
AuthCropper: Authenticated Image Cropper for
Privacy Preserving Surveillance Systems

Jihye Kim1, Jiwon Lee2, Hankyung Ko2, Donghwan Oh2, Semin Han2,
Kwonho Jeong2, and Hyunok Oh2(�)

1 Kookmin University, Seoul, Korea,
{jihyek}@kookmin.ac.kr

2 Hanyang University, Seoul, Korea,
{jiwonlee,hankyungko,donghwanoh,saemin2700,jkho1229,hoh}@hanyang.ac.kr

Abstract. As surveillance systems are popular, the privacy of the recorded
video becomes more important. On the other hand, the authenticity of
video images should be guaranteed when used as evidence in court. It
is challenging to satisfy both (personal) privacy and authenticity of a
video simultaneously, since the privacy requires modifications (e.g., par-
tial deletions) of an original video image while the authenticity does not
allow any modifications of the original image. This paper proposes a
novel method to convert an encryption scheme to support partial de-
cryption with a constant number of keys and construct a privacy-aware
authentication scheme by combining with a signature scheme. The secu-
rity of our proposed scheme is implied by the security of the underlying
encryption and signature schemes. Experimental results show that the
proposed scheme can handle the UHD video stream with more than 17
fps on a real embedded system, which validates the practicality of the
proposed scheme.

Keywords: Privacy, Authentication, Forward-secure signature, Video

1 Introduction

A video from surveillance systems plays an important role in investigating inci-
dences of crime and is often adopted as evidence in courts. However, it is getting
harder to assure that the video frame submitted as evidence is equivalent to
the original image as image editing skills and tools are more sophisticated; it is
pretty simple to add or remove a person or a thing by editing the frame. For
its purpose as evidence, the authentication procedure of a video is prerequisite.
Another desirable requirement for video authentication is forward security. In
general, malicious video manipulation is attempted after an undesirable event
happens. Everyone who is trying to hide his/her unsuitable past behavior is in
range of possible attackers. In the situations where even authorities try to modify
the past CCTV video for their advantage with their authority3, forward security
is essential to fundamentally block a forgery against any past event.

3 In July 2010, London police were accused of editing the original CCTV videos to
use it in the court[Cut10]

2 Authors Suppressed Due to Excessive Length

A (personal) privacy protection is an orthogonal issue to authentication but
required for the proper use of video evidence. It is because original raw video
images collected by surveillance devices may contain personal sensitive data
of a witness, victim, or unrelated third party. Image masking is one of the
most common ways to efficiently hide some portions of an image. Many ex-
isting works[Mou01,RD02] propose watermark or masking based image hiding
techniques, to gain the personal privacy within a video.

Authentication vs Privacy. Masking and authentication, however, are con-
tradictory concepts in terms of their properties; while the authentication verifies
that the image is not modified, masking modifies a portion of the original image.
When the masking technique is applied to the image, the image is no longer
original, and the digital signature is not valid anymore. Currently in the real
world, the public is obligated to trust the image-masking authority completely,
but it is desirable to let even the authority at least provide a proof (i.e. valid
signature) that the image from the past is not modified maliciously.

PASS scheme (privacy preserving surveillance system) in [KLY+17] over-
comes this issue by designing a new signature scheme with an authorized dele-
tion function. PASS detects each object as a deletion unit using a deep learning
algorithm and limits its size overhead to the number of objects. Still, the signa-
ture size in PASS increases by the number of objects, and its deletion availability
is bound to the object detection. Therefore it is desirable to design a partially
deletable authenticated video scheme with constant signature/key size overhead
without defining deletable objects in advance.

Encrypt-and-Sign. To satisfy both privacy and authenticity requirements, we
consider a method to encrypt every pixel using different symmetric keys in a
video frame and generate a signature on the encrypted frame, i.e., encrypt-and-
sign. It achieves authenticity and provide controllable privacy; the signature
verifies the image authenticity, while the pixel level encryption allows to decrypt
only required image portion given the corresponding keys. In this solution, the
number of keys grows in proportion to the number of pixels; for example, a 1080p
video frame requires 1920 × 1080 keys to encrypt each pixel, which is a heavy
burden to be deployed in practice.

If we utilize a hash chain, the size overhead can be reduced into a constant.
An initial seed key generates the rest of keys of each pixel in a sequential order
through a hash chain. The limitation of this approach is that it is difficult to give
a secret key so that only the specified portion of images is decrypted, because one
key generates every keys of its descendants in the sequential order. We overcome
this issue by applying hash chains independently in four directions: left, right, up,
and down. Each pixel is encrypted/decrypted with the four keys. It is possible
to decrypt a particular rectangular area in which the four chain keys can be
generated corresponding to every pixel. Refer to section 4.2 for the details.

AuthCropper. In this paper, we propose a crop supporting authenticated
surveillance system called AuthCropper (Authenticated Image Cropper for Surveil-
lance Systems). It is built by sequentially composing encryption and signature

Title Suppressed Due to Excessive Length 3

schemes as an authenticated encryption scheme. Since the default image re-
mains as a ciphertext, we can guarantee the personal privacy within the video
frame. Instead of deleting the unrelated part of images, it discloses the related
part of images. It supports the partial decryption, i.e., a crop by providing the
corresponding key. By applying the hash chain in a novel way, the proposed Au-
thCropper requires the constant number of keys even without defining deletable
object in advance by additional fancy systems like AI as in [KLY+17]. Encryp-
tion units can range from pixel to full image, controlling the trade-off relation-
ship between encryption performance and privacy quality; A smaller unit takes
long encryption time to generate more keys, while a larger unit opens images
in a coarser-grained rectangle. AuthCropper ensures authorized disclosure and
privacy protection through decryption key generation. According to our exper-
iment, the proposed scheme can encrypt and sign more than 17 fps on a real
embedded system, which validates the practicality of the proposed scheme. The
proposed scheme is secure under the security of the underlying encryption and
signature schemes.

We begin by discussing the related work in Section 2. In Section 3, we de-
scribe preliminaries of the AuthCropper scheme. Section 4 introduces the overall
workflow of the proposed scheme briefly, constructs the proposed scheme, and
shows the security proof. Experimental results are shown in Section 5. Finally,
we conclude this paper in Section 6.

2 Related Work

We overview authentication techniques that support some set of permissible
image processing.

Semi-fragile watermarks[SSY02],[LC] withstand the normal transformation
such as compression. In [SSY02], a semi-fragile watermark was embedded in
coefficients of SVD decomposition of image blocks in a way that tolerates JPEG
compression. In [LC], an authentication string embedded in the image DCT
coefficients using two JPEG compression invariants, makes the watermark robust
to JPEG compression.

Content based authentication schemes[VKJM00,LL03] which encode unique
features from the source image to form digital signatures provide the authenticity
of an image, while allowing content preserving transformations. Venkatesan et
al.[VKJM00] develop an image hash based on an image statistics vector that
stays invariant under a large class of content-preserving modifications to the
image. A structural signature scheme was proposed in [LL03] by identifying
the stable relationship between a parent-child pair of coefficients in the wavelet
domain. These schemes not based on the cryptographic hash functions are known
to be vulnerable to the content changing attack as demonstrated in [LWDD15].

Johnson et al.[JWL11] propose a scheme for image authentication based on
a merkle hash tree, while allowing a public deletion of granulated blocks. A
merkle hash tree is constructed assuming each granulated blocks as leaf nodes.

4 Authors Suppressed Due to Excessive Length

By keeping the hash value, a particular block of an image can be deleted by
anybody.

Photoproof [NT16] implements SNARK[BCCT12] proof to digital images.
SNARK (Succinct Non-interactive ARguments of Knowledge) is a cryptographic
concept of verifying the outsourced computation. The Photoproof allows authen-
ticated users to transform the image, while providing a succinct proof that can
prove the transformation that has been executed. In this approach public veri-
fiers can verify the image authenticity with some modifications allowed. However,
it lacks practicality due to the SNARK complexity and large key size. For in-
stance, it takes 55700 seconds to generate a proof in the transformation with
460GB proving key for a 100x100 size image.

PASS[KLY+17] is proposed to ensure privacy and authenticity of the image
simultaneously. PASS detects objects in a video frame using deep learning image
processing, and generates signatures such that partial deletions are allowed in
an authorized way. It implements chameleon hash scheme[ACDMT05] which
finds a hash collision for different message with a secret key. Thus, chameleon
hash based signatures allows a portion of areas to be deleted in a valid way. The
PASS allows an authorized deleter to distort the objects that are unrelated to the
occasion, to keep the privacy. However, this approach has some limitations; its
privacy controllability is affected by the object detection algorithm; if an object is
not detected by the deep learning algorithm, the privacy of the object cannot be
preserved. Its time/storage complexities due to the signature algorithm increases
linearly with the number of objects, which becomes burdens to be efficiently
deployed in practice.

3 Preliminaries

In this section, we overview a forward secure signature scheme [IR01,KO17]
that our proposed scheme is based on. And then, we describe the definition of
AuthCropper (Authenticated Image Cropper for Surveillance Systems) and its
security notions.

3.1 Forward Secure Signature Scheme

A forward secure signature scheme is a key evolving digital signature scheme,
which ensures that even if a signing key is leaked at the current period, the
authenticity is preserved for the previous periods. A forward secure signature
scheme consists of four algorithms ΣFS=(KeyGen, Update, Sign, Verify) such
that:

KeyGen(T, λ) : It receives a security parameter λ and a total time period T , and
outputs a pair of key (pk, sk).

Update(sk) : It receives the secret key for the current time period, and outputs
sk′ for the next time period.

Title Suppressed Due to Excessive Length 5

Sign(sk,m) : It outputs a signature σ on the message m using the secret key at
the current period.

Verify(pk,m, σ) : It outputs 1 if a signature σ on message m is valid with the
public key pk and 0 otherwise.

In the forward secure signature scheme, although secret key sk is leaked at
time b, it is impossible to forge a signature with past time period b′ where b′ < b.

3.2 Model

We define AuthCropper and its security notions similarly with the scheme[KLY+17].
In the system, a video in a surveillance device consists of multiple frames. To
guarantee controllable privacy and authenticity of the video, AuthCropper en-
crypts each frame using a symmetric key encryption scheme and generates a
signature on the encrypted frame AND its decryption key tag. We note that
AuthCropper authenticates the image decrypted from the authenticated cipher-
text and its decryption key matching the authenticated key tag. (Notice that
the decryption key tag verifies only whether a specific decryption key is valid.)

When the recorded frames are used as evidence, it is required to reveal a
part of the image frames. The authorized manager determines a rectangle to
be revealed in each encrypted image frame. And then the manager generates
a decryption key ck which can decrypt the chosen rectangle in the frame. If
the validity of a given decryption key ck is verified from the key tag then the
decryption is performed correctly; otherwise the given encrypted frame and the
decryption key are rejected as evidence and the decryption process is aborted.

The AuthCropper consists of five algorithmsΠAC = (Setup, Update, AuthEnc,
ExtKey, AuthDec) such that:

Setup(T, λ) takes as inputs a maximum time period T and a security parameter
λ. It outputs a master key msk, a public verification key pk, and a forward
secure signing key sk initialized for period 0.

Update(sk) takes as input the signing key sk for the current period and outputs
an updated signing key sk′ for the next time period.

AuthEnc(msk, sk,M, i) takes as inputs a master key msk, a signing key sk,
a frame image M , and its frame index i. It outputs a ciphertext and its
signature (C, σ) where a ciphertext includes an encrypted frame and its
decryption key tag or C = (E, t).

ExtKey(msk, i, R) takes as inputs a master key msk, a frame index i, and an
area R = (x1, y1, x2, y2) which denotes a rectangle area between top left point
(x1, y1) and bottom right point (x2, y2), and outputs key ck to decrypt the
corresponding area R in an encrypted frame of which frame index is i.

AuthDec(pk, ck, (C, σ)) takes as inputs a verification key pk, a decryption key
ck, a ciphertext C(= (E, t)) and its signature σ. It verifies σ on C using pk
and checks the validity of ck using t; if the verification fails, it outputs ⊥.
Otherwise, it decrypts a rectangle R region using ck and E correctly.

6 Authors Suppressed Due to Excessive Length

An AuthCropper scheme must satisfy the following properties:

Correctness: AuthDec with decryption key ck from ExtKey must decrypt a
corresponding encrypted image produced from AuthEnc and reveal area R in the
image.

(C, σ)← AuthEnc(msk, sk,M, j); ck ← ExtKey(msk, i, R);

AuthDec(pk, ck, (C, σ)) =
[

[M]p if p ∈ R ∧ i = j
]

where [M]p represents a pixel value at position p in image M .

Forward Secure Immutability: The adversary should not manipulate any
past image even with the access to the master key and the current signing key.
Since the pair of a ciphertext and a key is mapped to a plaintext uniquely
by decryption, there are two scenarios to manipulate the plaintext image. The
adversary wins if he forges a valid signature for a modified ciphertext or a ma-
nipulated decryption key. This attack should not allowed even if the adversary
has access to the master encryption key and the current signing key.

Formally, ΠAC is forward secure immutable, if for all PPT adversaries A
there is a negligible function ε such that:

Pr

 (msk, sk, pk)← Setup(T, λ);

b← AAuthEnc(·),Update(·),Break-in(·)(pk,msk);

(b′, ck∗, C∗, σ∗)← A(skb) : AuthDec(pk, ck∗, (C∗, σ∗)) 6= ⊥

 ≤ ε
where ski is the signing key at period i and b is the time period at which
Break-in was issued. (b′, ck∗, C∗, σ∗) are generated by the attacker, where ck∗

is a decryption key, C∗ is a ciphertext, and σ∗ is a signature of C∗ at period
b′. If b′ < b, ∃(ck∗, C∗, σ∗) : (C∗, σ∗) 6= (C, σ) for any AuthEnc query out-
put (C, σ) at period b′ and σ∗ is the valid signature of C∗, or ck∗ 6∈ {ck :
∀R, ck ← ExtKey(msk, b′, R)}, successfully passing AuthDec, A wins.

Authorized Disclosure: ΠAC discloses in an authorized way, if for all PPT
adversaries A there is a negligible function ε such that:∣∣∣∣∣∣∣∣∣∣

Pr


(msk, sk, pk)← Setup(T, λ); i← A(pk, sk);

M0,M1 ← AExtKey(·,j,·)(pk, sk) s.t. j 6= i;

b← {0, 1}; (C, σ)← AuthEnc(msk, sk,Mb, i);

b′ ← AExtKey(·,j,·)(pk, sk, C, σ) : b = b′

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ ε

where adversary A can query ExtKey(·, j, ·) such that all j 6= i. This defini-
tion informs that if msk and ck for frame i are not provided then no infor-
mation about the frame i is leaked. Note that ExtKey(·, j, R) provides a (en-
cryption/decryption) key for frame j when R includes a whole frame area and
AuthEnc(·) can be computed using the key in A.

Area Privacy: The definition is extended from the above authorized disclosure.
All areas except the revealed rectangle area must be private. If the two different

Title Suppressed Due to Excessive Length 7

frames with the same size have an identical revealing area R, they should be
indistinguishable. Formally ΠAC is area private, if for all PPT adversaries A
there is a negligible function ε such that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



(msk, sk, pk)← Setup(T, λ); i, R← A(pk, sk);

M0,M1 ← AExtKey(·,j,·),ExtKey(·,i,R′)(pk, sk)

where ∀p ∈ R, [M0]p = [M1]p;

b← {0, 1}; (C, σ)← AuthEnc(msk, sk,Mb, i);

b′ ← AExtKey(·,j,·),ExtKey(·,i,R′)(pk, sk, C, σ)

: b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε

where adversaryA can query ExtKey(·, j, ·) such that all j 6= i, and ExtKey(·, i, R′)
such that R′ ⊂ R. Similarly to Authorized Disclosure, ExtKey(·, j, R′) simulates
AuthEnc(·) when R′ represents a whole frame area.

4 Authenticated Image Cropper for Surveillance Systems

4.1 Overview

The main objective of our AuthCropper is to authenticate the given video frame
(i.e. authentication), and publicly disclose issuable area only (i.e. privacy). To
ensure both authenticity and controllable privacy, we adopt the concept of for-
ward secure signature, and partially decryptable encryption. With the assistance
of two schemes, the workflow of AuthCropper consists of two phases: ordinary
phase and submission phase, as in figure 1.

Fig. 1: Authenticated Image Cropper for Surveillance Systems

Ordinary Phase. The ordinary phase indicates an original CCTV stream-
ing phase, where the CCTV records the on-going video frames. When an ordi-

8 Authors Suppressed Due to Excessive Length

nary CCTV device records the video, it compresses the video stream with an
internal reconstruction of decompressed images. With leveraging this original
decompressed image, we add an encrypt-and-sign method simultaneously; we
first encrypt the decompressed image and then sign the encrypted image4 with
a forward secure signature scheme. We store these digital signatures (for each
frame) along with the original compressed video, so that the encrypted format
can be verified even when reconstructed for the submission to the court. Namely,
the AuthCropper CCTV storage stores the original compressed video same as
traditional devices, and additional signatures for each frame.

Submission Phase. The submission phase indicates a post-processing phase,
where the image is submitted to the court as a formal evidence. When the cap-
tured images are requested from the court, they are provided by an authorized
manager who manages the privacy of the captured image. The authorized man-
ager receives compressed video data and digital signatures which are generated
by the CCTV device, in the ordinary phase. The manager decompresses the im-
age, and encrypts the decompressed image to generate an encrypted message E.
Since the device signed the encrypted image in the ordinary phase, it is valid
for the reconstructed message E. Note that the CCTV device and the manager
share the same encryption key msk while a signing key sk is kept only in the
CCTV device. The encrypted image E preserves privacy for the video frame if
no decryption key is provided. The manager determines an area to be revealed
by examining the frame, and then generates a decryption key ck which can only
decrypt the selected area in the encrypted image.

The encrypted image, the signature, and the decryption key become a legal
evidence to prove the authenticity while preserving the privacy of the unrevealed
area. In court, it is checked if the given signature σ is valid for the ciphertext and
the decryption key matches the key information in the ciphertext. If the signature
is invalid or the decryption key is mismatched then the data is rejected and the
video cannot be accepted as a legal evidence in court. Otherwise, the encrypted
image E is decrypted using key ck. The output image preserves privacy, because
it is disallowed to decrypt the area which is not covered by key ck. Consequently,
the video maintaining privacy is finally used as a legal digital evidence.

4.2 Idea for Short Keys

Figure 2 shows an image example with 5 × 5 pixel blocks in the proposed Au-
thCropper. As in figure 2a, each image frame of the video is divided into a
grid matrix of blocks called pixel block (we can control the block granularity).
Each pixel block (x, y) contains a set of four keys (LXx, LYy, RXx, RYy). The
keys are generated by using hash chains from (LX1, LY1, RXm, RYn) where the
frame image is composed of m×n pixel blocks (m = 5, n = 5 in this example) by
applying a one-way hash function H repeatedly. More specifically, the intention
is that the hash chain of LX starts from left to right, LY from top to bottom,

4 We sign the corresponding encryption key (anchor key) along with the image, to also
authenticate the key chain.

Title Suppressed Due to Excessive Length 9

RX from right to left, and RY from bottom to top. In this way, each block has
a unique key set, since at least one of the four components would be different
from the other blocks. Note that Hn(x) denotes that H is applied n times. LX1,
LY1, RX5, and RY5 are keys for left, top, right, and bottom blocks, respectively.
LX and RX, and LY and RY evolve along the x and y axes respectively, in
different direction with applying H.

(a) Encryption (whole image) (b) Decryption (open area)

Fig. 2: The main idea of encryption and decryption (5× 5 example)

For encryption and decryption, the AuthCropper adopts a stream cipher
which is an XOR based encryption scheme; it utilizes any pseudorandom gen-
erator (PRG) to generate a stream cipher key, and performs an XOR operation
of the input and the key for both encryption and decryption. For each pixel
block (x, y), a stream cipher key K is generated by providing a set of four keys
(LXx, LYy, RXx, RYy) to PRG. Then the encrypted image block is computed
with e = M ⊕K, where M is an original image block and K is a stream cipher
key.

The decryption key generation for the area of (xL, yL) ∼ (xR, yR) is managed
by an authorized entity, by providing the (LXxL

,LYyL , RXxR
,RYyR). To check

the validity of the decryption key, an anchor key is computed using the given de-
cryption key. If the computed anchor key is equal to the anchor key in the cipher-
text then the decryption process proceeds. With the decryption key, every stream
cipher key can be generated in the specified area while one of LX, LY , RX, and
RY cannot be computed in the outside of the area. Figure 2b illustrates how
to generate a stream cipher key for each pixel block. Assume that the manager
chooses the area of block (2, 2) ∼ (4, 4) to be revealed. The manager first com-
putes a key of (LX2, LY2, LX4, LY4) = (H(LX1), H(LY1), H(RX5), H(RY5)) for

10 Authors Suppressed Due to Excessive Length

an image composed of 5×5 pixel blocks. With the key of (LX2, LY2, LX4, LY4),
every stream cipher key in the selected area can be generated. For instance,
a stream cipher key for a block (3, 4) is (LX3, LY4, RX3, RY4) = (H(LX2),
H(H(LY2)), H(RX4), RY4). For any block outside of the area, one of keys
is not computable at least. For example, consider a block (1, 3). The key be-
comes (LX1, LY3, RX1, RY3) = (LX1, H(LY2), H(H(H(RX4))), H(RY4)). How-
ever, LX1 is not computable from LX2.

Anchor Key. Since an original image block is uniquely determined by an en-
crypted image block and a stream cipher key, a signature should be generated for
not only the encrypted image block but also the stream cipher key. To validate
the key chain, the AuthCropper devises an anchor key which is a hash value
of the last keys in the key chains or AK = H(LXm+1||LYn+1||RX0||RY0). A
ciphertext in fact also includes the anchor key along with the encrypted image
blocks. In decryption example of figure 2b, an anchor key for the frame is com-
puted using the given decryption key or AK = H(LX6|| LY6|| RX0|| RY0) =
H(H4(LX2)|| H4(LY2)|| H4(RX4)|| H4(RY4)).

4.3 Construction

Let ΣFS = (FSKeyGen, FSUpdate, FSSign, FSVerify) be a standard forward-
secure signature scheme. Also let PRG be a pseudorandom generator and H
be a one-way hash function. We assume that a pixel block size parameter is
given as bs and construct the AuthCropper by utilizing ΣFS , PRG, and H. The
AuthCropper ΠAC = (Setup, Update, AuthEnc, ExtKey, AuthDec) is constructed
as follows:

Setup(T, λ): The Setup algorithm outputs a master key msk by choosing a ran-
dom value and a secret key sk by utilizing ΣFS :

msk
$← {0, 1}λ; (pk, sk)← FSKeyGen(T, λ)

return (msk, pk, sk)

Update(skt): It updates the forward secure signature secret key skt to skt+1:

skt+1 ← FSUpdate(skt)
return skt+1

AuthEnc(msk, sk,M, i): We divide image M into multiple pixel blocks where
each pixel block is bs×bs square. The image size of M is (bs×m)× (bs×n), and
there are m × n pixel blocks in a frame. For each pixel block, a stream cipher
is applied for encryption. To ensure the authenticity of the key chains, the hash
of the final chain keys called an anchor key is included in a ciphertext and a
signature is generated for the encrypted image and the key. Note that no area
can be decrypted with an anchor key. The resulting algorithm is as follows:

LX1 ← H(msk, i, 0); LY1 ← H(msk, i, 1)
RXm ← H(msk, i, 2); RYn ← H(msk, i, 3)
for all 1 ≤ x ≤ m, 1 ≤ y ≤ n do

LXx ← Hx−1(LX1); LYy ← Hy−1(LY1)

Title Suppressed Due to Excessive Length 11

RXx ← Hm−x(RXm); RYy ← Hn−y(RYn)
XKx,y ← PRG(LXx, LYy, RXx, RYy)
[E]x,y ← [M]x,y ⊕XKx,y

end for
AK ← H(LXm+1||LYn+1||RX0||RY0)
C ← E||AK
σ ← FSSign(sk, C)
return (C, σ)

where [M]x,y (or [E]x,y) presents a pixel block at position (x, y) in M (or
E), and || denotes concatenation.

ExtKey(msk, i, R): An areaR is compiled asR = (bs×xL, bs×yL, bs×xR, bs×yR).
Decryption key ck for R is computed by applying hash function repeatedly:

LX1 ← H(msk, i, 0); LY1 ← H(msk, i, 1)
RXm ← H(msk, i, 2); RYn ← H(msk, i, 3)
LXxL

← HxL−1(LX1); LYyL ← HyL−1(LY1)
RXxR

← Hm−xR(RXm); RYyR ← Hn−yR(RYn)
return ck = (LXxL

, LYyL , RXxR
, RYyR)

AuthDec(pk, ck, (C, σ)): takes inputs a verification key pk, a decryption key ck,
a ciphertext C(= E||AK), and an authentication tag σ. First it verifies the
signature to C using a forward secure signature algorithm and checks whether
ck is a valid key against anchor key AK by applying H. If it passes, it decrypts E
using key ck. Note that decryption key ck = (LXxL

, LYyL , RXxR
, RYyR) is used

to decrypt an encrypted frame for an area (bs× xL, bs× yL, bs× xR, bs× yR).

Parse C = (E,AK)
If FSVerify(pk,C, σ) = 0 return ⊥
IfAK 6=H(Hm+1−xL(LXxL

) ||Hn+1−yL(LYyL) ||HxR(RXxR
) ||HyR(RYyR))

return ⊥
for all xL ≤ x ≤ xR, yL ≤ y ≤ yR do

LXx ← Hx−xL(LXxL
); LYy ← Hy−yL(LYyL)

RXx ← HxR−x(RXxR
); RYy ← HyR−y(RYyR)

XKx,y ← PRG(LXx, LYy, RXx, RYy)
[M]x,y ← [E]x,y ⊕XKx,y

end for
return M

4.4 Security Proof

In this section, we provide security proofs for the proposed AuthCropper, which
are defined in section 3.

Theorem 1. Assuming that ΣFS is forward secure with advantage AdvFS and
H is a second pre-image resistance hash function with advantage AdvH in tH ,
the proposed scheme ΠAC satisfies forward secure immutability with advantage
AdvAC ≤ AdvFS+2(m+n)×AdvH in tAC ≤ qs(tEnc+2(m+n)tH + tFSSign)+

12 Authors Suppressed Due to Excessive Length

qutFSUpdate, where qs and qu denote the number of sign and update queries,
respectively. tsign and tupdate represent the time of Sign and Update in ΣFS and
tEnc indicates the encryption time of an image in AuthEnc.

Proof. Assume that there is PPT adversary A to break the forward secure im-
mutability with advantage AdvAC in the proposed scheme ΠAC . We show there
exists PPT adversary B that breaks the forward security of ΣFS or the second
pre-image resistance of H.

There are two scenarios for attacker A to generate a valid forward secure
signature for a past image in period b′.

First, assuming that A finds (C∗, σ∗) that is not queried at period b′ where
σ∗ is the valid signature of C∗ with probability AdvFS , we construct attacker
B against ΣFS . Given pk, B selects msk as in ΠAC and provides (msk, pk) for
A. To simulate AuthEnc(msk, sk,M, i), B computes C = (E, t) following the
protocol ΣFS and obtains σ by querying FSSign on C. For the Update query, B
requests the FSUpdate query. When A breaks in at period b, B also breaks in at
period b and responds with skb. Finally, if A outputs (b′, ck∗, C∗, σ∗) verified by
AuthDec then B outputs (C∗, σ∗).

Second, assuming that A finds ck∗ which is not generated from msk while
ck∗ passes the anchor key check step in AuthDec, it occurs due to the second pre-
image attack. Let AdvH denote the second pre-image resistance attack probabil-
ity. Since the second pre-image collision attack can happen for each of 2(m+ n)
hash values, the collision probability is 2(m+ n)×AdvH .

Theorem 2. Assuming that PRG is a pseudorandom generator and H is a pre-
image collision resistant, ΠAC satisfies authorized disclosure and area privacy.

Proof. Since the area privacy implies the authorized disclosure, the authorized
disclosure is automatically proven when the area privacy holds. The area privacy
is defined by the game where an adversary tries to distinguish C0 a ciphertext of
one area from C1 a ciphertext of the other area except area R = (x1, y1, x2, y2).
For area R, assume that decryption key ckR is generated as (LXx1

, LYy1 , RXx2
,

RYy2). Note that from the decryption key ckR, a valid anchor key is generated
by applying hash function H multiple times.

We describe a series of hybrid experiments G0 - G5, where the first game
corresponds to the view of an adversary when M0 is used as input for AuthEnc,
while the final game corresponds to the view of an adversary when M1 is used.
The experiment G0 is identical to the real area privacy experiment and the
remaining G1 - G5 are progressively modified in such a way that each consecutive
pair is proven to be indistinguishable.

Game G0: This is the area privacy experiment described in Section 3.2 with the
adversary getting output of AuthEnc(msk, sk, M0, i).

Game G1: This is same as G0 except that PRG(K) is replaced by PRG(K ′)
where a component outside of R is chosen randomly in K ′. Without loss of
generality, assume that x < x1. Then K ′ = (LX ′x, LXy, RXx, RYy) when K

Title Suppressed Due to Excessive Length 13

= (LXx, LXy, RXx, RYy) where LX ′x is randomly chosen. To distinguish two
games, the adversary needs to succeed the pre-image attack and check ifHx1−x(LX ′x)
is equal to LXx1

. Since H is applied at most m or n, the adversary succeeds
with probability of (m+n) × AdvH where the probability to find the pre-image
of hash function is AdvH .

G1 is computationally indistinguishable from G0, i.e.,

|Pr[A(G0) = 1]− Pr[A(G1) = 1]| ≤ (m+ n)×AdvH (1)

Game G2: This is same as G1 except that PRG(K ′) is replaced by a truly
random function R. By the security of the PRG, G2 is computationally indis-
tinguishable from G1, i.e.,

Pr[A(G1) = 1]− Pr[A(G2) = 1]| ≤ AdvPRG (2)

where PRG and R is distinguishable with probability of AdvPRG.

Game G3: This is same as G2 except that C is computed as an encryption of
M1 rather than M0. Since the encryption is a XOR operation, it has perfect
security. Therefore, G3 is totally indistinguishable from G2.

Game G4: This is same as G3 except that use PRG(K ′) instead of R. G4 is
computationally indistinguishable from G3, i.e.,

|Pr[A(G3) = 1]− Pr[A(G4) = 1]| ≤ AdvPRG (3)

Game G5: This is same as G4 except that K is used rather than K ′. G5 is
computationally indistinguishable from G4, i.e.,

|Pr[A(G4) = 1]− Pr[A(G5) = 1]| ≤ (m+ n)×AdvH (4)

Finally, G0 is computationally distinguishable from G5, i.e.,

|Pr[A(G0) = 1]− Pr[A(G5) = 1]| ≤ 2(m+ n)×AdvH + 2AdvPRG (5)

Since PRG is a pseudorandom generator and H is a one-way function,
AdvPRG and AdvH are both negligible. Thus, ΠAC satisfies area privacy.

5 Experiment

In this section, we show the results of our AuthCropper implementation on the
real PC server and the embedded system with a camera - Jetson TX2 quad-core
ARM Cortex-A57. Figures 3a and 3b show the captured images the experiment
environment, with installing the Jetson TX2 board (figure 3c) on a drone cam
and a black box camera. We implement the proposed AuthCropper with utilizing
the OpenCV 3.4 library. In experiment, we consider the three implementations

14 Authors Suppressed Due to Excessive Length

(a) Drone cam (b) Vehicle black box (c) Applied board

Fig. 3: The actual capture of the AuthCropper experiment environment (embed-
ded systems)

on a single core, with pre-computation of stream cipher keys, and on multi-core
with the pre-computation.

Pre-Computation. In the pre-computation method, it is assumed that all
stream cipher key XKx,y sets for each frame are constructed in advance. In
the real-time recording, the device fetches the pre-computed XK sets and do
the encryption (i.e. XOR operation) directly along with the forward-secure sign.
In practice, by utilizing dedicated hardware hash accelerators such as Intel SHA
extension and ARM cryptography engine, the pre-computation approach can be
realized.

Parallel Processing. While there may be a control dependency among frames
in video compression, there is no dependency in AuthEnc. Hence AuthEnc can be
parallelized on multiple cores. The parallel processing optimization can improve
the performance of AuthEnc by starting to execute AuthEnc for the next frame
before AuthEnc for the current frame is completed.

We implement and compare the proposed AuthCropper without and with
the optimization methods of pre-computation and parallel processing. For the
building block, we utilize an existing signer-friendly scheme [KO17] for the for-
ward secure signature, and SHA-256 hash for both pseudorandom generator and
one-way hash function.

Recall that the workflow of our AuthCropper consists of two phases: ordinary
phase and submission phase (Section 4.1, figure 1). The ordinary phase indicates
the original CCTV streaming phase in real-time, while the submission phase is
a post-processing phase that happens when the image (or video) is submitted to
the court.

Since submission phase is not sensitive to the execution time, we mainly
focus on the ordinary phase - specifically fps (frames per second) which is gov-
erned by the AuthEnc time. First we analyze the FPS of the video by varying
the image size and the pixel block size, to observe if the AuthCropper can be
practically applied to the current surveillance systems of at most 30 FPS. Then
for the justification of submission phase, we briefly represent the execution time
of ExtKey and AuthDec by varying the open area size. The experiments are per-
formed on a PC server with Intel i5-4670 (3.40GHz dual-core), and a Jetson

Title Suppressed Due to Excessive Length 15

TX2 embedded system (with an attached camera) with quad-core ARM Cortex-
A57 (2GHz quad-core). Figure 4 represents a real implementation result of the
AuthCropper, where an area in an image is decrypted from the encrypted image.

(a) Original image (b) Encrypted image (c) Partially revealed im-
age

Fig. 4: The evidence generation in AuthCropper

1 2 4 8 16 32

0

10

20

30

Block size (n× n pixels)

fp
s

(f
ra

m
es

p
er

se
co

n
d
)

PC PC (pre) PC (pre+2core)

Jetson Jetson (pre) Jetson (pre+4core)

(a) Block size (HD image)

nHD qHD HD HD+ FHD UHD

0

10

20

30

Image size

fp
s

(f
ra

m
es

p
er

se
co

n
d
)

PC PC (pre) PC (pre+2core)

Jetson Jetson (pre) Jetson (pre+4core)

(b) Image size (16 × 16 pixels of granu-
larity)

Fig. 5: FPS of the video by varying the block size and image size

Figure 5 shows the average fps results for the recorded video (ordinary
phase) when varying the block size and the image size. PC, PC (pre), and PC
(pre+2core) represent performance results on a PC server with no optimization,
applying the pre-computation method, and applying both pre-computation and
parallel processing on dual-core, respectively. Similarly, Jetson, Jetson (pre), and
Jetson (pre+4core) indicate results on a Jetson board with no optimization, ap-
plying the pre-computation method, and applying both pre-computation and
parallel processing on quad-core, respectively.

16 Authors Suppressed Due to Excessive Length

In figure 5a, x-axis indicates the size of a pixel block which has n× n pixels
(e.g. 32 represents a pixel block of 32 × 32 pixels), and the y-axis illustrates
the average FPS. Note that the image size is HD or (1280 × 720). The per-
formance increases as the pixel block size increases since the number of pixel
blocks decreases and the numbers of hash operations and memory accesses de-
crease. Unless the optimizations are applied, large size pixel blocks are required
to satisfy 30 fps. However, if pre-computation and multi-core optimizations are
utilized then the 30 fps can be easily reached even for 4× 4 size pixel blocks.

Figure 5b shows the average fps results for a pixel block with 16× 16 pixels
by varying the frame image size among nHD (640× 360), qHD (960× 540), HD
(1280× 720), HD+ (1600× 900), FHD (1920× 1080), and UHD (3840× 2160).
As the frame image size increases, the fps results decrease since the number of
pixel blocks increases and encryption time increases. With the full optimizations,
the performance of 24 fps and 17 fps is achievable on PC and Jetson for UHD
images.

1 22 42 82 162 322

0

200

400

Number of pixel blocks in an open area

T
im

e
(m

s)

ExtKey (PC)

AuthDec (PC)

ExtKey (Jetson)

AuthDec (Jetson)

Fig. 6: ExtKey and AuthDec time by varying the open area size in UHD (16×16
pixels of granularity)

In the submission phase, the authorized manager determines the area to
be opened in the image. Figure 6 shows the execution times of ExtKey and
AuthDec algorithms for an ultra-HD (UHD) image depending by varying the
size of the open area where a pixel block includes 16 × 16 pixels. Note that
the performance of the submission phase is independent of the optimizations.
ExtKey (PC) and AuthDec (PC) represent the results on the PC server, and
ExtKey (Jetson) and AuthDec (Jetson) indicate the results on the Jetson board,
respectively. The x-axis indicates the open area size of n×n blocks.In the ExtKey,
the only required computation is hash chains for four sets of keys: two for top
left (LX, LY) and two for bottom right (RX, RY). Thus the ExtKey remains
constant. The execution time of the AuthDec algorithm is proportional to the
open area size. As the open area size become large, the number of blocks to be

Title Suppressed Due to Excessive Length 17

decrypted increases. The results show that the execution time is fast enough to
be used in practice.

6 Conclusion

This paper presents a new Authenticated Image Cropper for Surveillance Sys-
tems. While a signature guarantees that an image frame is not altered, hiding
of objects or masking is required in the frame for privacy. Since privacy and
integrity are contradictory, it is a hard problem to solve the privacy preserving
authentication problem.

The proposed scheme deals with the privacy preserving secure signature prob-
lem. Using the one-wayness of the hash function, our scheme allows to disclose
only a selected part of video. Only an authorized manager examines the original
video and determines an area that is relevant to the event. A forward signature is
used in our proposed scheme, which provides forward secure immutability. That
is, no past signature can be generated even after the current secret sign key is
leaked.

Experimental results show that the proposed scheme is supposed to be uti-
lized practically in a real-time video surveillance system due to its high per-
formance of symmetric encryption and a far smaller signature size overhead
compared to the previous works.

References

[ACDMT05] Giuseppe Ateniese, Daniel H. Chou, Breno De Medeiros, and Gene
Tsudik. Sanitizable signatures. In European Symposium on Research in
Computer Security, pages 159–177. Springer, 2005.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, pages 326–349. ACM, 2012.

[Cut10] Nicola Cutcher. CCTV and police abuse of power.
https://www.theguardian.com/commentisfree/2010/jul/19/

gaza-protests-inquiry-police-cctv, 2010.

[IR01] Gene Itkis and Leonid Reyzin. Forward-Secure signatures with optimal
signing and verifying. In Advances in Cryptology - CRYPTO 2001, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, pages 332–
354, 2001.

[JWL11] Rob Johnson, Leif Walsh, and Michael Lamb. Homomorphic signatures for
digital photographs. In Financial Cryptography, pages 141–157. Springer,
2011.

[KLY+17] Jihye Kim, Seunghwa Lee, Jungjun Yoon, Hankyung Ko, Seungri Kim,
and Hyunok Oh. Pass: Privacy aware secure signature scheme for surveil-
lance systems. In Advanced Video and Signal-based Surveillance (AVSS),
2017 IEEE Symposium on. IEEE, 2017.

18 Authors Suppressed Due to Excessive Length

[KO17] Jihye Kim and Hyunok Oh. Forward-secure digital signature schemes
with optimal computation and storage of signers. In IFIP International
Conference on ICT Systems Security and Privacy Protection, pages 523–
537. Springer, 2017.

[LC] C.-Y. Lin and S.-F. Chang. Semifragile watermarking for authenticat-
ing jpeg visual content. In Electronic Imaging. International Society for
Optics and Photonics, pages=140—151, year=2000,.

[LL03] Chun-Shien Lu and H-Ym Liao. Structural digital signature for image
authentication: an incidental distortion resistant scheme. IEEE Transac-
tions on Multimedia, 5(2):161–173, 2003.

[LWDD15] Swee-Won Lo, Zhuo Wei, Robert H. Deng, and Xuhua Ding. On security
of Content-Based video stream authentication. In ESORICS 2015, pages
366–383, 2015.

[Mou01] Pierre Moulin. The role of information theory in watermarking and its
application to image watermarking. Signal Processing, 81(6):1121–1139,
2001.

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authen-
tication for any set of permissible transformations. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 255–271. IEEE, 2016.

[RD02] Christian Rey and Jean-Luc Dugelay. A survey of watermarking algo-
rithms for image authentication. EURASIP Journal on Advances in Sig-
nal Processing, 2002(6):218932, 2002.

[SSY02] R. Sun, H. Sun, and T. Yao. A svd-and quantization based semi-fragile
watermarking technique for image authentication. In International Con-
ference on Signal Processing, pages 1592—-1595. IEEE, 2002.

[VKJM00] Ramarathnam Venkatesan, S. M. Koon, Mariusz H. Jakubowski, and
Pierre Moulin. Robust image hashing. In Image Processing, 2000, vol-
ume 3, pages 664–666. IEEE, 2000.

