Boolean Exponent Splitting

Michael Tunstall!, Louiza Papachristodoulou?, and Kostas Papagiannopoulos?
1 Rambus Cryptography Research Division,
425 Market Street, 11th Floor, San Francisco,
CA 94105, United States
michael.tunstall@cryptography.com
2 Radboud University Nijmegen, Digital Security Group - ICIS
Mercator 1, Toernooiveld 212,
6525 EC Nijmegen, The Netherlands
louiza@cryptologio.org, kostaspap88@gmail.com

Abstract. A typical countermeasure against side-channel attacks consists of masking intermediate
values with a random number. In symmetric cryptographic algorithms, Boolean shares of the secret are
typically used, whereas in asymmetric algorithms the secret exponent/scalar is typically masked using
algebraic properties. This paper presents a new exponent splitting technique with minimal impact on
performance based on Boolean shares. More precisely, it is shown how an exponent can be efficiently split
into two shares, where the exponent is the XOR sum of the two shares, typically requiring only an extra
register and a few register copies per bit. Our novel exponentiation and scalar multiplication algorithms
can be randomized for every execution and combined with other blinding techniques. In this way, both
the exponent and the intermediate values can be protected against various types of side-channel attacks.
We perform a security evaluation of our algorithms using the mutual information framework and provide
proofs that they are secure against first-order side-channel attacks. The side-channel resistance of the
proposed algorithms is also practically verified with test vector leakage assessment performed on Xilinx’s
Zynq zc702 evaluation board.

1 Introduction

Side-channel analysis as a method of extracting cryptographic keys was first presented by Kocher [Koc96],
who noted that timing differences in the execution time of a modular exponentiation could be used to
break instances of RSA [RSA78]. Subsequently, Kocher et al. [KJJ99] observed that the instantaneous power
consumption could reveal information on intermediate states of any cryptographic algorithm, since the
instantaneous power consumption has, in many cases, been shown to be proportional to the Hamming
weight of the data being manipulated [BCOO04]. Electromagnetic emanations around a device can also be
exploited in the same way [GMOO01,QS01].

In public key cryptography one typically uses countermeasures based on redundant representations to
prevent side-channel leakage [Cor99, WMPWO8]| (referred to as blinding). To protect an exponent used in a
group exponentiation one would typically add a random multiple of the order of the group to the exponent,
providing a random bitwise representation of the exponent. These countermeasures can provide a strong
resistance to differential power analysis (DPA), but are not convenient in some instances. As noted by Smart
et al. [SOPO08], the random value used to blind an exponent needs to have a bit length larger than the longest
run of zeros or ones in the bitwise representation of the the order of the group. If we consider ECDSA [Nat09],
for example, the bitwise representations of the orders of the groups used typically contain long runs of ones
making this countermeasure undesirable. That is, to provide a randomized bitwise representation the random
value used would have a bit length comparable to the exponent it is protecting, leading to a prohibitive impact
on performance. While some have proposed alternative elliptic curves that avoid this problem [ML14], widely
used curves will continue to have long runs of zeros and ones in the bitwise representation of the order of
the group, since the modulus is typically chosen with this property to allow for the rapid computation of a
modular reduction. See, for example, the elliptic curves proposed by Bos et al. [BCLN16], Hamburg [Ham15]
and Bernstein [Ber06].

This paper improves upon those exponent blinding techniques by using a two-share Boolean split of
the exponent. This is very surprising at first, because the arithmetic operations involved in exponentiation
algorithms do not seem to combine well with bitwise XOR operations. The trick is to use exponentiation
algorithms involving several (normally two) varying group elements in their main loop, such as the Mont-
gomery powering ladder or Joye’s double-and-add-always algorithm. The choice of which group element to
update at each step of the algorithm can then be somewhat decoupled from the expression assigned to it.
When the exponent is split into two Boolean shares, roughly speaking, one share can be used on one side
of assignments while the other share is used on the other side. It is clearly not possible to achieve such a
complete decoupling, but one can come close enough that the actual bits of the exponent do not need to be
computed explicitly at any step of the algorithm.

1.1 Related Work.

Exponent splitting is a known countermeasure that comes in various forms (additive, multiplicative, Eu-
clidean) [CJ01,CJ03]. It is generally avoided in practice, because it typically doubles the execution time.
Negre and Plantard [NP16] proposed a regular modular exponentiation using multiplicative half-size split-
ting. This method, although performing 16% faster than related splitting algorithms, is still not very efficient
since two exponentiations (of half-sized words) have to be performed. Moreover, it is only secure against SPA,
but not against DPA, collision or template attacks. The authors propose randomizing the exponent to protect
against those types of attacks, which should have additional performance overhead.

The countermeasures proposed in this paper are based on a novel exponent splitting technique with mini-
mal performance overhead. Apart from randomizing the exponent, the algorithms can be used to hide the ex-
ponent length and prevent leakage from intermediate values. One could also consider our algorithms as an en-
hancement of algorithmic countermeasures to address-bit side-channel attacks (ADPA) [MDS99,MD99,II1T02],
where one attempts to conduct a DPA on the addresses of registers or memory locations rather than the
intermediate states of an algorithm.

May et al. [MMSO01] proposed a hardware countermeasure to address-bit side-channel attacks where
registers used to compute an exponentiation algorithm would be randomly renamed. This idea was extended
to software by Itoh et al. [IIT03] and Izumi et al. [IISO10] who proposed exponentiation algorithms where
accesses to memory locations, or registers, is randomized from one execution to another. Address-bit side-
channel attacks, and the specific countermeasures, have received relatively little attention in the literature
since blinding methods typically randomize the bitwise representation of an exponent, and therefore the
accessed addresses [Cor99,CJ01].

1.2 Contribution.

In this paper, we present a new countermeasure for exponent splitting. We describe a method of splitting
an exponent into two Boolean shares, analogous to the countermeasures that one would use for an imple-
mentation of a block cipher and similar to the countermeasures used to prevent address-bit side-channel
attacks [MDS99,MD99,I1T02]. Having embedded devices as our targeted implementation, and an adversary
able to get useful information from the length of the exponent or the intermediate values, we provide a
number of secure algorithms against a broad range of side-channel attacks.

At the same time, the modifications that are required to a group exponentiation algorithm have negligible
effect on the time required to compute the actual group exponentiation, which is a significant advantage over
previous examples of exponent splitting [CJ01,CJ03].

In addition, our method can be efficiently combined with blinding techniques applied to the input to a
group exponentiation algorithm, in order to prevent leakage of the intermediate values. We further demon-
strate that the proposed algorithms can be used to compute an ECDSA signature where the nonce is gener-
ated in two shares that do not need to be combined. Hence, providing a convenient method for implementing
a side-channel resistant instance of ECDSA with no significant impact on performance.

A further property that two of our algorithms have is that the exponent (or scalar) length can be hidden.
The way the operations are handled by registers combining the Boolean splitting of the exponent can provide
some algorithms with the useful property of tolerating leading zero bits.

Finally, the method of Boolean exponent splitting, cornerstone of the proposed algorithms, is evaluated
in terms of security. An evaluation using the information-theoretic framework of Standaert et al. [SMY09]
and a Test Vector Leakage Assessement (TVLA) by Goodwill et al. [GJJR11] are performed. We investigate
the usual leakage models based on data or location leakage and show that an adversary would need either a
second-order data attack or a third-order location attack to successfully break the security of our algorithms.
In addition, we present for the first time a hybrid model, where data leakage is combined with location
leakage, offering new exploitation opportunities. The rich interactions between data and location leakage
corroborates the need for holistic countermeasures that encompass a wide spectrum of side-channel attacks.

1.3 Organization of the paper.

The rest of this paper is organized as follows: In Section 2, we describe previously proposed exponent
splitting methods, their efficiency and known attacks against these countermeasures. Section 3 presents
our proposed methods of exponent splitting based on an XOR operation. More precisely, Sections 3.1-3.2,
present the splitting method on various regular exponentiation algorithms. We show that when XOR-splitting
is applied, each algorithm is resistant against first-order side-channel attacks. In Section 3.3 we present our
splitting method in the context of scalar multiplication for elliptic curves. In Section 7?7, we demonstrate
how this method can be used to generate an ECDSA signature where only shares of the random nonce are
manipulated. An efficient algorithm to transform the Boolean share to multiplicative is also presented and
shown to be first-order secure. We further provide details on how our countermeasure can be used with
ECDH. Section 5 presents an extensive security evaluation of our algorithms based on formal methods and
the mutual information framework. Data and location leakage diagrams are also presented here, together
with the hybrid leakage attack. Section 6 discusses implementation considerations and shows the results of
TVLA of a practical implementation on a Xilinx Zynq evaluation board. Finally, we conclude in Section 7.

2 Exponent Splitting Methods

The critical operation in public key cryptographic algorithms is exponentiation in a certain group G of order
1, where the input message x € G is raised by a secret exponent s and the result y = z* is the public output
of the algorithm. When implementing a group exponentiation algorithm the exponent is typically blinded by
adding some random multiple of the order of the group to the exponent. Trivially, (ru) +x = £ (mod) for
r,k € Z where r is random. Hence, computing z*"* is equivalent to computing z*. While this randomizes
the bitwise representation of an exponent, the entire exponent is still equivalent to the exponent in a given
group. Examples of attacks that have been proposed include analyzing a single trace (from SPA [KJJ99] to
collisions in manipulated values [WvWM11, KKYH10,HKT15]) or attempting to find collisions in the random
values used to then derive a (blinded) exponent [SI11].

One method that can hinder these attacks, is to split an exponent into two values whose bitwise repre-
sentations are random. Then one would compute a group exponentiation where the combined effect of the
two values is equivalent to that of the desired exponent. There are several methods of exponent splitting
proposed by Clavier and Joye [CJO1]:

— Additive Splitting. For a random integer r with bit-length smaller or equal to the exponent k, we can
define k = r + (k — 7). The output of the modular exponentiation y = z* in G can be computed by
calculating y = 2" - """ in G.

— Multiplicative Splitting. For some group G we can define &’ = k7~ mod |G| for some integer 7. Then
the exponentiation y = z¥ in G can be computed by using y = (xr)kl mod |G|.

The same techniques can be applied to scalar multiplication algorithms for elliptic curves (ECs), in order
to hide the secret scalar. The problem with these methods of exponent splitting is that they will typically

double the time required to compute a group exponentiation, because r is required to have a bit-length
similar to the exponent. A practical attack by Feix et al. [FRV14] demonstrates that a blinded scalar can be
determined if 7 is too small.

A further method described by Ciet and Joye [CJ03] is:

— Euclidean Splitting. By writing the exponent as k = |k/r|r + k mod r and letting s = 2" for some r,
then y = ¥ can be computed by y = s* x gk med ™ = (g% x ghmedr where k' = k/r|.

The impact on the time required to compute an exponentiation is lower than the other splitting methods
listed above. In fact, in [CJ03] the authors evaluated this variant applied to Shamir’s double ladder to have
the same cost as the ‘double-and-add-always’ algorithm (equivalent to the ‘square-and-multiply-always’ for
exponentiation). Precomputation of powers of s can reduce the exponentiation cost compared to additive or
multiplicative splitting. However, this method has the same constraints as adding a multiple of the group
order. That is, r needs to have a bit length larger than the longest run of ones and zeros in k£ and will have
a significant impact on performance in many cases [SOP0S].

3 Boolean Exponent Splitting Methods

In this section, we propose methods of exponent splitting based on XOR operation, and how an XOR-split
exponent can be applied to the Montgomery powering ladder.

3.1 Montgomery Powering Ladder

The Montgomery Powering Ladder (MPL) was originally proposed as a means of speeding up scalar multi-
plication over ECs and later shown to be applicable to multiplicative written Abelian groups [Mon87,JY02].
We recall the description of the MPL given by Joye and Yen [JY02]: We consider the problem of computing
y = z" in G for inputs x and k. Let Z;:ol k; 2¢ be the binary expansion of x with bit length n (for ease of

expression we shall also denote this as (k,—1,..., ko), where convenient). Then, defining L; = Z?;; k; 209
and H; = L; + 1, we have
Lj=2Lj+1+kj=Lj+1+Hj+1+/€j—1=2Hj+1+kj—2 (1)

and so we obtain
(2Lj41, Ljp1 + Hjp) ifk; =0,

2
(Lj+1 +Hj+1,2Hj+1) if kj =1. ()

(Ljv Hj) = {
If we consider one register containing 2%/ and another containing s then (2) implies that
(zLj+1)2 AR 1;H;’+1) ifk; =0,
oL
(alivr . pHivy (xHHl)z) ifkj=1.
Given that Ly = k one can build an exponentiation algorithm that requires two group operations per bit of
the exponent. Joye and Yen give several different versions, one of which is shown in Algorithm 1. All these
methods are highly regular, meaning that a deterministic sequence of operations is executed for an exponent
of a given bit length.

In applying an XOR-split exponent to MPL we use one share to dictate the address accessed and the
other to act as the exponent. That is, we consider (2), where the previous round may provide either (L;, H;)
or (Hj, L;) and the computation changed accordingly.

Let So; = L;j and S1; = H; and Z;ZOI a; 2" be the binary expansion of A with bit length n (i.e. the
same bit length as the exponent). Then we can use the values of a; to dictate whether a pair of registers
holds (L;, H;) or (Hj, L;). Specifically, (2) can be rewritten as

28, 11,50 11+ Soa itk =0,
(Say > Snas.i) = (2 5ay.g1: Saya + Sajom) ik B (3)
(Sayj+1 + S-a; 54152505 541) ik =1

Algorithm 1: Montgomery Ladder

Input: x € G, an n-bit integer kK = Z;.:Ol ks 2°
Output: ="

-

Ro<+ 1g; R1 < x;
for i =n —1 down to 0 do
Ry, < Ry, - R, ;

Ri; + (Ri;)* 5
end

5. U M

return Ry

(<]

In (3), the values of L; and H; are assigned to S in an order dictated by the binary expansion of A.
Generating A as a random sequence of bits could provide some side-channel resistance, but does not protect
the exponent.

We further consider Z?:_Ol a; 2' and Z;:Ol b; 2! be the binary expansion of A and B, respectively, where
k = A @ B of bit length n. We note that, as above, Z?:_ol k; 2 is the binary expansion of x and k; = a; @ b;
for 0 < i < n. Then (3) can be rewritten as

(250,541, Sb;,j+1 + S-p; j+1) ik =0,

. (4)
(S 41+ Sapy 4152 8-p, 41) ik =1.

(Saj,j’ Sﬁa]‘,j) = {

Rather than using the same value to control which order L; and H; are assigned and read, we use the bits
of A to determine the order L; and H; are assigned, and the bits of B to determine the order they are read.
The combined effect is that the order the L; and H; are assigned and read is dictated by the bits of .

We note that (4) implies

2

2
gSratt . g S ($Sﬂb"’j+l>) ifkj=1.

From which we can define Algorithm 2, which operates in much the same way as the MPL, as it produces a
regular sequence of multiplications and squaring operations. However, one more register is required to allow
the assignment in line 5 to affect Ry or R;. This algorithm is the basis that we use to present the essence of
Boolean-split exponent. Algorithm 2 is largely equivalent to an algorithm proposed by Izumi et al. [IISO10]
where we set the multiplication in line 4 to operate in a random order as it provides a better resistance to
collision attacks, as demonstrated by Kim et al. [KKYH10]. We discuss this further in Section 3.3.

The intermediate states of the registers are not randomized in Algorithm 2 and would require additional
countermeasures to provide a secure implementation. For example, inexpensive solutions such as randomizing
projective points [WMPWO98] or Ebeid and Lambert’s blinding method for RSA [EL10] can be used (see
Section 6). If we assume that the values held in registers { Ry, R1, Ra} do not leak we can state the following:

Lemma 1. An implementation of Algorithm 2 is resistant to first-order side-channel analysis.

Proof. Tt suffices to consider each intermediate state and verify that at least one random mask is applied.
Verifying this for an entire group exponentiation would be tedious, but can be simplified if we consider two
rounds of Algorithm 2. That is, if we consider round m, where 0 < m < n — 2, then the following operations
are performed:

Algorithm 2: Montgomery Ladder with XOR-Split Exponent 1

Input: « € G, n-bit integers A = 37" ;2" and B = 31" b; 2°
Output: 2" where k = AP B

-

Ro<—1@;R1<—1G;RQ<—1G;

y & {0,1} ; Ry <z ;

for i=n — 1 down to 0 do
Ry < Rq; - R-a; ;

2

Ra, < (Rpev)@a;)
R—u),i <~ Ry ;
b b; 3

end

© w0 N0 A W N

return R,/

Ry + R,,, - R,

a+b,d

B+ a®an

R, + Rg*

Rﬁam — R2 1

Ry+ Ry, ., Ra,.,
o < bm+1 D bm

B+ a® ams

R, ., < R
Rﬁam_*_l < RQ

CU W=
e

Let the proposition P(n) be that round n > 0 is resistant to first-order side-channel analysis for the n-th
treated bit of the exponent. If we consider the first round, we wish to show P(1) is true and, in the above
code fragment, b’ is set to a random value from {0, 1}. Then, it is easy to see that:

— the results of the operations in lines 1, 4, 5, 6, 9 and 10 are dependent on the random values { Ry, R1, R2}.
— the results of the operations in lines 2, 3, 7 and 8 are uniformly distributed on {0, 1}.

If we assume that P(m) is true for all m € {1,...,n}, then we consider P(n+1) where b’ is set to b,,. As by, is
one share of a previously treated exponent bit, it is indistinguishable from a random value from {0,1}. The
above statements regarding the results of the operations apply. Hence, by induction we have shown P(n) is
true for all n > 0. To complete the proof, we simply note that only half of the code fragment above will need
to be considered in the last round. O

Remark 1. In [IIT03], the authors present the randomized addressing method (RA), in order to provide
protection against ADPA and eliminate the correlation between an exponent bit and the register where the
result of an operation is stored. In this work, we do not limit our countermeasure to work only against
ADPA. Our goal is to perform operations on different exponent shares, in a way that an adversary would
need a combination of leakages (like Higher Order DPA combined with template attacks) in order to recover
the exponent.

3.2 Using Inverses

In this section we propose an algorithm more suited to groups where inversions can be readily computed.
Le Duc et al. [LTT15] propose a straightforward variant of the Montgomery powering ladder that requires
the computation of inverses. They note that (2) can be rewritten as

(Hj —=1,Lj1 + Hjp1) ifk; =0,

5
(Ljy1 + Hjr, Ly +1) ifkj=1. (5)

(Lj, Hj) ={

From which we can define Algorithm 3. If we let Ty ; = L; and 11 ; = Hj, or Ty ; = Hj and 11 ; = L; and
store the ordering in another variable we can rewrite (5) as

(6)

T le){(Lj,Hj) ithy=0 {(LJ—+1+H]-+17LJ-—1) ith; =0,

(Hj,Lj) ifkj=1 | (Ljyr+Hjpr, Ly +1) ifkj=1.

From which we can define Algorithm 4.

Algorithm 3: Variant with Inverses I Algorithm 4: Variant with Inverses II
Input: z € G, an n-bit integer k = ZZ:Ol E; 2° Input: z € G, an n-bit integer k = Z?;()l E; 2
Output: z” Output: z”

1 Ry« 1g; R1+ x; 1 Ro+1g; Ri+ x;

2 Upa 1 ;U +x; 2 Upa ' U 2z,

3 for i =n — 1 down to 0 do 3 for i =n—1 down to 0 do

4 Ry, < Ry, - Ry, ; 4 Ro <+ Ro-R:;

5 Rki (—Rﬁkl 'Uki ; 5 Rl <_RO'Uki ;

6 end 6 end

7 return Ry 7 return R,

Following the previous notation, we notice that Tp ; should contain the sum of the registers in the previous
round®. Therefore, (6) can be rewritten as follows:

(Tb',j+1 + Tﬁb/7j+17T07j - 1) lf k'j - b/ - 0,

. (7)
(Tb/7j+1+Tﬂb/’j+1,T0’j +1) if kj :b/ =1.

(To5,Th5) = {
We note that to treat k;1, b’ = k;. However, if we let k; = a; ®b;, for a;,b; € {0,1} and h = a; &b; ®bj_1,
we can modify (7) as follows:

(T-njt1 + Thjrr, Toy; — 1) ifaj =10y,

. (8)
(Tﬁhijrl + Th’j+1,T0’j +].) if a; = —|bj .

(To,;,Th,5) = {

By using the above equations as exponents of x, we can define Algorithm 5.

Algorithm 5: Montgomery Ladder with XOR-Split Exponent II

Input: = € G, n-bit integers A =3""""a;2" and B=3"""b,2", r € Z
Output: 2" where k = A® B

1 Ro+1lg;Ri+1g;Up+z; UL 2t

2 b'ﬁ{o,l} s Ry 1

3 for i =n —1 down to 0 do
4 Ro < Ry, 00 - Rs, 00y @a; 5
5 Ri1 < Ro - Ubi ;

6 b b ;

7 end

8 return Ry

3 The algorithms are left-to-right, so j + 1 indicates the round preceding j.

Algorithm 5 follows the same sequence of instructions with the MPL. Its correctness can be verified by
the fact that at every round the difference Ry/R; = = or R1/Ry = x, as for the usual ladder step. The
advantage of Algorithm 5 compared to Algorithm 2, and consequently previously proposed algorithms by
Izumi et al. [IISO10], is the elimination of the auxiliary register Ry. Instead, the auxiliary registers Uy, Uy
manipulate the known fixed value x or z~! for computational purposes, and they do not require additional
computational power or updates when the algorithm is executed.

As previously, if we assume that the values held in registers {Rg, R1} do not leak we can state the
following:

Lemma 2. An implementation of Algorithm 5 is resistant to first-order side-channel analysis.

Proof. Tt suffices to consider each intermediate state and verify that at least one random mask is applied.
Verifying this for an entire group exponentiation would be tedious, but can be simplified if we consider two
rounds of Algorithm 5. That is, if we consider round m, where 0 < m < n — 2, then the following operations
are performed:

1. a+b, Y 5. & ¢ b1 Dbm
2. B+—ad®anm 6. B adams
3. Ro+ R, Rg 7. Ry < R - Rg
4, R1 (*R()'me 8. R1 (*Ro'me_H

Let the proposition P(n) be that round n > 0 is resistant to first-order side-channel analysis for the n-th
treated bit of the exponent. If consider the first round, we wish to show P(1) is true and, in the above code
fragment, b’ is set to a random value from {0, 1}. Then, it is easy to see that:

— the results of the operations in lines 3, 4, 7 and 8 are dependent on the random values { Ry, R1 }.
— the results of the operations in lines 1, 2, 5 and 6 are uniformly distributed on {0, 1}.

If we assume that all P(m) is true for m € {1,...,n}, then we consider P(n+1) where b’ is set to b,,. As b,, is
one share of a previously treated exponent bit, it is indistinguishable from a random value from {0,1}. The
above statements regarding the results of the operations apply. Hence, by induction we have shown P(n) is
true for all n > 0. To complete the proof, we simply note that only half of the code fragment above will need
to be considered in the last round. O

3.3 Boolean Scalar Splitting

In the above, we define group exponentiations applicable to any multiplicatively written group G. However,
specific groups may have particular characteristics that means the algorithms above are not suitable as
described. In this section, we discuss the algorithms in the context of a group formed from the points on an
elliptic curve (EC). We define the EC £ over a finite field F, for a large prime ¢. £ consists of points (z,y),
with z,y in Fy, that satisfy, for example, the short Weierstraf§ equation

E:yi=a3+ax+d

with a,b € F,, and the point at infinity denoted O. The set E(F,) is defined as E(Fy) = {(z,y) € £|z,y €
F,} U {O}, where £(F,;) forms an Abelian group under the chord-and-tangent rule and O is the identity
element. Alternative equations with different representations of a neutral element are also used in cryp-
tographic algorithms, such as Edwards curves [Edw07,BL09] and Montgomery curves [Mon87]. The scalar
multiplication of a given point is a group exponentiation in £ that uses elliptic curve arithmetic, i.e. addition
between points or scalar multiplication [x] P for some integer k£ < |€|, and is an important part of many
cryptographic algorithms.

The algorithms presented above cannot be securely implemented as described because of the neutral
element. In the short Weierstrafl example, the neutral element 1g is represented in £ as the point at infinity

O and cannot be manipulated in a regular way. That is, one would typically be obliged to test for a numerical
representation of O and conduct a different operation if it is detected. In practice, one would implement the
algorithm such that the most significant bit (assumed to be set to one) is already treated by the pre-
processing. For example, Algorithm 2 can be implemented as shown in Algorithm 6, and Algorithm 5 as
shown in Algorithm 7.

Algorithm 6: Montgomery Ladder with XOR- Algorithm 7: Montgomery Ladder with XOR-
Split Scalar on an EC Split Scalar II on an EC
Input E Fq, Pc 5 n-bit 1ntegers A= Zz 0 a;2 Input 6 Fq7 P e 5 n-bit 1ntegers A= Z" 0 a; 2
and B = Y0 b; 2 and B = 3271 b, 2
Output: Q = [x|P where k = A® B Output: Q = [k]P where k = A® B
1Ry« P;Ri < P;Ry« P, 1R+ P;R +P;
2b’£{0,1}; 2Up« P;U,+ —P;
3 Ry 2P ; 3 b &£ {0,1};
4 for i =n — 2 down to 0 do 4 Ry «2P;
5 R; < R,, + R, ; 5 for i =n — 2 down to 0 do
6 R, < 2R, 00)0a; ; 6 Ry «+~ Ry, 01 + R, 00)@a, ;
7 R, < Ry ; 7 Ry <~ Ro+ Uy, ;
8 b b ; 8 b= bi s
9 end 9 end
10 return R, 10 return R,

As previously, if we assume that the values held in registers {Ro, R1, Ro} do not leak we can state the
following:

Corollary 1. Lemma 1 implies that an implementation of Algorithm 6 is resistant to first-order side-channel
analysis.

Corollary 2. Lemma 2 implies that an implementation of Algorithm 7 is resistant to first-order side-channel
analysis.

4 Applying Exponent Splitting to Elliptic Curve Cryptography

In this section, we describe how one could apply the above algorithms to ECDSA and ECDH, as the particular
security requirements of these algorithms merit further discussion.

4.1 Applying Exponent Splitting to ECDSA

For ECDSA, a given base point P = (z,y) for an EC £ over F, with private key d and hash function h, the
signer that wants to sign a message m picks a random x < |€| = n (where n = |€] is the order of the curve)
and computes

r << [k]P and s+ k' (h(m)+dr)mod |€].

We denote the extraction of the 2-coordinate of a point and its assignment to a variable by <=. The signature
of m is the pair: {r,s}. We note that the security of this signature scheme relies on the random value s
remaining unknown to an attacker. Moreover, the nonce x should be used only once and randomly generated
for every new signature, otherwise the private key d can be trivially derived [Nat09].

Securing the Scalar Multiplication: The scalar multiplication [x]P during the computation of r is a
critical operation in ECDSA from a side-channel point of view, because an attacker only needs to derive a
small number of bits of x to obtain the secret key d. For example, a lattice-based analysis can reveal the
private key from the knowledge of some bits of the scalar x [HS01]. In practice, one could use the knowledge
of one bit from around 30 signatures or eleven bits from one signature [NNTWO05]. Similarly, one needs to
prevent an adversary from determining the bit length of the scalar used to prevent a lattice attack.

When implementing a scalar multiplication, one could use any of the algorithms described in the previous
section, with extra care required to prevent the bit length of the scalar from leaking. Algorithms 6 and 7
require that the most-significant bit of the scalar is set to one and need further modification to ensure that
the bit length of the scalar is not revealed.

In implementing Algorithms 6 or 7, one could add a multiple of the order of the group to the scalar to hide
its length [Cor99]. While this would seem to make the algorithms redundant, one could choose a small multiple
of the order of the group without considering the longest run of ones or zeros in the bitwise representation of
the order. Indeed, one could multiply the order of the group by a power of two such that increasing the bit
length is impossible or fixed to a one bit increase. That is, ensure that the carries produced by adding the
multiple of the order of the group do not extend the bit length or always extend the bit length. Given the
long runs of ones or zeros typically seen in the bitwise representation of the order of many groups formed
from the points of an EC, the increase in bit length should be very small [Nat09,BCLN16,Ham15,Ber06].
For example, if we consider P192 defined by NIST [Nat09], where the elliptic curve is defined over F,, with
p = 21929264 _ 1 then the 128 most-significant bits of p are set to one. If twice the order is added to a nonce
then a carry from the most-significant bits will be produced with an overwhelming probability, thus always
producing a nonce of 194 bits. However, in some cases, one may wish to ensure that the carry has been
produced to prevent a theoretical reduction in the security of a system. That is, one could design attacks
around an oracle that indicated the value of the carry, but such an oracle is unlikely to exist.

Alternatively, one could add some more logical functions to allow for the most significant bit to be set
to zero. In Algorithms 8 and 9 we show how this could be done for Algorithms 6 and 7, respectively. In
both cases we use the variable m to be set to three while the most-significant bits of the scalar, A ® B, are
set to zero, allowing the output of operations to be diverted into Ry. In Algorithm 9, we do this for both
operations in the loop and keep the initial state of Ry and R; until after the first bit set to one is treated.
Then Algorithm 9 proceeds in the same way as Algorithm 7. Algorithm 8 starts in the same way, using m
to divert the output of the operations into Ry. When the most-significant bit of the scalar, A @ B, set to
one is treated the output stored in R is copied to either Ry or R1. Then Algorithm 8 proceeds in the same
way as Algorithm 6.

As previously, if we assume that the values held in registers {Ro, R1, R2} do not leak we can state the
following:

Proposition 1. An implementation of Algorithm 8 is resistant to first-order side-channel analysis.

Proof. We note that the proof is almost identical to that given for Lemma 1. In addition, we can note that h
and m are set initially and remain unchanged until the first bit set to one is encountered. Then h and m are
set to zero and have no further impact on the computation. Given that h and m only change at one point
that will be fixed for a given exponent it cannot be attacked via a first-order side-channel analysis. O

Proposition 2. An implementation of Algorithm 9 is resistant to first-order side-channel analysis.

Proof. We note that the proof is almost identical to that given for Lemma 2. In addition, we can note that s
and m are set initially and remain unchanged until the first bit set to one is encountered. Then s and m are
set to zero and have no further impact on the computation. Given that s and m only change at one point
that will be fixed for a given exponent it cannot be attacked via a first-order side-channel analysis. a

We note that Algorithms 8 and 9 require a careful implementation. The computation of A in line 6 of
Algorithm 8 and s in line 9 of Algorithm 9 combine the shares of the exponent. However, once the most-
significant bit of the exponent is treated each shared is zeroed with a logical-AND operation before the

10

Algorithm 8: Montgomery Ladder with Fixed- Algorithm 9: Montgomery Ladder with Fixed-

Length XOR-Split Scalar on an EC Length XOR-Split Scalar IT on an EC

Input: &, Fy, P € &, (-bit integers A = ZZ o ai 2t
and B = Z" ' b; 2" where n >/

Output: Q = [k]P Where k=A®B

Ry« P ;R + P;
Uo(—P;U1<——P;

Input: &, Fy, P € &, ¢-bit integers A = ZZ 0 ai2'
and B = Y1 ' b; 2" where n > ¢
Output: Q = [k]P Where k=A®B

Ry+~P;R +P;R,+P; 1

[y
N

V<& (0,1} he1;m«3;

2
30 {01} ;h1;m«3;

3 for i =n —1 down to 0 do 4 Ry, «2P:

4 R; < Ra; + R, ; 5 for i=n — 1 down to 0 do

5 Ratavm)—1 < 2Rinav,eb)@a; 5 6 Raymy—1 < Ry, o0 + Rp, 0000,

6 h:m/\l; 7 R(g\/m)_1<_RO+Ub >

7 =3((hA—ai) ® (hA b)) ; s Y« (bi A—m) @ (b’/\n),

8 R((11-a;)vm)—1 < Ra ; 9 s=((mA=-a;)®(MmAb));

9 b+ b; ; 10 m=3s;

10 end 11 end

11 return R/ 12 return Ry

shares are combined (prior to this any treated bits are always zero). A detailed discussion is beyond the
scope of this paper, but one needs to ensure that an implementation does not inadvertently combine these
values [BGGT14].

Using an ECDSA Nonce as Two Shares: In this section we describe how one could generate an ECDSA
signature where the nonce is only present as two shares. That is, one could generate two random values to
represent the two shares of the nonce, and the actual value of the nonce would never appear in the signing
device.

We assume that the first half of the signature r has been generated using one of the scalar multiplication
algorithms given above, using shares A and B where the nonce kK = A @ B. To compute the inverse of
x modulo || we need to change the way that x is shared between two variables without revealing any
information on k.

Goubin defined a secure means of modifying two shares such that the secret value is no longer given by
the XOR of the shares, but by subtracting one from the other [Gou01]. That is, the relationship k = A ® B
becomes k = A’ — B’ (mod |€]). The essential observation of Goubin was that the function

(a,b): Z° — Z:a,b— (a®b) +b (9)
is affine over Fy. If we consider «, 8 as Boolean shares of x, where z = o @ 3, then, as defined by Goubin,

r+a=009(B,7) &P (B,yda), (10)

for a random variable . This is not side-channel resistant in Z because of the carries produced by the
addition operations. One needs to use a group Zo«, for some k € Z,, and have v be a random value from
Zgyr. However, we wish to change a Boolean share into an additive share in the group Z¢| where (10) is not
valid.
we can modify the shares such that Goubin’s mask conversion can be used adding a random multiple
of the order of the group as proposed by Coron for other algorithms [Cor99]. One can generate a random
integer £ € Zgn for some convenient bit length n. The Boolean shares (A = x @ B, B) can be modified to
(A’, B") where
(A',B") = (A (|, L€+ B) . (11)

11

We note that this gives A’ = k@ (¢|€] + B). If we consider the bit length of |£] is m then the above modified
shares can be used with (10) using group Zon+m to change the shares (A’, B’) to (A”, B"”) where

(A", B") = (x + €€] + B, (€| + B) . (12)

Then A” and B” can be reduced modulo |£] to provide additively split shares of in Z¢|. We can generate
a random integer w < |€] and change the shares to a multiplicative split (A", B"") where

(A", B") = (wA” —wB" mod |£],w) . (13)

We note that this gives A” = wk (mod |€]). The second part of the signature can be generated from r by
computing
s« B" (A’“*l (h(m) + dr)) mod |€].

Thus, using the above, one can generate an ECDSA signature where the nonce x only exists as two shares.
An explicit algorithm requiring 16 operations is given in Algorithm 10.

Algorithm 10: Secure Boolean-to-Multiplicative Masking

Input: A, B € Zon, where K = A® B, k € Z|g| and n is the bit length of |£], random value
v €40,...,2" — 1}, random value ¢ € {0,...,2™ — 1} where m is the bit length of one computer word

and random value w € {1,...,|&|}.

Output: xKw mod |&].
1 2+ €x|E]; 10 xg + A D x4
2 B < x1+ B; 11 g < 7 D x5 ;
3 12, B ®B; 12 B” + B’ mod |€] ;
4 A+ AP as; 13 A” + 29 mod |€] ;
5 v3+ A Dy 14 10 + B X wmod |€] ;
6 T4 T3+ 15 711 < A” x wmod |&] ;
7 x5 B ©; 16 T12 < z11 — 10 mod |&] ;
8 6 — A D5 ; 17 return x5 ;
9 X7 < X6 + Ts

Lemma 3. An implementation of Algorithm 10 is resistant to first-order side-channel analysis.

Proof. Tt suffices to consider each intermediate state and verify that at least one random mask is applied.
We consider the intermediate states as:

1. £ x|€] 10. ((Ux €]+ B)@drd (L x|E|+B)®)
2. @x |<|€5||+B) +((Ux|E|+B)@y)@(UXx|E|+B)dr
3. (£ x +B)® B
4. (Ex|E|+B) @k L r+0x|E]+ B
5. (Ux|E|+B) @ rdy 12. B mod |€]
6. (Ux|E]+B)®rdY)+7 13. kK + B mod ||
7. Ux|E]+B)®y 14 B d1e
8. (Ex|E|+B)@ra® (¢ x|E| +B) @~ - Bwmod [£]
9. (Ux|E]|+B)drd(UX|E|+B)®7) 15. kw+ Bw mod |€]
+ (< |E]|+B) @) 16. Kw mod ||

Then, it is easy to see that:

— the results of the operations in lines 1, 2, 3, 7, 12 and 14 are not dependent on the secret x and cannot
be attacked by a first-order side-channel analysis.

12

— the results of the operations in lines 4, 5, 6, 8, 9, 10, 11, 13, 15 and 16 are dependent on the secret x but
are masked by at least one random value and, therefore, cannot be attacked by a first-order side-channel
analysis.

Hence, Algorithm 10 is resistant to first-order side-channel analysis. a

We note that in the above proof the security of the output of line 10 may not be immediately apparent. We
refer the reader to Goubin [Gou01] for a thorough explanation.

4.2 Applying Exponent Splitting to ECDH

For ECDH, the basic primitive is to take a public key @ and compute a scalar multiplication using a private
key. This operation has different security requirements to ECDSA. The bit length of the private key does
not need to be protected but the input point @ could be controlled by an adversary. The exponent splitting
methods detailed in this paper do not modify the intermediate states generated and one would expect that
randomizing projective points would be adequate to provide a secure solution [WMPW98|. However, such
multiplicative masking can be problematic if an attacker can choose and input that could produce a point
with a coordinate set to zero, which cannot be blinded using a multiplication [Gou03]. Hence, one would
need to combine our algorithms with Coron’s countermeasures [Cor99] and add a small multiple of the order
of the group to the private key before it is used. The bit length of the multiplier needs to be chosen such
that an attacker cannot predict the location of a zero-coordinate with sufficient reliability to make is visible
in a side-channel attack. Something like 16 bit may be sufficient, depending on the signal-to-noise ratio of
the platform. The advantage of combining these countermeasures is that one does not need to consider the
longest runs of ones or zeros in the order of the group.

5 Security Evaluation

In this section, we discuss the security of the algorithms presented previously, first by making a comparison
with the state-of-the-art algorithms and then by showing the resistance of our algorithms against template
attacks. Furthermore, we provide a security evaluation of Algorithm 2, proposed in this paper, in terms
of noisy leakage security and its resistance to multiple forms of side-channel attack. We note that similar
analyses can be carried out for all exponent splitting variants presented in this work.

5.1 Theoretical Comparison with the State-of-the-Art Algorithms

In this subsection, we compare our proposed algorithms with a selection of algorithms discussed in the
previous sections and summarize our observations in Table 1.

The first block of algorithms in Table 1, contain exponentiation algorithms using the Montgomery power
ladder without splitting the exponent (Algorithm 1), with additive splitting or with variations of XOR-
splitting (Algorithms 2, 3, 4). Multiplicative or Euclidean splitting are not included in this table, because in
terms of security they have the same side-channel resistance as an algorithm with additive splitting. In terms
of performance, the number of operations is the similar, unless the values s* are precomputed and stored in
memory. The second block of algorithms summarizes the behavior of the corresponding scalar multiplication
algorithms 4.

We note that none of the algorithms in their current form can prevent leakage from observing the
intermediate values. However, intermediate values can be blinded with a random value at the cost of an
inversion (or subtraction for elliptic curves).

4 We do not count XORs, which can be implemented almost for “free” compared to the cost of multiplications
(M), squaring operations (S) and modular inversions (I) in the chosen field or point additions (A) and doubling
operations (D) on an elliptic curve. The subtraction of points on an elliptic curve has the same cost as an addition,
so we do not count them separately.

13

Algorithm foperations iregisters| Hide |ADPA |Interm.
length Values
Algorithm 1 n-M+n-S 2 X X X
Clavier-Joye [CJO01] 2(n-M+mn-S) 2 X X X
Algorithm 2 n-M+n-S 3 v v X
Algorithms 3-4 2n - M 4 v v X
Algorithm 5 2n - M 4 v v X
Algorithm 6 (n—1-A4+(n-1)-D 3 4 v X
Algorithm 7 2-(n—1)-A 4 v v X
Itoh et al. [IIT03] Alg. 8 (n—1)-D+(n—1)-A4+1-1 3 X 4 X
Izumi et al. [IISO10] Alg. 2 (n—1)-D4+(n—-1)-A 3 X v X
Algorithm 8 n-D+n-A 3 v v X
Algorithm 9 2:n-A 4 v v X

Table 1. Comparison Table

5.2 Security against Template Attacks

Template Attacks in general are a powerful attack technique because they take advantage of most of the
information available in the traces that are measured [CRR02]. An attacker is assumed to possess a de-
vice similar to the device under attack, and can build templates for some instructions knowing the power
consumption characteristics on a device.

In a template-based DPA, an attacker matches the templates based on different key hypotheses with the
recorded power traces [OMO07]. The templates that have the best match indicate the key. This type of attack
is the best attack in an information theoretic sense and, in a masking scheme like ours, it would work if one
could build templates for each share a; and b;. Simultaneous knowledge of the two shares would be necessary
because, for every possible value of the key bit, there are two different possibilities for a;, b; that could give
the same result, as follows:

ki=1=(a;=0 and b;=1) or (a;=1 and b; =0)

kki=0=a;,=b;=0 or a;,=b=1

In operations where b/ is also involved, as in line 5 of Algorithm 2, line 4 of Algorithm 5 etc., we need to store
the b;_1 value from the templates of the previous round. This procedure seems quite complex and unlikely
to succeed in devices with a small signal-to-noise ratio.

Another powerful template attack technique is Online Template Attacks (OTA) [BCP'14]. OTA uses
templates of multiples of a known base point kP, for some k € Z, and compares them with the result of a
specific operation, a doubling operation for example, for every round of the algorithm. Every unprotected
implementation of scalar multiplication is vulnerable to OTA, unless the coordinates of the base point are
randomized®. The algorithms presented in this paper are secure against OTA, because the doubling (or not)
of a specific point, does not reveal the bit of the scalar k;. We demonstrate this claim, using two algorithms
as case studies, one for the case of general group exponentiation and one for elliptic curves. The extension
to other algorithms presented in this paper is straightforward.

Algorithm 2: In line 4 we have
2
Rai — (R(blﬂab,)@(Jq) n,
where a squaring is performed and we could make templates for the potential values RZ and R?, in order
to find out which operation is most probable. Let us assume that there is a pattern match of 99% with the
value R3. Even if we know with high probability which value is calculated at this step, we do not know which
register is going to be used in the next step using OTA. Moreover, the index 0 can be derived from several
combinations of a;, b;,b'. Namely, if a; = b; = 0,0/ =0, 0r a; =b; = 1,0/ =0o0ra; =0,b;, = 1,0/ =1 or
a; = 1,b; = 0,0’ = 1. If the previous shares are known, therefore b’ is known, there are still two possible

5 Although OTA is initially presented for the case of elliptic curves, the attack can be used against any exponentiation
algorithm, as long as templates for certain exponent values can be created.

14

values for a; and b; that can give the same result with equal probability. The success probability of OTA is
then 1/2 which is no better than a random guess.

Algorithm 6: Let us assume that templates on a doubling operation show that in line 6 of Algorithm 8, we
have 2 R;y. The possible values of a;, b;, b’ that could result in 1 are: (a; = b; = 0,0’ =1), or (a; =b; =1, =
1) or (a; =0,b; = 1,/ = 0) or (a; = 1,b; = 0,0’ = 0). The success probability of OTA is again 1/2 if the
previous shares are known. We note here, that in both cases, knowledge of the previous bit is not enough to
give a success probability of 1/2, but knowledge of at least one of the shares is required.

5.3 Mutual Information-based Evaluation of Boolean Exponent Splitting

Having established that the proposed exponent splitting algorithms are probing-secure against first-order
side-channel attacks, we proceed to analyze the noise amplification stage of the proposed countermeasure.
Analytically, we perform an evaluation of Boolean exponent splitting (as described by Algorithm 2) using
the information-theoretic framework of Standaert et al. [SMY09]. Analogous approaches can be conducted
for all exponent splitting algorithms, yielding very similar results. Our analysis considers two sources of
leakage, namely data-based leakage and location-based leakage (also known as address leakage). Using these
two leakage sources, we demonstrate three possible attack paths against Algorithm 5, covering all possible
combinations between leakage sources. Thus we show the noise amplification stage when only data-based
leakage is exploited (data attack), when only location-based leakage is exploited (location attack) and finally
the noise amplification stage when the adversary combines data and location leakage (hybrid attack).

Notation & MI Metric. In this subsection, random variables are denoted with capital letters. Instances
of random variables and constant values are denoted with lowercase letters. Capital bold letters are used for
random variable vectors and matrices and calligraphic font denotes sets. All simulations in this section are
carried out with the identity leakage function. Observable data-based leakages of a certain intermediate value
v are denoted using subscript L,. Likewise, observable location-based leakages caused by accessing register R;
(where i the index) are denoted using subscript L ;. To distinguish between data-based leakage and location-
based leakage we use superscript L% and L!°°. In addition, we assume that different sources of leakage
(data, location) have different noise levels i.e. we assume homoscedastic data noise N9 ~ A/(0,02,..) and
homoscedastic location noise N'°¢ ~ N(0,02). We use the following formula to compute the MI metric.

MIS;L) = HIS|+ Y Prls]- S Prim]- /Pr[l\s,m] loga Pr{s|l] dl
sES meM? les(d+1)
> meer Prlls, m*]
ZS*ES Em*ER P’I‘[l|8*, 1’1’1*]

Random variable S denotes the secret exponent bit, L denotes the leakage vector and M is a d-dimensional
randomness vector that we need to sum over when randomization is in place, i.e. d is the attack order.

where Prls|l] =

Data leakage attack. The first obvious way to recover k,_1 is by observing the data leakage of the values
bn—1 and a,_1 at the same time. We run the algorithm for the first two rounds and note the intermediate
values that can leak information. We let b’ be a random value from R{0,1}, then:

t=n-—1 t=n—2
1. b?n = bn—l v 6. bm = bn—2 v
2. m =by Bap_1 7. A = by @ ap_2
3. Ro= Ry - Ra. 8. Ro= Ry - Ra.
4 Ry =Ro-Uy, . 9. Ri=Ro-Uy, .
5 0 =b,_1 10. ' =b,,_»

As can be observed in above, the value b, is accessed in the first iteration (i = n — 1) three times, once
when b,,, is calculated (line 1), once implicitly for the index of U,, _, (line 4) and finally for b’ (line 5). The

15

value a,_1 is accessed once during the first iteration (¢ = n — 1) and it is not used in the second iteration
(i = n—2). We notice that the value b, is used implicitly again in the second iteration, since it is equal to
b’. An attacker observing the power leakage of this algorithm should be able to probe at two different points
in time, in order to observe both leakages Lgitj’l, Lgﬁal and eventually the key, i.e. we conclude that a second-
order attack is possible for this scheme. Note also that the an adversary with ability to conduct horizontal
side-channel attacks [BCPZ16] could observe the leakage of b,_; multiple times, average them by computing
Ebdgii =1« Z?Zl L‘g:’i“l in order to reduce the noise level and finally perform a second-order attack. The
results of the MI evaluation are visible in Figure 1. As expected, the exponent splitting scheme performs
noise amplification and has a different slope compared to an unprotected exponentiation (Algorithm 3.1).
In addition, we observe the curve’s horizontal shift to the right caused by the horizontal exploitation of the

available leakage, i.e. we can quantify the effect of multiple leaky points for b,,_;.

Data Attack - 2nd order

Location Attack - 3rd order

data | dataq.

data | datayg)
loc loc 1.
I'R-i2’ I'R-i:i]’s)

'
N

loc
U-i1’

Exp Split
- - - - Exp Split+Horizontal
............... Unprotected

'
IN

—Exp Split
----Unprotected

log ,,MI(IL

]

w
]

(@]

log ,,MI([L

I
2]

-1.5 -1 -0.5 0 0.5 1
2

-2 -1.5 -1 -0.5 0 0.5 1

'
N

2
095 (T5at,)

Fig. 1. MI evaluation for Algorithm 2, using a data
leakage attack, with and without horizontal exploita-

log, (],

Fig. 2. MI evaluation for Algorithm 2, using a lo-
cation leakage attack. Observed leakage vector L =

tion. Observed leakage vector L = [Ld2t | [dote] [Ll[}’_cil JLee LS).

ap—17 “bp_1 -ig 13

Location leakage attack. Let us assume that the adversary can distinguish between the manipulation of
registers according to which address is accessed, similar to the address-bit DPA attack described in [IISO10].
If the adversary can distinguish between accesses to, Uy and U; for example, a direct consequence is recovery
of value b,,_1. To mount a successful attack against Algorithm 5 using solely location-based leakage, we
need the simultaneous observation of the address of U;, and R;, and R;,, for indexes iy = b,_1 (line 4) and
ia = by, (line 3) and 43 = a,, (line 3). Thus, in order to recover k,_1, we need to observe leakage vector
Llee = [Llfjofil,Lllgfiz,L%’fis], i.e. perform a third-order attack. The results are visible in Figure 2, where we
can observe the noise amplification effect that increases the curve’s slope. Naturally, a third-order attack
using only location-based leakage tends to be less effective compared to a second-order attack using only
data-based leakage. However, depending on the device, exploiting the address dependency may be more
effective than exploiting the data dependency. That is, the third-order attack can become more efficient if
Odata =~ Oloc-

Hybrid leakage attack. Lastly, we analyze the scenario in which an adversary can observe both data-based
and location-based leakage. Using this information the adversary can use leakage vector L = [Lg‘i‘i"l , Ll[}’fbnil]
to carry out a second-order attack that uses data leakage to recover bit a,_1 and location leakage with
regard to register U to recover bit b,_1. Since data and location leakage imply different noise levels, i.e.
(0data 7# Oloc), we need to represent the available information as a three-dimensional plot, as in Figure 3.
The wave-like plot quantifies the attainable information with regard to a particular data and location noise
level. Thus, it assists the side-channel evaluator to analyze the scheme’s security in a more holistic way
that factors in location leakage and demonstrates the tradeoff between data noise and location noise. If for

16

instance 0, < Ogqtq in the target device, the adversary can directly opt for the hybrid attack, instead of
pursing a data-only attack route.

Hybrid Data+Location Attack - 2nd order

2

109,07 4ata

Fig. 3. MI evaluation for Algorithm 5 exponent splitting, using a hybrid leakage attack. Observed leakage vector
L= [Ldee Ligs,,).

ap_1>

6 Implementation Considerations

In this section, we describe the results of applying Test Vector Leakage Assessment (TVLA) [GJJR11] to
implementations of some of the algorithms above. We further describe modifications required to achieve a
secure implementation where the hardware architecture can mean that variables that should be independent
leak at the same time, potentially unmasking a secret value [BGG114].

Our implementations were developed using Xilinx’s Zynq zc702 evaluation board. The Zynq zc702 micro-
processor contains two ARMT7 cores and an FPGA fabric. We used one ARMY7 core for our implementations,
clocked at 667 MHz, and the FPGA provided a means of triggering an oscilloscope at a convenient point
in our implementations. We acquired a trace of the electromagnetic emanations around one of the coupling
capacitors.

The test that we used from TVLA is to determine whether there are statistically significant differences
in the mean traces of two sets of traces, one acquired with a fixed scalar and the other with random scalar.
One would typically randomly interleave acquisitions so that environmental effects are the same for both
sets and there are no erroneous indications of leakage, caused, for example, by the least significant bit of a
variable used to count the number of acquisitions. In applying this, one would take two sets of data, and
conduct Welch’s t-test point-by-point to determine whether there is evidence against the null hypothesis
that the sets are the same. We determine that leakage is present if we observe values above 6.63 ¢ which
gives the probability of indicating leakage where no leakage is present, often referred to as a Type I error,
of approximately 1 x 10° when using traces containing 3 x 10° samples. The interested reader is referred to
Goodwill et al. [GJJR11] and Schneider and Moradi [SM15] for a thorough description.

We made a straightforward implementation of Algorithm 6 using NIST’s P192 curve and conducted a
test where we compared a set of traces with a fixed scalar compared to a set of traces with a random
scalar. The elliptic curve points were implemented as homogeneous projective points. We use the = and
z-coordinates in conjunction with so-called z-only algorithms for point arithmetic [BJ02], as one would for
an implementation of ECDH. The instantaneous electromagnetic emanations around the targeted capacitor
were measured during the execution of the first 20 rounds of the implementation. The top-left trace in

17

Figure 4 shows the result of a TVLA analysis with 1 x 10 traces where leakage can be seen in numerous
places.

Ll H\M ‘

t-statistic / o
o
t-statistic / o

F‘ ‘H ‘H | ‘\H\ ‘\‘ T

20 b 20 b
. . . .
0 100000 200000 300000 0 100000 200000 300000
sample sample
10 10
50 . sk .

t-statistic / o
t-statistic / o

L L
0 100000 200000 300000
sample

L L
0 100000 200000 300000
sample

Fig. 4. From top left to bottom right we show: an unmasked implementation showing leakage after 1 x 10 traces,
a naive implementation of Algorithm 6 and a more secure variant both showing leakage after 1 x 10° traces, and an
implementation of Algorithm 11 that does not show leakage after 1 x 10° traces

A straightforward implementation of Algorithm 6 was tested in the same way. The algorithm is similar
to that proposed by Izumi et al. [IIT03] but with masking conducted before the execution of the scalar
multiplication, rather than on-the-fly. The resulting TVLA traces is shown in the top-right of Figure 4,
where we note that significant leakage is present with 1 x 10° traces. This is caused by the microprocessor
combining values held in registers because of the architecture chosen by the designers [BGGT14].

A more secure implementation can be made by computing some of the required indices before the exe-
cution of the main loop of the scalar multiplication, as shown in Algorithm 11. We set C' to B & LgJ such
that individual bits of B are masked by adjacent bits. The resulting TVLA trace is shown in the bottom-left
of Figure 4, where we observe that there is only one place where we see significant leakage with 1 x 106
traces. This leakage occurs because the initial state of {Rg, Ry} contain {P,2 P} in some random order.
In the first loop of the scalar multiplication {Rg,R;1} is overwritten with {2P,3 P} or {3P,4 P}, in some
random order, depending on whether the second most-significant bit of is set to 0 or 1, respectively. When

18

2 P overwrites 2 P the side-channel leakage will be significantly different to any other possible combination,
since the Hamming distance will be zero.

Algorithm 12: Montgomery Ladder with
XOR-Split Scalar IT on an EC
Input: £, F,, P € £, n-bit integers
A=Y"1a; 2", B=Y"""b;2"
Output: Q = [k]P where k = A® B
Uses: C=Y"""¢;2"and D=3"""d; 2

Algorithm 11: Montgomery Ladder with
XOR-Split Scalar on an EC
Input: £, F,, P € £, n-bit integers
A=3""a;2", B=Y"b;2"
Output: Q = [k]P where k = A® B
Uses: C =" ¢ 2

1Ry < P;Ri < P;R,« P; O S
C+Bol|E|; O a2l De
2 7 3C+Ba|2|;D«Ch4
3 b byt ; 4 b b ;
) n—1 ,
4 Ry 2P, 5 Ry +2P;
5 for i =n — 2 down to 0 do 6 for i =n — 2 down to 0 do
6 Ry~ R.,,+ R, ;
; ; 7 Ry~ R., + Ry, ;
7 | Ra, < 2Ru00 ; 8 | Ri« Ro+U,, :
. Rﬂa.<_R2; /1 0 b;
) 9 b« b ;
9 end
10 end
10 return Ry, 11 return Ry,

A fully secure implementation can be achieved by randomizing the point produced by the doubling
operation, by multiplying the x and z-coordinate of the resulting point by a random value. In implementing
Algorithm 11, this was achieved by randomizing Ry and R; before the main loop of the scalar multiplication.
The resulting TVLA trace is shown in the bottom-right of Figure 4, where we observe that there is no
significant leakage with 1 x 10 traces. An alternative would be to set the coordinates of R,, to zero before
setting R,, to Rs.

Algorithm 12 shows the same arguments applied to Algorithm 7. However there is no need to randomize
any points during the loops of scalar multiplication. If the redundant representation of the point assigned to
Ry and R; is randomized separately to that applied to Uy an overwrite with a Hamming distance of zero
cannot occur.

7 Conclusion

In this paper, we show how an exponent can be split into two shares, where the exponent is the XOR sum
of the two shares and the cost is typically an extra register and some register copies per bit. A significant
advantage over previously proposed exponent splitting methods, which have a prohibitive impact on perfor-
mance [CJ01]. Our method can also be applied to groups whose order contains long runs of bits set to 0 or
1 without any penalty on performance or security. We showed that our algorithms are secure using formal
methods, MI-based evaluation and TVLA on an implementation of Boolean exponent splitting. Furthermore,
we showed how an ECDSA signature can be generated by only manipulating shares of the random nonce used
to secure the scheme. We note that our method does not prevent an attacker from using the intermediate
states generated by the algorithms as a means of attack. However, inexpensive solutions such as randomizing
projective points [WMPW98] or Ebeid and Lambert’s blinding method for RSA [EL10] can be combined
with out method to provide a high level of side-channel resistance.

The algorithms presented above will be more efficient than adding a multiple of the group order to the
exponent, since the bit length of the exponent is not increased. Moreover, the resistance to collision attacks is
superior, since one would need to conduct several attacks to derive each share and reconstruct the exponent.

19

Where one is adding a random multiple of the exponent any bits recovered directly relate to bits of the
exponent used. It has not yet been shown that one can derive an exponent from gaining partial information
on a series of blinded exponents, but significant advances have been made [SI11,Sch14,SW14].

Acknowledgments

The authors would like to thank Lauren De Meyer and Michael Hamburg for their helpful comments.

References

[BCLN16]
[BCOO4]

[BCP*14]

[BCPZ16]

[Ber06]

[BGG*14]

[BJ02]
[BL09)]
[CJo1]

[CJ03]

[Cor99]
[CRR02]

[Edw07]

[EL10]

[FRV14]

[GJJIR11]

[GMOO1]

[Gou01]

Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig. Selecting elliptic curves for cryp-
tography: an efficiency and security analysis. Journal of Cryptographic Engineering, 6(4):259-286, 2016.
Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage model. In
M. Joye and J.-J. Quisquater, editors, CHES 200/, volume 3156 of LNCS, pages 16-29. Springer, 2004.
Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and Michael Tunstall.
Online template attacks. In W. Meier and D. Mukhopadhyay, editors, INDOCRYPT 2014, volume 8885
of LNCS, pages 21-36. Springer, 2014.

Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. In Cryptographic Hardware and Embedded
Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, pages 23—-39, 2016.

Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207—228. Springer, 2006.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Frangois-Xavier Standaert. On
the cost of lazy engineering for masked software implementations. In Marc Joye and Amir Moradi,
editors, CARDIS 2014, volume 8968 of LNCS, pages 64—81. Springer, 2014.

Eric Brier and Marc Joye. Weierstraf} elliptic curves and side-channel attacks. In David Naccache and
Pascal Paillier, editors, PKC 2002, volume 2274 of LNCS, pages 335-345. Springer, 2002.

Daniel J. Bernstein and Tanja Lange. A complete set of addition laws for incomplete edwards curves.
TACR Cryptology ePrint Archive, 2009:580, 2009.

Christophe Clavier and Marc Joye. Universal exponentiation algorithm. In C. K. Kog, D. Naccache, and
C. Paar, editors, CHES 2001, volume 2162 of LNCS, pages 300-308. Springer, 2001.

Matthieu Ciet and Marc Joye. (virtually) free randomization techniques for elliptic curve cryptography.
In S. Qing, D. Gollmann, and J. Zhou, editors, ICICS 2003, volume 2836 of LNCS, pages 348-359.
Springer, 2003.

Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryptosystems. In
C. K. Kog and C. Paar, editors, CHES 1999, volume 1717 of LNCS, pages 292-302. Springer, 1999.
Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In CHES 2002, pages 13-28,
2002.

Harold M. Edwards. A normal form for elliptic curves. In Cetin .K. Ko¢ and Christof Paar, editors,
Bulletin of the American Mathematical Society, volume 44, pages 393422, 2007. http://www.ams.org/
journals/bull/2007-44-03/50273-0979-07-01153-6/home . html.

Nevine Maurice Ebeid and Rob Lambert. A new CRT-RSA algorithm resistant to powerful fault attacks.
In WESS 2010, page 8. ACM, 2010.

Benoit Feix, Myléne Roussellet, and Alexandre Venelli. Side-channel analysis on blinded regular scalar
multiplications. In W. Meier and D. Mukhopadhyay:, editors, INDOCRYPT 2014, volume 8885 of LNCS,
pages 3-20. Springer, 2014.

Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. P.: A testing methodology for side
channel resistance validation, 2011. NIST non-invasive attack testing workshop.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Concrete results.
In C. K. Kog, D. Naccache, and C. Paar, editors, CHES 2001, volume 2162 of LNCS, pages 251-261.
Springer, 2001.

Louis Goubin. A sound method for switching between Boolean and arithmetic masking. In C. K. Kog,
D. Naccache, and C. Paar, editors, CHES 2001, volume 2162 of LNCS, pages 3—15. Springer, 2001.

20

[Gou03]
[Ham15)

[HKT15]

[HS01]

[11SO10]

[11T02]

[1IT03]

[TY02]
[KJJ99]

[KKYH10]

[Koc96]

[LTT15]

[MD99]

[MDS99]

[ML14]

[MMS01]

[Mon87]

[Nat09]

[NNTW05]

[NP16]
[OMO7]

[QS01]

[RSATS]

Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 199-210. Springer, 2003.

Michael Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive, Report 2015/625,
2015. http://eprint.iacr.org/2015/625.

Neil Hanley, HeeSeok Kim, and Michael Tunstall. Exploiting collisions in addition chain-based expo-
nentiation algorithms using a single trace. In K. Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS,
pages 431-448. Springer, 2015.

Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature schemes. Des. Codes
Cryptography, 23(3):283-290, 2001.

Masami Izumi, Jun Ikegami, Kazou Sakiyama, and Kazou Ohta. Improved countermeasures against
address-bit DPA for ECC scalar multiplication. In G. De Michell, B. M. Al-Hashimi, W. Miiller, and
E. Macii, editors, DATE 2010, pages 981-984. IEEE, 2010.

Kouichi Itoh, Tetsuya Izu, and Masahiko Takenada. Address-bit differential power analysis of crypto-
graphic schemes OK-ECDH and OK-ECDSA. In B. S. Kaliski Jr., ¢. K. Kog, and C. Paar, editors,
CHES 2002, volume 2523 of LNCS, pages 129-143. Springer, 2002.

Kouichi Ttoh, Tetsuya Izu, and Masahiko Takenada. A practical countermeasure against address-bit
differential power analysis. In C. D. Walter, C. K. Kog, and C. Paar, editors, CHES 2003, volume 2779
of LNCS, pages 382—-396. Springer, 2003.

Marc Joye and Sung-Ming Yen. The Montgomery powering ladder. In B. S. Kaliski Jr., editor, CHES
2002, volume 2523 of LNCS, pages 291-302. Springer, 2002.

Paul Kocher, Josh Jaffe, and Ben Jun. Differential power analysis. In M. J. Wiener, editor, CRYPTO
’99, volume 1666 of LNCS, pages 388-397. Springer, 1999.

HeeSeok Kim, Tae Hyun Kim, Joong Chui Yoon, and Seokhie Hong. Practical second-order correlation
power analysis on the message blinding method and its novel countermeasure for RSA. ETRI Journal,
32(1):102-111, 2010.

Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In
N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages 104-113. Springer, 1996.

Duc-Phong Le, Chik-How Tan, and Michael Tunstall. Randomizing the Montgomery powering ladder.
In R. N. Akram and S. Jajodia, editors, WISTP 2015, volume 9311 of LNCS, pages 155-170. Springer,
2015.

Thomas S. Messerges and Ezzy A. Dabbish. Investigations of power analysis attacks on smartcards. In
Scott B. Guthery and Peter Honeyman, editors, Smartcard 1999. USENIX Association, 1999.

Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power analysis attacks of modular
exponentiation in smartcards. In Cetin Kaya Ko¢ and Christof Paar, editors, CHES’99, volume 1717 of
LNCS, pages 144-157. Springer, 1999.

Jorn-Marc Schmidt Torsten Schiitze Manfred Lochter, Johannes Merkle. Requirements for standard
elliptic curves. Cryptology ePrint Archive, Report 2014/832, 2014. https://eprint.iacr.org/2014/832.
David May, Henk L. Muller, and Nigel P. Smart. Random register renaming to foil DPA. In Cetin Kaya
Kog, David Naccache, and Christof Paar, editors, CHES 2001, volume 2162 of LNCS, pages 28-38.
Springer, 2001.

Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
Computation, 48(177):243-264, 1987.

National Institute of Standards and Technology (NIST). Recommended elliptic curves for federal govern-
ment use. In the appendix of FIPS 186-3, available from http://csrc.nist.gov/publications/fips/
fips186-3/fips_186-3.pdf, June 2009.

David Naccache, Phong Q. Nguyen, Michael Tunstall, and Claire Whelan. Experimenting with faults,
lattices and the DSA. In S. Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 16-28. Springer,
2005.

Christophe Negre and Thomas Plantard. Efficient regular modular exponentiation using multiplicative
half-size splitting. Journal of Cryptographic Engineering, pages 1-9, 2016.

Elisabeth Oswald and Stefan Mangard. Template attacks on masking - resistance is futile. In CT-RSA,
volume 4377 of LNCS, pages 243-256. Springer, 2007.

Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Measures and counter-
measures for smart cards. In I. Attali and T. P. Jensen, editors, E-smart 2001, volume 2140 of LNCS,
pages 200-210. Springer, 2001.

Ron Rivest, Adi Shamir, and Leonard M. Adleman. Method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

21

[Sch14]

[ST11]

[SM15]

[SMY09]

[SOPOS]

[SW14]

Werner Schindler. Exclusive exponent blinding may not suffice to prevent timing attacks on RSA.
Cryptology ePrint Archive, Report 2014/869, 2014. http://eprint.iacr.org/.

Werner Schindler and Kouichi Itoh. Exponent blinding does not always lift (partial) SPA resistance
to higher-level security. In J. Lopez and G. Tsudik, editors, ACNS 2011, volume 6715 of LNCS, pages
73-90. Springer, 2011.

Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear roadmap for side-channel
evaluations. In Tim Giineysu and Helena Handschuh, editors, CHES 2015, volume 9293 of LNCS, pages
495-513. Springer, 2015.

Francois-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for the analysis of side-
channel key recovery attacks. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
443-461. Springer, 2009.

Nigel Smart, Elisabeth Oswald, and David Page. Randomised representations. IET Proceedings on
Information Security, 2(2):19-27, 2008.

Werner Schindler and Andreas Wiemers. Power attacks in the presence of exponent blinding. J. Cryp-
tographic Engineering, 4(4):213-236, 2014.

[WMPWO98] Erik De Win, Serge Mister, Bart Preneel, and Michael J. Wiener. On the performance of signature

schemes based on elliptic curves. In Joe Buhler, editor, ANTS 1998, volume 1423 of LNCS, pages
252-266. Springer, 1998.

[WyWM11] Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menarini. Defeating RSA multiply-

always and message blinding countermeasures. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558
of LNCS, pages 77-88. Springer, 2011.

22

