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Abstract. In this short note we give a polynomial-time quantum reduc-
tion from the vectorization problem (DLP) to the parallelization prob-
lem (CDHP) for efficiently computable group actions. Combined with
the trivial reduction from parallelization to vectorization, we thus prove
the quantum equivalence of these problems, which is the post-quantum
counterpart to classic results of den Boer and Maurer in the classical
Diffie–Hellman setting. In contrast to the classical setting, our reduction
holds unconditionally and does not assume knowledge of suitable auxil-
iary algebraic groups. We discuss the implications of this reduction for
isogeny-based cryptosystems including CSIDH.

Keywords: Quantum reduction, group action, discrete-logarithm problem,
computational Diffie–Hellman problem.

1 Introduction

In their seminal 1976 paper [8], Diffie and Hellman conjectured that breaking
their new key exchange protocol (in the sense of computing the shared secret from
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the public keys) was as hard as computing discrete logarithms. This polynomial-
time equivalence was later proven (assuming knowledge of suitable auxiliary
algebraic groups of smooth order) for all groups by Maurer [10], based on earlier
results of den Boer [7] covering certain special cases.

In this short paper, we prove an unconditional reduction between the analog-
ous problems for group actions in the quantum setting. This result has important
implications for the quantum security of the CSIDH key-exchange scheme [3].

Cryptographic group actions. In 1997, Couveignes introduced the notion of a
hard homogeneous space [4], essentially a free and transitive finite abelian group
action ∗ : G × X → X which is efficiently computable1 while other computa-
tional problems are hard. In Couveignes’ terminology, these are vectorization and
parallelization, named by analogy with the archetypical example of a homogen-
eous space: a vector space acting on affine space by translations (cf. Figure 1).
The vectorization problem is: given x and g ∗x in X, compute g ∈ G. The
parallelization problem is: given x, g ∗x, and h∗x in X, compute gh∗x ∈ X.
The group-exponentiation analogues of these problems are the discrete logarithm
problem (DLP) and computational Diffie–Hellman problem (CDHP).

Figure 1. The vectorization and parallelization problems.

For twenty years, there was little interest in the hard-homogeneous-spaces
framework, since all known (conjectural) instantiations were either painfully slow
in practice or already captured by the group-exponentiation point of view. How-
ever, interest in these one-way group actions has reemerged due to the current fo-
cus on post-quantum cryptography, where group-exponentiation Diffie–Hellman
is broken in polynomial time by Shor’s algorithm [13], but group actions are
not. In particular, CSIDH is a cryptographic group action that appears to be
post-quantum secure and reasonably efficient in many scenarios [3].

DLP–CDHP reductions. Just like in the classical group-exponentiation set-
ting, it is evident that parallelization reduces to vectorization: recover x from
x∗g, then apply x to y ∗g to obtain xy ∗g. Traditionally, the other direction is
much more subtle. The reduction essentially relies on the existence of auxiliary
algebraic groups of smooth group order over Fqi , where the qi are the prime
divisors of the order of the group in which the DLP and CDHP are defined.

1 See Section 2 for a precise definition.
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The first result was given by den Boer [7], who showed the DLP and CDHP
to be equivalent in F×p when p is a prime such that the Euler totient ϕ(p− 1) is
smooth. The auxiliary groups are simply F×qi for each prime divisor qi | p−1, and
the smoothness assumption implies that the DLP in each F×qi is easy. Maurer [10]
generalized this result to arbitrary cyclic groups G, assuming that for each large
prime divisor qi of |G|, there exists an efficiently constructible elliptic curve
E/Fqi with smooth group order.

These reductions do not apply in the group-action setting on classical com-
puters [15, §11]. However, we show that there exists a polynomial-time quantum
reduction from the vectorization to the parallelization problem for group actions,
without relying on any extra assumptions. This proves the polynomial-time equi-
valence of these problems in the quantum setting.

2 Efficient group actions

We now define what it means for a group action G×X → X to be “efficiently
computable”. Since our main motivation is CSIDH (where G is an ideal class
group and X is a set of elliptic curves), we use the notation a, b, . . . for elements
of the group G, and denote by E an element of the set X.

Definition 1. Let G be a finite abelian group and X a finite set. We abbreviate
“polynomial in log(|G|+|X|)” as “polynomial”. A group action ∗ : G×X → X is
efficiently computable if all elements of G and X have (not necessarily unique)
bit representations of polynomial length, a generating set of G of polynomial size
is given, and the following tasks can be performed in polynomial time:

1. Compute the composition ab ∈ G of any a, b ∈ G.
2. Compute the action a∗E of any a ∈ G on any E ∈ X.
3. Represent elements of X canonically as bit strings.

Vectorization is: Given E ∈X and E′ ∈G∗E, compute any a∈G with E′= a∗E.
Parallelization is: Given E ∈X and a∗E, b∗E ∈ G∗E, compute ab∗E ∈X.2

Remark. The notion of a “hard homogeneous space” as defined by Couveignes [4]
additionally requires that ∗ is free and transitive, that uniform sampling from G
is polynomial-time, and that vectorization and parallelization are hard for ∗ . On
the other hand, Task 3 is weakened to efficient membership and equality testing.

3 The reduction

Let π be an algorithm that solves the parallelization problem for an efficient
group action G ×X → X. In other words, π takes a∗E and b∗E and returns
ab∗E. We show that oracle access to a quantum circuit that computes π allows
one to solve the vectorization problem for ∗ : G×X → X in polynomial time.

2 The apparent ambiguity in the choice of a and b lies in the stabilizer subgroup of E,
thus cancels out in the result ab∗E.
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Lemma 1. Given an element a∗E ∈ X and access to a parallelization oracle π,
one can for any integer n ≥ 0 compute an ∗E using Θ(log n) queries to π.

Proof. We perform double-and-add in the “implicit group” [15] of exponents,
using the oracle π : (ax ∗E, ay ∗E) 7→ ax+y ∗E for addition and doubling. ut

Theorem 1. Let ∗ : G × X → X be an efficiently computable group action.
Given quantum access to a perfect parallelization oracle π, one can construct a
quantum algorithm for the vectorization problem that runs in polynomial time.

Proof. We are given an instance (E, a∗E) ∈ X2 of the vectorization problem.3

From the public description of G, we get a polynomially-sized generating set
g1, ..., gr. For x ∈ Zr, write gx =

∏s
i=1 g

xi
i , and define the map

h : Zr −→ X

x 7−→ gx ∗ E .

We apply Boneh and Lipton’s [2] or Kitaev’s [9] higher-dimensional generalisa-
tion of Shor’s algorithm [13] to compute the period lattice

K = {x ∈ Zr : gx ∗E = E }

of the map h in polynomial time. Note that Zr/K is isomorphic to G/Stab(E).

Now, define

f : Zr × Z −→ X

(x, y) 7−→ gx ∗ (ay ∗E) .

Observe that ay ∗E can be computed using Lemma 1: Negative y may be replaced
by a positive representative modulo det(K), which must be a multiple of the
order of a ·Stab(E). Thus, using the efficient algorithm for the group action and
the oracle access to π, one can construct a quantum circuit that computes f in
polynomial time. The function f is a homomorphism to the implicit group on the
orbit of E isomorphic to Zr/K, hence defines an instance of the hidden-subgroup
problem with respect to its kernel, i.e., the lattice

L = { (x, y) ∈ Zr × Z : gx+yv ∗E = E } ,

where v ∈ Zr is any vector such that gv ∗E = a∗E.4 This (abelian) hidden-
subgroup problem can be solved in polynomial time again using Shor’s algorithm,
making use of the efficient circuit to compute f constructed above. Finally, any
vector in L of the form (x, 1) satisfies g−x ∗E = a∗E, hence yields a solution to
the vectorization problem. ut

Remark. If desired, the generating set g1, ..., gr can be replaced by a smaller
generating set after computing K and before defining f . Moreover, if elements

3 The element a is only defined up to Stab(E), but this choice will cancel throughout.
4 Note that v is only defined modulo K, but this does not matter since L ⊇ K×{0}.
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of G have unique representation, the computation of K can be replaced by a
group-structure computation; the benefit is that this is independent of E, hence
can be amortized across multiple vectorization instances.

Also note that the computation of K is only necessary to handle negative y
when evaluating f ; hence, it seems this step could be omitted by using a variant
of Shor’s algorithm that only queries f on the subset Zr×Z≥0. The computation
of K can also be skipped if the order of G is known a priori, or if the action of
inverses can be computed in a different way: For example, in the CSIDH setting,
when E is the starting curve chosen in [3], then x−1 ∗E can be obtained as the
quadratic twist of x∗E.

3.1 Imperfect oracles

It is unclear how to perform the reduction above when π is only guaranteed to
succeed with non-negligible probability α, meaning that the probability over all
triples (E, a∗E, b∗E) ∈ X3 that the oracle outputs ab∗E is at least α.

In the classical discrete-logarithm setting, it is straightforward to amplify
the success probability of CDH oracles using a random self-reduction of problem
instances [11, 14]: one computes lists of possible values of gab by blinding the
inputs and unblinding the outputs, and uses majority vote to determine the
correct result. Any exponentially small failure probability can be achieved using
polynomially many queries [14, § 5].

In the group-action setting, however, blinding does not work: The results
cited above use a blinding map of the form ga 7→ (ga)xgy = gax+y, which relies
on the fact that we can multiply two public keys. But the best we can do for a
mere group action is to translate the inputs by random elements, i.e., blind as
a∗E 7→ x∗ (a∗E) with a random x ∈ G, which is insufficient: For example, if A
is a perfect CDH oracle, then the oracle B that returns the output of A either
unmodified (with probability ε), or shifted by a fixed element z ∈ G, is entirely
unaffected by blinding and hence cannot be amplified using this idea. Thus, we
must unfortunately leave the case of imperfect oracles as an open problem.

4 Implications for CSIDH

Let E be an elliptic curve over Fq with EndFq
(E) = O being an order in an

imaginary quadratic field. Any invertible O-ideal a gives rise to an isogeny
ϕa : E → E′ with kernel E[a] = {P ∈ E(Fq) : ∀ψ ∈ a, ψ(P ) = 0}. This leads to
an action of cl(O) on a set X of elliptic curves isogenous to E and with the same
endomorphism ring as E. Precisely, a∗E := E′ = E/E[a]. This is the homo-
geneous space underlying CSIDH [3], the Couveignes and Rostovtsev–Stolbunov
cryptosystems [4, 16, 6], and also the SeaSign signature scheme [5].

Public keys are instances (E, a∗E) of the vectorization problem in this ho-
mogeneous space. In CSIDH, the Diffie–Hellman secret shared between Alice and
Bob, with public keys (E, a∗E) and (E, b∗E), is ab∗E. Recovering the shared
secret from the public keys is therefore solving a parallelization problem.
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Unfortunately, CSIDH is not known to be an efficiently computable group
action in general. The standard implementations of CSIDH [3] use secret keys of
the form a =

∏
i l

ei
i , where e = (e1, . . . , en) ∈ Zn are short exponent vectors and

the li are a fixed set of “small” ideals whose action is efficient. The action of a
is then evaluated as repeated applications of the li and their inverses. However,
with these implementations, it is no longer efficient to evaluate the action of a
composition of such “nice” ideals: a sequence of k additions starting from short
exponent vectors can result in an exponent vector of 1-norm exponential in k.

If one sets up a sequence of CSIDH instantiations for unbounded security
levels, then there is no known polynomial-time method to sample uniformly from
the groups G or compute the action in polynomial time. There are two reasons
for this. First, one might need relatively large prime ideals li to generate the class
group. Second, and more serious, given a randomly chosen ideal a it may be hard
to find a short representation of an equivalent ideal of the form

∏
i l

ei
i . Even when

the class group structure is known, finding a short exponent vector e requires
solving a close(st)-vector problem for the relation lattice ker(Zn→ cl(O)). But
asymptotically, polynomial-time lattice reduction algorithms cannot guarantee
that the output will have norm small enough to ensure that the resulting group
action is computable in polynomial time.

For the above reasons, Theorem 1 does not apply directly to the general
case of CSIDH or related cryptographic systems. However, this does not mean
the result has no practical meaning. For example, since the dimensions n used
in CSIDH are rather small (e.g. the CSIDH-512 parameter set from [3] uses
n = 74), an efficient lattice-reduction algorithm such as BKZ [12] with moderate
block size suffices to obtain highly practical results (reducing a random relation
lattice of dimension 74 using BKZ with block size 20 yields exponent vectors
only 8 times longer than normal CSIDH-512 private keys). As another example,
the CSI-FiSh [1] system has a known relation lattice and a relatively efficient
group operation, so our theorem shows that the parallelization and vectorization
problems are equivalent in a practical sense for this system. Similarly, we expect
that in many reasonable cryptographic settings (possibly after some quantum
and classical precomputation) our result will provide a meaningful equivalence
of the parallelization and vectorization problems.
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