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Abstract. In this paper we extend the work presented by Ashur and
Posteuca in BalkanCryptSec 2018, by designing 0-correlation key-dependent
linear trails covering more than one round of DES. First, we design a 2-
round 0-correlation key-dependent linear trail which we then connect to
Matsui’s original trail in order to obtain a linear approximation cover-
ing the full DES and 3DES. We show how this approximation can be
used for a key recovery attack against both ciphers. To the best of our
knowledge, this paper is the first to use this kind of property to attack a
symmetric-key algorithm, and our linear attack against 3DES is the first
statistical attack against this cipher.
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1 Introduction

Linear cryptanalysis is one of the most important tools used in the security
evaluation of block ciphers. It was introduced in 1993, by Mitsuru Matsui, and
used to attack the DES cipher. The technique became intensively studied, the
formalism of linear cryptanalysis being extended in e.g., [Bih94, Nyb94]. It has
been proven to be widely applicable and has produced many variants and gener-
alizations such as multiple linear cryptanalysis [JR94,BCQ04], differential-linear
cryptanalysis [CV94], zero-correlation linear cryptanalysis [BR11,BR14], etc.

Usually, linear cryptanalysis is used to launch a known-plaintext attack. The
hypothesis of a known-plaintext attack is that the attacker has a set of plaintexts
and their corresponding ciphertexts, enciphered using the same, fixed, key. The
purpose of the attack is to recover information regarding the secret key that was
used.

The initial idea behind linear cryptanalysis was to find a linear approximation
connecting between a set of plaintext, ciphertext and key bits that holds with
a probability different from 0.5. The quality of a linear approximation, usually
measured by its correlation or its bias, is one of the open problems in linear
cryptanalysis, being directly related to the success rate and the data complexity
of the attack.

In order to construct a linear approximation of an iterated cipher, Matsui
proposed to sequentially linearize each round of the cipher. The resulting set of
linear approximations is called a linear trail. The correlation of a linear trail is



computed by using the Pilling-Up Lemma, more precisely, by multiplying the
correlations of each 1-round linear approximation.

1.1 Related Work

In [Nyb94] it was first observed that in some cases, there is more than a single
linear trail involving the same plaintext and ciphertext bits. The set of all such
linear trails, with a fixed set of input and output bits, is called a linear hull.
The correlation of a linear hull is computed by summing up all underlying linear
trails’ correlations. Thus, the correlation of the linear hull may be significantly
different from that of any of the underlying trails. When a linear attack is used,
both the success rate and the data complexity of the attack are closely related
to the hull’s correlation and not to that of the trail.

In [AR16], Ashur and Rijmen proved that the linear hull effect can sometimes
appear already within a single round of a cipher. All their experiments and key-
recovery attacks were applied to the lightweight block cipher SIMON. Following
up on this work, Ashur and Posteuca analyzed in [AP18] this phenomenon for the
Data Encryption Standard (DES). They showed that under certain constraints,
the f -function of DES exhibits 0-correlation key-dependent one-round linear
hulls.

1.2 Our Contribution

In this paper we present a new type of linear attack against the full DES and
3DES. The attack uses a 1-round 0-correlation linear hull and embeds it into
Matui’s 8-round linear trail. This results in a 16-round 0-correlation linear trail
for DES and a 48-round linear trail for 3DES, both with correlation zero under
certain conditions for particular key bits. We then show how these linear trails
can be used for key recovery by exploiting the key-dependent behavior of the
correlation.

The contribution of the paper is therefore twofold:

1. We present a new linear trail covering the full DES and 3DES;
2. We show how the key-dependent behavior of a linear trail can be used for

key recovery.

To the best of our knowledge, our attack against the full 3DES is the first
statistical attack against this cipher, and this paper is the first to ever use a
1-round 0-correlation linear approximation for an attack.

1.3 Structure of this Paper

In section 2, we introduce our notation, revisit some terminology regarding linear
cryptanalysis and briefly describe the block ciphers DES and 3DES. In section 3
we introduce 0-correlation linear approximations covering the full DES and 3DES
and show how these can be used for key recovery. section 4 concludes the paper
and offers future research directions.



2 Notation and Terminology

In this section we introduce the notation used throughout this paper and recall
some terminology regarding linear cryptanalysis. We also present the DES and
the 3DES ciphers.

2.1 Masks and Approximations

Let a be a binary value of length n and let atx =
⊕n−1

i=0 aixi, where ai and xi
are the ith bit of a and x, respectively. We then say that a is the mask of x.
Given that applying a mask to a number represents, in essence, a selection of
bits of x, we will also use the description of a mask as a set of positions:

x̄ = {i1, i2, ..., iv} ⇔

{
xj = 1,∀j ∈ {i1, i2, ..., iu}
xj = 0,∀j /∈ {i1, i2, ..., iu}

The bits in the positions {i1, i2, ..., iv} are called active bits, while the re-
maining bits of x are called non-active bits.

Let Rk(x) = y denote the round function of a block cipher, where x, y and k
are the plaintext, the ciphertext and the key, respectively. A linear approximation
for Rk is a tuple (α, β, κ), where α, β and κ are the input mask, the output
mask and the key mask, respectively. Let p be the probability that the equation
αtx ⊕ βty ⊕ κtk = 0 holds, then the correlation of the linear approximation
(α, β, κ) is defined as corr(α, β, κ) = 2p− 1. In general, both p and corr(α, β, κ)
are key-dependent (see, e.g., [AÅBL12])

A pair of masks (α, β) is called connectable if and only if β can be obtained
from α using the rules of propagation of linear trails introduced in [Bih94,CV94].
Otherwise, the pair (α, β) is called non-connectable.

2.2 Linear Hulls and Trails

An iterated block cipher with r rounds is described as r− 1 compositions of the
round function with itself, Enck = Rkr−i ◦ ... ◦Rk0 , where ki denotes the round
key. A linear trail covering r rounds of a block cipher is a sequence of linear ap-
proximations such that the output mask of round i is the same as the input mask
of round i+1. Hence, a linear trail can be represented as an (r+1)-length vector
(m1,m2, ...mr+1), where (mi,mi+1) represents the input and output masks at
round i, respectively. The correlation of the linear trail is computed by multi-
plying the correlation of all single-round linear approximations:

corr(m1, ...mr+1) =

r∏
i=1

corr(mi,mi+1)

A linear hull covering r rounds is a pair (α, β) and represents the set of all
linear trails such as m1 = α and mr+1 = β (i.e., the input and output masks are



fixed, but intermediate round masks may vary). The correlation of a linear hull
is computed by adding the correlations of all linear trails contained by it:

corr(α, β) =
∑

m1=α,mr+1=β

corr(m1, ...mr+1)

Following [DGV94], the round function of a block cipher can also be viewed
as a composition of its atomic operations. Thus, the methods described above for
computing the correlation of a linear trail can also be applied on a smaller scale to
these atomic operations. In [AR16], the authors observed that, in some cases, it is
possible to construct more than a single linear trail inside the round function by
applying the method presented above. Likewise, in [AP18], the authors showed
that this is also true for DES’ f -function, and hence that the linear hull effect may
appear already inside one round of DES. This paper uses the latter observation
to attack the cipher.

2.3 The DES Cipher

The Data Encryption Standard (DES) [DES] is a block cipher developed by IBM
during the early 1970s and was published as an NBS (now NIST) standard in
1977.

DES uses a Feistel structure with a round function which employs a non-
linear function f . The overall structure of DES consists of an initial permutation,
16 enciphering rounds and a final permutation. The plaintext and the key are
64-bit each, even though only 56 out of 64 key-bits are actually used by the
algorithm.

The input to the round function is a 48-bit round key (denoted by k) and
two 32-bit intermediate cipherwords (denoted by x and y).

The round function of DES is given by:

Rk(x, y) = (y ⊕ f(x, k), x).

The f -function consists of four layers:

1. The expansion layer : the 32-bit input x is expanded into a 48-bit output
using the expansion function described in Table 1. One may notice that after
applying the expansion function, 16 out of 32 input bits are used twice. We
will use this property in our analysis. In the sequel, we denote the expansion
function by E.

2. Key addition: the output of the expansion function is XORed with the 48-bit
round key;

3. The substitution layer : the output of the key addition is divided into eight
6-bit chunks. Each of these blocks is given as an input to a different 6-to-4
S-box, resulting in eight 4-bit outputs. In Table 2 we describe the first two
S-boxes used in DES; the remaining six S-boxes can be found in [DES].
The S-boxes of DES are applied as follows: for input x0x1x2x3x4x5, the
output after applying the ith S-box is the value found at the intersection of



Table 1: The expansion function E of DES. We see that 16 out of the 32 input
bits appear twice.

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table 2: DES’ first two S-boxes

S1

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

row x0x5 and column x1x2x3x4 of the table Si. We denote the substitution
layer by S.
We note that due to the expansion function a single active input bit may
influence two consecutive S-boxes. In this paper, we consider the first and
the last S-boxes as consecutive ones (i.e., we view the property of being
consecutive as circular).

4. The permutation layer of DES : a fixed 32-bit to 32-bit permutation is applied
to the output of the substitution layer. This permutation, denoted by P, is
described in Table 3.

The key schedule The key schedule of DES is a linear function where the
round keys are basically obtained by selecting 48 out of the 56 bits of the master
key. For the key schedule we refer the interested reader to [DES].

Decryption Since DES has a Feistel structure, the decryption function,DES−1,
uses the same structure as the encryption, but with the keys used in reverse or-
der.



Table 3: The Permutation Layer of DES

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

2.4 The 3DES Cipher

Due to an increase in computation power over the years, a 56-bit key is deemed
two short for modern applications. The block cipher 3DES represents a simple
solution to increase the key size while avoiding the need to design a completely
new block cipher. 3DES performs three iterations of DES, using different and
independent keys, more precisely:

3DES = DESK1
◦DES−1

K2
◦DESK3

where K1,K2 and K3 denote the master keys of each application of DES.

2.5 One-Round Key-Dependent Linear Hulls in DES

Following [AP18] a linear trail on the f -function of DES is described by a tuple
(α, β, κ, τ, λ, γ), where α, β, κ are the input mask, the output mask and the
key mask, respectively. The remaining components of the tuple represent the
intermediate masks of the trail: τ is the output mask of the expansion layer, λ
and γ are the input and the output mask of the substitution layer, respectively.

Given the manner in which the S-boxes are applied, in order to better de-
scribe a linear trail, we consider λ and γ as a concatenation of 8 components
of the same size. For example, the input mask λ = (λ1, ..., λ8) is viewed as a
concatenation of 6-bit components and the output mask γ = (γ1, ...γ8) is viewed
as a concatenation of 4-bit components.

Figure 1 depicts the propagation of linear masks through the f -function of
DES.

The rules of propagation for linear masks (e.g., as described in [Mat93,Bih94,
AP18]) impose a series of constraints on the masks of a one-round linear trail:

1. τ, κ and λ must all be the same;
2. each pair (λi, γi) must represent a connectable pair of input-output masks

for the ith S-box, more precisely, the linear approximation table (LAT) of Si
must contain a non-zero value at the intersection of λi and γi;

3. β = P (γ).



P

E

S1 S2 S3 S4 S5 S6 S7 S8

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

α κ

β

τ

Fig. 1: A linear trail through the f -function of DES

Definition 1. Si is an active S-box if and only if the input and the output masks
are nonzero, more precisely λi, γi 6= 0.

Per [AP18], in the case of DES the linear hull effect may appear within one
round if at least one pair of adjacent S-boxes is active. In this paper, we also
consider the pair (S8, S1) as a pair of adjacent S-boxes.

Observation 1. Given the constraints imposed by the rules of propagation for
linear masks, two trails that are contained in the same hull (α, β) have the form
(α, β, τi, τi, τi, P

−1(β)), where P−1 represents the inverse of the permutation
layer. Thus, the only difference between two trails in the same 1-round linear
hull is given by the mask τ . Given that each trail has a different mask after
applying the expansion layer, the key masks will also be different, leading to the
hull’s correlation being key-dependent.

2.6 Zero-Correlation Linear Approximations

Due to the existence of the linear hull effect, different linear trails may interfere
with each other, influencing the correlation of the hull in a constructive or de-
structive manner or, in some cases, even canceling out each other completely. In
the latter case, the correlation of the hull will be strictly zero.

An example of a one-round linear hull containing four linear trails was de-
scribed in [AP18], the correlation of each of these trails having the same absolute
value. One can notice that for some particular values of the key, two linear trails



can have a positive correlation, while the other two have a negative one. In this
case, the value of the hull’s correlation will be strictly zero.

In the remaining of this paper we will use the label “poisonous round” for a
one-round linear hull that leads, under some particular key values, to a zero cor-
relation. A trail containing at least one “poisonous” round is called a “poisonous
trai”.

Recall that in order to compute the correlation of a trail, the Piling Up
Lemma is used and the individual round correlations are multiplied. The term
“poisonous” is used to emphasize that a single “bad” approximation (i.e., a 0-
correlation approximation) in a certain round “spoils” this product, resulting in
0-correlation trail.

3 Attacking DES and 3DES

In [Mat93], Matsui presented a linear approximation of the full DES, obtained by
using an 8-round iterative linear trail with correlation 2−12.71. By replacing the
linear masks of the first and the last round with locally better ones, a 16-rounds
linear approximation with correlation of 2−22.42 is obtained.

In this section we introduce a new linear trail for DES, containing a key-
dependent poisonous round. This linear trail is obtained by replacing the last
two rounds in Matsui’s iterative trail, where the last round is the poisonous one.
This new linear approximation allows to take advantage of the key constraints
that are imposed by the poisonous round, thus leading to a key-recovery attack.

3.1 A 2-Round Poisonous Trail for DES

We now introduce a 2-round poisonous trail for DES where the second round
of the trail is a poisonous round. Given that the correlation of a linear trail is
obtained by multiplying the correlations of each one-round linear approximation,
the correlation of the trail described below depends on the correlation of the last
round’s linear approximation.

To obtain the poisonous round, we used a 1-round linear hull for the f -
function of DES. This hull is defined by the input-output masks pair (0x01CF8000,
0x00011000). This hull contains four linear trails of the form

(0x01CF8000, 0x00011000, τi, τi, τi, 0x0044000)

having S3 and S4 as adjacent active S-boxes. The value of τi, the correlation of
each of these trails and the key bits involved in the computation of the correlation
are described in Table 4. The round key has 48 bits, the most significant bit of
the key is denoted by k0 and the least significant key bit by k47.

As always, the correlation of a single trail is computed by multiplying the
correlations of each atomic operation of the round function. Given that the
expansion layer and the permutation are linear functions, the correlation be-
tween their inputs and outputs is 1. For the substitution layer, the correlation



Table 4: The trails within the hull (0x01CF8000, 0x00440000) of the f -function
of DES

Trail τi Correlation Key masks
No.

Trail 1 (0, 0, 0x39, 0x0F, 0, 0, 0, 0) 2−8 · 5 {12, 13, 14, 17, 20, 21, 22, 23}
Trail 2 (0, 0, 0x3B, 0x2F, 0, 0, 0, 0) 2−8 · 5 {12, 13, 14, 16, 17, 18, 20, 21, 22, 23}
Trail 3 (0, 0, 0x38, 0x1F, 0, 0, 0, 0) 2−8 · 12 {12, 13, 14, 19, 20, 21, 22, 23}
Trail 4 (0, 0, 0x3A, 0x3F, 0, 0, 0, 0) −2−8 · 2 {12, 13, 14, 16, 18, 19, 20, 21, 22, 23}

is given by the LAT’s of each active S-box. The correlation of the key addi-
tion is (−1)

⊕
i∈κ ki , for ki’s corresponding to the positions of the key mask. The

correlations described in Table 4 overlook this key contribution.

Given that the correlation of the hull is computed by summing the correlation
of the four trails, the key bits in positions k12, k13, k14, k20, k21, k22, and k23 (i.e.,
the key bits shared among all 1-round trails) influence the sign of the correlation,
while the key bits in positions k16, k17, k18, and k19 (i.e., the key bits defining
the individual 1-round trails) influence its magnitude.

The correlation of the hull, depending on the values of the round key, is:

corr =


±2−8 · 14 k16 6= k18

±2−8 · 20 k16 = k18 and k17 = k19

0 otherwise

(1)

In order to connect it to Matsui’s trail we extended this 1-round linear hull
into a 2-rounds linear trail, where the input mask is one of the masks used in
Matsui’s trail. The 2-round linear trail is described in Figure 2.

F

F

0x00011000 0x00CB8080

corr = 0 OR

corr = ±2−8 · 20 OR

corr = ±2−8 · 14

0x00011000 0x01040080

corr = 0.5

0x01040080 0x00000000

Fig. 2: A 2-round poisonous trail of DES. The last round is the poisonous one.



The correlation for the trail described above, depending on the values of the
second round key, is:

corr =


±2−9 · 14 k16 6= k18

±2−9 · 20 k16 = k18 and k17 = k19

0 otherwise

(2)

3.2 A Poisonous Trail for DES Based on Matsui’s 8-Round Iterative
Linear Approximation

We now recall the 8-round iterative linear trail introduced by Matsui in [Mat93]
and adapt it into a poisonous trail by replacing two of its rounds with the trail
described in subsection 3.1.

Since Matsui’s 8-round trail is iterative, it can start in any of the trail rounds
and extend naturally for the next 7 rounds. Figure 3 depicts Matsui’s 8-round
iterative linear trail when circularly moved down by 2 rounds such that the last
round of the original trail is now the second round.

Given that the last round of the new trail is a poisonous one, the correlation
of the 16-round trail depends on the bits in positions 16, 17, 18 and 19 of the
last round key. Taking into account the key schedule of DES, the value of the
correlation depends on the bits on positions 51, 0, 1 and 8 of the master key,
such as:

corr =


±2−24.95 k51 6= k1

±2−24.42 k51 = k1 and k0 = k8

0 otherwise

(3)

We note that now the last two rounds of the trail presented in Figure 3
have the smallest correlation, and that our 2-round trail from subsection 3.1
has the same input mask. Thus, by replacing the last two rounds with our 2-
round poisonous trail we improve the correlation. Whereas the correlation of the
two rounds that we just replaced was 0.01953125, the new 2-round trail has a
correlation that is 1.38 times better (for some keys).

3.3 Distinguishing between the Three Correlations

A naive approach to executing this attack is to encrypt the entire codebook. In
this case, the expected correlation and the empirical one are the same. However,
in the case of DES, encrypting 264 plaintexts is more expensive than recovering
the key using an exhaustive search. However, as we see in [Mat93] a more efficient
way is to use a sample of the codebook to detect the correlation. Generally
speaking, to detect a correlation c, an adversary needs to encrypt roughly 2 · c−2

plaintexts.
Taking into account that the smallest non-zero correlation of the trail is

2−24.95, in order to distinguish between the three correlations we need to encrypt
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F

F

F

F

F

F

F

0x00008000 0x21040080

corr = −0.0625

0x010400800x00008000

corr = 0.3125

0x000000000x01040080

corr = 1

0x010400800x00000000

corr = 0.3125

0x000080000x01040080

corr = −0.0625

0x00008000 0x21040080

corr = −0.625

0x21040080 0x00000000

corr = 1

0x00000000 0x21040080

corr = −0.625

0x21040080 0x00008000

Fig. 3: Matsui’s 8-round iterative linear approximation circularly moved with 2
rounds



250.9 random plaintexts.1 We then compare the empirical correlation we obtained
to each of the three expected correlations.

If the correlation is different from zero, the empirical correlation will be
close to the expected one, making it easy to identify the right case. For the
case of correlation zero, the empirical correlation will be close to the inverse of
the squared root of the number of plaintexts that were used. For example, for
a data complexity of 250.9 the empirical correlation will be close to 2−25.45. In
subsection 3.6 we present an experimental verification on reduced round versions
of DES.

3.4 Key Recovery Attack on DES

We now propose a key-recovery attack based on the linear approximation de-
scribed in subsection 3.2. Since the correlation depends on the values of k0, k1, k8,
and k51 of the master key, we can infer a relation between these key bits just by
looking at the correlation of the trail.

In order to launch an attack, we need a set of 250.9 plaintexts and their
corresponding ciphertexts, encrypted under a fixed, secret key. We compute the
correlation of the trail described above and compare the empirical correlation to
each of the three expected values. The expected correlation that is the closest
to the empirical correlation indicates the key constraints that are met by the
master key. For example, if the correlation is closest to 2−24.95, then the key
satisfies the constraint k51 6= k1.

3.5 Extending the Attack to 3DES

The attack presented above can be trivially extended to the full 3DES. The ex-
tension works by concatenating Matsui’s iterative trail onto itself three times.
This results in a linear trail covering all 48 rounds of 3DES with correlation
2−76.26. By replacing the last two rounds in a similar manner to what we did in
subsection 3.2, we create a key dependent behavior. However, this time, rather
than distinguishing between 3 correlations as we did in subsection 3.4, we distin-
guish between two possible outcomes: either the empirical correlation is strictly
zero due to the linear hull effect, or it is not. When computed over the whole
codebook, the sample correlation has 0-variance and the empirical correlation
coincides with the expected one resulting, in this case, in ĉ = 0. In the other case
(i.e., when the expected correlation is different from 0 since the key constraints
were not met), the behavior of the empirical correlation is similar to other linear
attacks where not enough data was used: the empirical correlation follows some
normal distribution around the expected correlation.

The attack procedure then works as follows: for a given key, encrypt all
possible 264 plaintexts and compute the empirical correlation ĉ. If ĉ = 0 then

1 We note that using c−2, 4 ·c−2, or 8 ·c−2 lead to different success probabilities for the
attack. For simplicity, we use 2 · c−2 but the result can trivially be extended when
more or less data is used.



the key-conditions were met and we conclude that for the last master key of
3DES, k51 = k1 and k0 6= k8; otherwise, the key constraints were not met and
we conclude that the last master key satisfies one of the following properties
k51 6= k1 or k51 = k1 and k0 = k8.

This attack requires 264 time and data and recovers a single bit of the key.
Variants of this distinguisher (e.g., by setting different rounds to be covered by
the 1-round 0-correlation linear hull) can be used to recover other key bits. To
the best of our knowledge, this is the first statistical attack against the full 3DES.

3.6 Experimental Verification

We performed a series of experiments in order to test the validity of our analysis.
Since the data needed to execute the attack on all 16-round trail is too high (i.e.,
2−50.9), we performed our experiments on round-reduced versions of the trail.
Therefore, our experiments targeted up to 9 rounds of the trail where all our
round-reduced trails having the same, poisonous, last round.

For each experiment we chose a master key that satisfies one of the key con-
straints imposed by the poisonous round. We then computed the correlation
of the round-reduced trail with the appropriate amount of data. The empiri-
cal correlation was always very close to the expected one, thus supporting our
hypothesis.

In Table 5 we present the results of our experiments on a trail covering 9
rounds using 238 data. The expected correlation of the trail, depending on the
bits of the 9th round key is:

corr =


±2−16.245 k16 6= k18

±2−15.714 k16 = k18 and k17 = k19

0 otherwise

(4)

The smallest non-zero correlation of trail is 2−16.245, thus the minimum
amount of data needed is 235. We chose to use 238 to improve the significance of
the results. The weight of the expected and the empirical correlations are given
in Table 5.

Table 5: Experimental results of the last 9 rounds from the trail presented in
subsection 3.2

Expected correlation Empirical correlation Key constraint on RK9

−∞ -18.608 k16 = k18 and k17 6= k19
-16.245 -16.055 k16 6= k18
-15.714 -15.631 k16 = k18 and k17 = k19



3.7 Discussion

Matsui’s linear attack against DES, and especially Algorithm 1, assumed that
the linear hull effect does not apply to DES and that only a single trail underlies
the linear hull. In fact, a similar assumption often appears in other works using
linear cryptanalysis. The assumption is that the linear hull consists of only a
single trail, or alternatively, that it consists of a dominant trail and that the
other trails can be treated as noise.

In subsection 3.6 we presented a 9-round experimental verification for our
distinguisher. As can be seen in Table 5, while the empirical correlations are
indeed “close enough” to their expected values, they are not quite the same.
These small differences may be ignored as sample error (see also [BT13]) but
they may also mean that another trail exists within Matsui’s hull. As per Ashur
and Rijmen in [AR16] ignoring some of the linear trails inside the linear hull
leads to an over- or under-estimation of the expected correlation, leading in turn
to a different success probability than what the adversary expects.

We stress that our attack uses the same assumptions as the ones used in
Matsui’s original attack: if indeed only a single trail underlies the linear hull,
then both Matsui’s and our attack work as advertised; if one or more trails
exist and are being ignored, both attacks still work, but the success probability
differs from what is advertised; if more than a single trail exists, and all trails
are known, the attack can recover more key bits than advertised.

4 Conclusion

In this paper we extended the work presented in [AP18] by designing 0-correlation
key-dependent linear trails that cover more than a single round of DES. First,
we presented a 2-round linear approximation where the last round may have cor-
relation 0, depending on the key. We showed how to connect these two rounds
to Matsui’s trail, resulting in 0-correlation key-dependent trails covering the full
DES and 3DES ciphers. Finally we proposed new key-recovery attacks on DES
and 3DES using the trails introduced in this paper.

The work described can be extended in different directions. For example,
it will be interesting to identify other block ciphers that exhibit “poisonous”
linear trails and revisit, if exists, the linear attacks published against them. It
also remains to be investigated if and how the attacks presented in this paper
can be improved in term of both data and time complexity. Future research
should also consider the extension of these attacks to the case of multiple linear
cryptanalysis.
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