Efficient Information Theoretic Multi-Party
Computation from Oblivious Linear Evaluation

Louis Cianciullo* ® and Hossein Ghodosi

James Cook University, Townsville 4811, Australia
louis.cianciullo@jcu.edu.au, hossein.ghodosi@jcu.edu.au

Abstract. Oblivious linear evaluation (OLE) is a two party protocol
that allows a receiver to compute an evaluation of a sender’s private, de-
gree 1 polynomial, without letting the sender learn the evaluation point.
OLE is a special case of oblivious polynomial evaluation (OPE) which
was first introduced by Naor and Pinkas in 1999. In this article we utilise
OLE for the purpose of computing multiplication in multi-party compu-
tation (MPC).

MPC allows a set of n mutually distrustful parties to privately com-
pute any given function across their private inputs, even if up to ¢t < n of
these participants are corrupted and controlled by an external adversary.
In terms of efficiency and communication complexity, multiplication in
MPC has always been a large bottleneck. The typical method employed
by most current protocols has been to utilise Beaver’s method, which
relies on some precomputed information. In this paper we introduce an
OLE-based MPC protocol which also relies on some precomputed infor-
mation.

Our proposed protocol has a more efficient communication complexity
than Beaver’s protocol by a multiplicative factor of ¢. Furthermore, to
compute a share to a multiplication, a participant in our protocol need
only communicate with one other participant; unlike Beaver’s protocol
which requires a participant to contact at least ¢t other participants.

1 Introduction

Oblivious polynomial evaluation (OPE) was first introduced by Naor and Pinkas
[10] in 1999. An OPE protocol consists of two participants, a sender, S who holds
a polynomial f(z) and a receiver, R who has a value a. OPE allows R to learn
f(a) without having S learn « and also keeping f(z) private. A more formal
definition, originally given in [5] is presented below:

Definition 1. [5/ An OPE protocol is composed of two parties, S who has a
polynomial f(xz) over a finite field F and R who has an input value a € T.
Correctness is achieved if, at the end of the protocol, R learns f(a). Security
1s guaranteed if the following two conditions are met after the protocol has been
executed:

* This research is supported by an Australian Government Research Training Program
(RTP) Scholarship.

2 Louis Cianciullo and Hossein Ghodosi

1. S cannot reduce his uncertainty of c.
2. R does not learn any information relating to f(x), other than f(«).

In this article we focus on a special case of OPE, wherein f(z) is of degree at
most one, known as oblivious linear evaluation (OLE). Specifically, we utilise
OLE for the purpose of performing multiplication in multi-party computation
(MPC).

MPC allows a set of n mutually distrustful participants to compute any given
function across their private inputs, without revealing any information relating to
their private inputs. We focus on the threshold setting, where an MPC protocol
is considered secure if a set of t or less participants, where ¢ < n, cannot gain
any information relating to another participant’s private input, other than what
the output of the protocol gives them. More formally:

Definition 2. A (¢,n) threshold MPC protocol allows a set of n participants,
Py, -, P, with respective private inputs, x1,--- ,T, to compute a given func-
tiO'ﬂ, f(xlv e ,Z'n)-

Privacy is maintained if, after completion of the protocol, an adversary con-
trolling any subset of up to t participants (t < n), cannot learn more information
(about other participant’s private inputs) than what could be derived from each
participant’s individual, private input and the output of the protocol.

Traditionally, the adversary is classified as either passive or malicious. Par-
ticipants under control of a passive adversary may share information with one
another but do not deviate from the MPC protocol. Participants under control
of a malicious adversary also share information but may act arbitrarily, i.e. they
do not necessarily follow the protocol. Another aspect of the adversary consid-
ered in an MPC protocol is the resources it has at its command. Specifically, an
unconditionally (information theoretic) secure MPC protocol is secure against a
computationally unbounded adversary. Whilst a conditionally (computationally)
secure MPC protocol is secure against a computationally bounded adversary.

In this article we focus on information theoretic (¢,n) threshold MPC secure
against a passive adversary. We show the construction of an efficient MPC scheme
based on OLE. In the next section we give some background and motivation on
this topic, following this we then discuss our contribution in depth.

1.1 Background

MPC is an extremely powerful tool that can be used to solve practically any
given problem involving a set of distrustful parties. In classical, unconditionally
secure protocols [2,6,11] each participant, P; (i = 1,---n) shares their private
input, z; by utilising Shamir’s secret sharing scheme [12] to distribute shares
to all participants. To compute a given function, f(x1,---xz,), participants need
simply perform all computations on the shares of each input value. For instance,
if a participant wants to compute a share relating to the sum of two distributed
input values he simply adds his two corresponding shares together. At the end

Efficient Information Theoretic MPC from OLE 3

of the protocol, a set of £ + 1 or more participants then pool their information
to reconstruct the output.

Due to the homomorphic nature of Shamir’s scheme [3] participants can
easily compute any linear operation by privately computing on their shares.
However, since the inception of MPC [8] the largest limiting factor has been
the high amount of resources required to compute a multiplication. Perhaps the
most widely known and efficient method of computing a multiplication in an
MPC protocol is known as Beaver’s method (A.K.A Beaver’s triples) [1]. For
completeness we review this protocol below.

Beaver’s Method Beaver’s method [1] for computing a multiplication in MPC
relies on some pre-shared information known as a triple. Specifically, a triple is
composed of three values, a, b and ¢ where a -b = ¢ and a,b,c € F; such that
q > n and ¢ is a prime number. Each participant has a share of these triples,
such that participant Py, (k = 1,--- ,n) receives the shares ay, by, and ¢, relating
to (respectively) a, b and c.

Suppose we have participants P; with input z; and P; with input z; for
i,5 =1,---,n and 7 # j. To compute shares of the multiplication v = z; - x;
we first have both P; and P; distribute shares of their private values among the
other participants, where Py gets x;, relating to x; and z;, relating to x;. To
compute a share, v relating to the product ~, a set of at least ¢t + 1 participants
execute the following steps:

1. BEach participant, P, computes 2z, = x;, — a; and vy = x;, — by, where z;
is a share of the value z = x; — a and vy, is a share of v = x; — b.

2. A set of at least t + 1 participants broadcast their shares, z; and v, amongst
themselves.

3. Participants publicly reconstruct the values of z and v using the shares z
and vy, respectively.

4. P, computes his share of v as vy = zv + 2bg + vag + ck.

5. t+1 or more participants can reconstruct v = x; - x; by pooling their shares.

In order to construct z and v a set of t+1 participants is required to cooperate.
If all participants in this set wish to compute these values (and consequently,
the multiplication) then each participant must both receive and send ¢ messages.
Since each message would consist of 2 elements from the field F, (i.e. z; and vy)
the communication complexity of this protocol can be given as O(qt?).

Many recent MPC protocols utilise a resource intensive computationally se-
cure offline phase to compute these multiplication triples. The actual MPC is
then carried out in a faster information theoretic online phase. For our purposes,
we focus solely on the information theoretic online phase. It suffices to assume
that participants gain the shares of the triples via an external party known as
an initialiser, who (after computing and distributing the shares of the triples)
does not take part in the actual MPC protocol. In the next section we review
the OLE based two-party protocol given by Déttling et al. [7].

4 Louis Cianciullo and Hossein Ghodosi

TinyOLE Recently Doéttling et al. [7] proposed a two-party protocol (n = 2)
in which the two participants, P; and P, use OLE to compute shares to a
multiplication. Specifically, they use OLE to compute multiplication triples in
an offline phase. Their scheme utilises a simple additive secret sharing scheme
wherein a given value, a (for example), is represented as a = a; + ag, across a
finite field F; where P, has the share as and P; gets a;. Addition in their scheme
consists of simply adding shares together. Multiplication is achieved by utilising
OLE in a black-box fashion.

To compute a multiplication of two distributed (and not necessarily known)
values, a and b, they rely on the fact that: ab = a1by + a1bs + asb; + azbs. To
compute the “troublesome” terms of the form ¢ = a1bs they utilise a black-box
OLE. Essentially, P; acts as a sender and submits the polynomial f(x) = ajz—c;
where ¢y is a randomly chosen value. The second participant, P> acts as receiver
and submits a = by. Both participants send their values to a black-box OLE, with
P, receiving back f(«) = a1ba—cy. If we set ¢ = f(«) then each participant now
holds a share of ¢ as ¢ = ¢; + ¢o. To compute shares to the entire multiplication
it is easy to see that at least 2 OLEs are needed.

Dottling et al. specifically use this method in a computationally secure offline
phase to compute random multiplication triples, where the values of a and b are
not actually known to either participant. Our proposed scheme differs to theirs in
that we wish to utilise OLE in an information theoretic, online phase to compute
the multiplication of known input values for a given MPC function.

1.2 Owur Contribution

In this section we summarise our proposed MPC scheme which utilises OLE to
compute shares to a given multiplication. In contrast to the methods discussed
above our protocol obtains the following desirable properties:

1. Unlike Beaver’s scheme [1] our proposed protocol only requires communica~
tion between two participants to compute a given share to a multiplication
i.e. a participant may compute his share without the assistance of ¢ other
participants. We achieve this result by having one designated participant
who acts as a sender in an OLE. The other participants need simply pri-
vately compute an OLE with this sender participant to compute a share to
a multiplication. As a result of this, the communication complexity of our
protocol is O(qt), which is more efficient than Beaver’s (at O(gt?)) by a
multiplicative factor of t.

2. We do not rely on a black-box method of OLE and instead provide a specific
construction. Our OLE multiplication scheme is based on the information
theoretic protocol given in [9,13]. This scheme, like Beaver’s scheme, relies on
some precomputed information which can be produced via an offline phase or
an initialiser. Since we wish to focus solely on the information theoretic OLE-
based MPC scheme itself we will assume that the information is provided
via an initialiser.

Efficient Information Theoretic MPC from OLE 5

3. Our scheme only utilises one OLE per participant to compute a multipli-
cation. In a two party protocol we would only need one OLE. So, for an
individual participant to compute his share (in either a multi-party or two-
party protocol) the complexity cost is just O(q). Using Beaver’s scheme, this
would be O(qt).

4. Lastly, unlike the TinyOLE scheme [7], our scheme is scalable, in that it
extends to the multi-party case with n participants. In fact, computing n
shares (one for each participant) to a single multiplication requires only
n — 1 OLEs, one for each individual participant to compute his share. We
note that utilising all n participants is not actually necessary. We only really
require a set of ¢ + 1 participants, enough to compute the output of a given
multiplication at the end of the protocol.

1.3 Outline

The rest of the paper is organised as follows. In section 2 we go over some of the
sub protocols and tools used in our proposed MPC protocol. Section 3 gives a
high level overview of our protocol as well as a model for security. The actual
construction for our protocol is given in section 4, along with an evaluation and
proof of correctness and security.

2 Preliminaries

In this section we review Shamir’s secret sharing scheme [12] and the the infor-
mation theoretic OPE originally given by Hanaoka et al. in [9]. Both of these
protocols are fundamental building blocks of our proposed MPC protocol.

2.1 Shamir’s Secret Sharing Scheme

Like all MPC schemes our proposed protocol utilises secret sharing to ensure
privacy. In a secret sharing scheme a set of n participants are each privately
sent a share of a given secret. An authorised subset of these participants can
pool their shares to recover the secret, whilst an unauthorised subset should
get no information. We note that our proposed OLE-based MPC scheme can
potentially work with any linear secret sharing scheme. However, in order to
show a specific implementation we will demonstrate our proposed protocol using
Shamir’s secret sharing scheme [12].

Shamir’s scheme is a (¢,n) threshold scheme, meaning that an authorised
subset is any set of t+1 or more participants where ¢ < n. This scheme operates
over a finite field F, where ¢ > n and ¢ is a prime number. To demonstrate,
suppose we have participant P; (i = 1,---,n) who wishes to distribute his
input value, z; among the other participants. P; computes a random polynomial,
g(z) of degree at most ¢ and sets g(0) = x;. He then privately sends to each
participant, P, (k = 1,---n) the share x;, = g(k). A set of ¢t + 1 or more
participants can reconstruct x; by performing Lagrange interpolation across their
shares to compute g(z).

6 Louis Cianciullo and Hossein Ghodosi

2.2 Information Theoretic OPE

Hanoka et al. [9] introduced an unconditionally secure OPE protocol that utilises
some pre-distributed information to achieve information theoretic security. Our
proposed OLE-based MPC protocol utilises a modified variant of their OPE
protocol to compute a multiplication. Therefore, for completeness, we display
their full protocol in figure 1.

In the initial, setup phase of their protocol a third party, known as an ini-
tialiser assigns some random information to both R and S. Following this the
initialiser takes no further part in the protocol and R and S utilise the assigned
information to compute an OPE in the computation phase of the protocol.

Input: R has a value a and S the polynomial f(z) of degree at most ¢.
Output: R obtains f(«) and S gets nothing.

Setup The initialiser privately sends:

1. A random polynomial, S(x), of degree at most ¢ to S.
2. A random value, d and the value g = S(d) to R.

Computation

1. R sends the valuel =a —d to S.
2. S then computes and sends to R the polynomial V(z) = f(I 4+ z) + S(z).
3. R computes f(a) =V (d) —g.

Fig. 1. Information Theoretic OPE [9,13]

3 Model

This section presents a high level overview of our protocol and a set of crite-
ria for evaluating the security of our scheme. We use the traditional setting of
MPC protocols. That is, each party P; (1 < j < n) distributes its private in-
put, z; amongst all participants, using a Shamir (¢,n) threshold scheme. Linear
functions can be computed by each participant privately. In order to perform
multiplication, however, we must utilise OLE.

3.1 Overview

Suppose we have a set of n participants who wish to compute shares to the
value 7 = z; - x;, where x; and x; are the respective private input values of

Efficient Information Theoretic MPC from OLE 7

participants P; and Pj, for 1 < 4,5 < n and 7 # j. Further suppose, that P;
utilises the polynomial f;(z) to share xz; among all participants (via Shamir’s
secret sharing scheme), such that a given participant Py (k =1,--- ,n) receives
the share xz;, = f;(k) of z;.

A simple method for computing shares of v is to have each participant, Py,
simply send his share, z;, , to P; who can then send back the value v, = x;x;, .
Due to the homomorphic nature of Shamir’s secret sharing scheme the value
vk is a share corresponding to the polynomial I'(z) = z;f;(x) with free term
x; - ;. The obvious problem with this simple protocol is that neither F;’s nor
Pj’s privacy is maintained.

To keep P;’s input, x;, private we can have P; introduce a random, private
masking polynomial, h;(z), of degree at most ¢, with free term h;(0) = 0. Now,
when he receives a given share, z;, , we require P; to send back v, = x;xj, +h; (k).
Each P, now holds shares to the polynomial I'(z) = x; f;(z)+h;(z). Intrinsically
we can see that, due to Shamir’s secret sharing scheme, the protocol is now ¢-
private with respect to P;, as a set of ¢ participants with ¢ shares cannot compute
any information relating to the effectively random polynomial I'(x). It remains
to ensure the privacy of P;.

Surprisingly, ensuring that P;’s privacy is maintained is actually quite simple.
Rather than having each Py simply hand his share to P; we instead have Py
and P; utilise an OLE protocol, where P, acts as the receiver and P; as the
sender. First P; computes two polynomials, f;(z) = x; -« and h;(x) (the masking
polynomial, as before). Each P, (1 < k < n) then acts as the receiver and
executes an OPE protocol with P; (who acts as the sender) to privately evaluate
P;’s polynomial, f;(x) at the point x;,, as before P; adds the masking polynomial
to his computation.

Ly,
A
T, hi (1) Pk’s 1nput
- OLE-Based Protocol
P;’s input

Ve = @i - x5, + hi(k)
Pi’s Output

Fig. 2. Overview of the protocol

Since the OLE protocol does not allow P; to learn the evaluation point then
the protocol can now be considered ¢-private for both P; and P;. Specifically, P;’s
privacy is maintained via the masking polynomial and P;’s privacy is maintained
via Shamir’s secret sharing scheme and the OLE protocol. An overview of this
is given in figure 2. Note that FP; will also use his share from x; and compute

8 Louis Cianciullo and Hossein Ghodosi

his own share of v = z; - ; (of course, there is no need to perform OLE, as he
plays the role of the sender and receiver at the same time).

3.2 Security and Correctness

In order to prove the security and correctness of our proposed scheme we will
evaluate it against the following criteria specified below:

1. Correctness — Upon completion of the protocol each participant, P holds
a share, v, of the polynomial I'(z), of degree at most ¢ with free term

2. Privacy — A set of ¢t or less participants, not including either P; or P,
cannot reduce their uncertainty of x; or x;.

3. Privacy with respect to P; — A set of ¢ or less participants, including P,
cannot reduce their uncertainty of x;.

4. Privacy with respect to P; — A set of ¢ or less participants, including P;,
cannot reduce their uncertainty of x;.

We note that the last three criterion presented here simply encapsulate the
notion of privacy given in definition 2.

4 Proposed OLE-Based MPC Protocol

Similar to the OPE protocol given in figure 1, our proposed multiplication pro-
tocol consists of two phases:

1. The Setup Phase: Where the initialiser privately sends some (essentially
random) information to each participant involved in the protocol.

2. The Computation Phase: Where participants are able to compute shares
to the multiplication.

Where our scheme differs, however, is in the addition of a masking polynomial
(hi(x)) and the limiting of the receivers polynomial to a degree no greater than

1 (OLE).
As per section 3.1 suppose we have a set of n participants Py, --- , P,, with
respective private inputs x1,---, Z,, who wish to compute shares of the value

v =x; xx; where ¢, j € [1,n] and i # j. Participant P; first privately distributes
shares for ; amongst all participants, using the polynomial f;(x), such that Py
(1 £ k < n) gets the share x;, = f;(k). To compute a share ~;, of v each Py
cooperates with P; to execute our modified OLE protocol, with Py essentially
acting as the receiver and P; acting as the sender for each Pj. Note that all
computations are performed in the field F, where ¢ is a prime number such that
q > n. The full protocol is given in Figure 3.

In order to compute a share Py and P; exchange exactly 3 field elements (I and
V(x)). This gives a communication complexity of O(q). Therefore, the overall
communication complexity, required for each of the n participants to compute

Efficient Information Theoretic MPC from OLE 9

his share can be given as O(gn). However, since the protocol is based on Shamir’s
(t,n) secret sharing scheme [12] we actually only require ¢ + 1 participants to
ensure the output can be constructed. This gives a communication complexity

of O(qt).

Input: P; has x; and Py has the share z;, , of x;.
Output: P; obtains the share vy, of I'(z) where I'(0) = z; - x;.

Setup The initialiser privately sends:

1. A set of n — 1 random polynomials, S;, (z), of degree at most 1 to P; where
k=1,---,nand k # 4.
2. A random value, di and the value gr = Sy, (dr) to every participant Py.

Computation
P; privately computes:

— A masking polynomial, h;(z) of degree at most ¢ with f;(0) = 0.
— The multiplication polynomial, f;(z) = z; - x.

Each Py then privately executes the following steps with P;:

1. Py sends the value lx = x;, — di to P;.
2. P; then computes and sends to Pr the polynomial Vi (x) which is computed
as:
Vi(z) = hi(k) + fi(z + Ix) + i (2)

3. Py, computes his share of v as v, = Vi (dk) — gk-

Fig. 3. An information theoretic, OLE-based multiplication protocol for MPC

4.1 Evaluation

In this section we evaluate the proposed protocol against the set of security
criteria given in section 3.2. We note that all four of these criterion evaluate
the specific multiplication protocol and not the actual MPC itself. That is, we
evaluate the multiplication protocol only and assume that participants have not
yet reconstructed the actual output of the MPC.

Correctness At the end of our protocol each participant, Py, will now have a
share of the polynomial: I'(x) = h,(x) + z; f;(x). Since the free term of h;(x)
is equal to zero, we can say that I'(0) = z;f;(0). Now, f;(x) has the free term

10 Louis Cianciullo and Hossein Ghodosi

x;j and both h;(z) and f;(x) are of degree at most t. As a result of this we can
conclude that correctness is achieved, as each Py has a share to a polynomial,
I'(x), of degree at most ¢, with free term equal to z; - x;.

Privacy

Theorem 1. A set of t participants, not including P; or Pj, cannot compute
any information relating to x; or x;.

In order to prove this we must first show that the modified OLE protocol is
secure. Following this, we need to prove that a set of ¢ shares relating to the
multiplication reveals no information.

Proof. Suppose that a given participant, Py executes the multiplication protocol
with P;. After sending I to P; he receivers the polynomial Vi (z) = h;(k)+ fi(z+
k) + Si, (z) which we can simplify as Vi (z) = vy, + zpz. Let S, () = ki + wix
and recall that f;(z) = x; - 2, then we can rewrite the equation as V(z) =
hi(k) + xilk + £k (2; + wi)x. This gives Py, the following information:

Vg = h,(k) + Iilk + Kk

2 = X; + Wwg

Since the values wy, and kj (as well as the coefficients of h;(x)) are chosen at
random, P, cannot gain any information from the above equations. The next
step in the protocol is for Py to compute v = V(dy) — gx, which can be written
as v = hi(k) + z;z;;. Individually, this gives no information to P as he does
not know the value of either h;(k) or z;, it remains to be seen if a coalition of
participants can compute any information.

Without loss of generality suppose that the first set of ¢ participants, Py, --- , P;
pool their information together. Let h;(x) = myz + mox? + - - - + myat, then the
coalition can compute the following system:

M =X Ty + M M2 A+

Yo = T - gy + 2my +4dmg + -+ + 28y

'yt:xi-xit+tm1+t2m2+-~-+ttmt

Due to the perfectness of of Shamir’s secret sharing scheme [4,12] the above
system does not reveal any information to the participants as they effectively
have a set of t shares relating to a degree ¢ polynomial. This becomes even more
evident when we take into account that z;, = f;(k) meaning that each Py has a
share of the polynomial I' = z; f;(x) + hi(x).

The end result being that a coalition of ¢ participants cannot reduce their
uncertainty of ;. The same is also true for x;, as collectively the coalition only
has ¢ shares of f;(x).

Efficient Information Theoretic MPC from OLE 11

Privacy with respect to P;

Theorem 2. A set of t participants, including P;, cannot compute any infor-
mation relating to x;.

Proof. The proof of this is similar to the proof of theorem 1 along with some
extra information. Namely, we now assume that the coalition of participants has
the values of both f;(z) and, consequently x;. The first, obvious ramification of
this is that the coalition now know the shares of every other participant relating
to x;. This actually gives them no advantage, in regards to the OLE, as they do
not know (and cannot compute) the values given to the other participants by
the initialiser (namely dj and gx). We therefore only need to prove that knowing
fj(z) reveals no information relating to ;.

As before, at the end of the protocol each participant has a share to the
polynomial I'(x) = z;f;(x) + hi(z). It is easy to see that if the coalition can
compute I'(x) or even h;(x) then they can easily compute x;. However, the
coalition do not hold direct shares to h;(z), so even knowing h;(0) = 0 gives
them nothing. Furthermore, to compute any information relating to I'(x) would
require the coalition to compute a solution to the system given in the proof of
theorem 1.

Computing a solution to this system is analogous to solving a system of
equations composed of ¢t + 1 unknowns (x; and the coefficients of h;(z)) and
t equations. We can therefore conclude that a set of participants, including P;
cannot reduce their uncertainty of x;.

Privacy with respect to P;

Theorem 3. A set of t participants, including P;, cannot compute any infor-
mation relating to x;.

Proof. In the proof of theorem 1 it was shown that the modified OLE is secure,
therefore to prove the above theorem we need to show that a coalition of ¢
participants, including P;, with ¢ shares relating to I'(z) = x;f;(z) + hi(z)
and t shares of f;(x) cannot compute any information relating to x;. First, let
fi(x) = z;+ Wiz +- -+ Wizt and assume, as before, that a coalition composed
of the first ¢ participants (which includes P;) pool their knowledge. They can
construct the following system from their shares of I'(x):

= (a4 Wik W)+)
Yo = mi - (T 4+ 2W1 4 - + 2'W3) 4 hy(2)

Yt = X4 (iCj +tW1 ++ttWt) —‘rhl(t)

From the shares of f;(x) we get:

12 Louis Cianciullo and Hossein Ghodosi

$j1:$j+W1+"'+Wt
szzl‘j-i-QWl—f—"'—i-QtWt

zj, = x; + Wy 4+ t'W,

It is easy to see that the two systems are actually linearly dependent. Since
the values of z; and h;(x) are known to the coalition, this results in a system
composed of ¢ + 1 unknowns (the coefficients of f;(x)) and only ¢ linearly inde-
pendent equations. The net result of this is that each value of x; is, from the
point of view of the coalition, equally likely. Meaning that they cannot compute
any information relating to x;.

References

1. Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In:
Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp. 420-432.
Springer Berlin Heidelberg (1992)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. STOC ’88, ACM,
New York, NY, USA (1988)

3. Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’
86. pp. 251-260. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

4. C. L. F. Corniaux, H. Ghodosi: An entropy-based demonstration of the security of
Shamir’s secret sharing scheme. In: 2014 International Conference on Information
Science, Electronics and Electrical Engineering. vol. 1, pp. 46-48 (Apr 2014)

5. Chang, Y.C., Lu, C.J.: Oblivious polynomial evaluation and oblivious neural learn-
ing. In: Boyd, C. (ed.) Advances in Cryptology — ASTACRYPT 2001. pp. 369-384.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

6. Chaum, D., Crépeau, C., Damgard, I.: Multiparty Unconditionally Secure Pro-
tocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing. pp. 11-19. STOC ’88, ACM, New York, NY, USA (1988)

7. Déttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: Tinyole: Efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 2263-2276. CCS ’17, ACM, New York, NY, USA (2017)

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing. pp. 218-229. STOC ’87, ACM, New York, NY, USA (1987),
http://doi.acm.org/10.1145/28395.28420

9. Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Win-
ter, A.: Information Theoretically Secure Oblivious Polynomial Evaluation: Model,
Bounds, and Constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
Information Security and Privacy. pp. 62-73. Springer Berlin Heidelberg (2004)

10.

11.

12.
13.

Efficient Information Theoretic MPC from OLE 13

Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: Proceed-
ings of the Thirty-first Annual ACM Symposium on Theory of Computing. pp.
245-254. STOC 99, ACM, New York, NY, USA (1999)

Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In: Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing. STOC ’89, ACM, New York, NY, USA (1989)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Tonicelli, R., Nascimento, A.C.A., Dowsley, R., Miller-Quade, J., Imai, H.,
Hanaoka, G., Otsuka, A.: Information-theoretically secure oblivious polynomial
evaluation in the commodity-based model. International Journal of Information
Security 14(1), 73-84 (Feb 2015)

