAN.MatVecMult(ctaT , ctW, p)
3: ctz ← MHEAAN.Add(ctWa, ctb)
4: return ctz
5: end procedure

Our approach. For the linear transformation part we use Algorithms 9 and 10
along with divide-and-conquer algorithm. We use sigmoid as activation function
for all hidden layers, and for activation part we use the polynomial approxima-
tions of sigmoid function, introduced in [31]. In particular we use the degree 7
least square approximation polynomial g(x) of 1

1+ex .

g(x) = 0.5− 1.73496 · x
8

+ 4.19407 ·
(x

8

)3

− 5.43402 ·
(x

8

)5

+ 2.50739 ·
(x

8

)7
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We first apply LTColRow to cta0
, ctWT

1
, ctbT

1
and obtain ctzT

1
. Then we evalu-

ate ctaT
1

using polynomial approximation g(x) of sigmoid function. After then
we apply LTRowCol to ctaT1 , ctW2

, ctb2
to obtain ctz2 and etc. For each linear

transformation part we lose p modulus bits and for each activation part we lose
3p+ 3 modulus bits. With sufficiently large initial modulus bits L and with the
bootstrapping algorithm we can evaluate DNN classification with an arbitrary
number of layers.

In Table 4 we present the parameter settings, performances, and accuracy
results with one, two and four hidden layers. Our DNN classification algorithm
applied to MNIST dataset [32] with sigmoid activation functions. The running
times are only for ciphertext operations, and exclude times for encryption and
decryption procedures. Accuracy is similar to the accuracy of predictions on
unencrypted data, which is about 97.9%.

Table 4. Implementation results for DNN prediction phase

parameter N0 N1 p Lin Lout l n0 (n1, . . . , nl) time

DNN1

128 256
30 300 147 2 784 (1024,10) 55s

DNN2 30 400 124 3 784 (1024,256,10) 76s
DNN3 30 600 78 5 784 (1024,1024,1024,256,10) 3.5min
DNN4

2048 16
30 300 147 2 784 (1024,10) 59s

DNN5 30 400 124 3 784 (1024,256,10) 81s
DNN6 30 600 78 5 784 (1024,1024,1024,256,10) 3.8mins

8 Conclusion

In this work, we present MHEAAN - a variant of the HEAAN homomorphic encryption
scheme. MHEAAN takes advantage of HEAAN by supporting standard approximate
HE operations. With a multi-dimensional packing MHEAAN enjoys more function-
ality like efficient operations on matrices and practical bootstrapping even for
large number of slots. As an application of MHEAAN we propose a non-interactive
deep neural network classification algorithm for deep neural network structure
with an arbitrary humber of hidden layers.

One of the future works could be applying MHEAAN to classification algorithms
for general Neural Network architectures like Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN). Another interesting problem is
to achieve learning phase of the Neural Networks with multiple layer structure.
We believe that the idea of multi-dimensional variant could have a great potential
for these as well as for other applications requiring computations on matrices
and tensors.
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A Proofs

We follow the heuristic approach in [24]. Assume that a polynomial a(x) ∈ R′
sampled from one of above distributions, so its nonzero entries are indepen-
dently and identically distributed. Let ξ = (ξM0 , . . . , ξMs) The value a(ξ) can
be obtained by consecutively computing N/Ni inner products of vectors of co-
efficients of a corresponding to a power xji for j = 0, . . . , Ni − 1 by a fixed
vector (1, ξMi , . . . , ξ

Ni

Mi
) of Euclidean norm

√
Ni. Then a(ξ) has variance V =

σ2
∏s
i=0Ni = σ2N , where σ2 is the variance of each coefficient of a. Hence a(ξ)

has the variances VU = 22`N/12, VG = σ2N and VZ = ρN , when a is sam-
pled from R`, DG(σ2), ZO(ρ) respectively. In particular, a(ξ) has the variance
VH = h when a(x) is chosen from HWT (h). Moreover, we can assume that a(ξ)
is distributed similarly to a Gaussian random variable over complex plane since
it is a sum of φM0···Ms/2 independent and identically distributed random com-
plex variables. Every evaluations at roots of unity (ξ) share the same variance.
Hence, we will use 6σ as a high-probability bound on the canonical embedding
norm of a(x) when each coefficient has a variance σ2. For a multiplication of two
independent random variables close to Gaussian distributions with variances σ2

1

and σ2
2 , we will use 16σ1σ2 as a high-probability bound.

Proof of Proposition 1

Proof. One of such maps R′ → R is given by

xj 7→ xM/Mj mod ΦM (x) for all j = 0, 1, · · · , s
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and it extends to
S ′ = R

⊗
Z
R′ → S = R

⊗
Z
R

At first we check that this map is well-defined. This means that, for all j, xj
and xj + ΦMj

(xj) have same image in S, or simply ΦMj
(xM/Mj ) is divisible by

ΦM (x). Since
ΦK(x) =

∏
(k,K)=1,1≤k≤K

(x− ζkK)

for any positive integer K and a primitive K-th root of unity ζK = e2πi/K , we
have the following divisibility

ΦM (x) =
∏

(k,M)=1,1≤k≤M

(x−ζkM )
∣∣ ∏

(k,M)=1,1≤k≤M

(xM/Mj−ζkM/Mj

M ) =
(
ΦMj

(xM/Mj )
)Mj

.

Note that x − a is always a factor of (x∗ − a∗) = (x − a)(x∗−1 + x∗−2a + · · · +
a∗−1). The divisibility formula concludes that ΦM (x) and ΦMj

(xM/Mj ) shares
a nontrivial common factor, and the irreducibility of ΦM (x) implies that the
common factor is ΦM (x) itself.

Secondly we check the map is surjective. In particular, x lies in the image
of the map. Since M/M0,M/M1, · · · ,M/Ms are coprime, integers r0, r1, · · · , rs
can be chosen so that r0M/M0 + r1M/M1 + · · ·+ rsM/Ms = 1. In other words,
xr00 x

r1
1 · · ·xrss goes to x. Thus the map, or the restricted one on R, is surjective.
Since both sides have same dimension, here we complete the proof. ut

Proof of Lemma 1

Proof. From the isomorphisms above, we can consider a variant of canonical
embedding map to a complex tensors:

τ ′Nh
(a) = (a(ξg0

j0

M0
, . . . ξgs

js

Ms
)) ∈ CNh

where a ∈ S ′, ξMi is Mi-th root of unity, g0 = 5, 0 ≤ j0 < N0/2, gi are primitive
elements in Z∗Mi

, 0 ≤ ji < Ni for i = 1, . . . , s. The map τ ′Nh
can be written as

a composition of maps

τ ′Nh
= τ ′

(0)
N0/2

◦ τ ′(1)
N1
◦ · · · ◦ τ ′(s)Ns

(2)

where τ ′(i) is given by a tensor of following linear transforms

Σ′i =


ξ0
Mi,0

ξ1
Mi,0

· · · ξNi−1
Mi,0

ξ0
Mi,1

ξ1
Mi,1

· · · ξNi−1
Mi,1

...
...

. . .
...

ξ0
Mi,Ni−1 ξ

1
Mi,Ni−1 · · · ξ

Ni−1
Mi,Ni−1

 (3)
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and Ij the identity matrix of size Nj , where ξMi,j = exp( 2πi·gij
Mi

).
By using the formula of the linear transforms, we can compare norms;
‖a‖can2 ≤ (

∏
i ‖Σ′i‖) ‖a‖2, ‖a‖2 ≤

(∏
i ‖Σ′i‖−1

)
‖a‖can2

where ‖L‖ for a linear operator L on a complex-valued space is given by the
supremum of ‖Lx‖/‖x‖ along all x. In above, it’s square is the sum of maginitude
squares of all components in the matrix, or just Tr(L∗L).

Σ′i
−1 has components

lab = (−1)Ni−a eNi−a(ξMi,b)∏
c 6=b(ξMi,b − ξMi,c)

(4)

For the pk-th cyclotomic polynomial

Φpk(x) = Φp(x
pk−1

) = xp
k−1(p−1) + xp

k−1(p−2) + · · ·+ xp
k−1

+ 1

, the roots ξ1, · · · , ξpk−1(p−1), and an index b = 1, 2, · · · , pk−1(p− 1), we have

d

dx

(
(xp

k−1

− 1)Φpk−1(x)
)

= pk−1xp
k−1−1Φpk−1(x) + (xp

k−1

− 1)
d

dx
Φpk−1(x)

Φ′pk−1(ξb) =
pkξp

k−1
b

ξp
k−1

b − 1

where ξb is a vector consisting of all roots but ξb of Φp and ej(x) is an
elementary symmetric polynomial of degree j in p − 2 variables. Note that the
denominator is of form ‘p-th root of unity −1’, not depending on k.

For N = φ(pk) = pk − pk−1, (−1)N−aeN−a(ξb) is the degree a coefficient of∏
c6=b

(x− ξc) =
Φpk(x)

x− ξb

, which is in fact ξN−a−[N−a]
b (1 + ξp

k−1

b + · · ·+ ξ
[N−a]
b ) with [N −a] is the largest

multiple of pk−1 less or eqaul to N − a.
In other hands,

Φ′pk−1(ξk) =
∏
l 6=k

(ξk − ξl)

which is the denominator of the formula 4.
Therefore we have

‖Σ′i−1‖ =
∑
a,b

|lab|2 =
∑
a,b

∣∣∣∣∣∣1− ξ
Ni−a
Mi,b

pki ξ
pk−1
i

Mi,b

∣∣∣∣∣∣
2

=
Ni
p2k
i

∑
a mod Ni

|1− ζNi−a|2

where ζ is any primitive pi-th (NOT pki -th) root of unity . The right-hand side
is in fact

(if ki > 1)
N2
i

p2k+1
i

pi−1∑
i=1

(2− 2 cos 2πi/pi)
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(if ki = 1)
Ni
p2
i

pi−1∑
i=1

(2− 2 cos 2πi/pi)

and since

1

p

p−1∑
i=1

cos(2πi/p) =
1

p

(p−1)/2∑
i=1

cos(2πi/p) +

p−1∑
i=(p+1)/2

cos(2πi/p)


≥
∫ 2π(p+1)/2p

2π/p

cos(x) dx+

∫ 2π(p−1)/p

2π(p−1)/2p

cos(x) dx

=

∫ 2π

0

cos(x) dx− 2

∫ 2π/p

0

cos(x) dx+

∫ 2π(p+1)/2p

2π(p−1)/2p

cos(x) dx

≥ −2× 2π/p− 2π/p = −6π/p

for any integer p, we conclude that

‖Σ′i−1‖2 ≤ pi − 1

pi
× (2 + 12π/pi).

‖a(x)‖2 is the `2-norm of a vector whose components consist of the coefficients
of a(x). By applying canonical embedding only on xs, we get a new vector whose
components consist of the coefficients of a polynomial a(x0, · · · , xs−1, ξs) in s
variables x0, · · · , xs−1 and their conjugations. The `2 norm of the new vector is
given by Σ−1

s · (coefficient vector of a(x)), thus is bounded by ‖Σ−1
s ‖‖a‖2. By

induction on s, we have the total bound of ‖a‖can∞ 2 as
∏s
i=0 ‖Σ′i−1‖. p0 = 2 in

our case and it has a special bound ‖Σ′0−1‖ = 1 so that our bound is in fact∏s
i=1 ‖Σ′i−1‖ as desired. ut

Proof of Lemma 2.

Proof. We choose v ← ZO(ρ), e0, e1 ← DG(σ), then set ct← v ·pk+(e0, e1 +m).
The bound δclean of encryption noise is computed by the following inequality:

‖〈ct, sk〉 −m (mod 2L)‖can∞ = ‖v · e+ e1 + e0 · s‖can∞
≤ ‖v · e‖can∞ + ‖e1‖can∞ + ‖e0 · s‖can∞
≤ 8
√

2 · σN + 6σ
√
N + 16σ

√
hN.

ut

Proof of Lemma 3.

Proof. It is satisfied that 〈ct, sk〉 = m + e (mod 2`) for some polynomial e ∈ S
such that ‖e‖can∞ < δ. The output ciphertext ct′ ← b2−p · cte satisfies 〈ct′, sk〉 =
2−p · (m + e) + escale (mod 2`−p) for the rounding error vector τ = (τ0, τ1) =
ct′ − 2−p · ct and the error polynomial escale = 〈τ, sk〉 = τ0 · s+ τ1.

We may assume that each coefficient of τ0 and τ1 in the rounding error vector
is computationally indistinguishable from the random variable in the interval
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2−p · Z2p with variance ≈ 1/12. Hence, the magnitude of scale error polynomial
is bounded by

‖escale‖can∞ ≤ ‖τ0 · s‖can∞ + ‖τ1‖can∞ ≤ 6
√
N/12 + 16

√
hN/12

as desired. ut

Proof of Lemma 4.

Proof. Let cti = (ai, bi) for i = 1, 2. Then 〈cti, sk〉 = mi + ei (mod 2`) for
some polynomials ei ∈ S such that ‖ei‖can∞ ≤ δi. Let (d0, d1, d2) = (a1a2, a1b2 +
a2b1, b1b2). This vector can be viewed as an encryption of m1 ·m2 with an error
m1 ·e2 +m2 ·e1 +e1 ·e2 with respect to the secret vector (s2, s, 1). It follows from
Lemma 3 that the ciphertext ctmult ← (d1, d2) + b2−L · (d0 · evk (mod 2`+L))e
contains an additional error e′′ = 2−L · d0e

′ and a rounding error bounded by
δscale. We may assume that d0 behaves as a uniform random variable on R`, so
2L‖e′′‖can∞ is bounded by 16

√
Nq2

`/12
√
Nσ2 = 8Nσq`/

√
3 = δks · 2`. Therefore,

ctmult is an encryption of m1 ·m2 with an error and the error is bounded by

‖m1e2 +m2e1 + e1e2 + e′′‖can∞ + δscale ≤
µ1δ2 + µ2δ1 + δ1δ2+2−L · 2` · δks + δscale

as desired. ut

Proof of Lemma 5.

Proof. Let prove the lemma for conjugation, proofs of others are the same. The
vector (a′, b′) = (κ−1(a), κ−1(b)) (mod 2`) can be viewed as an encryption of Z̄
with and error κ−1(e) with respect to the secret vector (κ−1(s), 1). Using proof
of Lemma 4 we can get that ctcj is an encryption of Z̄ with an error bounded by

‖κ−1,1(e) + e′′‖can∞ + δscale ≤ δ + 2−L · 2` · δks + δscale

as desired. ut

Proof of Lemma 6.

Proof. From Lemma 5 and the following remark about the relative error we
can see that bound of message increase only after summations in line 10 of
Algorithm 5, so the boundM of the output is equal to n ·2p. Note also that these
summations do not increase the bound of the relative error. The relative error
increases by β∗ after rotation and increases by β∗ after multiplication. So the
relative error of each summand in line 10 is bounded by βA +βB +(1+log n)β∗.

ut

Proof of Lemma 7.

28



Proof. The relative error increases by β∗ after rotation. So the relative error
of each summand ctAk

is bounded by βA + β∗. The relative error we can see
that bound of message and bound of relative error does not increase during
summations of ctAk

. ut

Proof of Lemma 8.

Proof. From Lemma 6 the message of ctAj
is bounded by ε2

j

2p/n which implies
that the message of ctVr is bounded by

2p−t
r−1∏
j=0

(1 + ε2
j

/n) <
2p−t

(1− ε)1/n
< n1/n2p−t

The relative error βj of ctAj is bounded by βj ≤ 2j(β + (1 + log n)β∗), which
implies that the relative error β′j of ctAj

+ i is bounded by

β′j ≤ βj/
(

1 +
n

ε2j

)
Using induction on j, we can show that a relative error β′′j of ctVj

is bounded
by

β′′j ≤
( j−1∑
k=0

2kε2
k

n+ ε2k

)
· (β + (1 + log n) · β∗) + (j − 1) · (1 + log n) · (β∗) ≤

1

n

j−1∑
k=0

(2kε2
k

) · (β + (1 + log n) · β∗) + (j − 1) · (1 + log n) · β∗ ≤

2

n(1− ε)
· (β + (1 + log n) · β∗) + (j − 1) · (1 + log n) · β∗ ≤

2β + (j + 1) · (1 + log n) · β∗

ut
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