
Gradient Visualization for General
Characterization in Profiling Attacks

Loïc Masure1,2, Cécile Dumas1, and Emmanuel Prouff2,3

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, F-38000 Grenoble
{loic.masure, cecile.dumas}@cea.fr

2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, F-75005,
Paris, France

3 ANSSI, France emmanuel.prouff@ssi.gouv.fr

Abstract. In Side-Channel Analysis (SCA), several papers have shown
that neural networks could be trained to efficiently extract sensitive infor-
mation from implementations running on embedded devices. This paper
introduces a new tool called Gradient Visualization that aims to proceed
a post-mortem information leakage characterization after the successful
training of a neural network. It relies on the computation of the gradient
of the loss function used during the training. The gradient is no longer
computed with respect to the model parameters, but with respect to
the input trace components. Thus, it can accurately highlight temporal
moments where sensitive information leaks. We theoretically show that
this method, based on Sensitivity Analysis, may be used to efficiently
localize points of interest in the SCA context. The efficiency of the pro-
posed method does not depend on the particular countermeasures that
may be applied to the measured traces as long as the profiled neural
network can still learn in presence of such difficulties. In addition, the
characterization can be made for each trace individually. We verified the
soundness of our proposed method on simulated data and on experimen-
tal traces from a public side-channel database. Eventually we empirically
show that the Sensitivity Analysis is at least as good as state-of-the-art
characterization methods, in presence (or not) of countermeasures.

Keywords: Side Channel Analysis · Profiling Attacks · Deep Learning · Points
of Interest · Characterization

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploits weaknesses
of a physical implementation of a cryptographic primitive. During its execution,
the primitive processes values, called sensitive, that both depend on a piece of
public data (e.g.a plaintext) and on some chunk of a secret value (e.g.a key). As
the processing is invertible, knowing the value of this variable (or at least hav-
ing some information about it) and the plaintext enables an attacker to recover
the piece of secret key. Secure cryptographic algorithms such as the Advanced

Encryption Standard (AES) can then be defeated by recovering each byte of the
secret key separately thanks to a divide-and-conquer strategy, thereby breaking
the high complexity usually required to defeat such an algorithm. This informa-
tion is usually gathered thanks to physical leakages such as the power consump-
tion or the electromagnetic emanations measured on the target device. Actually,
conducting an SCA is equivalent as studying the conditional probability distri-
bution of the sensitive variables given the physical measure. It can be done for
example through the computation of statistics such as a difference of means [16]
or a correlation coefficient [4].

For the specific type of SCA called profiling attacks, an attacker will try to
estimate the whole conditional distribution thanks to a profiling phase during
which she has access to an open sample for which she knows the value of the tar-
get variable. Such an access allows her to estimate the conditional distribution.
Historically, Gaussian Template Attacks (GTA) have first been proposed in the
early 2000’s [8]. Their complexity is however strongly impacted by the number
of time samples contained in the exploited traces. A first pre-processing step is
hence required to extract, from each trace, few points called Points of Inter-
est (PoIs). Tools like Signal-to-Noise Ratio (SNR) can efficiently extract those
PoIs [22] (see Section 4.3). Other characterization methods based on statistical
tools such as the T-Test [24] or the χ2-Test [26] may also be used.1 However,
in presence of countermeasures such as masking or de-synchronization [32], both
estimation with GTA and PoIs extraction with SNR are no longer efficient (or at
least much less). Likewise, other dimensionality reduction techniques like dedi-
cated variants of Principal Component Analysis (PCA) [5,36,12,10,9] or Kernel
Discriminant Analysis (KDA) [6] can be used, without guarantee that relevant
components will be extracted.

Recently, the SCA community has benefited the resurgence of Convolutional
Neural Networks (CNNs) in the 2010’s [17] to apply them to profiling attacks, as
first proposed in [13,20,23]. They are seen as a black-box tool and their results
have been afterwards experimentally shown to be robust to the most common
countermeasures, namely masking [21] and de-synchronization [7]. Their main
advantage is that they do not require pre-processing, and are at least as efficient
as the other state-of-the-art profiling attacks. However, from the evaluator’s
point-of-view, this is not sufficient. On the one hand she wants to make sure
that a CNN attack succeeded for good reasons i.e. that the learned model can
generalize to new data. On the other hand the evaluator also wants to help the
developer to localize and understand where the vulnerability comes from in order
to remove or at least reduce it. This issue is part of a more general problematic in
Deep Learning based systems, namely their explainability and interpretability. To
address it, a theoretical framework has recently been proposed in [25], and several
methods have been tested to tackle the issue. In particular, some computer vision

1 In practice, the latter methods usually emphasize the same PoIs than SNR. This
claim has been empirically verified on the data considered in this study. For this
reason, we will only focus on the SNR when challenging the effectiveness of our
method in the remaining of this paper.

research groups have studied the so-called Sensitivity Analysis [34,35] which is
derived from the computation of the loss function gradient with respect to the
input data during the training phase.

In this paper, we propose to apply a particular Sensitivity Analysis method
called Gradient Visualization (GV) in order to better understand how a CNN
can learn to predict the sensitive variable based on the analysis of a single trace.
The main claim is that CNN based models succeed in discriminating PoIs from
non-informative points, and their localization can be deduced by simply looking
at the gradient of the loss function with respect to the input traces for a trained
model. We theoretically show that this method can be used to localize PoIs
in the case of a perfect model. The efficiency of the proposed method does not
decrease when countermeasures like masking or misalignment are applied. In ad-
dition, the characterization can be made for each trace individually. We verified
the efficiency of our proposed method on simulated data and on experimental
traces from a public Side Channel database. We empirically show that Gradient
Visualization is at least as good as state-of-the-art characterization methods, in
presence or not of different countermeasures.

The paper is organized as follows. In Section 3 we start by considering the
optimal model an ideal attacker may get during profiling, and we deduce some
properties of its derivatives with respect to the input traces that can be related
to the PoIs. In Section 4 we use these properties on a model estimated with
CNNs and we explain how to practically implement the visualization method.
A toy example applied on simulated data is proposed for illustration. Sections 5
and 6 are eventually dedicated to an experimental validation of the effectiveness
of our proposal in realistic attacks scenarios.

2 Preliminaries

2.1 Notations

Throughout the paper we use calligraphic letters as X to denote sets, the corre-
sponding upper-case letter X to denote random variables (resp. random vectors
X) over X , and the corresponding lower-case letter x (resp. x for vectors) to
denote realizations of X (resp. X). The i-th entry of a vector x is denoted by
x[i]. We denote the probability space of a set X by P(X). If X is discrete, it
corresponds to the set of vectors [0, 1]|X | such that the coordinates sum to 1. If
a random variable X is drawn from a distribution D, then DN denotes the joint
distribution over the sequence of N i.i.d. random variables of same probability
distribution than X. The symbol E denotes the expected value, and might be
subscripted by a random variable EX , or by a probability distribution E

X∼D
to

specify under which probability distribution it is computed. Likewise, Var de-
notes the variance of a random variable. If f : x, y 7→ f(x, y) is a multivariate
function, ∂

∂x denotes the partial derivative with respect to the input variable x.
Likewise, if f is a function from Rn to R, then ∇f(x) denotes the gradient of
f computed in x ∈ Rn, which corresponds to the vector of the partial deriva-
tives with respect to each coordinate of x respectively. If there is an ambiguity,

the gradient will be denoted ∇xf(x,y) to emphasize that the gradient is com-
puted with respect to x only. Eventually if f is a function from Rn to Rm, then
Jf (x) ∈ Rm,n denotes the (m,n) matrix whose rows are the transposed gradient
of each elementary function x 7→ f(x)[i] ∈ R. The output of a cryptographic
primitive C is considered as the target sensitive variable Z = C(P,K), where
P denotes some public variable, e.g. a plaintext chunk, where K denotes the
part of secret key the attacker aims to retrieve, and where Z takes values in
Z = {s1, . . . , s|Z|}. Among all the possible values K may take, k? will denote
the right key hypothesis. A side-channel trace will be viewed as a realization of
a D-dimensional random column vector X ∈ X ⊂ RD.

2.2 Profiling Attacks

We will consider attacking a device through a profiling attack, made of the
following steps:

– Profiling acquisition: a dataset of Np profiling traces is acquired on the pro-
totype device: Sp , {(x1, z1), . . . , (xNp , zNp)}.

– Model building : a model that returns a discrete probability distribution (pdf)
F (x) is built. If the model is accurate, the returned discrete pdf, viewed as
a vector, is assumed to be a good approximation of the conditional pdf
Pr[Z|X = x].

– Attack acquisition: a dataset of Na attack traces is acquired on the target
device: Sa , {(x1, z1), . . . , (xNa

, zNa
)}.

– Predictions: a prediction vector is computed on each attack trace, based on
the previously built model: yi = F (xi), i ∈ [|1, Na|]. It assigns a score to
each key hypothesis, for each trace.

– Guessing : the scores are combined over all the attack traces to output a
likelihood for each key hypothesis; the candidate with the highest likelihood
is predicted to be the right key.

Let us denote by gSa(k
?) the actual rank of the correct key hypothesis returned

by the attack. If gSa(k
?) = 1, then the attack is considered as successful. More

details about the score vector and the rank definitions can be found in Ap-
pendix A. The difficulty of attacking the target device is often defined as the
number of traces required to get a successful attack. As many random factors
may be involved during the attack, it is preferred to study its expected value,
the so-called Guessing Entropy (GE) [37]:

GE(Na) , E
Sa

[gSa
(k?)] . (1)

The goal of an evaluator is therefore to find a model F that minimizes Na such
that GE(Na) < 2. We will assume that this is equivalent to the problem of ac-
curately estimating the conditional probability distribution x 7→ Pr[Z|X = x].
As mentioned in the introduction, we distinguish the security evaluator as a
particular attacker who additionally wishes to interpret the attack results. One

step of this diagnosis is to temporally localize where the information leakage
appeared in x. This task is usually called characterization. It consists in empha-
sizing Points of Interest (PoIs) where the information leakage may come from.
Section 4.3 will present an usual characterization technique while a new method
will be introduced through this paper.

3 Study of an Optimal Model

In this section, we address the evaluator interpretation problem in the ideal
situation when the conditional distribution is known (i.e. when the model is
perfect). The latter will be denoted as F ∗. We will show how the study of the
derivatives of such a model with respect to each coordinate of an input trace can
highlight information about our PoIs. To this end, we need two assumptions.

Assumption 1 (Sparsity) There only exists a small set of coordinates IZ ,
{t1, . . . , tC |C � D} such that Pr[Z|X] = Pr [Z|X [t1] , . . . ,X [tC]].

Assumption 2 (Regularity) The conditional probability distribution F ∗ is dif-
ferentiable over X and thereby continuous.

Informally, Assumption 1 tells that the leaking information is non-uniformly
distributed over the trace. Both assumptions are realistic in a SCA context (this
point is discussed in Appendix B).

Once Assumptions 1 and 2 are stated, we may want to observe their impact
on the properties verified by the optimal model derivatives. For such a purpose
we start by considering an example on a trace x. Figure 1 (left) illustrates such
a trace in blue, and the green line depicts a PoI, namely a peak of SNR (in other
words the set of PoIs IZ is reduced to a single time index). The prediction pdfs
F ∗(x) are given at the right of the same figure: they are here represented by a
histogram over the 256 possible values of a byte. We may fairly suppose that a
slight variation on one coordinate that does not belong to IZ (dotted in gray in
Figure 1, left) should not radically change the output of the optimal model. The
pdf remains the same, as the gray bars and blue bars perfectly match in Figure 1
(right). However, applying a slight variation on the coordinate from IZ (dotted
in red in Figure 1, left) may radically change the output distribution (red bars
in Figure 1, right).

This example illustrates the more general idea that small variations applied
to the trace at a coordinate t ∈ IZ should radically change the output prediction
whereas small variations at t /∈ IZ have no impact. As a consequence, if F ∗ is
differentiable with respect to the input trace (according to Assumption 2), there
should exist s ∈ Z such that:

∂

∂x[t]
F ∗(x)[s]

{
6= 0 iff t ∈ IZ
≈ 0 iff t /∈ IZ

. (2)

The latter observation can be stated in terms of the Jacobian matrix of the
estimator, denoted as JF∗(x). Its coefficients should be zero almost everywhere,
except in columns t ∈ IZ :

0 20 40 60 80

Time (samples)

−60

−50

−40

−30

−20

−10

0

10

20

Trace slice

Insignificant Change

Crucial Change

Base Trace

Peak of SNR

0 50 100 150 200 250

Sensitive Value

10−5

10−4

10−3

10−2

10−1

100

S
co

re

Predictions

Insignificant Change

Crucial Change

Base Scores

Fig. 1: Illustration of the Sensitivity Analysis principle. Left: a piece of trace.
t ∈ IZ is depicted by the green line, and slight variations dotted in red and gray.
Right: predictions of the optimal model.

JF∗(x) =
(
0 . . . 0 Yt 0 . . . 0

)
(3)

where Yt =
(

∂
∂x[t]F

∗(x)[s1], ∂
∂x[t]F

∗(x)[s2], . . . , ∂
∂x[t]F

∗(x)
[
s|Z|

])ᵀ
and 0 de-

notes the zero column vector.
The properties verified by the Jacobian matrix in (3) form the cornerstone of

this paper, as it implies that we can guess from this matrix whether a coordinate
from an input trace belongs to IZ or not, i.e. whether a coordinate has been rec-
ognized as a PoI when designing the optimal model F ∗. Such a technique is part
of Sensitivity Analysis.2 Moreover, except Assumption 1, no more assumption
on the nature of the leakage model is required.

4 Our Characterization Proposal

So far we have shown that the Jacobian of an optimal model may emphasize
PoIs. In practice however, the evaluator does not have access to the optimal
model, but a trained estimation of it. A natural idea is hence to look at the
Jacobian matrix of the model estimation, hoping that its coefficients will be
close to the optimal model derivatives. Here we follow this idea in contexts
where the approximation is modeled by training Convolutional Neural Networks,
described in Section 4.1 (discussions can be found in Appendix C about this
approximation). Section 4.2 illustrates our claim with a toy example. Finally,
Section 4.3 is dedicated to the comparison of our approach with state-of-the-art
methods for leakage characterization.

2 A general definition of Sensitivity Analysis is the study of how the uncertainty in
the output of a mathematical model or system (numerical or otherwise) can be
apportioned to different sources of uncertainty in its inputs [38].

4.1 Gradient Approximation with Neural Networks

Neural Networks (NN) [19] aim at constructing a function F : X → P(Z)
composed of several simple operations called layers. All the layers are entirely
parametrized by (a) a real vector called trainable weights and denoted by θ that
can be automatically set; (b) other parameters defining the general architecture
of the model which are gathered under the term hyper-parameter. The latter
ones are defined by the attacker/evaluator.

Convolutional Neural Networks (CNN) form a specific type of Neural Net-
work where particular constraints are applied on the trainable weights [18]. The
training phase consists in an automatic tuning of the trainable weights and it
is done via an iterative approach that locally applies the Stochastic Gradient
Descent algorithm to minimize a loss function that quantifies the classification
error of the function F over the training set. For further details, the interested
reader may refer to [14].

To accurately and efficiently compute the Jacobian matrix of a CNN, an al-
gorithm called backward propagation (or back-propagation) can exactly compute
the derivatives with the same time complexity as computing F (x, θ) [14]. As a
consequence, computing such a matrix can be done with a negligible overhead
during an iteration of a Stochastic Gradient Descent. Actually the modern Deep
Learning libraries [28,1] are optimized to compute the required derivatives for
Stochastic Gradient Descent in the back-propagation, so the Jacobian matrix
is never explicitly stored, and it is easier to get the loss function gradient with
respect to the input trace ∇x`(F (x, θ), z∗), where ` : P(Z) × Z → R+ denotes
the loss function, and z∗ denotes the true sensitive value. Hopefully, studying
either the latter one or JF (x) is fairly equivalent, as one coordinate of the loss
function gradient is a function of elements from the corresponding column in the
Jacobian matrix:

∇x`(F (x, θ), z) = JF (x, θ)T∇y`(F (x, θ), z). (4)

That is why we propose to visualize the latter gradient to characterize PoIs
in the context of a CNN attack, instead of the Jacobian matrix (unless explicit
mention). To be more precise, we visualize the absolute value of each coordinate
of the gradient in order to get the sensitivity magnitude. In the following, such
a method is named Gradient Visualization (GV for short).

4.2 Example on Simulated Data

To illustrate and explain the relevance of the GV method, and before going on
experimental data, we here propose to apply it on a toy example, aiming at
simulating simple D-dimensional leakages from an n-bit sensitive variable Z.
The traces are defined such that for every t ∈ J1, DK:

xi[t] =

{
Ui +Bi, if t /∈ {t1, . . . , tm}
zt,i +Bi otherwise

, (5)

where (Ui)i, (Bi)i and all (zt,i)i are independent, Ui ∼ B(n, 0.5), Bi ∼ N (0, σ2)
and where (z1,i, . . . , zm,i) is a m-sharing of zi for the bitwise addition law. This
example corresponds to a situation where the leakages on the shares are hidden
among values that have no relation with the target.

Every possible combination of the m-sharing has been generated and repli-
cated 100 times before adding the noise, in order to have an exhaustive dataset.
Therefore, it contains 100 × 2mn simulated traces. We ran the experiment for
n = 4 bits, m ∈ {2, 3}, D = 100, and a varying noise σ2 ∈ [0, 1]. Once the
data were generated, we trained a neural network with one hidden layer made of
D neurons. Figure 2 presents some examples obtained for 2 (left) and 3 shares

0 20 40 60 80 100
Input coordinates: 100 random values, 2 informative components.

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44]
Shape: (25600, 100), = 0.4, loss = 3.9360218048095703

0 20 40 60 80 100
Input coordinates: 100 random values, 3 informative components.

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44, 80]
Shape: (409600, 100), = 0.1, loss = 3.9143667221069336

Fig. 2: Gradient of the loss function respectively for two and three shares.

(right). We clearly see some peaks at the coordinates where the meaningful in-
formation have been placed. Interestingly, this simulation shows that a second
order masking has been defeated, though it required 16 times more simulated
data and less noised data (σ2 ≥ 0.1) than for the same experiment against first
order masking. Further works might study how much the noise magnitude σ2

and the number of shares impact the efficiency of the training. It is however
beyond the scope of this paper.

4.3 Comparison with SNR for Characterization

Now we have shown that Gradient Visualization is relevant for characterization
on simulated data, one may wonder to what extent this method would be useful
compared to other characterization techniques. In this section, we compare our
contribution to the SNR used for PoIs selection in SCA. For each time sample
t, it is estimated by the following statistics:

SNR[t] ,
V
Z

(
E [X[t]|Z = z]

)
E
Z

[
V (X[t]|Z = z)

] , (6)

where the numerator denotes the signal magnitude and the denominator de-
notes the noise magnitude estimate (see [22] for more details on its application

in the SCA context). One has to keep in mind that the SNR is a statistical tool,
and produces a single characterization from all the profiling traces; whereas our
method gives one map for each trace, though we might average them. This ob-
servation has two consequences. First, if an SNR characterization is launched
in presence of masking, every trace coordinate X[t] is likely to be independent
from Z, which will lead the numerator to converge towards 0. Secondly, if an
SNR characterization is launched in presence of de-synchronization (which is
likely to introduce a lot of noise in the traces), then the denominator is expected
to explode as argued in [32, Section 3.2]. To sum-up, an SNR characterization
cannot directly highlight higher order leakages when the random material (used
to mask and/or desynchronise the data) is not assumed to be known. Some solu-
tions to deal with this issue have been proposed, e.g.by pre-processing the traces
with some functions combining tuple of points [31] or by applying realignment
techniques [39,27,11].

4.4 Related Works

The idea to use the derivatives of differentiable models to visualize information
is not new. Following the emergence of deep convolutional networks, [34] has
first proposed the idea of GV to generate a so-called Sensitivity Map for image
recognition. The approach was motivated by the fact that such a map can be
computed for free thanks to the back-propagation algorithm. A derived method,
called Guided Backpropagation has also been proposed in [35]. The latter one
slightly modifies the back-propagation rule in a ReLU layer in order to filter
the contributions from the upper layers. Actually [25] states that visualizing the
gradient only tracks an explanation to the variation of a final decision (F (x) in
our context), and not directly the decision itself. To this end, they propose a
visualization method called Layerwise Relevance Propagation (LRP). Another
method called Deconvolution has been proposed in [40] in order to give insight
about the regions of an input data that contribute to the activation of a given
feature in a model (either in an intermediate layer or in the output layer). In
the domain of Image Recognition, these methods have been shown to be more
relevant than GV.

However, the SCA and Image Recognition domains differ. In the latter one,
the decision is highly diluted among lots of pixels, and the decision surface
might be locally flat, though we are in a very determining area. Hopefully in
a SCA context, Assumption 1 states that it is reasonable to consider that the
information is very localized. That is why we are in a particular case where
looking at the output sensitivity may be more interesting than other visualization
methods.

5 Experiment Description

So far we have claimed that relevant information can be extracted from the
loss gradient of a differentiable model. Following this idea, it has been shown to

be efficient to localize PoIs on simulated data and validated that this method
might overcome some weaknesses of state-of-the-art techniques. We now plan to
experimentally verify these claims. Before introducing the results in Section 6, we
first describe our investigations. In Section 5.1, we present the CNN architecture
that will be used for profiling. Finally, Section 5.2 gives an exhaustive description
of all the considered parameters for our experiments.

5.1 CNN Architecture

For these experiments, we will consider the same architecture as proposed in [7,3],
with the same notations since the training will be done on the same dataset (see
Sec. 5.2):

s ◦ [λ ◦ σ]n1 ◦ δG ◦ [δ ◦ σ ◦ µ ◦ γ]n3 , (7)

where γ denotes a convolutional layer, σ denotes an activation function i.e. a
non-linear function applied elementwise, µ denotes a batch-normalization layer,
δ denotes an average pooling layer, λ denotes a dense layer and s denotes the
softmax layer. Furthermore, n1 denotes the number of dense blocks, namely the
composition [λ ◦ σ]. Likewise, n3 denotes the number of convolutional blocks,
namely [δ ◦ σ ◦ µ ◦ γ].

As the utlimate goal is not to get the better possible architecture, but rather
having a simple and efficient one, a lighter baseline has been chosen compared
to the original architecture proposed in the cited papers:

– The number of filters in the first layers has been decreased (10 instead of
64), though it is still doubled between each block; and the filter size has been
set to 5.

– The dense layers contain less neurons: 1,000 instead of 4,096.
– A global pooling layer δG, has been added at the top of the last block. Its

pooling size equals the width of the feature maps in the last convolutional
layer, so that each feature maps are reduced to one point. While it acts as a
regularizer (since it will drastically reduce the number of neurons in the first
dense layer), the global pooling layer also forces the convolutional filters to
better localize the discriminative features [41].

5.2 Settings

Our experiments have been done with the 50, 000 EM traces from the ASCAD
database [3]. Each trace is made of 700 time samples.3 Here-after, the three dif-
ferent configurations investigated in this paper are presented with the notations
taken from [3]. For each experiment we precise the label to be learned. This la-
bel is known during the training/profiling phase but not during the test/attack
phase:

3 It corresponds to 26 clock cycles.

– Experiment 1 (no countermeasure): the traces are synchronized, the
label to be learned by the Neural Network is Z = Sbox(P ⊕K) ⊕ rout (in
other terms, rout is assumed to be known, like P). The traces correspond
to the dataset ASCAD.h5, and the labels are recomputed from the metadata
field of the hdf5 structure.

– Experiment 2 (artificial shift) : the labels are the same as in Exp. 1
but the traces are artificially shifted to the left of a random number of
points drawn from a uniform distribution over J0, 100K. Concretely, the traces
correspond to the dataset ASCAD_desync100.h5.

– Experiment 3 (synchronized traces, with unknown masking): we
target Z = Sbox(P ⊕ K), i.e. we have no knowledge of the masks rout
(neither during profiling or attack phase). Concretely, the traces correspond
to the dataset ASCAD.h5 and the labels are directly imported from the field
labels in the hdf5 structure.

It is noticeable that in every case, as the key is fixed, and both the plaintext and
rout are completely random and independant. Therefore, the labels are always
balanced.

The Neural Networks source code is implemented on Python thanks to the
Pytorch [28] library and is run on a workstation with a Nvidia Quadro M4000
GP-GPU with 8 GB memory and 1664 cores.

We will use the Cross-Entropy (also known as Negative Log Likelihood) as a
loss function. It particularly fits our context as it is equivalent as minimizing the
Kullback-Leibler divergence, which measures a divergence between two proba-
bility distributions, namely F ∗(x) and F (x, θ) in our case. Therefore, the model
F (., θ) will converge towards F ∗ during the training.

For each tested neural network architecture, a 5-fold cross-validation strategy
has been followed. Namely, the ASCAD database has been split into 5 sets
S1, . . . , S5 of 10, 000 traces each, and the i-th cross-validation, denoted by CVi,
corresponds to a training dataset Sp = ∪j 6=iSj and a validation dataset Sv = Si.
The given performance metrics and the visualizations are averaged over these 5
folds. The optimization is actually done with a slight modification of Stochastic
Gradient Descent called Adam [15]. The learning rate is always set to 10−4.
Likewise, the batch size has been fixed to 64. For each training, we operate 100
epochs, i.e. each couple (xi, zi) is passed 100 times through an SGD iteration,
and we keep as the best model the one that has the lowest GE on the validation
set. 4

6 Experimental Results

This section presents experimentations of the GV in different contexts, namely
(Exp.1) when the implementation embeds no countermeasure, (Exp.2) when
traces are de-synchronized and (Exp.3) when masking is applied. The methods
4 Following the recent work in [29], the classical Machine Learning metrics (accuracy,
recall) are ignored, as they are not proved to fit well the context of SCA.

used to train the CNNs, to tune their hyper-parameters and to generate the GV
have been presented in Section 5.

6.1 Application Without Countermeasure

Parameter Value

n3 5
n1 {0, 1, 2}

n1 Validation Loss (bits) N∗

0 6.40 3.25
1 6.15 3
2 6.35 3.25

n1 Validation Loss (bits) N∗

0 6.64 4.0
1 6.46 3.6
2 6.90 5.4

Table 1: Architecture hyper-parameters (left) and performance metrics without
countermeasure (center) and with de-synchronization (right).

In application context (Exp.1) (i.e. no countermeasure) several CNNs have
been trained with the architecture hyper-parameters in (7) specified as listed in
Table 1 (left). Since the masked data are here directly targeted (i.e. the masks
are supposed to be known), no recombination (thereby no dense layer) should
be required, according to [3], Sec.4.2.4. The parameter n1 should therefore be
null. However, to validate this intuition we let it vary in {0, 1, 2}. The validation
loss corresponding to these values is given in Table 1 (center), whereN∗ denotes
the minimum number of traces required to have a GE lower than 1. Even if this
minimum is roughly the same for the 3 different configurations, we selected the
best one (i.e. n1 = 1) for our best CNN architecture. Figure 3 (left) presents the
corresponding GV, and the corresponding SNR (right).5 It may be observed that
the peaks obtained with GV and SNR are identical: the highest point in the SNR
is the second highest point in GV, whereas the highest point in GV is ranked 7-th
in the SNR peaks. More generally both methods target the same clock cycle (the
19-th). These observations validate the fact that our characterization method is
relevant for an unprotected target.

6.2 Application with an Artificial De-synchronization

We now add a new difficulty by considering the case of de-synchronization as
described in Section 5.2. The hyper-parameter grid is exactly the same as in
Section 6.1, and the corresponding loss is given in Table 1 (right). Faced to mis-
alignment, the considered architectures have still good performances, and the
attacks succeeded in roughly the same number of traces than before. Interest-
ingly, Figure 4 shows that the GV succeeds to recover the leakage localization
while the SNR does not (see Figure 9 in Appendix D). Actually, the gradient
averaged over the profiling traces Figure 4 (left) shows that, instead of having
5 An alternative representation with the Jacobian matrix is given in Appendix D,
Figure 8.

0 100 200 300 400 500 600 700

Time (samples)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
ra

d
ie

n
t

Gradient averaged on a 5-fold cross validation
No masking, no desynchronization

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
N

R

SNR for Z = SBox(p[3]⊕ k[3])⊕ rout
Synchronized traces

Fig. 3: Case where no countermeasure is considered. Left: GV for the trained
model with 1 dense layer. Right: SNR.

a small number of peaks, a band is obtained whose width approximately equals
the maximum quantity of shift applied in the traces, namely 100 points. More-
over, individual gradients Figure 4 (right) bring a single characterization for each
trace, enabling to guess approximately the shift applied to each trace.

0 100 200 300 400 500 600 700

Time (samples)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

G
ra

d
ie

n
t

Loss function gradient (average)
No masking, random shift (100)

Fig. 4: Case where de-synchronization is considered. GV for each trace separately
(right) and averaged (left).

6.3 Application with a First Order Masking

The last experiment concerns the application of GV in presence of masking.
Several model configurations have been tested which correspond to the hyper-
parameters listed in Table 2 (left). We eventually selected the 8 models that
achieved the best GE convergence rate (right).

For the selected architectures, our first attempt to use GV did not give full
satisfaction. As an illustration, Figure 5 (left) presents it for one of the tested
architectures (averaged over the 5 folds of the cross-validation). Indeed, it looks

Parameter Value

n3 {5, 6, 7, 8}
n1 {2, 3}
n_filters_1 10
kernel_size {3, 5, 11}

100 101 102

Number of traces

0

20

40

60

80

100

120

140

Gu
es

sin
g

En
tro

py

Guessing Entropy on cross validated grid-search with CNN
n3 = 7, n1 = 3, kernel_size = 5
n3 = 7, n1 = 2, kernel_size = 5
n3 = 8, n1 = 2, kernel_size = 5
n3 = 7, n1 = 2, kernerl_size=11
n3 = 8, n1 = 2, kernel_size = 11
n3 = 7, n1 = 3, kernel_size = 11
n3 = 8, n1 = 3, kernel_size = 3
n3 = 5, n1 = 3, kernel_size = 11

Table 2: Masking Case. Left: architecture hyper-parameters (bold values refer
to the best choices). Right: GE for the 8 best architectures.

difficult to distinguish PoIs (i.e. those identified by our SNR characterization, see
the right-hand side of Figure 6) from ghost peaks (i.e. peaks a priori independent
of the sensitive target). To explain this phenomenon, we decided to study the
validation loss of the trained models. Figure 5 (right) presents it for one model
and for each of the 5 cross-validation folds CVi, i ∈ [0..4].

0 100 200 300 400 500 600 700

Time (samples)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

G
ra

d
ie

n
t

Loss function gradient (average)
With masking, no shift

0 20 40 60 80 100

Epoch

7.70

7.75

7.80

7.85

7.90

7.95

8.00

8.05

L
os

s
(C

ro
ss

-E
n

tr
op

y)

Loss for the best architecture (Exp.3)
Training losses in dotted lines, Validation losses in plain lines

CV 0

CV 1

CV 2

CV 3

CV 4

Fig. 5: Left: GV in presence of masking (without early-stopping). Right: valida-
tion loss for each fold.

It may be observed in Figure 5 (right) that the training and validation loss
curves proceeded a fast big decrease after an initial plateau during the first 15
epochs. After that, the validation loss starts increasing while the training loss
still decreases. After roughly 50 epochs, the validation loss goes on a regime with
unstable results, but still higher than the training loss. These observations are
clues of overfitting. It means that the model exploits (non-informative) leakage
not localized in the PoIs to memorize the training data and to improve the
training loss. Such a strategy should not generalize well on the validation traces.
As we are looking for models that implement a strategy that are generalizable

on unseen traces, we propose to use a regularization technique called early-
stopping [14]: the training is stopped after a number of epochs called patience
(in our case 10) if no remarkable decrease (i.e. up to a tolerance term, 0.25 bits
here) is observed in the validation loss. With this slight modification, the previous
architectures are trained again from scratch, and a better GV is produced (see
the left-hand side of Figure 6). As the main peaks are separated enough, an
evaluator may conclude that they represent different leakages.

0 100 200 300 400 500 600 700

Time (samples)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

G
ra

d
ie

n
t

Loss function gradient (average)
With masking, no shift

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
N

R

Signal-to-Noise Ratios
ASCAD database

rout
Z ⊕ rout

Fig. 6: Early-stopping is applied. Left: GV. Right: corresponding SNR.

6.4 Comparison in the Context of Template Attacks

A careful observation of Figure 6 shows that the main peaks given by the GV
are not exactly aligned with those given by the SNR characterization (performed
under the hypothesis that the masks are known). For GV, the main peak ap-
pears at the points corresponding to the 20-th clock cycle, which is one cycle
after the one previously targeted by both the GV and the SNR in the previous
case where no countermeasure was considered (Section 6.1). We validated that
this phenomenon occurred for every successful visualization produced by GV.
Furthermore, concerning the peaks related to the mask leakage, the GV only
emphasizes one clock cycle (the 6-th) whereas the SNR highlights two of them:
the 6-th and the 7-th. It implies that the GV should not be taken as an exact
equivalent to the SNR. We have not found any track of explanation to justify
this slight shift but it raises the question whether the PoIs highlighted by GV
represent relevant leakages and can be used in the context of Template Attacks.

To give an answer, we decided to use our characterization method as a pre-
processing for a Template Attack, and compare it to two pre-processing methods:
SNR (through PoIs selection) and PCA (through dimensionality reduction).

The input dimension of the traces are reduced to 2n, n ∈ {1, 2, 3, 4, 5} points,
based on the following methods:
– SNR strategy: the 2n−1 highest PoIs from the mask SNR and the 2n−1

highest PoIs from the masked data SNR are selected;

– PCA strategy: the 2n first components in a decreasing order of contribution
are selected;

– GV strategy: the 2n−1 highest PoIs from the GV are selected from the area
around the 6-th clock cycle. Likewise, the other half comes from the peaks
in the area around the 20-th clock cycle.

Remark 1. To make a fair comparison in the context of a first order masking,
we assume that we know the mask during the characterization phase for SNR,
so that we can localize PoIs for the mask and the masked data. Notice that we
do not assume the mask knowledge neither during the profiling phase nor for
the other strategies. Obviously, this scenario is not realistic as if one has access
to the mask during characterization, then the latter one is very likely to be also
available during the profiling phase.

Once reduced, the traces are processed with a first order Template Attack [8],
and the GE is estimated. The results are given on Figure 7. The plain curves
denote the GE for GV whereas the dotted curves denote either GE obtained
with SNR (left) or PCA (right).

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

G
u

es
si

n
g

E
n

tr
op

y

Guessing Entropy for Template Attack
with SNR and Gradient characterization

16 PoIs

2 PoIs

32 PoIs

4 PoIs

8 PoIs

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

G
u

es
si

n
g

E
n

tr
op

y

Guessing Entropy for Template Attack
with PCA and Gradient characterization

16 PoIs

2 PoIs

32 PoIs

4 PoIs

8 PoIs

Fig. 7: Comparison of the guessing entropy for GV based attacks in plain lines
and: (left) SNR based attacks, or (right) PCA based attacks in dotted lines.

From Figure 7 we can observe several things:

– Only a few PoIs from the GV strategy are needed to get a successful attack.
The optimal number of extracted PoIs is 4. Beyond that, the other PoIs bring
more difficulty in the Template Attack than they bring new information (due
to the increasing dimensionality).

– When the SNR strategy is followed, the optimal attack is done with 2 PoIs
and the more PoIs are used, the less efficient are the attacks. This obser-
vation confirms that SNR selects relevant PoIs as expected. However, when
comparing the SNR and GV strategies with a same number of PoIs, the lat-
ter one appears to be always better, except for 32 PoIs where both strategies
seem equal.

– The PCA strategy does not work well for the two or four first extracted com-
ponents. However, when considering eight components and above, it achieves
an efficiency as good as the GV strategy, and even sometimes better.

– In any case, the Template Attacks need much more traces to get a GE
converging towards zero than the optimal CNN attack presented in Table 2.

Based on the presented experiments, we may draw several conclusions on the
GV efficiency. First of all, it seems to be an accurate characterization method,
almost always much better than that based on an SNR. This first conclusion
enables to answer the question previously asked: the targeted PoIs in GV are
relevant leakages and can be used in the context of Template Attacks. A pos-
sible and informal explanation would be that choosing the couples of samples
that maximize the information about the sensitive variable is not equivalent as
selecting the single samples that independently maximize the information on
each share.

Secondly, GV can be used as a reliable dimensionality reduction pre-processing
in presence of counter-measures, even more reliable than PCA in our cases where
one makes a reduction to a very few dimensions (2 or 4). However, this conclusion
has a minor interest, as the GV seen as a pre-processing method is done post-
mortem, and the training of a CNN model did not suffer from a high dimension
input. And last, but not least, the GV method unfortunately faces a drawback:
if the trained CNN overfits, then the GV might suffer from the presence of ghost
peaks. That is why the overfitting must be carefully monitored. In this sense,
visualizing the gradient can hopefully help to assess whether it is the case or
not.

Conclusion

In this paper, we have theoretically shown that a method called Gradient Vi-
sualization can be used to localize Points of Interest. This result relies on two
assumptions that can be considered as realistic in a Side Channel context.

Generally, the efficiency of the proposed method only depends on the ability
of the profiling model to succeed in the attack. In the case where countermeasures
like masking or misalignment are considered, CNNs are shown to still build
good pdf estimations, and thereby the Gradient Visualization provides a good
characterization tool. In addition, such a visualization can be made for each trace
individually, and the method does not require more work than needed to perform
a profiling with CNNs leading to a successful attack. Therefore, characterization
can be done after the profiling phase whereas profiling attacks with Templates
often requires to proceed a characterization phase before.

We verified the efficiency of our proposed method on simulated data. It has
been shown that as long as a Neural Network is able to have slightly better
performance than randomness, it can localize points that contain the informative
leakage.

On experimental traces, we have empirically shown that Gradient Visualiza-
tion is at least as good as state-of-the-art characterization methods, in different

cases corresponding to the presence or not of different countermeasures. Not only
it can still localize Points of Interest in presence of desynchronization or masking
but it has also been shown that different PoIs can be emphasized compared to
the first ones highlighted by SNR. These new PoIs have been shown to be at
least as relevant as the ones proposed by SNR.

Further work would study such a technique in presence of both desynchro-
nization and masking, or in presence of higher order masking scheme.

Acknowledgements

The authors would like to thank Rémi Audebert and Elie Burszstein for the fruit-
ful discussions about this work. This work has been funded in part by the Eu-
ropean Commission through the H2020 project 731591 (acronym REASSURE).

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Arora, S.: Generalization Theory and Deep Nets, An introduction. http://
offconvex.github.io/2017/12/08/generalization1/ (2017)

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. Journal of Cryp-
tographic Engineering (Nov 2019). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: Joye, M., Quisquater, J. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings. Lecture Notes in Computer Science, vol. 3156,
pp. 16–29. Springer (2004). https://doi.org/10.1007/978-3-540-28632-5_2, https:
//doi.org/10.1007/978-3-540-28632-5_2

5. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for
side-channel attacks. In: Homma, N., Medwed, M. (eds.) Smart Card Research and
Advanced Applications. pp. 15–33. Lecture Notes in Computer Science, Springer
International Publishing (2016)

6. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for informa-
tion extraction in the presence of masking. In: Lemke-Rust, K., Tunstall,
M. (eds.) Smart Card Research and Advanced Applications - 15th Interna-
tional Conference, CARDIS 2016, Cannes, France, November 7-9, 2016, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 10146, pp. 1–
22. Springer (2016). https://doi.org/10.1007/978-3-319-54669-8_1, https://doi.
org/10.1007/978-3-319-54669-8_1

https://www.tensorflow.org/
http://offconvex.github.io/2017/12/08/generalization1/
http://offconvex.github.io/2017/12/08/generalization1/
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_3,
https://doi.org/10.1007/978-3-319-66787-4_3

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28.
Springer (2002). https://doi.org/10.1007/3-540-36400-5_3, https://doi.org/10.
1007/3-540-36400-5_3

9. Choudary, M.O., Kuhn, M.G.: Efficient stochastic methods: Profiled attacks be-
yond 8 bits. In: Joye, M., Moradi, A. (eds.) Smart Card Research and Ad-
vanced Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8968, pp. 85–103. Springer (2014). https://doi.org/10.1007/978-3-319-16763-
3_6, https://doi.org/10.1007/978-3-319-16763-3_6

10. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Ro-
hatgi, P. (eds.) Smart Card Research and Advanced Applications - 12th Inter-
national Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8419, pp.
253–270. Springer (2013). https://doi.org/10.1007/978-3-319-08302-5_17, https:
//doi.org/10.1007/978-3-319-08302-5_17

11. Durvaux, F., Renauld, M., Standaert, F., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden markov models. In: Mangard, S. (ed.)
Smart Card Research and Advanced Applications - 11th International Con-
ference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7771, pp. 123–
140. Springer (2012). https://doi.org/10.1007/978-3-642-37288-9_9, https://
doi.org/10.1007/978-3-642-37288-9_9

12. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. Trans. Computational Science 10, 78–99 (2010). https://doi.org/10.1007/978-
3-642-17499-5_4, https://doi.org/10.1007/978-3-642-17499-5_4

13. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May, 2015. pp. 106–
111. IEEE Computer Society (2015). https://doi.org/10.1109/HST.2015.7140247,
https://doi.org/10.1109/HST.2015.7140247

14. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive compu-
tation and machine learning, MIT Press (2016), http://www.deeplearningbook.
org/

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://arxiv.org/abs/1412.6980

tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer
(1999). https://doi.org/10.1007/3-540-48405-1_25, https://doi.org/10.1007/
3-540-48405-1_25

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States. pp. 1106–1114 (2012), http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks

18. Lecun, Y., Bengio, Y.: ConvolutionalNetworks for image, speech, and time series
19. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–

444 (2015). https://doi.org/10.1038/nature14539, https://doi.org/10.1038/
nature14539

20. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES - reaching the limit of side-channel attacks with a learning model. J.
Cryptographic Engineering 5(2), 123–139 (2015). https://doi.org/10.1007/s13389-
014-0089-3, https://doi.org/10.1007/s13389-014-0089-3

21. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementa-
tions using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat,
V. (eds.) Security, Privacy, and Applied Cryptography Engineering - 6th
International Conference, SPACE 2016, Hyderabad, India, December 14-18,
2016, Proceedings. Lecture Notes in Computer Science, vol. 10076, pp. 3–
26. Springer (2016). https://doi.org/10.1007/978-3-319-49445-6_1, https://doi.
org/10.1007/978-3-319-49445-6_1

22. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

23. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based
on MLP in DPA contest V4.2. In: 39th International Conference on Telecommu-
nications and Signal Processing, TSP 2016, Vienna, Austria, June 27-29, 2016.
pp. 223–226. IEEE (2016). https://doi.org/10.1109/TSP.2016.7760865, https:
//doi.org/10.1109/TSP.2016.7760865

24. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak
information? an a priori statistical power analysis of leakage detection tests.
In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013
- 19th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 8269, pp. 486–
505. Springer (2013). https://doi.org/10.1007/978-3-642-42033-7_25, https://
doi.org/10.1007/978-3-642-42033-7_25

25. Montavon, G., Samek, W., Müller, K.: Methods for interpreting and un-
derstanding deep neural networks. Digital Signal Processing 73, 1–15
(2018). https://doi.org/10.1016/j.dsp.2017.10.011, https://doi.org/10.1016/j.
dsp.2017.10.011

26. Moradi, A., Richter, B., Schneider, T., Standaert, F.: Leakage detection with
the x2-test. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 209–
237 (2018). https://doi.org/10.13154/tches.v2018.i1.209-237, https://doi.org/
10.13154/tches.v2018.i1.209-237

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.13154/tches.v2018.i1.209-237
https://doi.org/10.13154/tches.v2018.i1.209-237
https://doi.org/10.13154/tches.v2018.i1.209-237

27. Nagashima, S., Homma, N., Imai, Y., Aoki, T., Satoh, A.: DPA us-
ing phase-based waveform matching against random-delay countermeasure.
In: International Symposium on Circuits and Systems (ISCAS 2007), 27-
20 May 2007, New Orleans, Louisiana, USA. pp. 1807–1810. IEEE (2007).
https://doi.org/10.1109/ISCAS.2007.378024, https://doi.org/10.1109/ISCAS.
2007.378024

28. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

29. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of
class imbalance and conflicting metrics with machine learning for side-channel
evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–
237 (2019). https://doi.org/10.13154/tches.v2019.i1.209-237, https://doi.org/
10.13154/tches.v2019.i1.209-237

30. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the per-
formance of convolutional neural networks for side-channel analysis. In: Chat-
topadhyay, A., Rebeiro, C., Yarom, Y. (eds.) Security, Privacy, and Applied Cryp-
tography Engineering - 8th International Conference, SPACE 2018, Kanpur, In-
dia, December 15-19, 2018, Proceedings. Lecture Notes in Computer Science,
vol. 11348, pp. 157–176. Springer (2018). https://doi.org/10.1007/978-3-030-05072-
6_10, https://doi.org/10.1007/978-3-030-05072-6_10

31. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order dif-
ferential power analysis. IEEE Trans. Computers 58(6), 799–811 (2009).
https://doi.org/10.1109/TC.2009.15, https://doi.org/10.1109/TC.2009.15

32. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for
software implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.)
Cryptographic Hardware and Embedded Systems - CHES 2009, 11th In-
ternational Workshop, Lausanne, Switzerland, September 6-9, 2009, Pro-
ceedings. Lecture Notes in Computer Science, vol. 5747, pp. 171–188.
Springer (2009). https://doi.org/10.1007/978-3-642-04138-9_13, https://doi.
org/10.1007/978-3-642-04138-9_13

33. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press (2014).
https://doi.org/10.1017/CBO9781107298019, http://ebooks.cambridge.org/
ref/id/CBO9781107298019

34. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings (2014), http:
//arxiv.org/abs/1312.6034

35. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for sim-
plicity: The all convolutional net. In: Bengio, Y., LeCun, Y. (eds.) 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Workshop Track Proceedings (2015), http://arxiv.org/abs/1412.6806

36. Standaert, F., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Os-
wald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2008, 10th International Workshop, Washington, D.C., USA, August
10-13, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5154, pp.
411–425. Springer (2008). https://doi.org/10.1007/978-3-540-85053-3_26, https:
//doi.org/10.1007/978-3-540-85053-3_26

https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1017/CBO9781107298019
http://ebooks.cambridge.org/ref/id/CBO9781107298019
http://ebooks.cambridge.org/ref/id/CBO9781107298019
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.6806
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-540-85053-3_26

37. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptol-
ogy - EUROCRYPT 2009, 28th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5479, pp.
443–461. Springer (2009). https://doi.org/10.1007/978-3-642-01001-9_26, https:
//doi.org/10.1007/978-3-642-01001-9_26

38. Wikipedia: Sensitivity analysis (2019), https://en.wikipedia.org/wiki/
Sensitivity_analysis

39. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) Topics in Cryptology - CT-RSA
2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco,
CA, USA, February 14-18, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6558, pp. 104–119. Springer (2011). https://doi.org/10.1007/978-3-642-19074-
2_8, https://doi.org/10.1007/978-3-642-19074-2_8

40. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D.J., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision -
ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8689, pp.
818–833. Springer (2014). https://doi.org/10.1007/978-3-319-10590-1_53, https:
//doi.org/10.1007/978-3-319-10590-1_53

41. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning
deep features for discriminative localization. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016. pp. 2921–2929. IEEE Computer Society (2016).
https://doi.org/10.1109/CVPR.2016.319, https://doi.org/10.1109/CVPR.2016.
319

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://en.wikipedia.org/wiki/Sensitivity_analysis
https://en.wikipedia.org/wiki/Sensitivity_analysis
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/CVPR.2016.319

A Profiling Attacks

As the model is aiming at approximating the conditional pdf, a Maximum Like-
lihood score can be used for the guessing:

dSa
[k] ,

Na∑
i=1

log (yi[zi]) where zi = C(pi, k). (8)

Based on these scores, the key hypotheses are ranked in a decreasing order.
Finally, the attacker chooses the key that is ranked first (resp. the set of first o
ranked keys). More generally, the rank gSa

(k?) of the correct key hypothesis k?
is defined as:

gSa
(k?) ,

∑
k∈K

1dSa [k]>dSa [k
?]. (9)

Remark 2. In practice, to compute GE(Na), sampling many attack sets may be
very prohibitive in an evaluation context, especially if we need to reproduce the
estimations for many values of Na; one solution to circumvent this problem is,
given a validation set Sv of Nv traces, to sample some attack sets by permuting
the order of the traces into the validation set. dSa can then be computed with a
cumulative sum to get a score for each Na ∈ [|1, Nv|], and so is gSa

(k?). While
this trick gives good estimations for Na � Nv, one has to keep in mind that
the estimates become biased when Na → Nv. This problem also happens in
Machine Learning when one lacks data to validate a model. A technique called
Cross-Validation [33] enables to circumvent this problem by splitting the dataset
into q parts called folds. The profiling is done on q − 1 folds and the model is
evaluated with the remaining fold. By repeating this step q times, the measured
results can be averaged so that they are less biased.

B Study of an Optimal Model

Informally, Assumption 1 tells that the leaking information is non-uniformly
distributed over the trace X, i.e. only a few coordinates contain clues about the
attacked sensitive variable. Assumption 1 has been made in many studies such
as [5]. Depending on the countermeasures implemented into the attacked device,
the nature of IZ may be precised. Without any countermeasure, and supposing
that the target sensitive variable only leaks once, Assumption 1 states that IZ
is only a set of contiguous and constant coordinates, regardless the input traces.

Adding masking will split IZ into several contiguous and fixed sets whose
number is equal to the number of shares in the masking scheme (or at least
equal to the number of shares if we relax the hypothesis of one leakage per
share). For example if M (resp. Z ⊕M) denotes the mask (resp. masked data)
variable leaking at coordinate t1 (resp. t2), then M and X[t] with t 6= t1 are

independent (resp. Z and X[t] with t 6= t2 are independent). The conditional
probability Pr[Z = z|X = x] satisfies:

Pr[Z = z|X = x] =∑
m

Pr[Z ⊕M = z ⊕m|X[t1] = x[t1]]Pr[M = m|X[t2] = x[t2]] (10)

Adding de-synchronization should force IZ to be non-constant between each
trace.

Likewise, Assumption 2 is realistic because it is a direct corollary of a Gaus-
sian leakage model for the traces [8,10]. Such an hypothesis is common for Side
Channel Analysis [8]. It implies that x 7→ Pr[X = x|Z = z] is differentiable and:

∇xPr[X = x|Z = z] = Σ−1z (x− µz)Pr[X = x|Z = z] (11)

where µz and Σ−1z respectively denote the mean vector and the covariance ma-
trix of the normal probability distribution related to the target sensitive value
hypothesis z. Then, from Bayes’ theorem, (11) and the basic rules for derivatives
computation, it gives an analytic expression of ∇xF

∗(x), thereby proving that
F ∗ is differentiable with respect to the input trace.

C Neural Networks

Neural Networks (NN) are nowadays the privileged tool to address the classifi-
cation problem in Machine Learning [19]. They aim at constructing a function
F : X → P(Z) that takes data x and outputs vectors y of scores. The classifica-
tion of x is done afterwards by choosing the label z∗ = argmaxz∈Z y[z], but the
output can be also directly used for soft decision contexts, which corresponds
more to Side Channel Analysis as the NN outputs on attack traces will be used
to compute the score vector in (8). In general F is obtained by combining several
simpler functions, called layers. An NN has an input layer (the identity over the
input datum x, an output layer (the last function, whose output is the scores
vector y and all other layers are called hidden layers. The nature (the number
and the dimension) of the layers is called the architecture of the NN. All the
parameters that define an architecture, together with some other parameters
that govern the training phase, have to be carefully set by the attacker, and
are called hyper-parameters. The so-called neurons, that give the name to the
NNs, are the computational units of the network and essentially process a scalar
product between the coordinate of its input and a vector of trainable weights (or
simply weights) that have to be trained. We denote θ the vector containing all
the trainable weights. Therefore, for a fixed architecture, an NN is completely
parameterized by θ. Convolutional Neural Networks (CNN) implement other
operations, but can be rewritten as regular NN with specific constraints on the
weights [18]. Each layer processes some neurons and the outputs of the neuron
evaluations will form new input vectors for the subsequent layer.

The ability of a Neural Network to approximate well a target probabilis-
tic function F ∗ by minimizing a loss function on sampled training data with
Stochastic Gradient Descent is still an open question. This is what we call the
mystery of Deep Learning. It theoretically requires a huge quantity of training
data so that the solution obtained by loss minimization generalizes well, though
it empirically works with much less data. Likewise, finding the minimum with
Stochastic Gradient Descent is theoretically not proved, but has been empiri-
cally shown to be a good heuristic. For more information, see [2]. Indeed, though
it raises several theoretical issues, it has been empirically shown to be efficient,
especially in SCA with CNN based attacks [7,30].

D Experimental Results

D.1 The Jacobian matrix

In this appendix, we present the Jacobian matrix visualization, equivalent to the
GV. It shows, in addition, that some target values seem more sensitive, especially
those whose Hamming weight is shared by only few other values (so it gives clues
about how the traces leak sensitive information). Figure 8 (top) shows such a
matrix in application context (Exp.1) as described in Section 6, while Figure 8
(bottom) shows the Jacobian matrix corresponding to the application context
(Exp.2). Figure 9 shows the SNR computed on de-synchronized traces.

0 100 200 300 400 500 600 700

Time (samples)

0

50

100

150

200

250

Se
ns

iti
ve

 v
ar

ia
bl

e

Jacobian matrix - No countermeasure

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 100 200 300 400 500 600 700

Time(samples)

0

50

100

150

200

250

Se
ns

iti
ve

 v
ar

ia
bl

e

Jacobian matrix (no dense layer) - Random shift (100)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 8: Jacobian matrix for the best models in application contexts (Exp.1)(top)
and (Exp.2) (bottom).

0 100 200 300 400 500 600 700
Time(samples)

0.00475

0.00500

0.00525

0.00550

0.00575

0.00600

0.00625

SN
R

SNR on ASCAD with random shift (100)

Fig. 9: The SNR in the case where de-synchronization is considered.

	Gradient Visualization for General Characterization in Profiling Attacks

