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Abstract

One of the greatest challenges on exchanging seemingly random nonces
or data either on a trusted or untrusted channel is the hardness of verify-
ing the correctness of such output. If one of the parties or an eavesdropper
can gain game-theoretic advantage of manipulating this seed, others can-
not efficiently notice modifications nor accuse the oracle in some way.
Decentralized applications where an oracle can go unnoticed with biased
outputs are highly vulnerable to attacks of this kind, limiting applicability
of these parties even though they can introduce great scalability to such
systems. Verifiable random functions[1] presented by Micali can be viewed
as keyed hash funcions where the key(s) used are asymmetric. They al-
low the oracle to prove correctness of a defined pseudorandom function
on seed s without actually making it public, thus not compromising the
unpredictability of the function. Our contribution here is to provide a
variant of this scheme and proving it’s security against known quantum
attacks and quantum oracles.

1 Introduction

1.1 VRFs

Verifiable random functions are a collection of polynomial-time algorithmsG,E, P, V
where:

• G(λ) := (sk, pk) a key generator

• E(sk,m) an evaluator of the pseudorandom function at subject

• P (sk,m) := α a proof generator

• V (pk,m, α) a verifier

This protocol ensures that everyone can verify the output of the pseudoran-
dom function on a given input but only the holder of the secret key can generate
the same output.
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1.2 Primer to quantumcomputing

A quantum system A is associated to a (finite-dimensional) complex Hilbert
space Ha with an inner product 〈·|·〉. The state of the system is described by
a vector |ϕ〉 ∈ Ha such that the Euclidean norm ‖|ϕ〉‖ =

√
〈ϕ|ϕ〉 is 1. Given

quantum systems A and B over spaces Ha and HB , respectively, we define
the joint or composite quantum system through the tensor product HA ⊗HB .
The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is denoted by |ϕA〉 ⊗ |ϕB〉
or simply |ϕA〉|ϕB〉. An n-qubit system lives in the joint quantum system of n
two-dimensional Hilbert spaces. The standard orthonormal computational basis
|x〉 for such system is given by |x1〉⊗ · · ·⊗ |xn〉 for x = x1 . . . xn. Any (classical)
bit string x is encoded into a quantum state as |x〉 An arbitrary pure n-qubit
state |ϕ〉 can be expressed in the computational basis as |ϕ〉 = Σx∈{0,1}αx|x〉
where αx are complex amplitudes obeying Σx∈{0,1}n |αx|2 = 1.

2 Notation

In this paper we denote the finite field of integers modulo p with Zp where p is
a prime. We use Zp[x] to denote polynomials with coefficients from this field.
Let Φ(x) be an irreducible polynomial and Zp[x]/Φ(x) be a quotient ring with
n nonzero coefficients. From now on, we assume n to be a power of 2 thus

Φ(x) = xn + 1. We indicate uniform random sampling from a ring with
$←− and

discrete gaussian sampling with
X←−.

2.1 RLWE and connection with SVP

RLWE[3] is an algebraic variant of the LWE[4] problem, both known to be
reducible to the worst-case shortest vector lattice problem (thus implying re-
sistance to polynomial-time quantum algorithms), with RLWE allowing much
more efficient operations. The RLWE problems consist of public polynomials
ai(x) with uniform distribution, private bi(x) and s(x) where the coefficients
of all bi and s are relative to a public agreed bound either using uniform or
discrete gaussian distribution such that ||bi(x)||∞ < b. We advise using the
later, for it’s easier to prove correctness of parameter selection with gaussian
distributions. We see that if the bound is selected correctly, ci(x) ≈ ai(x) · s(x).
Using the above polynomials we construct ci(x) = ai(x) · s(x) + bi(x). We call
the pair ai(x), ci(x) a sample. The Decisional RLWE problem states that with
access to many RLWE samples, it’s impossible to differentiate whether a ci(x)
was constructed as above, or randomly selected from Zp[x]/Φ(x), except with
negligible probability.

Formally, Pr[ c(x) | q(x)
$←− Zp[x]/Φ(x) ] < 1

2λ

The Computational RLWE problem states that given many RLWE samples,
it’s impossible to find the single s(x) used in all samples, except with negligible
probability.
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Peikert showed[3] that the search version is reducible to the problem of
finding the approximate shortest vectors of ideal lattices in Zp[x]/Φ(x). We also
know that at the time of writing there is no algorithm that uses the structural
difference between ideal and regular lattices so for now it’s safe to assume that
no efficient algorithm can solve it for regular lattices either.

3 The Franklin-Zhang signature scheme

The starting VRF is a generalization of a ring signature scheme based on the
Chaum-Pedersen proof of logarithm equalty[5]:
s = logg(h) ∈ Zp is known to the prover and g, h 6= 1, y = gs, y = hs are public
inputs. Prover wants to prove that logg(h) = logm(z) where m is the message
mapped into Zp and z = ms.

1. Prover sets a nonce r
$←−∈ Zp and sends a = gr, b = gr

2. Verifier sends back a challenge c
$←−∈ Zp

3. Prover responds with p = r − cx mod p

4. Verifier accepts the proof if a = gtyc1 and b = htyc2

We see that this (naive) Chaum Pedersen HVZK can be transformed to a
NIZK with the Fiat-Shamir heuristic[6] using a pseudorandom hash of the state
after step 1. Let H1 be our random oracle, a function from {0, 1}∗ → Zp, H2 a
lenght-regular function of λ

2 bit output where λ is the security parameter, and
H3 a general purpose cryptographic hash, for eg SHA256. Let x be the input
to H1, and y be it’s output. For now the only way to provide a witness for the
PRF and proving it’s correctness is to send x what we want to avoid. Instead
we raise set h in the Chaum-Pedersen scheme to ys where s is our private key,
and apply the Fiat-Shamir transform to c with H3. The actual output of this
VRF function is the proof (ys, c, p) and the output of H2(ys). Now everyone
can compute the VRF hash based on the proof only.

4 RLWE masking and reconcilliation

Starting with the scheme in the previous section we need to grasp the DDH
assumption with RLWE as shown in [7]:
Let dbl(x) : Zp → Z2p;x 7→ dbl(x) = 2x− e where e is sampled from {−1, 0, 1}
with distribution: p−1 = p1 = 1

4 , p0 = 1
2 . We will use the rounding and cross-

rounding functions from [8]:

1. modular rounding: bxep,2 : Zp → Z2, x 7→ bxep,2 = bp2xe mod 2

2. cross rounding: 〈x〉p,2 : Zp → Z2, x 7→ 〈x〉p,2 = b 4pxc mod 2
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It is proven that if x is uniformly random then the double rounding of dbl(x) is
also uniform random[8].

We also need a reconciliation function to get back bxep,2 from a ring ele-
ment.
Let I0 = {0, 1, . . . , bp2e − 1}, I1 = {−bp2c, . . . ,−1} and E = [−p4 ,

p
4 ). Then

rec : Z2p × Z2 is:

rec(w, b) =

{
0 if w ∈ Ib + E mod 2p

1 otherwise

Given a
$←− Zp[x]/Φ(x), s1, s2, e1, e2, e3

X←− Zp[x]/Φ(x), b1 = as1 + e1,

b2 = as2 + e2, v = dbl(b1s2 + e3), c = 〈v〉2p,2, k1 = bve2p,2 and k2
$←− {0, 1}n,

a probabilistic polynomial adversary A has negligible advantage differentiating
k1 from k2 with access to RLWE samples:
Adv(A) = |Pr(A(a, b1, b2, c, k1) = 1)− Pr(A(a, b1, b2, c, k2) = 1| < 1

2 + 1
λ

We see that if v = w + e ∈ Zp|2e ± 1 ∈ E then rec(2w, 〈v〉2p,2) = bve2p,2 Can-
celling out error coefficients in a polynomial is done with repeated reconcillation
on all coefficients.

5 Quantum random oracles

Proving correctness of a traditional random oracle against quantum adversaries
is much harder then replacing our trapdoors with a quantum-resistant variant.
For example traditional RO security is relying on the fact that the adversary
gets the same output for a query with the exact same input, thus with forcing
polynomially many k random queries in our protocol our adversary have 1

k
chance of forging. This is however not the case with quantum oracles where the
adversary can input polynomially many (quantum)states into our oracle with
one query.
One way of proving security in the quantum oracle model happens with reducing
a classical RO scheme to a so-called history-free version[9].
A signature scheme with access to a classical oracle Qc is history free if one can
prove it’s classical RO security with the following 5 algorithms:

1. GEN(x)→ (pk, z): on a problem instance x returns a public key pk and
a private state z

2. INST (pk) outputs an instance x such that GEN(x) = (pk, z)

3. RAND(r, z) used every time when the adversary queries Qc(r)

4. SIGN(m, z) used when the adversary ask for signature on pk,m

5. FINISH(m,σ, z) used on forgery candidate input (m,σ)
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We see that shortly a history-free design ”forgets” our previous queries to the
oracle by using an instance-specific private quantum state z and appends it
everywhere we need to model security with a classical oracle.

6 Our scheme

6.1 Prover side

With all the tools ready, we now present our post-quantum VRF.
Prover has access to H1, H2, H3, s, a(x), bi(x) as defined above and wants to
prove that y = H1(α) is correct without distributing α. First it obtains h =
H1(α). Then it maps h into h(x) ∈ Zp[x]/Φ(x) and masks it with γ = h(x) ·
s(x) + b(x). It’s trivial that H1 should be pseudorandom for here we differ from

the initial sampling requirement of RLWE. Next it selects k
$←− Zp[x]/Φ(x) and

compute c = H3(a(x), h, a(x)·s(x)+b1(x), γ, a(x)·k(x)+b2(x), h(x)·k(x)+b3(x)).
To let the verifiers recover a(x) · k(x) and h(x) · k(x) we provide the rounding
informations needed for the reconcilliation:

1. r1(x) = k(x)− (a(x) · s(x) · c(x) + b1(x))

2. r2(x) = 〈dbl(a(x) · k(x) + b2(x))〉2p,2

3. r3(x) = 〈dbl(h(x) · k(x) + b3(x))〉2p,2

Finally, it sends π = (γ, c, r1, r2, r3, H2(γ)) to the verifier

6.2 Verifier side

On the verifier end we have the prover’s public key pk = (a(x) · s(x) + b(x)),
α and π from above. First we compute the output of H1 same as the prover:
h = H1(α) and maps it into our ring.
Then we recover informations masked by the k nonce polynomial as:
u = r1 ·

∑n
i=1 rec(2pk · c(x), r2)xi.

v = r1 ·
∑n
i=1 rec(2h(x) · c(x), r3)xi

We see that if everything went correctly the verifiers u and v should equal to
the prover’s a(x) · k(x) + b2(x) and h(x) · k(x) + b3(x) respectively since the
coefficient-wise reconcilliation should cancel out the errors.
Then the verifier accepts the proof if c = H3(a(x), h, pk, γ, u, v) and H2(γ) is
the same provided in π.

6.3 History-free reduction

In the reduction we use two definitions, Full Domain Hashes and Preimage
Sampleable Functions. More precisely we instantiate a FDH using a PSF as
seen in [10].
PSFs are efficiently computable functions f : X → Y where the pair x, y = f(x)
has the same joint distribution regarding a negligible error e, and given y one can

5



sample x using f−1. Note that this is contradictory one-wayness and collision
resistance!

Full domain hashes: Let G, f, f−1 be a trapdoor permutation and O a sur-
jective hash into f . An FDH is a scheme where signature of m using secret key
sk and O is defined as f−1(sk,O(m)) and verification of pk,m, r (where r is a
public coin) is true if and only if O(m) = f(pk, r).

To achieve a history-free reduction we instantiate a FDH-PSF using the
strategy seen in section 5.

1. pk := a(x) · s(x) + b(x)

2. r
X←− Zp[x]/Φ(x)

3. GEN(pk) := (pk, pk)

4. INSTANCE(pk) := pk

5. On an adversarial query forO(r), RAND(r, pk) := f(pk, Sample(1n;O(r)))

6. SIGN(sk,m) := Sample(1n;O(m))

7. FINISHO ∗ (m, pk, r) := (Sample(1n;O(m)), r)

Proof of history-free security of this scheme is in [10]

7 Conclusion

We showed how to transform a linkable ring signature scheme into a verifiable
random function using RLWE and proved it’s security against quantum ora-
cles with the assumptions that history-free reductions are generally safe. Our
scheme can be used to detect adversarial behaviour of trusted parties, what can
be useful in mixnets and distributed networks. It’s trivial to see how this scheme
can be transformed to a designated verifier setup since the reconcilliation func-
tions is originally used in key-exchange protocols. An open question about this
construction is whether it’s possible to make a history-free reduction on top of
other existing error-cancellations methods of RLWE polynomials, and whether
it undermines current usecases (for e.g. designated verifiers) or scalability.
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