
The Lord of the Shares: Combining
Attribute-Based Encryption and Searchable

Encryption for Flexible Data Sharing?

Antonis Michalas1[0000−0002−0189−3520]

Tampere University of Technology,
Tampere, Finland

antonis.michalas@tut.fi

Abstract. Secure cloud storage is considered one of the most important
issues that both businesses and end-users are considering before moving
their private data to the cloud. Lately, we have seen some interesting
approaches that are based either on the promising concept of Symmetric
Searchable Encryption (SSE) or on the well-studied field of Attribute-
Based Encryption (ABE). In the first case, researchers are trying to
design protocols where users’ data will be protected from both internal
and external attacks without paying the necessary attention to the prob-
lem of user revocation. On the other hand, in the second case existing
approaches address the problem of revocation. However, the overall ef-
ficiency of these systems is compromised since the proposed protocols
are solely based on ABE schemes and the size of the produced cipher-
texts and the time required to decrypt grows with the complexity of
the access formula. In this paper, we propose a protocol that combines
both SSE and ABE in a way that the main advantages of each scheme
are used. The proposed protocol allows users to directly search over en-
crypted data by using a SSE scheme while the corresponding symmetric
key that is needed for the decryption is protected via a Ciphertext-Policy
Attribute-Based Encryption scheme.

Keywords: Cloud Security · Storage Protection · Access Control · Poli-
cies · Attribute-Based Encryption · Symmetric Searchable Encryption ·
Hybrid Encryption

1 Introduction

One of the most well-studied problems of cloud security, is how to protect users’
private data. When it comes to protecting sensitive data, different organizations
have different needs. Each use-case brings its own level of risk and correspond-
ing risk reduction once it is addressed. However, and despite the different needs
of each use-case the main problem always remains the same – how to prevent

? This work was funded by the ASCLEPIOS: Advanced Secure Cloud Encrypted Plat-
form for Internationally Orchestrated Solutions in Healthcare Project No. 826093 EU
research project.

2 Antonis Michalas

unauthorized access to the data that are stored in a remote location. Further-
more, it has been observed that failing to provide users with proper security and
privacy-preserving mechanisms it can slow down the overall adoption of cloud
services.

Having this in mind, researchers have proposed many protocols where users’
data are sent to the cloud service provider (CSP) over an encrypted channel
and upon reception, the CSP is responsible for storing encrypted versions of the
data. However, most of the existing approaches fail to protect users’ data against
internal attacks. This is due to the fact that the key used for the encryption of
the data is known to the CSP. Hence, a malicious CSP is able to reveal the
content of all stored data – even without user’s permission. To overcome this
problem, researchers lately started proposing solutions that are based on the
promising concept of symmetric searchable encryption (SSE) [16,?]. SSE allows
users to symmetrically encrypt data with a key that is not known to the CSP
and then search directly over the encrypted data. However, these approaches
discourage a user from sharing data with other users. Sharing a symmetrically
encrypted file requires the sharing of the secret key. Hence, when a user needs to
be revoked, data owner needs to re-encrypt data with a fresh key and distribute
the new key to the rest of the legitimate users.

To address the problem of data access and revocation, solutions that are
based on Attribute-Based Encryption schemes (ABE) [23,?] have been proposed.
ABE schemes allow user to encrypt a file based on a certain policy. Then, a
unique key is generated for each user that has access to the CSP resources. This
key is generated based on a list of attributes. Then a user is able to decrypt a file
that is associated with a certain policy only if the attributes of her key satisfy
the underlying policy. As a result, revoking a user does not affect the rest of the
users. This is due to the fact that only the key for the corresponding revoked user
has been blacklisted while the keys for the rest of the users are still functional.
While ABE schemes offer great flexibility in terms of access management, the
size of the produced ciphertexts and the time required to both encrypt and
decrypt them grows with the complexity of the underlying policy [15]. As a
result, protocols and cloud-based services that are solely based on such schemes
are currently considered as inefficient.

1.1 Contribution

Having identified both the advantages and the disadvantages of Symmetric
Searchable Encryption and Attribute-Based Encryption schemes we propose a
protocol that allows users of a cloud service to securely and efficiently share files
between multiple users. Furthermore, the proposed solution can be thought as an
independent contribution to the field of hybrid encryption since it combines both
SSE and ABE schemes. Moreover, the designed protocol allows users to directly
search over encrypted data while the access to the decryption key is protected
by a Ciphertext-Policy Attribute-Based Encryption scheme. To the best of our
knowledge, this is the first work that combines these two promising encryption

The Lord of the Shares 3

techniques and we hope that will inspire protocol designers to conduct further
research towards that direction.

Apart from that, in this work we have been looking at the problem of key
revocation in ABE schemes. As pointed out in [8], key revocation is traditionally
a difficult to solve problem in ABE schemes. The main problem is that in such
schemes several different users might satisfy the decryption policy. In this paper,
we tried to overcome this problem by looking on alternative ways to revoke users’
access. To this end, in our design we separated the revocation functionality from
the actual ABE scheme. More precisely, we used Intel’s Software Guard Exten-
sions (SGX) to host a revocation authority in a trusted execution environment.
The proposed technique is considered as practical and provably secure since Intel
SGX provides hardware support for isolated program execution environments.

1.2 Organization

The remainder of this paper is organized as follows: In Section 2, we present
important works that have been published and address the problem of secure
cloud storage and data sharing in the cloud. In Section 3, we present the main
entities that participate in our system model and we proceed by defining the
problem statement. In Section 4, we describe the cryptographic primitives that
are needed for a proper run of the protocol and we introduce the threat model
that we will consider throughout the paper. In Section 5 we provide a formal
construction of the protocol while in Section 6 we prove the soundness of our
protocol against several malicious behaviors. In Section 7 we present extended
experimental results that shows the performance of our approach under real life
(i.e. realistic) scenarios. Finally, in Section 8 we present our conclusions.

2 Related Work

In this section we present related works that mainly focus on the problem of
secure cloud storage with data sharing functionality.

In [20] authors presented a framework for data and operation security in
Infrastructure-as-a-Service (IaaS) clouds, consisting of protocols for a trusted
launch of virtual machines and domain-based storage protection. Its security
guarantees are supported by an extensive theoretical analysis with proofs about
protocol resistance against attacks in the defined threat model. The protocols
allow trust to be established by remotely attesting host platform configuration
prior to launching guest virtual machines and ensure confidentiality of data in
remote storage, with encryption keys maintained outside of the IaaS domain. In
addition to that, authors provide functionality for sharing data between different
domains. To this end, they presented an XML-based language framework [21]
which enables clients of IaaS clouds to securely share data and clearly define
access rights granted to peers.

Santos et al. [24] proposed Excalibur, a system using trusted computing
mechanisms to allow decrypting client data exclusively on nodes that satisfy a

4 Antonis Michalas

tenant-specified policy. Excalibur introduces a new trusted computing abstrac-
tion, policy-sealed data to address the fact that TPM abstractions are designed to
protect data and secrets on a standalone machine, at the same time over-exposing
the cloud infrastructure by revealing the identity and software fingerprint of in-
dividual cloud hosts. The core of Excalibur is “the monitor”, which is a part
of the cloud provider, which organises computations across a series of hosts and
provides guarantees to tenants. Tenants first decide a policy and receive evidence
regarding the status of the monitor along with a public encryption key, and then
encrypt their data and policy using ciphertext-policy attribute-based encryption
(CP-ABE) [8]. To decrypt, the stored data hosts receive the decryption key from
the monitor who ensures that the corresponding host has a valid status and sat-
isfies the policy specified by the client at encryption time. The main drawback of
this work is that the protocol does not offer revocation functionality. In addition
to that, users’ files are stored by using explicitly a CP-ABE scheme. Hence, the
overall performance of the framework is considered as low.

In [1] the authors presented a forward-looking design of a cryptographic cloud
storage built on an untrusted IaaS infrastructure. The approach aims to pro-
vide confidentiality and integrity, while retaining the benefits of cloud storage –
availability, reliability, efficient retrieval and data sharing – and ensuring secu-
rity through cryptographic guarantees rather than administrative controls. The
solution requires four client-side components: data processor, data verifier, cre-
dential generator and token generator. Important building blocks of the solution
are: Symmetric searchable encryption (SSE), appropriate in settings where the
data consumer is also the one who generates it (efficient for single writer-single
reader (SWSR) models) and Asymmetric searchable encryption (ASE), appro-
priate for many writer single reader (MWSR) models, offers weaker security
guarantees as the server can mount a dictionary attack against the token and
learn the search terms of the client.

In [17] authors presented a constructive design for secure storage and file
sharing in cloud environments. The scheme was based on a SSE scheme that
allows patients of an electronic healthcare system to securely store encrypted
versions of their medical data and search directly on them without having to
decrypt them first. Even though the scheme offers some kind of secure sharing
it lacks flexibility since data sharing is not based on policies. Furthermore, even
though authors provide a discussion regarding access revocation they do not
provide a concrete solution. Hence, the protocol is considered as inefficient for
sharing large amount of data between multiple users.

All the approaches described above have the same limitation. More precisely,
revoking access to misbehaving users is considered as inefficient since it requires
to decrypt the encrypted data and then re-encrypt them with a fresh key. This
also implies that data owner will have to share again the fresh key with the
legitimate users. Our approach overcomes this limitation by using a CP-ABE
encryption scheme combined with SSE while at the same time allows efficient
revocation of misbehaving users.

The Lord of the Shares 5

Authors in [26] proposed an efficient access control scheme that allows users
to dynamically update a policy. The policy update is outsourced to the cloud
server while at the same time the server does not learn any private information
regarding the processed data. In addition to that, the scheme is based on ABE
and assumes a semi-trusted and not fully trusted cloud service provider. Fur-
thermore, the proposed scheme supports different types of access policies (e.g.,
Boolean Formulas, LSSS Structure and Access Tree).

In [18], author showed how to construct a framework for secure file sharing by
using the benefits of Revocable Attribute-Based Encryption. More precisely, the
protocol is using a Key-Policy Attribute-Based technique through which access
revocation is optimized. In addition to that, author showed how to securely
remove access to a file, for a certain user that is misbehaving or is no longer part
of a user group, without having to decrypt and re-encrypt the original data with
a new key or a new policy.

Boldyreva et al. proposed a revocation scheme [9] that supports only a lim-
ited set of ABE functionality. Sahai et al.’s revocation scheme [22], which is
based on the notion of re-encrypting from one policy to another more restrictive
policy by utilizing the delegation capabilities of the underlying ABE construct,
requires maintaining additional attributes and relatively expensive operations
even though the complexity is reduced to the polylogarithm number of group
members. Furthermore, in applications involving stateless members where it is
not possible to update the initially given private keys and the only way to revoke
a member is to exclude it from the public information, an ABE based approach
does not readily work.

While the last schemes provide an interesting solution for the problem of
revocation, they solely rely on the use of ABE schemes. As a result, the produced
ciphertexts are rather long and the decryption requires lot of computational
resources [15]. In our approach, we mainly rely on the use of an SSE scheme for
the decryption of users’ data. Thus, making the overall protocol more efficient.
Additionally, our approach can pave the way for key-industrial players to build
novel cloud-based services based on these two promising encryption techniques.

3 System Model and Problem Statement

In this section, we introduce the system model that we consider by explicitly
describing the main entities that participate in our protocol as well as their
capabilities. Furthermore, we strictly define the problem statement.

Cloud Service Provider (CSP): One of the common models of a cloud com-
puting platform is Infrastructure-as-a-Service (IaaS). In its simplest form, such a
platform consists of cloud hosts which operate virtual machine guests and com-
municate through a network. Often a cloud middleware manages the cloud hosts,
virtual machine guests, network communication, storage resources, a public key
infrastructure and other resources. Cloud middleware creates the cloud infras-
tructure abstraction by weaving the available resources into a single platform. In
our system model we consider a cloud computing environment based on a trusted

6 Antonis Michalas

IaaS provider similar to the one described in [20]. The IaaS platform consists of
cloud hosts which operate virtual machine guests and communicate through a
network. In addition to that, we assume a Platform-as-a-Service (PaaS) provider,
like the one described in [25], that is built on top of the IaaS platform and can
host multiple outsourced databases. Furthermore, the cloud service provider is
responsible for storing users’ data. Finally, the CSP must support the Intel Soft-
ware Guard Extensions (SGX) [12] since core entities of the protocol will be
running in a trusted execution environment offered by SGX.

Master Authority (MS): MS is responsible for setting up all the necessary
public parameters that are needed for the proper run of the underlying protocols.
Furthermore, MS is responsible for generating and distributing ABE keys to the
registered users. Finally, MS is considered as a single trusted authority. Thus, we
assume that MS is SGX-enabled and is running in an enclave called the Master
Enclave.

Key Tray (KeyTray): KeyTray is a key storage that exists in the CSP and
stores ciphertexts of all the symmetric keys that have been generated by various
data owners and are needed in order to decrypt data. Every registered user
can contact the KeyTray directly and request access to the stored ciphertexts.
Furthermore, the symmetric keys are encrypted with a CP-ABE scheme. Thus, a
single symmetric key is encrypted only once and users with certain access rights
and different keys are able to access it (i.e. decrypt it). Moreover, similar to MS,
KeyTray is also SGX-enabled and is running in an enclave called the KeyTray
Enclave.

Revocation Authority (REV): REV is responsible for maintaining a revoca-
tion list (rl) with the unique identifier of the users that have been revoked. At
this point it is worth mentioning that a single user might own more than one
CP-ABE secret key. Therefore, rl maintains a mapping of users with the CP-
ABE keys they own. Every time that a key of a user is revoked, REV needs to
update rl. This, as we will see later, will prevent revoked users from accessing
ciphertexts that are not authorized anymore. Similar to MS and KeyTray, REV
is also SGX-enabled and is running in an enclave called the Revocation Enclave.

Registration Authority (RA): RA is responsible for the registration of users in
the CSP. Additionally, RA has a public/private key pair denoted as pkRA/skRA.
RA can run as a separate third party but can be also implemented as part of the
CSP. The registration process is out of the scope of this paper. Thus, we will not
describe how the registration of a new user takes place. Instead, we will assume
that a user has been already registered and has access to the remote storage and
the services offered by the CSP.

User (u): In our scenario a user interacts with the CSP to manage certain
files that has access to. The operations that a user can perform are: a) register to
the service, b) generate encryption keys to safely protect her data, c) store data
in the cloud, d) share data with other users by creating certain policies using a
Ciphertext-Policy Attribute-Based Encryption scheme. Furthermore, each user
has a unique identifier i. A user ui might be also referred as data owner when
she is the one who generates a certain file. Each ui has a public/private key pair

The Lord of the Shares 7

(pki/ski). The private key is kept secret, while the public key is shared with the
rest of the community. These keys will be used to secure message exchanges.
Hence, the communication lines between parties are assumed to be secure. It is
also assumed that the public keys of all entities in the system model are known
to all registered users.

Problem Statement: Let U = {u1, . . . , un} be the set of all users that
are registered through a registration authority (RA) and CSP the cloud service
provider that stores users’ data. Lets assume that a user ui stores a set of m
different files to the CSP. We denote this set of files as Di =

{
di1, . . . d

i
m

}
. The

problem here is to find a way to achieve the following:

1. Keep the content of each dij ∈ Di private against both internal and external
attacks;

2. User ui should be able to securely share a file dij with another user based on
a certain policy;

3. A data owner ui should be able to efficiently revoke access to a user uc for
a file that has shared with her. This should not require the data owner to
decrypt and re-encrypt the file with a fresh key and it should not affect the
access to the rest of the legitimate users.

4 Cryptographic Primitives and Threat Model

In this section, we introduce the notations that we use throughout the paper
while we also give a formal definition for the two main encryption schemes that
the paper is based on. Finally, we present the threat model that we consider.

4.1 Cryptographic Primitives

In order to provide a concrete and reliable solution for the problem described in
Section 3, we need to build a protocol through which newly encrypted data will
not be decryptable by a user if her access has been revoked. Additionally, we
want to allow users with certain access rights to be able to search directly over
encrypted data. To this end, we will be using a CP-ABE scheme. In a CP-ABE
scheme every secret key (e.g. user key) is generated based on a public and a
private key as well as on a concrete list of attributes A. Then, every ciphertext
is associated with a policy P . Then, decryption is only possible if P (A) = True
– if the attributes on a key satisfy the policy on the ciphertext. From now on
we will refer to the space of attributes as Ω = {a1, . . . , an}, while the space of
policies will be denoted as P = {P1, . . . , Pm}.

We now proceed with the definition of a CP-ABE scheme as described in [8].

Definition 1 (Ciphertext-Policy ABE). A CP-ABE scheme is a tuple of
the following four algorithms:

1. CPABE.Setup is a probabilistic algorithm that takes as input a security pa-
rameter λ and outputs a master public key MPK and a master secret key
MSK. We denote this by (MPK,MSK)← Setup(1λ).

8 Antonis Michalas

2. CPABE.Gen is a probabilistic algorithm that takes as input a master secret
key, a set of attributes A ∈ Ω and the unique identifier of a user and outputs
a secret key which is bind both to the corresponding list of attributes and the
user. We denote this by (skA,ui)← Gen(MSK,A, ui).

3. CPABE.Enc is a probabilistic algorithm that takes as input a master public
key, a message m and a policy P ∈ P. After a proper run, the algorithm
outputs a ciphertext cP which is associated to the policy P . We denote this
by cP ← Enc(MPK,m, P).

4. CPABE.Dec is a deterministic algorithm that takes as input a user’s secret
key and a ciphertext and outputs the original message m iff the set of at-
tributes A that are associated with the underlying secret key satisfies the
policy P that is associated with cp. We denote this by Dec(skA,ui , cP)→ m.

Apart from the CP-ABE scheme, one of the core components of our solution
is the SSE component which will allow users to encrypt their data using a sym-
metric secret key and later search directly over the encrypted data. In the rest
of the paper, we will be assuming the existence of the following SSE scheme:

Definition 2 (Dynamic Index-based SSE). A dynamic index-based sym-
metric searchable encryption scheme is a tuple of nine polynomial algorithms
SSE = (Gen,Enc,SearchToken,AddToken,DeleteToken,Search,Add,Delete,Dec) such
that:

– SSE.Gen is probabilistic key-generation algorithm that takes as input a se-
curity parameter λ and outputs a secret key K. It is used by the client to
generate her secret-key.

– SSE.Enc is a probabilistic algorithm that takes as input a secret key K and
a collection of files f and outputs an encrypted index γ and a sequence of
ciphertexts c. It is used by the client to get ciphertexts corresponding to her
files as well as an encrypted index which are then sent to the storage server.

– SSE.SearchToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a keyword w and outputs a search token τs(w). It is used
by the client in order to create a search token for some specific keyword. The
token is then sent to the storage server.

– SSE.AddToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs an add token τa(f) and a ciphertext
cf . It is used by the client in order to create an add token for a new file as
well as the encryption of the file which are then sent to the storage server.

– SSE.DeleteToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs a delete token τd(f). It is used by the
client in order to create a delete token for some file which is then sent to the
storage server.

– SSE.Search is a deterministic algorithm that takes as input an encrypted
index γ, a sequence of ciphertexts c and a search token τs(w) and outputs
a sequence of file identifiers Iw ⊂ c. This algorithm is used by the storage
server upon receive of a search token in order to perform the search over the

The Lord of the Shares 9

encrypted data and determine which ciphertexts correspond to the searched
keyword and thus should be sent to the client.

– SSE.Add is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c, an add token τa(f) and a ciphertext cf and
outputs a new encrypted index γ′ and a new sequence of ciphertexts c′. This
algorithm is used by the storage server upon receive of an add token in order
to update the encrypted index and the ciphertext vector to include the data
corresponding to the new file.

– SSE.Delete is a deterministic algorithm that takes as input an encrypted
index γ, a sequence of ciphertexts c and a delete token τd(f) and outputs a
new encrypted index γ′ and a new sequence of ciphertexts c′. This algorithm
is used by the storage server upon receive of a delete token in order to update
the encrypted index and the ciphertext vector to delete the data corresponding
to the deleted file.

– SSE.Dec is a deterministic algorithm that takes as input a secret key K and
a ciphertext c and outputs a file f . It is used by the client to decrypt the
ciphertexts that she gets from the storage server.

4.2 Threat Model

Our threat model is similar to the one described in [20], which is based on
the Dolev-Yao adversarial model [13] and further assumes that privileged access
rights can be used by a remote adversary ADV to leak confidential information.
ADV , e.g. a corrupted system administrator, can obtain remote access to any
host maintained by the IaaS provider, but cannot access the volatile memory of
guest VMs residing on the compute hosts of the IaaS provider.

Hardware Integrity: We assume that the cloud provider has taken all the
necessary technical and non-technical measures in order to protect the underling
hardware from tampering.

Physical Security: We assume physical security of the data centres where
the IaaS is deployed. This assumption holds both when the IaaS provider owns
and manages the data center (as in the case of Amazon Web Services, Google
Compute Engine, Microsoft Azure, etc.) and when the provider utilizes third
party capacity, since physical security can be observed, enforced and verified
through known best practices by audit organizations. This assumption is im-
portant to build higher-level hardware and software security guarantees for the
components of the IaaS. We assume the record is kept on protected storage with
read-only access and the adversary cannot tamper with it.

Network Infrastructure: The IaaS provider has physical and administra-
tive control of the network. ADV is in full control of the network configuration,
can overhear, create, replay and destroy all the exchanged messages between the
CSP and their resources (virtual machines, database components etc.) as well
as with other entities in our system model (e.g. the Master Authority).

Cryptographic Security: We assume encryption schemes are semantically
secure and the ADV cannot obtain the plaintext of encrypted messages. More-
over, we explicitly assume that ADV cannot forge a revocation list and cannot

10 Antonis Michalas

decrypt a ciphertext without knowing the corresponding secret key. Furthermore,
we assume that the probability of ADV guessing a generated random number is
negligible. Finally, we explicitly exclude denial-of-service attacks from our adver-
sarial model and we focus on ADV that aims to compromise the confidentiality
of data by forging existing access policies generated by the corresponding data
owners.

5 The Lord of the Shares (LotS)

In this section, we present the Lord of the Shares (LotS) that constitutes the
core of this paper’s contribution. To this end, we continue with providing the
construction of the main protocols that are involved. As we described earlier,
LotS runs three secure enclaves (Master, KeyTray and the Revocation enclave)
and it contains the following nine main protocols: Setup, ABEUserKey, Store,
KeyTrayStore, KeyShare, Search, Update, Delete and Revoke. Due to space con-
straints, we omit the description of trivial functions such as the registration of a
new user. LotS mainly comprises a public-key encryption scheme, a ciphertext-
policy attribute-based encryption scheme and a symmetric searchable encryption
scheme.

LotS.Setup : Each entity from the described system model obtains a pub-
lic/private key pair (pk, sk) for a CCA2 secure public cryptosystem and pub-
lishes its public key while it keeps the private key secret. Apart from that, all
three entities that are running in an enclave they generate a signing and a veri-
fication key. Furthermore, MS runs CPABE.Setup and generates a master public
and private key. Below we provide the list of the generated key pairs:

– (pkCSP, skCSP) – public/private key pair for the cloud service provider;
– (pkMS, skMS), (sigMS, verMS), (MPK,MSK) – public/private, verification/signing

and master key pairs for the Master Authority;
– (pkKT, skKT, sigKT, verKT) – public/private and verification/signing key pairs

for the KeyTray;
– (pkREV, skREV, sigREV, verREV) – public/private key and verification/signing

key pairs for the Revocation Authority.

LotS.ABEUserKey : This phase is taking place between a registered user ui
that wishes to obtain a CP-ABE key and MS who is responsible for generating
such keys. This is a probabilistic key-generation algorithm that runs in the mas-
ter enclave and takes as input MSK, the identity of the user that is requesting a
key and a list of attributes A that is derived from user’s registered information.
More precisely, ui contacts MS and proves that she is a registered user. Then,
attests MS and requests a new CP-ABE key. MS then runs CPABE.Gen and
generates skA,ui . This is then sent back to the user over a secure channel.

LotS.Store : After a successful registration, we assume that ui has received a
valid credential (credi) that can be used to login to a cloud service offered by
the CSP. Additionally, ui is now able to store data to the cloud storage. During

The Lord of the Shares 11

this phase the communication takes place between the user and the CSP. First, ui
contacts the CSP by sending the following:m1 = 〈r1,EpkCSP(Auth), StoreReq,H1〉,
where r1 is a random number generated by u1, Auth is an authenticator that
allows ui to prove to the CSP that is a legitimate/registered user and H1 is the
following hash H(r1||Auth||StoreReq). Upon reception, CSP verifies the fresh-
ness of the message, the identity of the user and starts processing the store
request. To do so, CSP creates the message m2 = 〈r2, σCSP (H2)〉, where H2 is
the following hash H(r2||ui) and σCSP (H2) is a signature of CSP on H2. Then,
m2 is sent back to ui. Upon reception, u1 verifies both the freshness as well as
the integrity of the message. Now, ui simply generates a symmetric key Ki by
running SSE.Gen. This key will be used to protect the data that will be stored
in the cloud. The final step of this phase is the storage of encrypted files by ui
to a storage resource offered by the CSP. User ui runs StoreFile – a determin-
istic algorithm that takes as input the symmetric secret key Ki that generated
earlier and a collection of files fi and outputs a collection of ciphertexts ci as
well as an encrypted index γi. Both γi and ci are then send to the CSP via
a secure channel. More precisely, ui sends the following message to the CSP:
m3 = 〈r3,EpkCSP(γi), ci, H3〉, where H3 = H(r3||γi||ci). Upon reception, CSP
verifies both the integrity and the freshness of m3 and stores ci along with the
encrypted index γi in a local database.

LotS.KeyTrayStore : A key storage algorithm allows an already logged-in user
to safely store a symmetric secret key Ki, that generated earlier, in the Key-
Tray. This is a probabilistic algorithm that takes as input a symmetric key
Ki, MPK and a policy P and outputs an encrypted version of Ki which is as-
sociated with P . This is done by running cKi

P ← CPABE.Enc(MPK,Ki,P). The
generated ciphertext, is sent by ui to the KeyTray who stores it locally. More
precisely, ui first attests the KeyTray and then sends the following message:

m4 =
〈
EpkKT(r4), cKi

P , σi

(
H
(
r4||cKi

P

))〉
. Additionally, the KeyTray generates a

random number rKi encrypts it with pki and stores it next to cKi

P . As we will see
later, this number will be used during the revocation phase to prove that ui is
the owner of Ki.

LotS.KeyShare : Now that ui has stored an encrypted version of Ki to the
KeyTray, other users should be able to access it. Hence, ui must have a way
to share the encrypted data ci that stored earlier. Lets assume that there is
another registered user uj , j 6= i that wishes to access ci. To do so, uj needs to
get access to Ki that is stored in the KeyTray. The important thing to notice here
is that the data sharing will be done without the involvement of ui. Therefore,
after ui stores cKi

P to the KeyTray, she can be offline. In order for uj to access

cKi

P she first needs to get a special token from REV that will prove that uj ’s
access has not been revoked. To this end, uj first attests REV and then sends
the following message to obtain the token:m5 = 〈r5,EpkREV(uj), σj(r5||uj)〉. Upon
reception, REV verifies the integrity and the freshness of the message and checks
if uj ∈ rl. In such case, REV drops the connection since uj has been revoked.
Otherwise, REV generates a token τKS and sends the following to uj : m6 =

12 Antonis Michalas

〈r6,EpkKT(uj),EpkKT(τKS), σREV (H(r6||uj ||τKS))〉. Upon reception, uj forwards
m6 to the KeyTray who verifies the signature as well as the freshness and user’s
id and sends cKi

P to uj . At this point, uj uses her private CP-ABE key to recover
Ki. The decryption will only work if the attributes that are associated with uj ’s

key satisfy the policy that is associated with cKi

P . Apart from that, the KeyTray
sends also the following to uj : m7 = 〈EpkCSP(uj , t), σKT (H(uj ||t))〉, where t is

the time that uj accessed cKi

P . As we will see in the next step, t plays a crucial
role in the access control.

LotS.Search : Now that uj has gained access to Ki, she can start searching
directly over encrypted data. Lets assume that uj wishes to search over cipher-
texts that have been encrypted with Ki, for a specific keyword w. To do so, she
first forwards to the CSP m7 that received in the previous step. Upon reception,
CSP decrypts EpkCSP(uj , t), verifies the signature and then checks if t is valid. We
assume that there is a time interval since uj got access to Ki, where she is eligible
to access files that are stored in the CSP. After that time, uj will have to run
again the previous step in order to receive a fresh timestamp. This will guarantee
that uj has not been revoked since the last time that got access to Ki. Then,
if all the verifications are successful, uj runs SSE.SearchToken (Ki, w) → τs(w)
and obtains a token τs(w). Then, she sends the generated token to the CSP who
runs SSE.Search(γi, ci, τs(w))→ Iw that outputs a sequence of file identifiers Iw,
such that Iw ⊆ ci. In addition to that, all files in Iw contain the keyword w
that uj searched for. The resulted Iw is sent back to the user. Upon reception,
uj executes the SSE.Dec algorithm by giving as input Ki and the sequence of
encrypted files that corresponds to the list of identifiers that received from the
CSP. By doing this, uj recovers the files that contain keyword w.

LotS.Update : Apart from storing data and searching over the encrypted data,
users also need to be able to update stored data. Here, we consider the scenario
where ui wishes to add a new file f to the cloud storage. A naive approach
that ui could follow would be to run LotS.Store again, generate the ciphertext
of f and send it to the CSP. However, this would mean that ui would also
create a new encrypted index that would correspond to the encryption of file
f . Such an approach is not efficient since the user would end-up with a long
list of encrypted indexes that are not related to each other and every time that
wishes to perform a search over her data would require from the CSP to search
over all the encrypted indexes. To avoid this, ui needs to store f but instead
of creating a separate encrypted index she needs to update the current one in
order to also include the newly added file. To achieve that, ui first generates an
add token by executing (τα(f), cf)← AddToken(Ki, f) and sends it to the CSP.
Upon reception, CSP executes SSE.Add (γi, ci, τα(f), cf)→ (γ′, c′i) and outputs
an updated encrypted index γ′i and an updated sequence of ciphertexts c′i that
corresponds to the data stored by ui. Thus, by running SSE.Add, CSP stores the
ciphertext of f and updates the existing encrypted index and ciphertext list of
ui.

LotS.Delete : Users must also be able to delete a file. Assume that ui wishes to
delete a file f . To do so, ui runs SSE.DeleteToken which takes as input the sym-

The Lord of the Shares 13

metric key Ki and the file that needs to be deleted and outputs a delete token:
τd(f)← DeleteToken (Ki, f). The generated token is sent to the CSP with the
following message: m8 = 〈m7,EpkCSP(τd(f), γ′i), c

′
i, H(τd(f)||γ′i||c′i)〉 Upon recep-

tion, the CSP first checks that ui is eligible to delete a file and she has not been
revoked (this is done by opening m7 and looking at the timestamp provided by
the KeyTray). Then, the CSP runs SSE.Delete (γ′i, c

′
i, τd(f))→ (γ′′i , c

′′
i) which re-

moves the requested file f and updates both the corresponding encrypted index
and the sequence of ciphertexts.

LotS.Revoke : The last phase of our protocol allows a data owner to revoke
access to a user. We assume that ui wishes to revoke access to uj . To do so, ui con-

tacts the revocation authority (REV) by sendingm9 =
〈
r9,EpkREV(ui, uj , c

Ki

P), H(ui||uj ||cKi

P)
〉

.

Upon reception, REV checks the integrity and the freshness of the message and
recovers the identity of data owner (ui) as well as the user that needs to be
revoked (uj). Then, REV contacts the KeyTray by requesting the ciphertext of

rKi that was stored next to cKi

P during the run of LotS.KeyTrayStore. So, KeyTray

sends the following message to REV: m10 =
〈
Epkui

(rKi), σKT (H(rKi ||r9))
〉

. Upon

reception, REV forwards m10 to ui who recovers rKi and verifies that the message
has been generated by the KeyTray (verifying the signature). Then, ui signs rKi

and sends it to the KeyTray through REV. KeyTray verifies the signature and
is also convinced that ui is the owner of Ki. Hence, KeyTray generates a fresh
random number r′Ki

that replaces rKi and also sends an acknowledgement to REV
that ui has the right to revoke access to uj for all files that are encrypted with
Ki. Finally, REV adds the identity of uj in rl. As a result, the next time that
uj will try to access any of the files that are encrypted with Ki access will be
denied.

6 Security Analysis

We now analyze LotS behavior in the presence of a malicious adversary. We prove
the security of the scheme through a theoretical analysis, showing its resistance
to a list of malicious behaviours. Our security analysis explicitly focuses on the
described protocol and not on the underlying cryptographic schemes. The secu-
rity of all utilized cryptographic schemes (including CP-ABE and SSE) has been
proved in other works [8,?]. Hence, we assume that all the involved cryptographic
schemes are semantically secure.

Realistic Assumption. We assume that all user ids have the same length (or
at least they are not a prefix of each other). By ensuring this property is satisfied,
we can avoid a prefix attack, such as the following:

Assume two users with ids u0 = 001 and u1 = 0011 respectively. Then if an
adversary ADV gets a valid signature σKT (H(uj ||t)) (from a valid m7) this will
be the same as a valid signature on u0 with a much larger time. However, by
setting all users’ ids to have the same length we avoid such an attack.

14 Antonis Michalas

Proposition 1 (Compromise Revoked Users). Let UKi be the set of all users
that have been given access to Ki and RKi the set of all users that their access
to Ki has been revoked. Assume an adversary ADV corrupts n, n ≤ |RKi | users
out of those in the set RKi . Then ADV cannot infer any information about the
files that have been encrypted with Ki.

Proof. Here, we consider the case where ADV corrupts at least one user uc ∈ RKi .
In other words, ADV corrupts at least a user who in the past was eligible to use
Ki and therefore she was able to decrypt all files from ci that were encrypted with
that key. ADV will try to use uc in order to obtain the collection of ciphertexts
ci and access the contents of the files.
ADV trying to access the content of any file in ci can succeed if all the

following conditions hold:

a. Access the symmetric key Ki that used to encrypt the files;
b. Successfully bypass the authentication of CSP during the LotS.Search phase;
c. Access the latest ciphertexts list ci

fresh.

- Condition a is always true. We know that uc ∈ RKi . Therefore, at some point
in the past uc was member of UKi . Hence, we can safely assume that uc was able
to decrypt cKi

P and recover Ki.
- Condition b can only be true if the adversary convince the CSP that uc /∈ RKi .
To do so, the adversary needs to generate a valid m8 messages that will also
contain a fresh timestamp, say tc, that will prove that uc received access to Ki

recently and it is still active. Generating a valid m8 message can be done with
the following two options:

- Replay Old Message: First, we consider the case were ADV replays an older
message m7 in order to generate a valid m8 that will allow her to bypass
the checks of the CSP. To this end, ADV uses the following message that
was received in the past: m7 = 〈EpkCSP(uc, t), σKT (uc||t)〉. This is a valid
message that contains the identity of the corrupted user as well as a valid
signature from the KeyTray. Then ADV generates a fresh random number r

′

8

and creates the message m8 =
〈
r
′

8,m
′

7, σj(m7||r
′

8)
〉

that is sent to the CSP.

Even though the structure of the generated message is correct, the CSP will
drop the connection since it will identify it as an old message. This is due to
the fact that the timestamp t contained in m7 has expired. Therefore, the
CSP cannot be sure if uc’s access right is still active. To bypass that, ADV
will try to replace t with the current time tc. To do so, the adversary will use
pkCSP to generate EpkCSP(uc, tc), and replace the first part of m7. However, the
second part of the message has a signature from the KeyTray that contains
the initial timestamp t. Replacing this with a valid signature on tc fails due
to the assumption of soundness of the signature scheme. Therefore, ADV
will fail to bypass CSP’s authentication.

- Impersonate a Legitimate User : The only remaining alternative for the ad-
versary is to impersonate a legitimate user ul from the set UKi . To do so,ADV

The Lord of the Shares 15

overhears the communication between ul and the CSP. By doing this, ADV
intercepts the message m8 that ul sent to the CSP. This message is fresh and
contains an acceptable timestamp t. However, it also contains (in m7) the
identity of ul. This will be used at the end of the LotS.Search phase where the
CSP will use pkul to encrypt the data that will be sent to the user. Therefore,
ADV will use pkCSP and will replace EpkCSP(ul, t) with EpkCSP(uc, t) we denote
the new message as mc

7. In addition to that, she will calculate σj(m
c
7||r8 and

will contact the CSP by sending the following: m8 = 〈r8,mc
7, σj(m

c
7||r8)〉.

Upon reception, CSP will verify the first signature but will fail to verify the
one that is included in mc

7. This is due to the fact that ADV had to change
the identity of the legitimate user to uc but she could not generate a valid
signature on the new message. Hence, the attack will fail.

- Condition c cannot be true. This implies immediately from the exculpability
of the previous attack. More precisely, in order for ADV to access ci

fresh, she
needs to first bypass CSP’s authentication. However, we showed that this is not
possible. 2

Proposition 2 (Revoke Legitimate Users). Let ui be the owner of data that
has been encrypted with Ki. Additionally, let U the set of all users that have been
given registered with the CSP and UKi be the set of all users that have been given
access to Ki. Assume an adversary ADV corrupts a user uc, uc ∈ U \{ui}. Then
ADV cannot successfully revoke access to any ul ∈ UKi .

Proof. Here, we consider the case where ADV corrupts a user uc such that
uc ∈ U \ {ui}. The attack will be successful if ADV manages to revoke access to
data that has been encrypted with Ki for a legitimate user ul ∈ UKi . To do so,
ADV needs to run LotS.Revoke and convince REV that she is the data owner.
Hence, ADV generates mc

9 =
〈
rc9,EpkREV(uc, ul, c

Ki

P), H(uc||uj ||cKi

P)
〉

and sends

it to REV. Upon reception, REV checks the integrity and the freshness of the
message and recovers the identity of uc, who is pretending to act as data owner,
as well as the id of user that needs to be revoked ul. Then, REV contacts the
KeyTray by requesting the ciphertext of Epki(rKi) that was stored next to cKi

P)
during the run of LotS.KeyTrayStore. So, REV will receive the following: m10 =〈
Epkui

(rKi), σKT (H(rKi ||rc9))
〉

. REV forwards m10 to uc who fails to recover rKi

since it is encrypted with ui’s public key. Therefore, ADV will fail to prove that
is the data owner and the attack will not succeed.

An alternative, would be that ADV uses ui’s id in m9. More precisely, ADV
would send mc

9 =
〈
rc9,EpkREV(ui, ul, c

Ki

P), H(ui||uj ||cKi

P)
〉

to REV. However, this

case is identical to the previous one since cKi

P remains the same. Hence, KeyTray
mapping will again identify ui as the data owner.

Finally, uc could bypass this step is either if she gains access to ski or by
replacing cKi

P with cKc

P , where Kc is a key that has been generated by uc. However,
the first case is not possible since we have assumed that a private key is only
known to its owner. Regarding the second case, this will only allow uc to revoke

16 Antonis Michalas

ul’s access to data that uc has generates. As a result, a corrupted user cannot
revoke access to data that has not been encrypted and generated by her. 2

6.1 SGX Security

The security of LotS heavily depends on the use of Intel’s SGX functionality.
More precisely, we are using Intel SGX to create isolated environments and
launch trusted entities that any third party would be able to attest and ver-
ify their integrity. In the next paragraphs, we provide some basic information
regarding Intel SGX as well as the functionality that we are using in LotS .
Isolation. Intel Software Guard Extensions (SGX) is an extension to Intel’s
x86 design and allows the creation of isolated execution environments, called
enclaves, in which small pieces of code can be executed in isolation from the rest
of the system. Software developers can use Intel SGX enclaves to create trusted
execution environments (TEEs) during OS execution. Such enclaves, rely for
their security on the platform’s trusted computing base (TCB) code and data
loaded at initialization creation time, processor firmware and processor hard-
ware. Program execution within an enclave is transparent to both the underlying
operating system and other enclaves. Multiple mutually distrusting enclaves can
operate on the platform. Enclaves operate in a dedicated memory area called
the Enclave Page Cache (EPC) which in turn is a subset of Processor Reserved
Memory (PRM). The PRM is a range of DRAM reserved by BIOS that cannot
be accessed by system software or peripherals. Furthermore, EPCM is a data
structure that contains a mapping between the enclave identities and the EPC
pages that belong to them. This mapping is used by the CPU to verify enclave
access to memory pages and prevent unauthorized access. The CPU firmware and
hardware are the Root of Trust of an enclave. It prevents access to the memory
segment of the enclave either by the platform operating system, other enclaves,
or other external agents.
Attestation. Simply assuming that trustworthy software is executing on the
target device is (in most cases) insufficient for a remote user to establish a trust
relationship with the target platform. That is because remote users cannot know
whether they are communicating with the intended software or a maliciously
modified instance. Therefore, attestation is of central importance for trust es-
tablishment in a remote system. Attestation of a target can be performed either
by a dedicated appraiser, or directly by the remote user. Users delegate trust
(either directly or transitively) to an appraiser, which is an entity – generally
a computer or a network – making a decision about one or more other targets.
A target is a party (for example a computer system) about which an appraiser
needs to make such a decision. Alternatively, a remote user can itself assume
the appraiser role and attest the target using components that are part of it
or under its control. As described in [11] “Attestation is the activity of making
a claim to an appraiser about the properties of a target by supplying evidence
which supports that claim. An attester is a party performing this activity. An
appraiser’s decision-making process based on attested information is appraisal.”
The goal of an appraisal is to take a decision regarding the expected behavior

The Lord of the Shares 17

of the target prior to establishing a trust relationship. This is done by collecting
enough information about the target – such as hardware, software, and configu-
ration data – in order to establish that the target is in an acceptable state or will
not transfer to an unacceptable state after a trust relationship is established.

Attestation can be done either remotely or locally. The main idea of the
remote attestation, is that any remote party can verify the integrity and the
trustworthiness of a an entity. For a detailed description of a remote attestation
protocol we refer reader to [20]. On the other hand, local attestation is taking
place between two enclaves that are part of the same platform. In our case, we
assume that each time two enclaves communicate with each other, they first
run a local attestation protocol. For more information on how local attestation
works, we refer reader to [14].

7 Experimental Results

This section presents the implementation of the main parts of our protocol.
More precisely, in order to prove the effectiveness of the protocol we conducted
extensive experimental results even under conditions that can be considered as
unrealistic (e.g. creating a key that is associated with a list of 1,000 attributes).
These experiments allowed us to examine the behavior of the utilized encryp-
tion schemes under various scenarios (demanding, less demanding etc.) and ar-
gue about the overall applicability of our approach. As it is evident from the
conducted experiments, the overall performance of the protocol proves that it
can be used in real life scenarios and has the potential to considerably expand
the cryptographic methods that we currently use in most of the existing online
services.

Our experiments mainly aimed at analyzing the processing time of both uti-
lized encryption schemes (ABE and SSE). In order to provide a well-rounded
analysis that would also allow us to identify possible incongruities, we consid-
ered several scenarios to give a concrete picture of the performance of our ap-
proach. Our test bed for the cloud environment included a Dell PowerEdge R320
host connected on a Cisco Catalyst 2960 switch . Furthermore, we used Linux
CentOS, kernel version 2.6.32-358.123.2.openstack.el6.x86 64 and the OpenStack
IaaS platform1 (version Icehouse) using KVM virtualization support. For the
client, all experiments were implemented on a Macbook Pro laptop with a 2.9
GHz Intel Core i5 processor and 8GB RAM.

7.1 Ciphertext-Policy Attribute-Based Encryption

For the implementation of the ciphertext-policy attribute-based encryption, we
used the library provided by Bethencourt et al. [8]. Furthermore, our experiments
were implemented in Python 2.7.10.

1 OpenStack project website: https://www.openstack.org/

https://www.openstack.org/

18 Antonis Michalas

Setup Phase The first phase of the experiments, was dedicated to measuring
the time that is needed to generate a pair of keys for a master entity. This is
part of the setup phase for our framework. Even though applications that will
be based on our protocol or in general, applications that will be using an ABE
scheme can run with the existence of a single master entity, it is common that
more than one master entities will exist. Especially, in multi-cloud environments
where several CSPs are connected to each other, one master entity can be gener-
ated for each CSP. Apart from that, depending on the security level that needs
to be achieved, a master key pair might be generated for each data owner. Such
an approach can also lead to a multi-authority ABE model as described in [10].
By doing this, someone could argue that the overall security of the system is
increased since there is no single point of failure. However, it has been observed
that in a multi-authority setting malicious adversaries may collude to successfully
launch attacks based on information received by key components from different
authorities. To cover all these cases, we ran an algorithm where up to 200 master
key pairs were generated simultaneously. The result of the experiment is illus-
trated in Figure 1. As can be seen, the time needed to generate 200 master key
pairs at the same time (e.g. during the setup phase of a large cloud environment)
is less than 12 sec. Furthermore, the average time to generate just one pair of
master keys (i.e. one single master entity) is 0.061 sec – which is considered as
acceptable. Apart from that, as can be seen from Figure 1, the processing time
is increasing almost linearly with the number of pairs that are generated.

Fig. 1: Generation of master public/private key pairs.

Users Key Generation The next phase of our experiments, focused on the
generation of the users’ keys. Since in ABE users’ keys are associated with at-
tributes, we first developed an algorithm for generating a list of attributes with
different length. The generated attributes were of the form Attribute 1, ...,

Attribute n. Furthermore, we wanted to use a mix of regular and numerical
attributes. This would allow us to later on create more complex policies (e.g.

The Lord of the Shares 19

check if a user is at least 21 years old) and thus give results that are closer to
real world scenarios. Hence, we also used a list of numerical attributes. Then,
we measured the processing time needed for the generation of a user key. Each
of the generated keys was associated with a list of attributes of different length.
More precisely, for every generated key we were increasing the number of as-
sociated attributes by one. Since we wanted to measure the overall processing
time even under demanding circumstances, we created keys with up to 1000
attributes. This is considered enough even for very large organizations and/or
publicly available online services where typically an abundance of information
about users is stored. The results of this experiment are illustrated in Figure 2.
As can be seen from the figure, the time for generating a key associated with
1000 attributes takes around 11 sec. However, this is considered as an extreme
and not very likely case. However, generating a key that is associated with 100
attributes takes around 1.2 sec. This number of attributes is considered suitable
for covering even complex cases where companies need to generate keys based
on a wide variety of information. Hence, it is clear that the time needed in order
to generate keys for a large number of users, while at the same time cover a long
list of options (i.e. attributes), is realistic and does not prevent an organization
from adopting such an approach.

Fig. 2: Generation of user key with up to 1000 attributes

Apart from measuring the processing time needed to generate keys, it was
interesting to see how the size of the generated file is changing as the list of
attributes that are associated with a key are increasing. Figure 3 illustrates
the results of this experiment. As we can see, the size of the generated file is
increasing precisely linear with the number of attributes. A key that is associated
with only one attribute has a size of 412 bytes on the disk, while the size of a
key with 10 attributes is increasing to 3KB. Furthermore, a key associated with
100 attributes has a size of 28KB on the disk while in the extreme case where a
key is associated with 1000 attributes the size is increasing to 278KB.

20 Antonis Michalas

Fig. 3: Disk size of the key as the number of attributes is increasing

Encryption & Decryption The last part of the ABE experiments, was to
measure both the encryption and decryption time. Recall that our protocol is
only using ABE to encrypt a symmetric key and not other files that are stored in
the cloud. Thus, we only ran experiments where we were encrypting a symmetric
key with different policies and decrypting the generated ciphertext with keys
that are associated with a different number of attributes. Moreover, we used
access policies of different structure in order to measure the performance of the
decryption not only when all conditions need to be fulfilled (most demanding
case) but also when a random number of attributes is needed to satisfy the
underlying policy.

Fig. 4: Encryption

During our first experiment we used access policies of the type ’Attribute 1

AND Attribute 2 AND ...AND Attribute n’ as in [15] and [6]. This policy is
considered as the most demanding case since all n attributes are required for
successful decryption. We say that such a policy is of size n. Figure 4 shows
the encryption time needed to encrypt a file with a policy of size up to 1000.

The Lord of the Shares 21

Figure 5, shows the time needed to decrypt that file by using a key with up
to 1000 number of attributes where all were required to satisfy the policy. As
can be seen from Figure ?? the time to encrypt and decrypt a file also depends
on the particular attributes available and the size of the policy. More precisely,
the time needed to encrypt a file with a policy of size 1000 is around 11 sec
while the time needed to decrypt the same file is 4.5 sec. However, having such
a long attribute list is not considered as a realistic scenario. Hence, the results
show that using the proposed scheme to encrypt and decrypt a file of small size
(in our case only a symmetric key) does not put any real burden to the overall
performance of the protocol.

Fig. 5: Decryption

The second experiment of this phase aimed at analyzing the behavior of the
underlying CP-ABE scheme under a randomly generated policy that contained a
mix of regular and numerical attributes as well as conditions like the following:
2 of (age > 35, Attribute x, sysadmin). This condition, requires that at
least two of the attributes in the parenthesis will be satisfied by the attributes
associated with the key of the user that is trying to decrypt a file. Figure 6 shows
the time needed to decrypt a file with a policy size up to 1000 but generated in
a random way (i.e. not all attributes were needed to satisfy the policy). As it is
evident from the graph, the decryption time varies a lot and it is not linear. This
was to be expected since in most cases not all attributes of a key would be needed
to satisfy the policy associated with the ciphertext. Additionally, there were
many cases where a ciphertext with a policy size i needed less time for decryption
than a ciphertext with policy size j, where i > j. This was something that we
were expecting since in contrast to the previous case where all attributes of the
key were needed to satisfy the policy, here only a subset of the total attributes
was required. Thus, during the decryption process the policy was satisfied earlier.
Finally, from this experiment we can see that on average, decryption time is
much less compared to the previous case where all attributes needed to satisfy

22 Antonis Michalas

the policy. Hence, we can safely conclude that the decryption time even when
large policies are used maintains reasonable running times.

Fig. 6: Decryption of ciphertext associated with a random policy

As a conclusion, it is clear that both encryption and decryption run in a
predictable amount of time based on the number of attributes in a key or leaves
in a policy tree. Moreover, the performance of these functions depends on the
specific policy of the ciphertext as well as on the attributes available in user’s
private key. Furthermore, the overall performance of these operations can be
improved by optimizing the way we generate policies. However, we leave this as
a future study. Most importantly, from these experiments it is evident that the
overhead remains at acceptable levels while at the same time large private keys
and policies are possible in practice while maintaining reasonable running times.

7.2 Symmetric Searchable Encryption

For the needs of our protocol, we also implemented a Searchable Encryption
Scheme on top of a Blind Storage System as proposed in [19]. This part of the ex-
periments was implemented in standard C++ using the Boost [2], Crypto++ [3]
and CurlPP [7,4] libraries. Moreover, to test the overall performance of the un-
derlying SSE scheme, we used files of different size and structure. To this end,
we selected random data from the Enron dataset [5]. Our experiments on the
SSE scheme were focused on two main aspects: (1) Indexing and uploading files
and (2) Searching for a specific keyword.

Index & Upload The Enron test set consists of a large number of ASCII files
with each file only consisting of a few bytes but each file occupies an integral
multiple of the block size. In our experiments, we indexed and uploaded files
of a total size up to 4 MB. This, resulted to a set of almost 1400 files from
the selected dataset. The total time needed for both indexing and uploading
was 1054 sec. However, this result corresponds to a rather large number of files.

The Lord of the Shares 23

Therefore, we also ran the same experiment with 250 files resulting in a net total
size of approximately 1 MB. In that case, our experiment indicated a the total
execution time of 350 sec.

Keyword Search During this phase, we measured the execution time for finding
all files that contained the word “the” in our dataset. Searching for a specific
keyword is merely comparable with downloading the corresponding index file.
We ran the search algorithm for the files that we uploaded earlier. The results,
indicated that the total execution time for finding all the files that contained the
specified keyword was less than 0.6 sec.

8 Conclusion

In this paper, we proposed LotS – a protocol for secure and privacy-preserving
data sharing in a cloud environment. LotS is based on Ciphertext-Policy Attribute-
Encryption and Symmetric Searchable Encryption. The described protocol used
the advantages of both techniques and can be seen as an independent contribu-
tion to the field of hybrid encryption. The offered solution allows cloud users to
encrypt files based on an SSE scheme while using a CP-ABE scheme to control
their access rights and securely remove access to a file without having to decrypt
and re-encrypt the original data. Finally, we believe that this work can pave the
way for privacy-preserving data sharing between different organizations that are
using separate and completely distinct cloud platforms. Hence, one of our main
future goals is to test LotS in a multi-cloud environment. We hope that this
has the potential to solve important problems, such as how a patient that is for
example travelling and is in a critical health condition, can share her medical
history with (authorized) doctors of a different country.

References

1. In: Financial Cryptography and Data Security, Lecture Notes in Computer Science,
vol. 6054 (2010)

2. Boost c++ libraries (8 2014), http://www.boost.org/
3. Crypto++ library (11 2015), https://www.cryptopp.com/
4. curl and libcurl (12 2015), http://curl.haxx.se/
5. Enron email dataset (5 2015), https://www.cs.cmu.edu/~enron/
6. Agrawal, S., Chase, M.: Fame: Fast attribute-based message encryption. In:

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 665–682. CCS ’17, ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3133956.3134014, http://doi.acm.org/10.1145/
3133956.3134014

7. Barrette-LaPierre, J.P.: curlpp (5 2015), http://www.curlpp.org/
8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy.
pp. 321–334. SP ’07, IEEE Computer Society, Washington, DC, USA (2007).
https://doi.org/10.1109/SP.2007.11, http://dx.doi.org/10.1109/SP.2007.11

http://www.boost.org/
https://www.cryptopp.com/
http://curl.haxx.se/
https://www.cs.cmu.edu/~enron/
https://doi.org/10.1145/3133956.3134014
http://doi.acm.org/10.1145/3133956.3134014
http://doi.acm.org/10.1145/3133956.3134014
http://www.curlpp.org/
https://doi.org/10.1109/SP.2007.11
http://dx.doi.org/10.1109/SP.2007.11

24 Antonis Michalas

9. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient
revocation. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security. pp. 417–426. CCS ’08, ACM, New York, NY, USA
(2008). https://doi.org/10.1145/1455770.1455823, http://doi.acm.org/10.1145/
1455770.1455823

10. Chase, M.: Multi-authority attribute based encryption. In: Proceedings of
the 4th Conference on Theory of Cryptography. pp. 515–534. TCC’07,
Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.org/citation.cfm?

id=1760749.1760787

11. Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon,
B., Ramsdell, J., Segall, A., Sheehy, J., Sniffen, B.: Principles of remote attestation.
Int. J. Inf. Secur. 10(2), 63–81 (Jun 2011). https://doi.org/10.1007/s10207-011-
0124-7, http://dx.doi.org/10.1007/s10207-011-0124-7

12. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive, Report
2016/086 (2016), https://eprint.iacr.org/2016/086

13. Dolev, D., Yao, A.C.: On the security of public key protocols. Information Theory,
IEEE Transactions on 29(2) (1983)

14. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: Functional encryp-
tion using intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 765–782. CCS ’17, ACM, New York, NY,
USA (2017). https://doi.org/10.1145/3133956.3134106, http://doi.acm.org/10.
1145/3133956.3134106

15. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of abe ci-
phertexts. In: Proceedings of the 20th USENIX Conference on Security. pp. 34–34.
SEC’11 (2011)

16. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. pp. 965–976 (2012)

17. Michalas, A., Dowsley, R.: Towards trusted ehealth services in the cloud. In: 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC).
pp. 618–623 (Dec 2015). https://doi.org/10.1109/UCC.2015.108

18. Michalas, A.: Sharing in the rain: Secure and efficient data sharing for the cloud.
In: Proceedings of the 11th IEEE International Conference for Internet Technology
and Secured Transactions (ICITST-2016). IEEE (2016)

19. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. pp. 639–654 (2014). https://doi.org/10.1109/SP.2014.47

20. Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in
public infrastructure clouds. IEEE Transactions on Cloud Computing 5(3), 405–
419 (July 2017). https://doi.org/10.1109/TCC.2016.2525991

21. Paladi, N., Michalas, A., Gehrmann, C.: Domain based storage protection with
secure access control for the cloud. In: Proceedings of the 2014 International Work-
shop on Security in Cloud Computing. ASIACCS ’14, ACM, New York, NY, USA
(2014)

22. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delega-
tion for attribute-based encryption. In: Proceedings of the 32Nd Annual Cryptol-
ogy Conference on Advances in Cryptology — CRYPTO 2012 - Volume 7417. pp.
199–217 (2012)

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Proceedings of the 24th
Annual International Conference on Theory and Applications of Cryptographic
Techniques. pp. 457–473. EUROCRYPT’05 (2005)

https://doi.org/10.1145/1455770.1455823
http://doi.acm.org/10.1145/1455770.1455823
http://doi.acm.org/10.1145/1455770.1455823
http://dl.acm.org/citation.cfm?id=1760749.1760787
http://dl.acm.org/citation.cfm?id=1760749.1760787
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1007/s10207-011-0124-7
http://dx.doi.org/10.1007/s10207-011-0124-7
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3133956.3134106
http://doi.acm.org/10.1145/3133956.3134106
http://doi.acm.org/10.1145/3133956.3134106
https://doi.org/10.1109/UCC.2015.108
https://doi.org/10.1109/SP.2014.47
https://doi.org/10.1109/TCC.2016.2525991

The Lord of the Shares 25

24. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-Sealed Data: A New
Abstraction for Building Trusted Cloud Services. In: Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12). pp. 175–188. USENIX, Belle-
vue, WA (2012)

25. Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G., Hübsch, G., Paraskakis, I.:
Paasword: A holistic data privacy and security by design framework for cloud ser-
vices. In: Proceedings of the 5th International Conference on Cloud Computing and
Services Science. pp. 206–213 (2015). https://doi.org/10.5220/0005489302060213

26. Yang, K., Jia, X., Ren, K., Xie, R., Huang, L.: Enabling efficient access control
with dynamic policy updating for big data in the cloud. In: IEEE INFOCOM 2014
- IEEE Conference on Computer Communications. pp. 2013–2021 (April 2014).
https://doi.org/10.1109/INFOCOM.2014.6848142

https://doi.org/10.5220/0005489302060213
https://doi.org/10.1109/INFOCOM.2014.6848142

	The Lord of the Shares: Combining Attribute-Based Encryption and Searchable Encryption for Flexible Data Sharing

