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Abstract. Public blockchains can be abused to covertly store and dis-
seminate potentially harmful digital content. Consequently, this threat
jeopardizes the future of such applications and poses a serious regula-
tory issue. In this work, we show the severity of the problem by demon-
strating that blockchains can be exploited as a covert bulletin board to
secretly store and distribute arbitrary content. More specifically, all ma-
jor blockchain systems use randomized cryptographic primitives, such
as digital signatures and non-interactive zero-knowledge proofs, and we
illustrate how the uncontrolled randomness in such primitives can be ma-
liciously manipulated to enable covert communication and hidden persis-
tent storage. To clarify the potential risk, we design, implement and eval-
uate our technique against the widely-used ECDSA signature scheme,
the CryptoNote’s ring signature scheme, and Monero’s ring confidential
transactions. Importantly, the significance of the demonstrated attacks
stems from their undetectability, their adverse effect on the future of de-
centralized blockchains, and their serious repercussions on users’ privacy
and crypto funds. Finally, besides presenting the attacks, we examine
existing countermeasures and devise two new steganography-resistant
blockchain architectures to practically thwart this threat in the context
of blockchains.

Keywords: Blockchain, Steganography, Covert Broadcast Channels, Con-
tent Insertion, Wallet Subversion
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1 Introduction

The blockchain technology has pioneered a new paradigm to realize large-scale
immutable, persistent, and append-only distributed ledgers. Nowadays, blockchain-
powered systems have become largely ubiquitous across various sectors including
technology, academia, medicine, economics, finance, etc. While the blockchain
technology is promising in a great number of application scenarios, it can also be
abused to anonymously store and disseminate potentially harmful digital con-
tent. A recent study [1] has shown that 1.4% of all Bitcoin transactions contain
non-financial data, some of which contain objectionable content, e.g. links to
child pornography. Though the absence of a central censor makes blockchains
appealing in some use cases, the increasing amount of illicit content posted to
the blockchains poses a serious regulatory issue [2]. Subsequently, several tech-
niques have been discussed to either filter unwanted content before it is added
to the ledger [3] or remove content from the blockchain [4, 5].

However, all of the proposed countermeasures can only be effective if the ma-
licious content attached to the transactions can be detected. The situation gets
worse when the attackers hide data into normal transactions and use blockchain
platforms for covert communications. Naively, one can encrypt the malicious con-
tent and attach its ciphertext to a transaction, but it is noticeable to the public
that there is suspicious data attached. In 2018, Partala [6] showed a proof-of-
concept steganography technique that allows an adversary to covertly embed
one bit into a standard Bitcoin transaction’s recipient address without being
distinguished from an innocuous transaction and without burning the funds.

In this work, we further advance this line of research by demonstrating an ef-
fective steganographic method that offers high throughput and can be launched
against any blockchain platforms that use randomized, i.e. probabilistic, crypto-
graphic primitives, such as digital signatures and non-interactive zero-knowledge
proofs. The main observation is that all randomized cryptographic algorithms
need to consume random coins somewhere along the execution, and these ran-
dom coins are not audited or certified publicly. By intentionally manipulating
the random coin supplied to a randomized algorithm, an attacker is able to em-
bed arbitrary information into the outputs of the algorithm. The output that
contains steganographic data is computationally indistinguishable from normal
output.

Besides using the demonstrated attack for covert channels and persistent
storage, the same attack is applicable in another scenario. The attacker(s) may
try to subvert, or mis-implement, cryptocurrency wallets and re-distribute them
to unsuspecting users. The subverted wallets can then surreptitiously leak the
victim’s secret, such as the signing key, via standard transactions. Importantly,
the transactions generated by the subverted wallets are computationally indis-
tinguishable from normal transactions for any black-box observer.

Moreover, the current focus of research regarding blockchain subversion vul-
nerabilities is mainly on the trusted parameter setup process, such as common
reference string (CRS) generation [7, 8], while software subversion vulnerabili-
ties in blockchain cryptocurrency applications has not been extensively studied.
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The plausibility of algorithm-substitution attacks against cryptocurrency can
be attributed to the following three reasons. Firstly, cryptocurrencies have very
complex cryptographic primitives and structures that makes them prone to un-
seen mis-implementations. An example of such mis-implementations is shown
in [9] where the Tencent’s QQ browser is said to have used textbook RSA algo-
rithm with no padding, which is well-known to be insecure as it is a deterministic
encryption scheme. This is further demonstrated in [10] which notes that over
1/3 of the open-source smart contracts contain at least one bug, and some of
them are maliciously embedded and can be triggered later by the attackers in a
similar manner to the infamous Ethereum DAO hack [11] ($ 55 million).

Secondly, although many cryptocurrencies are marketed as decentralized
projects, studies have found that the development of many blockchain appli-
cations is highly centralized. For example, 30% of the source files in Bitcoin
are written by a single author, and 7% of the code is written by the same au-
thor [12]. Similarly, 20% of the source code in Ethereum is attributed to the same
author [12]. This high centralization may cause bias and introduce intentional
and unintentional flaws. Thirdly, most end users lack the ability and the means
to check the conformity of an executable wallet with its reference source code. In
fact, in some platforms, such as iOS, users can not directly access the binary files
without jailbreaking their devices, which paradoxically is not advisable and may
render a device unsafe to run a cryptocurrency wallet. Besides, it is uncommon
for users to compile the source code of any application by themselves; instead,
they usually relay on downloading readily prepared executable applications. The
difficulty to examine the implementation of a cryptocurrency wallet is even more
pertinent to hardware wallets, such as the various Swiss-Army-Knife hardware
wallets [13]. These hardware wallets are typically manufactured in an outsourced
loosely-controlled environment, and it is practically impossible to audit the in-
tegrity of their implementation through the standard functionality ‘correctness’
test by observing input/output pairs in a black-box manner.

Our contributions. The primary objective of this work is to draw attention
to the potential threat of abusing uncontrolled randomness in blockchain algo-
rithms, and attempt to devise practical countermeasures. To the best of our
knowledge, this work is the first in literature that discusses such a widely spread
vulnerability in the blockchain context. More specifically, we summarize our con-
tributions as follows:

— Novel blockchain steganographic technique. We propose a stegano-
graphic technique that greatly increases the throughput of the state-of-the-
art blockchain steganographic attack that affects many cryptocurrencies. We
present our general attack against the widely-used CryptoNote framework,
and as a demonstration, we design, implement and evaluate the attack on
Monero and Bytecoin currencies.

— Covert broadcast channels. As an immediate application, we show blockchain
platforms can be exploited to act as covert broadcast channels. Once deployed,
this would be the world’s first practical covert broadcast channel. The exis-
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tence of such a channel will be untraceable, unlinkable, and even unobservable.
Such broadcast channels could be disastrous if used by outlaws, e.g. terrorists.
Persistent storage. With the proposed steganographic technique, anyone
can use the blockchain as a cheap hidden persistent storage along with their
daily transactions. For instance, this can be used for uncensorable cyberlock-
ers. At the time of submission, persistently storing 1 GB of data on Bytecoin
blockchain and using its P2P network as CDN costs less than $ 3. In theory,
data storage is just a communication channel between the current user and the
user himself in the future. Nevertheless, there is a subtle difference between
hidden storage and covert channels, that is how long the channel (data) would
exist. Also some countermeasures are effective against persistent storage but
not, against covert channels.

Wallet subversion attacks. For the first time, we point out that there is
a troubling high risk of massive coin stealing among all of the current cryp-
tocurrency wallets by demonstrating efficient and effective subversion attacks
within the realm of Kleptography and Algorithm Substitution Attacks. This
attack possesses the following properties:

e Passive attack. After the victim user downloads and installs the subverted
wallet, the attacker does not need to interact directly with the victim’s
wallet. The communication channel between the subverted wallets and the
attacker is simply through the transactions posted on the blockchain.

o Undetectability in black-box setting. The transactions generated by com-
promised wallets are computationally indistinguishable from the honestly-
generated transactions. Therefore, no online/offline watchdog can detect the
subversion. It is important to note that undetectability in this context does
not mean the in-ability to detect source code discrepancies between genuwine
and subverted wallets, or the in-ability to reverse-engineer the subverted wal-
let, but rather the computational indistinguishability between transactions
generated by the two types of wallets.

o [Interoperability. The subverted wallets transact seamlessly with normal wal-
lets; i.e. they can send to and receive from other wallets regardless whether
other wallets are subverted or not.

e Subtlety. In accordance with the definition of kleptography and Algorithm-
Substitution Attacks, shown in Sec. 2, we consider our attack exclusively
in the black-box setting. However, if optimized, the difference between a
subverted wallet source code, e.g. Bytecoin wallet, and the original code is
only about ten lines of code in two functions. This subtlety makes it difficult
even for technology-savvy users to review and detect the subversion even if
the subverted wallet is open source.

We have implemented our subversion attacks against the ECDSA signature
scheme, and the ring signature used in the CryptoNote framework which is im-
plemented by many cryptocurrencies, such as Bytecoin. Because ECDSA and
ring signature are widely used among cryptocurrencies, this work has direct
impact on 18 of the top 25 cryptocurrencies in terms of market capitalization
[14] (as of the time of writting) as depicted in Table 1.
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Cryptocurrencies’ Signatures
# |Cryptocurrency [ ECDSA |EdDSA |Ring Signature| Note
1 Bitcoin v
2 Ethereum v
3 Ripple v v
4 Bitcoin Cash v
5 Litecoin v
6 Cardanos v
7 Stellar v
8 Zcash v
9 I0TA Winternitz
10 Monero v
11 Dash v
12 NEM v
13| Ethereum Classic v
14 Komodo v
15 Verge v
16 Lisk v
17 Dogecoin v
18 Decred v v
19 Nano v
20 Wanchain v v
21 Bytecoin v
22 Siacoin v
23| Bitcoin Diamond v
24 BitShares v
25 Waves v

Table 1. Cryptocurrencies and Digital Signature Schemes (currencies checked with
either the ECDSA signature or the Ring signature are potentially susceptible to the
our wallet subversion attacks.)

— Countermeasures. We provide two practical and effective countermeasures
to prevent the stego-use of the cryptographic components in a transaction. In
particular, we propose a stego-resistant blockchain framework (SRBF) that
can be readily applied to all of the off-the-shelf blockchain systems. It is a
generic solution that is suitable to any blockchain with randomized signature
schemes. More specifically, in this proposal, the miners are trusted. Upon
receiving a (randomized) signature associated with a transaction, instead of
directly including it into the transactions in the next block, the miner replaces
the signature with an non-interactive zero-knowledge proof showing that the
miner has seen a valid signature for the transaction. Subsequently, the miner
drops the possibly stego-generated signature and puts the transaction together
with the miner’s proof on the next block. As a long-term solution to malicious
substitution attacks, we also propose randomness-externalized architecture as
to enable implementation auditing.
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1.1 Paper Roadmap

The rest of this document is organized as follows: Sec. 2 provides background
and definitions, and explains some preliminary concepts. In Sec. 3, we illustrate
our generic steganographic attack against CryptoNote-based cryptocurrencies,
assess its effectiveness, and prove its security. After that, we demonstrate our
implementation of the generic steganographic attack in Bytecoin and Monero
in Sec. 4. In Sec. 5 we explore three different scenarios in which our generic
attack could be applied. Besides, Sec. 5.3 presents two more subversion attacks
on ECDSA-signature wallets. Also, we discuss the existing countermeasures and
suggest two new techniques in Sec. 6. In addition, we present the related work
in Sec. 7. Finally, Sec. 8 restates the main objectives and findings, concludes the
document, and explains potential future work.

2 Preliminaries

Below we describe the necessary notations to used in this document, and provide
description of some preliminary concepts that are related to this work.

2.1 Notations

We use the following notations throughout this paper. The notation [n] stands
for the set {1,2,...,n}. For a randomized algorithm A(), we write y = A(z;7) to
denote the unique output of A on input z and randomness r, and write y <+ A(x)
to denote the process of picking randomness r uniformly at random and setting

y = A(z;r). We use s & S to denote sampling an element s uniformly at random
from a set S. We use A € N as the security parameter. Let poly(-) denote a
polynomially-bounded function and negl(-) denote a negligible function. Unless
specified in the context, we use hash, : {0,1}* — Z, and hash, : {0,1}* — G
as two collision resistant hash functions that map an arbitrary length string to
a group element in Z, and G, respectively. m4.) stands for the truncation that
contains from the a-th bit to the b-th bit of m.

2.2 Blockchain

The term blockchain encompasses a broader range of distributed ledger technolo-
gies initiated by Bitcoin [15]. There are two types of blockchains; permissioned
(private) and permissionless (public). In this work, we mainly focus on permis-
sionless blockchains. Typically, a permissionless blockchain uses a Proof-of-X
mechanism, such as Proof-of~-Work (PoW) and Proof-of-Stake (PoS), to ran-
domly nominate a node which will propose the next block. The valid transac-
tions contained in a block need to be signed by the owner(s) of the corresponding
consumed coins. Most blockchain systems use randomized signature algorithms,
which makes them vulnerable to our attacks.
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2.3 (Ring) Signature schemes

For notation simplicity, we unify the syntax of signature schemes and ring sig-
nature schemes. A (ring) signature scheme consists of a tuple of algorithms
S = (Setup, KeyGen, Sign, Verify) as follows:

— param ¢ Setup(1?) is the setup algorithm that takes as input the security
parameter 1%, and it outputs a system parameter param. The rest of the
algorithms implicitly take param as an input.

— (PK,SK) < KeyGen(param) is the key generation algorithm that takes as
input the setup parameter param, and outputs a pair of public and secret
keys (PK, SK).

— o + Sign(P,SK, ¢, m) is the signing algorithm that takes as input a set
of public keys P := {PKjy,...,PK,}, the secret key SK, the index ¢ such
that SK is the corresponding secret key of PKjy, and the message m, and it
outputs the signature o. (For a standard signature scheme, we have |P| =1
and £ =1.)

— b« Verify(P, m, o) is the verification algorithm that takes as input a set of
public keys P, the message m and the signature o, and it outputs b := 1 if
only if the signature is valid.

Signature Unforgeability. In a blockchain application, a signature scheme
needs to achieve existential unforgeability under an adaptive chosen-message
attack (EUF-CMA). While there are various unforgeability definitions for ring
signature schemes; in this work, we adopt the most commonly used unforgeabil-
ity against fixed-ring attacks and unify it with EUF-CMA. We refer interested
readers to [16] for more ring signature security definition variants and their dif-
ferences.

Definition 1. We say a (ring) signature scheme S = (Setup, KeyGen, Sign, Verify)
is EUF-CMA if for any PPT adversary A, any integer A € N, any n = poly(\),
any param < Setup(1), any {(PK;,SK;)}", output by KeyGen(param), we
have:
Pr (m*,0%) « A°CI({PK}L,) -
Verify({PK;}";,m*,0") =1 A m* ¢ Q

where O(s,m) := Sign({PK,;}?_,,SKs,s,m) be the signing oracle, and Q :=
{mq,...,mg} is the set of queries to the signing oracle O(,).

= negl(\)

2.4 Brief description of CryptoNote

CryptoNote is a protocol proposed by Nicolas van Saberhagen [17], and it has
been implemented in many emerging cryptocurrencies, such as Bytecoin [18],
CryptoNoteCoin [19], Fantomcoin [20], etc. Compared to Bitcoin-like cryptocur-
rencies, CryptoNote offers two main features: (i) stealth address via non-interactive
key exchange and (ii) set anonymity via (linkable) ring signatures.

More specifically, the user’s private key consists of a,b € Z,, and the cor-
responding public key (A, B) consists of A := ¢* and B := ¢°. Note that in a
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,—(CryptoNote Long-term Key Generation) N

KeyGen(param):

— Pick random b & ZLp;
— Set a := hash,(b), A := g%, and B := ¢%
— Return (PK := (A, B), SK := (a,b)) and TK := (a, B).

Fig. 1. CryptoNote Long-term Key Generation Algorithm.

standard CryptoNote implementation, a is usually defined as hash,(b); there-
fore, b is the actual secret key. In CryptoNote, to transfer funds to a recipient,
the payer needs to generate a transaction public key R := ¢g" and compute the
corresponding one-time address T := (ghaShP(Ar) - B). The recipient is then able
to compute the corresponding one-time private key as ¢ := (hash,(R*) + b). By
the property of Diffie-Hellman exchange, we have A" = R®. With regards to
the one-time ring signature schemes, it is transformed from the OR-composition
of Schnorr’s identification Sigma protocols. There exists a LNK algorithm that
can link two signatures together if they are produced by the same signing key.
By design, the one-time signature key can only be used once, and it can be de-
tected if the same key is used to sign two transactions, which prevents double
spending. More specifically, let T' := g* be the one-time public key, and define
I := (hash,(T))" as a “key image” as part of the signature. The ring signatures
signed by the same secret key would have identical key image; therefore, double
spending can be defeated efficiently by simply checking if the key image has
already been used.

Let P := {P;}7, be a set of public keys, and the signer knows the secret
key ¢, such that Py = g%, ¢ € [n]. Denote I := hash,(P,) as the key image. The
param is defined as the parameters of the ED25519 twisted Edwards curve. For
completeness, we provide the key generation and signing algorithms in Fig. 1
and Fig. 2, respectively. Fig. 1 shows a third key called the tracking key TK
that can be given to a third party to track all transactions destined to the owner
of this key without revealing their secret key SK.

2.5 Brief description of Monero (Version 0.12.0.0)

Monero [21] is one of the most successful CryptoNote-based cryptocurrencies,
and its source code is available on GitHub [22]. Although the original Monero
was based on the CryptoNote protocol, its transaction signature has evolved
beyond this protocol'. As mentioned in [24], CryptoNote suffers from a short-
coming where amounts in transactions are not hidden. To address this issue,

! The Monero project is very active and evolves rapidly. In fact they have two major
releases each year. In Oct. 2018, Monero released version 0.13.0.0 “Beryllium Bullet”,
which switched to Bulletproofs [23]. Since the technical specification of the latest



Uncontrolled Randomness in Blockchains 11

,—(CryptoNote Signing Algorithm) N

Slgn({Pl}:lzh tb £7 m):

— Set I := hashy(FP);
— For ¢ € [k], pick ¢ & Zp;
— For i € [k],i # ¢, pick w; & D
— For i € [k]:
e Set L; := g% if i = ¢
Set L; := g% - Pt if i £ ¢;
e Set R, := (hashy(P;))% if i = ¢,
Set R; := (hashy(P;))% - IV if ¢ # £,
— Set ¢ := hashy,(m, L1,...,Li, R1, ..., Ri);
— For i € [k]:
e Set ¢; :=w; ifi # ¢
Set ¢; :=c— Zle cj if i =¢;
o Setr;:=q; if i # ¢
Set r; := q¢ — cotg if i = ¢
— Return o :=(I,¢1,...,Ck,71,...,Tk).

Fig. 2. CryptoNote Signing Algorithm.

Ring Confidential Transaction (RingCT) [24] has been developed and deployed
in Monero since January 2017. It combines (linkable) ring signature and Pedersen
commitment schemes [25], and also adopts Multilayered Linkable Spontaneous
Anonymous Group Signature (MLSAG).

In Monero, suppose a user wants to spend m coins from his wallet, denoted
as A, = {(PKY, CNON™ | where PK( is the user’s i-th account address and
CNS) is the balance of the account. The user first chooses k output accounts
{(PKY) CNU ))};?:1 such that the sum of balances of the input accounts equals

the output accounts, and sets R := {Png)}é?:l as the output addresses. In
addition, the user selects n — 1 groups of input accounts with each containing
m different accounts to anonymously spend Ag, i.e. set anonymity. Whenever
receiving this transaction from the P2P blockchain network, the miners check the
validity of the transaction along with its public information. The commitments
are used to hide account balance. There are several special properties required for
the RingCT protocol. Public keys generated by the key generation algorithm of
ring signature should be homomorphic. Commitments should be homomorphic
w.r.t. the same operation as public keys. Commitments to zero are well-formed
public keys, each corresponding secret key of which can be derived from the
randomness of commitments.

version is not well documented yet, our work is for Monero version 0.12.0.0 and
earlier versions.
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,—(Borromean Signing Algorithm) <

Slgn(P7 {tl ?;017 {J: ?;017 m):
— Forie [0,n—1]:
o Pick ki & Z,;
e Set e; j«11 := hashy(m, g* i, 57);
e For j € [j;,m; — 1], pick s;,; & Z, and compute

€i,j+1 = haShP(mngI’] : Pi,j 1’J723]);

For i € [0,n — 1], pick 8;,m, & Zp, and compute
—€i,m;

€0 = hashp(gsi,m_j . Pi,j J e 7gSn,mJ‘ . Pijjen’mj )’
For i € [0,n — 1]:
e For j €[0,j; — 1], pick s;; & Z, and compute

- — Sid TG s .
€i,j+1 := hashy,(m, g% - P; %7 i, j);
° Set Si’jt* = k’l -+ tiei,j:_l;

— Return o := (eo, {55 }ico,n],je[0,ma])-

Fig. 3. Borromean Signing Algorithm.

In particular, we will explore our subversion attack against the Borromean
ring signature [26]. In a high-level abstraction, Borromean ring signature is a
Fiat-Shamir transformation of an AND/OR composition Sigma protocol of the
Schnorr’s identity protocol. More specifically, let P := {P; j}icjo,n—1],j€[0,m;—1]
be a set of public keys, and the signer knows the secret key ¢; such that P; ;- =
g'i, i € [0,n—1], where j; are fixed and unknown indices. Moreover, we provide
pseudo-code to explain the Borromean signing algorithms in Fig. 3.

2.6 Steganography

Steganography refers to the techniques that allow a sender to send a message
covertly over a communication channel so that the mere presence of the hidden
message is not detectable by an adversary who monitors the channel [27, 28].
Modern steganography techniques can be applied to various media, such as im-
ages, audios, HTML files, etc. A stegosystem consists of three PPT algorithms
ST := (KeyGen, Embed, Extract) as follows:

— (ek,dk) + KeyGen(1?) is the key generation algorithm that takes as input the
security parameter 1, and it outputs an embedding key ek and an extraction
key dk.

— st < Embedy k(m). Given an embedding key ek, a hidden message m €
{0,1}* and channel history H € {0,1}*, Embed generates a stegotext mes-
sage st € {0,1}* that is indistinguishable from the normal channel distribu-
tion D of innocent cover text objects ct.
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— m <+ Extractqk(st), Extract takes as input a extraction key dk and the stego-
text st € {0,1}* and outputs a hidden message m € {0,1}*.

Definition 2 (Correctness). We say a stegosystem ST := (KeyGen, Embed, Extract)
is correct if for all (ek, dk) «+— KeyGen(1*) we have

Pr [Extractgk(Embedy ek(m))] > 1 — negl(A) .

Stegosystem Security. The stegosystem’s goal is to communicate a hidden
message covertly by hiding the mere existence of the hidden communication.
Therefore, a stegosystem is considered to be secure if an observer is not able to
distinguish stegotext st from objects randomly picked from the channel distri-
bution D. More formally, this is defined as a chosen hidden-text attacks (CHA)
game/experiment.

ExptG™* (1)

A(1*) outputs a message m;

(ek, dk) < KeyGen(1*);

b+ {0,1};

If b= 0: ¢ + Embedy & (m);

Else: ¢ + D;

A(c) outputs a bit b';

Return b = b/';

We say a stegosystem ST := (KeyGen, Embed, Extract) is CHA-secure if:

Ll e

o o

A (1) =

Pr [ExptiHA(lk)] - ;‘ = negl(A) .

Stegosystem Efficiency and Robustness. Besides security, the following
properties are also important to a stegosystem.

— Reliability /Efficiency. The probability that an embedded message is extracted
when the stegosystem does not achieve not perfect correctness.

— Robustness. The inability of a challenger/warden to alter the sender’s com-
munication transcript (that contain hidden message), and possibly prevent
the receiver from recovering the hidden message.

2.7 Kleptography/Algorithm-substitution attacks

Our wallet subversion attacks can be classified as kleptographic attacks [29-31]
and algorithm-substitution attacks (ASA) [32,33]. As a high-level definition,
in such attacks, the adversary maliciously tampers with the implementation
of a cryptographic algorithm Gyup and changes it from its specification Gspgc
algorithm, with the aim to subliminally and exclusively leak the user’s secret
information to the adversary while evading detection in the black-box setting.
The depiction in Fig. 4 illustrates how an adversarial implementation G;yp of the
algorithm Gspgc can allow the adversary, given their secret key z, to detect the
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subverted ciphertext ¢’ and extract the user’s secret s. Kleptographic attacks are
significant due to their undetectability in the black-box setting and their severe
consequences on the security of the users. See App. E for more details about
signature subversion and detectability.

m m ;
c c

S @_ S GIMP I
;

Fig. 4. Kleptography/ASA: specification Gspec takes input as the message m and the
secret s, and outputs c¢; whereas, the malicious implementation Gup outputs a sub-
verted ciphertext ¢’ which can leak the secret s exclusively to the attacker who knows
z.

2.8 ECDSA

ECDSA is a randomized-signature scheme over the NIST elliptic curves that
has been widely used in cryptocurrencies, such as Bitcoin, Ethereum, etc.

Elliptic Curve Over F, Let param := (p,a,b,g,¢,¢) be the elliptic curve
parameters over IF),, consisting of a prime p specifying the finite field IF,,, two
elements a,b € F,, specifying an elliptic curve E(F,) defined by E : y? =2 +
ax+b (mod p), a base point g = (z4,y,) on E(F,), a prime ¢ which is the order
of g, and an integer ¢ which is the cofactor ( = #E(F,)/q. We denote the cyclic
group generated by g as G, and it is assumed that the DDH assumption holds
over G, that is for all PPT adversary .A:

AdngH(A):‘PI‘ |:.’E,y<—Zq,b<—{O,1},h g 7:| _‘

O:
h1<_G:A(97gw7gy7hb):b 2

is negligible in .
ECDSA description The ECDSA signature scheme is depicted in Fig. 5.

3 Generic Steganographic Attack

Many cryptocurrencies use ring signatures to preserve users’ privacy. For exam-
ple, the CryptoNote framework [17], which is adopted by around 20 cryptocur-
rencies, uses ring signatures. As a demonstration, we describe how the uncon-
trolled randomness in CryptoNote’s ring signature can be maliciously exploited.
Namely, we show how the randomness within the ring signatures can be used to
communicate covertly, store arbitrary information, and surreptitiously leak pri-
vate keys. Note that the same principles are applicable to any other uncontrolled
randomness in blockchain primitives.
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,—(ECDSA (KeyGen, Sign, Verify)) N

KeyGen(param):
— Pick random s < Zg;
— Set S :=g° = (S, 5y);
— Output (PK := S5,SK := s);

Sign({PK}, SK, 1,m):

Pick random 7 <— Zg;

— Set R:=g" = (Rs, Ry);

— Set w := (hashy(m) +s-R;)-r~ ' (mod q);
Output o := (Rz, w);

Verify({PK}, m, 0):

— uy := hash,(m) - w™! (mod ¢) and uz := R, - w™ ' (mod q);
— Compute P := g"'S5"2 = (P,, P,);
— Output valid if and only if P, = R, (mod q);

Fig. 5. ECDSA Signature Scheme.

3.1 Our generic steganographic attack on CryptoNote

We now describe a generic steganographic attack against all CryptoNote-based
cryptocurrencies and their variants. As mentioned in Sec. 2.4, the CryptoNote
protocol uses the ED25519 twisted Edwards curve, and the group order is a 253-
bit prime p. The long term secret key of a user consists of two group elements
a,b € Z,, but a := hash,(b) is commonly used in practical implementation.
Therefore, the long term secret key of a CryptoNote account is effectively 253
bits.

As part of the one-time (linkable) ring signature, a one-out-of-many non-
interactive zero knowledge proof is included. More specifically, for a ring of size
k, the format of the ring signature is ¢ = (I,¢1,...,Ck,71,...,Tk). Suppose
the sender’s public key is PK;, ¢ € [k]. For all j € [k] and j # i, the com-
ponents c¢; and r; are uncontrolled random group elements in Z, and can be
used for covert communication (cf. Fig. 2, above). Hence, our attack is premised
on steganographically embedding arbitrary information on the ring signature’s
random numbers (c;,7;).

In our attack example, ek = dk, which is a simple 128-bit random key z,
is the common shared secret. The attack is explained as a three-step process
carried out by two parties: a sender called Alice and a receiver called Bob.

Step 1: embedding hidden messages (Embed). As the most significant bit of a
random Z, element does not have uniform distribution (which is more biased
to 0), to ensure (computational) indistinguishability between stegotext st and
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<1 bit> <— ——128 bits —— —> <—124 bits —>
&i: (1v=Fz(rand]|00...0) ) Payload 1]
siBigs=—====== 282 hils——————— >

fi: [ Payload 2 ]

Fig. 6. Steganographic attack against CryptoNote: Format of one pair of random num-
bers (cj, ;) with 47-byte embedded stegotext.

innocuous random elements (c;, ;) € Zj,, Alice embeds her secret message m in
the least significant 252 bits of ¢; and r;, whereas, the most significant bits b;
and by are sampled according to the real distribution of ¢; and r;. As depicted
in Fig. 6, the rest of the bits consist of a 128-bit 1V, 124-bit Payload 1, 252-bit
Payload 2. Let F : {0,1}!?8 x {0,1}'%® — {0,1}'?® be a block cipher that takes
as input a 128-bit plaintext and a 128-bit key, and outputs a 128-bit (pseudo-
random) ciphertext. Moreover, Alice uses synthetic IV to allow Bob to efficiently
identify which transactions on the blockchain contain stegotext st. In particular,
IV := F,(rand||00...0), where rand is a 64-bits random string, and 00...0 is a
64-bit string of 0’s. As a result, to check if a signature contains any st, Bob can
simply try to decrypt a suspected IV, obtaining d := F; }(IV). If the lower half
of d consists of 64 bits of 0’s, then this signature contains stegotext st.

In our attack, Payload 1 and Payload 2 are jointly used to convey a 376-bit
hidden message (m = Payload 1||Payload 2). The payloads are encrypted via
a semantically secure symmetric encryption under the secret key z and using
IV. Also, to handle an arbitrary-length hidden message and ensure the resulting
ciphertext has the same length as the message (besides the IV), Alice can use
Ciphertext Stealing (CTS) as described in App. F.

Step 2: identifying stegotext. Unlike conventional P2P covert communication,
before attempting to extract a hidden message from a transaction, Bob should
first identify if the target transaction contains a stegotext st. As mentioned
before, Bob can accomplish this by parsing IV from the first two c;’s of the ring
signature ¢ in a transaction, and checking whether the decryption of IV contains
pattern 64 bits of 0’s as shown in Fig. 6. Note that Embed embeds the hidden
message m in one of the first two pairs of (¢;,7;). If ¢; does not yield the IV,
then Alice’s secret index 4 must be 1, and Bob moves on to decrypt c¢o which
must contain the IV, otherwise, the signature is an innocent cover text ct that
does not contain st.

Step 3: extracting hidden messages (Extract). Once a steganographic ring sig-
nature is successfully identified, Bob can use the Extract algorithm to extract
the hidden message. More specifically, Bob collects Payload 1 and Payload 2 as
depicted in Fig. 6. Bob then uses the extraction key dk := z to decrypt the
payload, obtaining m := CTS-Dec, (IV, Payload 1||Payload 2).
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,—(A Generic CryptoNote Stegosystem) \

KeyGen(1'2®):

— Pick random z + {0, 1}'%%;
— Return ek := dk := z;

Embedy e (m):

— Pick random rand + {0, 1}%*;

— IV := F.(rand||00...0);

— 1 := CTS-Enc.(IV, m);

— Payload 1:= ’I?A’L[Qzlgg];

— Payload 2 := m[124:375];

— Sample random ¢ ¢~ Z;,, and r < Zy;

— Cp2g) = 1V
— C129:252] := Payload 1;
— T[1:252) := Payload 2;

— Return (¢, r);
Extractax(c, r):

- o= Fz_l(c[1:128]);
If Oé[64;127] # (00 N 0)
e Return 1;
— Else:
o IV := Cl1:128];
Payload 1:= C[129:252];
Payload 2 := c[1.252);
m := CTS-Dec. (IV, Payload 1||Payload 2);
— Return m;

\. J

Fig. 7. Pseudo-code for a generic stegosystem ST := (KeyGen,Embed, Extract) to
covertly communicate a 376-bit message m in one pair of innocuous-looking (c,r),
where A = 128.

The pseudo-code in Fig. 7 further illustrates the generic steganographic at-
tack on CryptoNote currencies. Note that, in practice, the IV and Payload can be
encrypted under two different keys derived from a single master key z. However,
for notation simplicity, we use the same key here.

3.2 Security

The security of the proposed generic stegosystem against all CyptoNote-based
cryptocurrencies is examined for undetectability under the chosen hidden-text
attacks (CHA) game/experiment. We remark that the content-insertion tech-
niques that use non-standard Bitcoin scripts or exchange the public key with



18 N. Alsalami and B. Zhang

an arbitrary string with printable characters, as mentioned in [1,34], can be
detected. However, our proposed steganographic attack on CryptoNote simply
replaces random numbers with pseudo-random ciphers which, by definition of
semantic security, are computationally indistinguishable from each other. As-
suming the CTS-Enc algorithm described in App. F uses F' as the internal PRF
function, we have the following theorem.

Theorem 1. If F is a secure pseudorandom function, the stegosystem ST :=
(KeyGen, Embed, Extract) as shown in Fig. 7is CHA secure.

Proof. See App. A.

3.3 Robustness and Efficiency

In terms of robustness, it is easy to see that, unlike image steganography, the
stegotext embedded in the signatures can never be removed while still preserving
the functionality of the signatures. Therefore, there is no filter that can remove
our stegotext.

Throughput. The only similar attack in literature is the proof-of-concept attack
in [6] which sends a hidden message bit-by-bit through the rejection-sampling
of the transaction address. Besides sending one bit of the hidden message m per
transaction, their attack also sends one transaction per block. As a result, with
10 minutes to add a new block in Bitcoin, a sender needs more than 24 hours
to send a message of 20 bytes. On the other hand, our steganographic attack
takes advantage of the randomness within each ring signature in CryptoNote
transactions. In fact, a CryptoNote transaction contains a ring signature for
each input. Therefore, if a transaction tx has y number of inputs, and n public
keys in the ring of each signature, then the total number N of random numbers
(¢j,rj) intxis N = y* (n— 1) % 2. Whereas, the available bandwidth B in bytes
is B = 32N. Hence, the available bandwidth in one transaction of 10 inputs and
10 public keys is more than 5KB. In comparison, other techniques that replace
segments of the transaction, e.g. replacing P2SH scripts in Bitcoin transactions
as done in Tithonus [35], can at maximum transmit 1KB per transaction. This
further proves the efficiency of exploiting cryptographic randomness as opposed
to replacing segment of the transaction itself.

Note that many blockchains offer an API to retrieve certain transactions and
blocks. Therefore, if the receiver know the heights, i.e. indices, of the blocks
that contain the steganographically communicated data, he does not need to
check the whole blockchain. Therefore, a sender can communicate this kind of
information off-line to minimize the receiver’s computational effort.

Robustness against DoS attacks. Censors can discover censorship-resistant
proxies, e.g. Tor bridges, and block them. On the other hand, censors can not dis-
tinguish steganographically-subverted blockchain transactions, hence, they can
not launch any targeted DoS attack unless they blacklist the whole blockchain
which might have other financial ramifications. Additionally, from an attacker



Uncontrolled Randomness in Blockchains 19

perspective, exploiting uncontrolled randomness is advantageous over other content-
insertion approaches that simply replace segments of the transactions, as done
in Tithonus [35] and Catena [36]. Namely, other techniques are susceptible to
policy changes where certain transactions, or scripts, become conspicuous or are
no longer accepted, forcing the adoption of alternative techniques.

Cost. Content-insertion through the use of OP_RETURN transactions and the
arbitrary replacement of transaction addresses [34] render the funds unspend-
able. Therefore, these techniques burns funds. On the contrary, our proposed
steganographic attack does not incur any additional cost, except for minimal
transaction fees, as the sender can always send transactions to his own addresses.
Technically, we can choose arbitrarily large ring size in a transaction. In practice,
however, we found that a value between 20 and 30 is the optimal ring size to
get a transaction included quickly with minimum transaction fees. To further
clarify the cost per Byte, a Bytecoin transaction tx with 2 inputs and 21 public
keys can take about 2 KB of covert data and costs 0.01 BCN as the minimum
transaction fee which, given the current price of Bytecoin is $ 0.000619 [14],
costs $ 0.00000619. Therefore, the cost of transmitting 1 GB covertly is ~ $ 2.4.
On the contrary, As shown in [35], Bitcoin-based Tithonus can covertly trans-
mit up to 1650 Bytes in one transaction by replacing segments of the P2SH
script of a multisignature transaction. Assuming the minimum transaction fee
of 1 Satoshi/Byte and $ 3657 [14] per Bitcoin, the cost of transmitting 1 GB is
more than $ 36, 000.

4 Case studies: Bytecoin and Monero

This section contains specific implementation of the proposed attack in Sec. 3
where we have implemented and evaluated the attack in two real cryptocurren-
cies; Bytecoin and Monero. Namely, we implemented the steganographic attack
in the most recent release of Bytecoin (v 3.3.3) which has a market cap of around
$142 millions as of the time of writing [14]. Similarly, we implemented and tested
the attack in Monero which is ranked 11 among currencies and has a market cap
of around $1 billion. It is important to note that as of October 2018, Monero
(v 0.13.0.0) has replaced Borromean ring signatures, that is exploited by our
attack, by a succinct zero-knowledge proof called Bulletproofs, which is not cov-
ered by this work. Consequently, all of our discussion in relation with Monero
is regarding previous versions of the source code mainly (v 0.12.0.0) and older.
Although Monero is based on CryptoNote protocol, it uses Borromean ring
signature which is different from the ring signature used in CryptoNote protocol
as previously shown in Sec. 2. Nevertheless, our generic attack in Sec. 3 is still
applicable to Monero. This emphasizes that the same attack can be extended to
all public blockchain applications with randomized cryptographic primitives.

4.1 Implementation in Bytecoin

Bytecoin is an open-source cryptocurrency project [37] that implements the
CryptoNote protocol described in Sec. 2.4. Accordingly, Bytecoin uses the ED25519
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<———128 bits ———> <—125 bits —>

Ci: (IV=F(rand||00..0))( Rand |

<———128 bils ———> <—126 bits —>

ri: [ st ][ Rand ]

Fig. 8. Bytecoin: embedding a 16-byte st in one pair of (¢;,r;) in transaction’s ring
signature

twisted Edwards curve and CryptoNote (linkable) ring signature to sign its trans-
actions. As previously mentioned in Sec. 2.4, this protocol has sufficiently many
uncontrolled random numbers that could be exploited to covertly communicate
arbitrary information. Since Bytecoin closely follows the specifications of the
CryptoNote framework, it can directly be attacked using the generic stegano-
graphic attack described in Sec. 3. However, for code simplicity and clarity of
demonstration, Ciphertext Stealing (CTS) is not used, and AES128 is used in
the stegosystem because AES is already implemented in Bytecoin source code.

As a proof-of-concept experiment and due to ethical reasons, we only covertly
transfer 16 bytes in the real-world Bytecoin without significantly abusing the
blockchain system. Following the description of the generic attack in Sec. 3, we
have implemented our steganographic attack on Bytecoin wallet in the following
three steps.

Step 1: embedding a hidden message m and generating a signature that contains
st. To embed a 16-byte hidden message m in a pair of random numbers (¢;,7;),
Alice generates a synthetic IV := AES,(rand||00...0) where rand is a 64-bit
random string, and 00...0 is a 64-bit string of 0’s. Alice then places IV as the
most significant 16 bytes of c; and sets the rest of ¢; randomly. She later uses
this IV along with z to generate st that is embedded in the most significant 16
bytes of r;. Namely, st := AES,(m & IV). The format of (c;,r;) containing st is
illustrated in Fig. 8.

Furthermore, to implement this step of the attack, the Bytecoin wallet’s
source code is changed by mainly modifying one source file: crypto.cpp. The
modified wallet simply alters the random numbers in the transaction’s ring sig-
nature(s) by producing one pair of (¢;,;) as aforementioned. Note that j # ¢
where 7 is the signer’s secret index within the ring. Particularly, the changes
introduced to crypto.cpp affect the following two functions within the source
file:

— generate_ring_signature(): This function is slightly modified to pass a counter
value to the random_scalar function.

— random_scalar(): This function is modified by including an additional pa-
rameter in its input to specify the counter. When this counter is 0 and 1,
random_scalar() generates ¢; and r; respectively which are stegotexts that
hide a 16-byte message as depicted in Fig. 8.
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,—(Bytecoin covert communication pseudo code) <

KeyGen(1'%%):

— Pick random z < {0, 1}'2%;
— Return ek := dk := z;

Embedy, . (m):
generate_ring_signature():

= If((4 # )& == 0)):
e ¢; := random_scalar(0);
e r; := random_scalar(1);
— Else:
e process as per normal;

random_scalar(n):

rand < Zp;
if(n ==0):

o IV := rand[o.¢3)||zeros;

o IV:=AES.(IV);

[ ] rand[0;127] = |V;
— if(n==1):

e randjo.127) := AES.(m @ IV);

— Return rand;

Extract. (¢, r):

— for(j =0;5 <25 ++)
] IV/ = AES;l(C]"[O;127]);
o if(IV(gy4.127 == zeros):
* m = AESI " (r) 0:127]) @ ¢, 01273
* Return m;
— Return 0; % No hidden message

\. J

Fig. 9. Pseudo code for the implementation of covert communication in Bytecoin and
similar currencies.

After generating the subverted signature that contains the stegotext, the
transaction is sent as per normal over the blockchain. The sender does not need
to modify other parts of the wallet source code.

Step 2: identifying signature containing stegotext st. To distinguish and identify
signatures containing stegotext st, Bob checks every new transaction added to the
ledger. To implement this, BlockChainState.cpp is slightly modified to check each
signature by decrypting each pair of (¢;, ;) numbers. In particular, Bob uses his
key z to decrypt the most significant 16 bytes of ¢; to check if it contains 64 bits
of zeros as in Fig. 8. If he detects such a pattern, Bob identifies the existence of



22 N. Alsalami and B. Zhang

a stegtext and sets IV as the most significant 16 bytes of c;. If, however, no such
pattern is detected, then the signature does not contain any hidden message.

Step 3: extracting hidden message m. After identifying a stegotext st, Bob de-
crypts the most significant 16 bytes of r; to extract m, that ism := AES;1 (75,[0:127]) D
(¢j[0:127])- This process is further clarified by the pseudo code in Fig. 9.

To further demonstrate the attack over the real Bytecoin blockchain, App. B
provides a demo transaction included in the block at height 1671177 that con-
tains a 16-byte hidden message “steganography”, and a tool to extract the
steganographically embedded message.

4.2 Implementation for Monero (version 0.12.0.0)

Monero has a very complex cryptographic structure and ring signature scheme
in particular. The core of Monero’s wallet involves Multilayered Linkable Spon-
taneous Anonymous Group Signature (MLSAG) and Borromean ring signature
[26]. MLSAG is similar to the 1-out-of-n ring signature that is used as part of
the CryptoNote protocol; however, rather than using a ring signature on a set of
n keys, MLSAG uses a ring signature on a set of n-key vectors. Using MLSAG,
the signer proves to know all the private keys corresponding to one column in
the public keys’ matrix. Despite the massive one-time secret key, the long-term
secret key is still a single group element in Z,.

Borromean ring signature [26], which is a generalization and based on the
1-out-of-n signature [38], is used to mask the transferred amount while enabling
the receiver to know how much they have received by revealing the mask [39].

In our experiment, we chose to exploit the Borromean ring signature as it of-
fers higher throughput. However, though with lower throughput, different prim-
itives could also be exploited to mount steganographic attacks. Our attack on
Monero is based on embedding a 32-byte hidden message m in the randomly gen-
erated s; ; numbers as part of the Borromean ring signature [26]. Specifically,
two vectors of s; ; numbers are generated by the genBorromean() function: sq ;
and sy ;. In addition, sg ;’s are randomly generated when the 4t bit commitment
is 1. Two of these randomly generated so ;’s are used to embed m as shown in
Fig. 10. In a similar manner to our attack on Bytecoin, we use AES because it
is already available in the source code. More details about the implementation
of the steganographic attack on Monero can be found in App. C.

! A B
Soii (" 16bytesRand IV ] (Enc.(index of Soz) XOR A)]

\ C D
Sez (" Enc{m xORB) _ J(__ Enc{m:XORC) |

Fig. 10. Monero: embedding a 32-bybte hidden message (m1||m2) in two random num-
bers (so,1, So,2) in the Borromean ring signature
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Fig. 11. Attack scenario 1: Covert broadcast communication.

5 Attack Scenarios

This section describes the following three attack scenarios: (i) covert broadcast
communication, (ii) covert persistent storage, and (iii) wallet subversion attacks.

The first two scenarios represent direct applications of the steganographic
attack in Sec. 3. Moreover, it is noticeable that both attack scenarios do not only
facilitate objectionable behaviour, but can also hinder the very future of public
blockchains. In particular, if a public blockchain is known to the authorities
to be abused for covert communication or storage of malicious content, then
authorities in any given country may criminalize the mere participation in such
blockchains. Even if participation is not criminalized, users may choose not to
store the full ledger, which defeats the purpose of decentralized blockchains, and
leads to a more centralized setting, where few users participate in the consensus
protocol. Unlike the first two scenarios, the third attack scenario is considered an
Algorithm-Substitution Attack (ASA) and represents a scenario where the user
is an oblivious victim of the attack.

5.1 Attack Scenario 1: Covert Broadcast Channel

Conventional steganographic techniques typically assume that the covert com-
munication is between two parties — a sender and a receiver. In fact, our stegano-
graphic attack can be used as a covert broadcast channel, i.e. one sender and
multiple receivers. As analyzed in Sec. 3, to steganographically send a hidden
message of 1 KB, Alice can easily craft a transaction with 4 inputs and 5 public
keys. Also, Fig. 11 shows that it is easy to use our steganographic technique in
conjunction with some broadcast encryption scheme, e.g. [40], to enable a prac-
tical broadcast channel. The feasibility of this attack and the high throughout
demonstrate the severity of this attack scenario, especially if abused by outlaws
to use public blockchains as covert broadcast networks for their illicit communi-
cation.
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5.2 Attack Scenario 2: Covert Data Storage and Distribution

Data storage can be viewed as a communication channel between the user and
the user himself in the future. Unlike covert communication, covert persistent
storage requires the uploaded content to be permanently stored and available
on the blockchain. As discussed in Sec. 3, the cost of covertly storing 1 GB
in Bytecoin’s blockchain is about $ 2.4. Consequently, an adversary can use
Bytecoin as a cyberlocker and abuse the P2P network of Bytecoin as a persistent
content-distribution network (CDN). For example, it could be used to store
pirated movies, wikileaks documents, etc.

An example special case of this scenario that shows the threat of such scenario
is blackmailing. An adversary, Alice, can covertly store private information about
a victim, Bob. Alice may even demonstrate this to Bob by sharing the key and
the extraction tool with him. Alice can then threaten Bob that she can make
the information publicly available by revealing the key to everyone.

5.3 Attack Scenario 3: Wallet Subversion

In the aforementioned attack scenarios, the sender, Alice, is complicit in the
malicious attacks. This section presents another scenario where the sender is
oblivious and is in fact a victim of the attack. Although this scenario may be
applicable to open-source blockchain applications due to their complexity, it is
more applicable to close-source and hardware-based applications, e.g. hardware
wallets. The significance of this attack scenario stems from its undetectability in
the black-box setting, where secrets are leaked via normal transactions posted on
the blockchain, and its serious repercussions on the victim’s privacy and funds.

As depicted in Fig. 12, in this scenario, Alice is an innocent user who has
downloaded, or bought, a wallet that is produced by a third party Carol who has
maliciously implemented the wallet. In particular, Carol used a subversion attack
to modify a wallet and redistribute it so to leak the signer’s private key, while
evading detection in black-box settings. The way in which Carol modifies the
wallet depends on the used cryptographic primitives and signature algorithms.

Below we present three subversion attacks that realize the scenario in Fig. 12.
The first is a direct application of the generic steganographic attack described
in Sec. 3 and its demo implementation in Bytecoin and Monero. Addition-
ally, we present two more wallet subversion attacks targeting ECDSA-signature
cryptocurrencies. Preliminary description of ECDSA can be found in Sec. 2.8.
Namely, the first attack on ECDSA-signature crypto wallets uses synthetic ephemeral
key to covertly leak the entire signer’s secret key over two signatures. However, it
requires that the wallet is stateful in the sense that the wallet needs to store some
variables from the previous signing execution. The second attack on ECDSA-
signature crypto wallets is stateless and has lower throughput compared to the
stateful attack. Note, in both ECDSA attacks, it is assumed that the attacker
can identify the transactions generated by the victim user.

Subverting Ring-Signature Crypto Wallets. In the following we describe
how the generic steganographic attack described in Sec. 3 is used by a third
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party, Carol, to subvert a ring-signature currency wallet, e.g. Bytecoin, to steal
private keys. Similar attack is also applicable to Monero’s Borromean signature.

Carol modifies the wallet by adding an embedding algorithm Embed., (b),
where b is Alice’s 253-bit private key b € Z,. The subverted wallet secretly
executes Embed, (b) to generate one pair of (¢j,r;) as shown in Fig. 13. In this
scenario, the subverted c; contains 128-bit IV that consists of an encryption of
64 random bits rand and 64 bits of zeros, i.e. IV := F,(rand||00...0). ¢; also
contains Payload 1 which is 124 bits of b. r; contains Payload 2 which is 129 bits
of b and Payload 3 which is the least significant 123 bits of Alice’s public key B.
The payloads are encrypted via a symmetric encryption under the same secret
key z using IV.

Carol checks every added transaction for any exfilterated private keys by
decrypting the first 16 bytes of c;’s from each signature, and checking if the
decrypted text contains 64 bits of 0’s as in Fig. 13. Note, Carol only needs to
check the first two pairs of (¢, r;) to identify any subverted signature.

After successfully identifying a subverted signature, Carol parses and col-
lects IV, Payload 1, Payload 2, and Payload 3. Carol then uses her secret key z
to decrypt the payloads, obtaining b € Z,, and LSB123(B). After that she com-
putes a := hash,(b) and retrieves the corresponding public key (A, B) from the
blockchain. After checking that A = ¢% and B = ¢°, Carol returns the secret key
(a,b) € (Zy)?. Carol can now recover all the one-time addresses and transactions
and even impersonate the compromised signer, Alice, to spend her money.

Subverting ECDSA: Synthetic Randomness. Our first proposed subversion
attack on ECDSA is a simplified version of the attack proposed in [41]. The
subverted algorithm is depicted in Fig. 14. Let z € Z;, be the adversary’s secret
key, and set Z := g*. Let R < map(R,) be a mapping function that takes as
input the x-coordinate and outputs the corresponding point on the curve. The
subverted wallet needs to use algorithms Sign(l) and Sign(2) in turn to leak the
signing key s. For the first time, Sign(l) is identical to the original signature
algorithm; however, the subtle difference is that Sign(l) stores the ephemeral
key r1 in a long-term memory, which can be accessed during the next signature
invocation. Sign(2) is also similar to the original signature algorithm except that
it deterministically generates ro := hash,(Z™), where Z is hardcoded in the
wallet. Once the adversary obtains two signatures oy, 02, he can use his secret
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Fig. 13. Attack scenario 3: Covertly leaking the signer’s private key in one pair of

(cj,75)-

key z to recover the victim’s signing key s. First, he parses 01,09 as (R, w1)
and (R,,ws). The attacker then finds the point on the curve that corresponds to
R/, using R’ < map(R/,). After that, the attacker computes 75 := hash,((R')?).
Note that if 74 is equal to r5 then everything is correct. Let R := ng2 = (Ra, Ry).
The secret key can be extracted as s := (wa-75 —hash,(m2))-(R,;)~!. This attack
illustrates how the entire long term signing key s can be leaked exclusively to
the adversary over two subverted signatures.

Subverting ECDSA: Rejection Sampling. While our first ECDSA subver-
sion attack has a very high throughput, it has few drawbacks. First of all, it is
a stateful algorithm, so it is not suitable for all scenarios, especially for software
wallets. Furthermore, the first attack can only leak the signing key by the nature
of its design, and not any other confidential information. Note that most cryp-
tocurrency wallets are able to avoid the re-use of the address and signing key. As
a result, the leaked signing key in our first attack, may never be used again even
if the signing algorithms are executed twice with the same signing key. Never-
theless, for most wallets, there is a master key that is used to deterministically
derive all the one-time signing keys.

As a result, our second subversion attack on ECDSA is stateless and is
designed to leak arbitrary confidential information. As depicted in Fig. 15, the
subverted signing algorithm takes as input the signing key s, the message m;,
and the secret x € {0,1}" to be leaked. The signing algorithm leaks a random
bit of x per signature. Let PRF : {0,1}* x {0,1}* + {0,1}!°8™ x {0,1} be a
pseudo-random function that takes as input an arbitrary length message and
the A-bit PRF key, and it outputs a random number of (logn + 1) bits. The
first logn bits is interpreted as an index j, and the last 1 bit is viewed as b.
The subverted signing algorithm performs a rejection-sampling to find a random
R = (R, Ry) such that (j,b) < PRF,(R;) and z[j] = b. The rest signing process
is identical to the original signature algorithm. Note that the rejection-sampling
is efficient, and the expected repetition per signature is 1.5 times.

To recover the secret, the adversary needs to obtain a collection of the sig-
natures generated by the subverted algorithm. We emphasize that when the
secret is a master key that can be tested for its correctness, it is not necessary
to leak the entire key in practice. Assuming the master key is 256 bits, to ob-
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,—(Subverted ECDSA signing algorithm 1) N

Sign ({S},s,m1):

— Pick random 71 < Zg;

— Set R :=g"™ = (R, Ry);

— Set wq := (hashy(m1) +s- Ry) -y
— Output o1 := (R}, w1);

' (mod gq);

Sign® ({S}, s,m2,71):

Set 72 := hash,(Z™);

Set R:=g¢"? = (Rz, Ry);

Set ws := (hashy(ma) +s- Ry) -ry ' (mod q);
— Output o2 := (Rg, w2);

Recover(o1, 02, m2, 2):

Set R’ + map(R,);

Set 75 := hash, ((R)?);

Set R:=g" = (Ry, Ry);

— Output s := (wg - 5 — hash,(ms)) - (Re) ™

Fig. 14. The subverted ECDSA signing algorithm 1.

tain 50% distinct key bits, the expected number of signatures is bounded by
approximately 256 signatures. Asymptotically, to obtain n secret bits, we need
f(nlogn) signatures. To demonstrate this, we preformed an experiment using
our rejection sampling technique to empirically test the needed number of signa-
tures to 32,64, 96,128,160,192 and 224 bits out of the total 256 key bits. This
experiment was run 20 times to record the number of needed signatures to leak
some bits of the secret key. As shown in Table 3 in App. D, the average number
of signatures that should be intercepted by an attacker to retrieve 50% of the
key, i.e. 128 bits, is about 179 signatures.

6 Countermeasures

In this section, we first examine the state-of-the-art of known countermeasures
against subversion attacks and some techniques that can prevent exploiting un-
controlled randomness for arbitrary content insertion in blockchains. We then
propose two countermeasures that are tailor-made for the blockchain scenar-
ios. Note that our countermeasures aim to eliminate any steganographic mes-
sages hidden inside the cryptographic components (such as signatures and non-
interactive zero-knowledge proofs) attached in a blockchain transaction; whereas,
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,—(Subverted ECDSA signing algorithm 2) N

Sign({S}, s, ms, x):

— Repeat the following process:

e Pick random r < Zg;

o Set R:=¢" = (R, Ry);

e Compute (j,b) + PRF.(R.);

e If z[j] = b, break the loop;
— Set w := (hash,(m;) +s- Ry)-r~ ' (mod q);
— Output 0y := (Ra, w);

Recover(o1,...,0¢,2):

— Init an array S := 0;

— For i € [{], do:
e Parse o; as (ui, v;);
e Compute (ji, b;) < PRF(u;);
e Set S[]Z} = b;;

— Output S;

Fig. 15. The subverted ECDSA signing algorithm 2

solutions to general content-insertion, e.g., inserting arbitrary content in un-
spendable OP_RETURN Bitcoin transactions, is beyond the scope of this work.

6.1 Existing Countermeasures

In the literature, there are several known techniques that were proposed against
generic steganography and substitution attacks. Here we systematically assess
those techniques in the context of blockchain. In particular, they are divided
into the following three categories: (I) ASA-resistance techniques which have
been proposed to immunize cryptographic primitives against malicious imple-
mentation attacks, (II) proactive trust-based countermeasures where a trusted
entity or a trusted initial state is used to prevent possible subversion, and
(IIT) blockchain-based techniques that may and may not be primarily proposed to
counter malicious content but can still be used to deter adverse covert commu-
nication and/or persistent storage. More details on the existing countermeasures
can be found in App. G.

Table. 2 summarizes our assessment of the existing countermeasures w.r.t.
their effectiveness against the attack scenarios in Sec. 5. The first and most
intuitive countermeasure is to stop using any randomized primitives as noted
in [32,33]. As seen in Table 2, this countermeasure is theoretically effective,
but its usage is very limited in the context of blockchains. Similarly, signatures
with synthetic randomness, as proposed in [42], do not address covert channels
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Technique Attack Scenarios Input |Practical|References
Attack 1 Attack 2 Attack 3 Trigger|in block-
Covert Channels|Persistent Storage|Wallet Subversion chains
New Countermeasure
SRBF / I v I / I [ v this work |
Randomness-Externalized Arch. X ‘ X ‘ v ‘ v ‘ v ‘ this work ‘
ASA-Resistant Techniques
Deterministic crypto primitives v v v v X [32,33]
Signature with synthetic randomness v v v X X [42]
Verifiable Random Function X X X v X [43]
Split model X X v X X [44-46]
Active Trust-Based Countermeasures
Reverse firewalls v ‘ v ‘ v ‘ v ‘ X ‘ [47] ‘
Self-guarding protocols v | v | v v ] X | [48] |
Blockchain-Based Techniques
Light chains X v X v v [49,50]
Redactable chains X v X v v [4,5]
Content Filters X X X X X 3
Increasing Transaction Fees X X X X X 3
Self-verifying Addresses X X X v X 3
Table 2. Effectiveness of new and current countermeasures against the three attack

scenarios mentioned in Sec. 5. Current countermeasures are categorized into three cat-
egories: ASA-resistant techniques, Active trust-based countermeasures, and blockchain-
based techniques. (v') denotes that the relevant countermeasure is resistant against the
corresponding attack scenario, while (x) means the countermeasure is vulnerable to the
attack scenario. Input-trigger states if a countermeasure is resistant to ‘time bombs’
or input-triggered malicious behaviour. Finally, Practical in blockchains examines if
the corresponding countermeasure is applicable in the context of blockchains, if it is
not likely to produce other security ramifications, and its robustness against malicious
users. (/) is used to indicate that SRBF does not deter covert channels nor wallet
subversion in one case: when the attackers’ nodes are alive at the broadcast stage of
the malicious transactions, while it practically defends against all 3 scenarios in other
cases.

and storage, and they are also susceptible to input-trigger attacks; thus, they
are not practical in this context. Another countermeasure that can be used
to sanitize randomness is the use of verifiable random functions (VRF) [43].
Though they may be able to minimize the bandwidth available for steganography
per transaction, VRFs are vulnerable to rejection-sampling attacks. Another
subversion-resistant technique was proposed by Russell et al. [44-46] is to double-
split a given randomness generation function RG into two separate components
RGg and RG;, execute the two components independently, and compose their
outputs using a deterministic function ¢ to generate the final subversion-free
random number. However, this countermeasure setting is not practical.

Another category of countermeasures is the use trusted entities to eliminate
steganography. The first countermeasure of this kind is to use reverse firewalls
(RF) as proposed by Ateniese et al. [47] which requires a trusted entity to immu-
nize re-randomizable signature schemes, and the second countermeasure is the
use of self-guarding protocols proposed by Fischlin and Mazaheri [48] which re-
quire a trusted initial state of the algorithm. Both countermeasures are effective
but not generic, as we need to use special signature schemes.

The last group of countermeasures are related to blockchains techniques.
The first two techniques, light chains [49,50] and redactable chains [4, 5], were
proposed to address sustainability; nevertheless, they can defend against mali-
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2

1. Check transaction Tx

m\ (Tx,{PKi},T) | 2. Verify signature:

A Verify({PKi},Tx,0) = 1

\ 3. Generate proof m:

\

R _ ({PK;},Tx),0):
T N'ZK{ Verify({PK;}, Tx,0) = 1 }

/! 4. Include (Tx,{PKi},n) to the next block

/
/

" (Tx,{PKi},0)

i 1. Prepare transaction Tx
i 2. Collect the PK set {PKi}
i 3. Sign transaction Tx

o « Sign(sk,{PKi},Tx)
4. Broadcast (Tx,{PKi},o)

Fig. 16. Stego-resistant blockchain framework (SRBF)

cious persistent storage. Finally, several countermeasures were proposed in [3]
to address content insertion in Bitcoin, but they are not practical to deter the
exploitation of uncontrolled randomness.

6.2 Stego-Resistant Blockchain Framework (SRBF)

A typical blockchain transaction contains one or more cryptographic compo-
nent(s), such as the signatures and non-interactive zero-knowledge (NIZK) proofs.
As mentioned before, the existing reverse-firewall-based solutions utilize special
re-randomizable signature schemes, which is not generic. Here we propose a uni-
versal stego-resistant blockchain framework (SRBF) that can be readily deployed
to any off-the-shelf blockchain system. Without loss of generality, we explain our
technique in terms of signature schemes, and it can be applied to NIZK proofs
analogously.

As depicted in Fig. 16, in our setting, the miners are assumed to be trust-
worthy, and the user’s client might be maliciously modified to exploit the cryp-
tographic components, e.g., signature, attached with the transactions to broad-
cast the steganographic information over the blockchain. Conventionally, upon
receiving a transaction tx, the miners would check the validity of its associated
signature o, using the signature verification algorithm Verify(PK, tx,0) = 1.
The miners then include the transaction together with its signature as it is to
the next block, which will be eventually uploaded to the blockchain. Therefore,
other miners and users can verify the validity of the transaction as well. Can
we drop the signature from the transaction while still preserving public verifi-
ability? In our solution, the miner, instead of showing the signature to every
other blockchain users/miners, it replaces the signature with a NIZK proof (see
App. H for NIZK definition). Informally, the proof says that “I have seen a valid
signature such that the signature verification algorithm Verify(PK,tx,o) = 17.
More precisely, we have the following NP relation:

Raig = {({PKi}iL, tx), 0)|Verify {PKi }iLy, tx, 0) = 1}
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In our stego-resistant blockchain framework, only (tx, {PK;}™ ,,7) will be
posted on the blockchain, where

({PK;}is,, tx),0) :
m + NIZK {Verify({PKi}?—l’tx’ o)=1 }

is generated by trusted miners. The security guarantee of our solution is obvious,
as signature o is the witness of the corresponding NIZK proof. By NIZK defini-
tion, 7 does not leak any information about o. Therefore, all the steganographic
information hidden in the signatures are filtered out from the blockchain. In
practice, we can use Bulletproofs [23] to implement SRBF efficiently.

Remark. Although this solution prevents the permanent storage of stegano-
graphic information, the subverted signatures can still propagate through the
P2P network in the broadcast stage. Therefore, we only consider it fully effec-
tive against persistent storage in Table 2.

6.3 Randomness-Externalized Architecture

As mentioned above, our first countermeasure cannot prevent steganographic
information from being propagated via the P2P network in the first place. We
now discuss a randomness-externalized architecture to eliminate this drawback.
It is designed to prevent kleptographic attacks while still enabling randomized
signatures.

Before illustrating the proposed architectural modification, let us first ex-
amine the existing running environment of a cryptocurrency wallet. It is safe
to assume that the majority of users download wallets’ executable binaries di-
rectly from the corresponding cryptocurrency website or a third-party software
distribution platform, e.g. Apple AppStore. During the running time, depend-
ing on the functionality, the wallet may consume randomness collected by the
underlying operating system (OS). For instance, Linux kernel gathers entropy
from keyboard timings, mouse movements and IDE timings, and the random-
ness pool can be accessed via /dev/random and /dev/urandom. Although the
executable binary files can be potentially subverted, unlike conventional klepto-
graphic settings, the randomness generator is usually a part of the underlying
operating system and can be trusted if we can ensure sufficient entropy. Later
in this section, we also address the case of untrusted OS-level randomness gen-
erator. Nevertheless, as shown in our attacks, trusted randomness source alone
does not guarantee subversion-immunity, because the actual use of randomness
in implementation may deviate from the corresponding software specifications.
In fact, the implementation may simply bypass the specified software or hard-
ware randomness generator. For example, in our attack, the subverted wallet
uses 1’ := Enc,(sk;r) as the randomness instead of the given randomness r,
where z is the adversarial key and sk is the victim’s secret key to be leaked.
Besides, if the randomness consumption is not restricted, the wallet can also
perform rejective sampling to leak information. To control randomness usage,
we propose the following modifications.
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,—(Randomness—externalized Key Generation) N\

KeyGenP (param; r):

— Set b := hash,(r);
— Set a := hash,(b), A := g%, and B := g%
— Return PK := (A, B), TK := (a, B), and SK := (a,b).

Fig. 17. Randomness-externalized key generation specification.

Randomness-externalized Wallet. To ensure correct usage of randomness,
we need to make the cryptocurrency wallet deterministic by externalizing the
software randomness draw. At the specification level, all the algorithms of the
wallet are forbidden to have any internal randomness draw component. The al-
gorithm specifications Agpgc take a A-bit randomness as an explicit input param-
eter, where A\ € N is the security parameter, e.g. 256 in practice. For uniformity,
all algorithms Agppc take the same amount of randomness. If more randomness
is needed, they are deterministically derived from the input randomness r by
setting r; := hash(r, i), where ¢ € N is an index and hash is a cryptographically
secure hash function, e.g. SHA3-256.

The main functionality of a cryptocurrency wallet is a signature scheme.
Without loss of generality, a signature scheme consists of KeyGen,Sign, and
Verify. (Of course, the linkable ring signature scheme used in CryptoNote also
has a LNK algorithm to detect double spending, but it is deterministic.)

In the following, we modify the specification of KeyGen and Sign of CryptoNote
wallet as examples. A typical key generation algorithm KeyGen takes as input the
group parameter param, which defines the underlying group (or elliptic curve),
e.g. Bitcoin uses SECP256k1 NIST curves and CryptoNote uses the ED25519
twisted Edwards curve. Of course, choosing a “nothing up the sleeve” group pa-
rameter is essential for subversion resilient cryptographic primitives; however, it
is outside the scope of our work. We assume the commonly used blockchain group
parameters are carefully examined, and are widely believed to be stego-free. The
modified signature specification takes an explicit randomness r € {0,1}*. More-
over, Fig. 17 presents pseudo-code for our randomness-externalized architecture;
whereas, Fig. 18 illustrates the architecture’s signing algorithm. It is easy to see
that only a few number of lines need to be modified to make a signature scheme
use external randomness. The difference between the modified version and the
original version is marked in red.

Hidden Trigger Elimination. As mentioned before, in practice, a subverted
signature algorithm may behave maliciously when a specific input message is
given. Such a specific input message has high entropy, so an offline watchdog
can only detect it with negligible probability. To remove hidden triggers, we
need to randomize the input message. The proposed new signature scheme uses
identical KeyGen, and the modified Sign® and Verify™ algorithms are described in
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,—(Randomness—externalized Signing Algorithm)

Sign(param, {P; };c ks te, £, m;r):

— Set I := hashy(FP);
— Set ctr := 0;
— For i € [k], set q; := hash,(r, ctr) and ctr := ctr + 1;
— For i € [k],i # £, set w; := hash,(r, ctr) and ctr := ctr + 1;
— For i € [k]:
e Set L; :=g¥ ifi=1¢
Set L; := g% - P"" if i # ¢,
e Set R; := (hashg(Pi))‘“ if i = [;
Set R; := (hashy(P;))% - IV if © # £
— Set ¢ := hash,(m, L1,..., Lk, R1,..., Ri);
— For i € [k]:
e Set ¢, := w; if i # ¢
Set ¢; :=c — Z?:o cj ifi =4,
e Set r;:=gq; if i # ¢
Set 7; := qu — cotg if i = ¢
— Return o := (I, c1,. .., Cly P14 v oy Tk).

Fig. 18. Randomness-externalized signing algorithm specification.

,—(Signature scheme without hidden triggers)

Sign*({PK}, SK, m;r):

— Set s := hash(r, “msg”) and m* := hash(m, s);
— Compute o < Sign({PK}, SK, m*;r);
— Return o™ := (o, 5).

Verify*({PK}, m,0"):

— Parse o* as (o, s);
— Compute m* := hash(m, s);
— Return Verify({PK},m*, o).

Fig. 19. Signature with hidden trigger elimination.

Fig. 19. We now show that the new proposed signature scheme achieves strong
existential unforgeability if the original signature scheme is strong existential

unforgeable under adaptive chosen-message attack.

Theorem 2. Let S := (Setup, KeyGen, Sign, Verify) be a signature scheme that
achieves strong existential unforgeability under adaptive chosen-message attack.
Let hash : {0,1}* + {0,1}* be a cryptographic hash function. If hash securely
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realises a random oracle, then 8* := (Setup, KeyGen, Sign™, Verify™) is also strong
existential unforgeable under adaptive chosen-message attack.

Proof. See App. A.

Extension.In the extreme scenario when the underlying OS is also compro-
mised, e.g. by malware, the randomness provided by the OS can no longer be
trusted. We propose a “synthetic randomness” approach in the blockchain en-
vironment. Namely, in a cryptocurrency wallet, we can use the blockchain as
a (weak) beacon for public randomness rpyg, and use local randomness pool
as private rpgry. The synthetic randomness is r := hash(rpyg||rpriv). The public
randomness 7pyp can be computed by hashing the last A — k blocks, rpyp =
hash(B,—x, Bn—a+1s-- -5 Bn_xtx); namely, A — x blocks of the common pre-
fix [51]. The public randomness is used to ensure the min-entropy Ho.(r) =
w(log M) and thus eliminate any potential backdoors, whereas the local random-
ness is used to guarantee privacy. We assume it is difficult for an adversary to
control both rpy and 7pgy in practice. If this assumption is not satisfied, for
paranoid users, they can use hash of stock market data or earthquake statistical
data as a more trustworthy beacon source.

7 Related Work

This work is closely related to the topics of malicious content insertion in
blockchains, steganography, covert channels in blockchains, and kleptography/ ASA
and their countermeasures.

Content insertion in blockchains. The authors of [34] provided insight re-
garding the various ways that could be exploited to store, possibly illegal, con-
tent onto the Bitcoin blockchain. Furthermore, using some heuristics to analyze
the plaintext of 146 million transactions, the authors of [34] reported that 0.8%
transactions store content on the blockchain or use non-standard scripts. Re-
cently, the authors of [1] attempted to systematically analyze the non-financial
content in Bitcoin’s blockchain. Specifically, they surveyed the methods and
services that are used to store non-financial content, and provided a general cat-
egorization of objectionable content that could be found on Bitcoin’s blockchain.
They found that 1.4% of all Bitcoin transactions contain non-financial data, and
retrieved over 1600 files, some of which contain objectionable content. Nonethe-
less, there are some non-malicious applications that rely on Bitcoin-based content
insertion. For example, Tithonus [35] offers a Bitcoin-based censorship-resistant
system, and Catena [36] is an application that uses Bitcoin OP_RETURN trans-
actions to establish consensus among users on an application-specific log.

Steganography. The concept of steganography was introduced by Simmons’
prisoner’s problem [52]. Anderson et al. listed some of the limits of steganog-
raphy and discussed the difficulty associated with formalizing a general proof
of security for steganography [53,54]. A number of works, e.g. [55-57], provided
information-theoretic treatment of steganography security and robustness. More
recently, Hopper et al. provided a cryptographic formalization of steganographic
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security and robustness [27]. They presented a definition for the security of a
steganographic system in terms of the computational indistinguishability of ste-
gotext from cover text.

Covert channels in blockchains. While there is a relatively significant body of
research about content insertion in Bitcoin’s blockchain [1,3,34,58], the authors
of [6] were the first to discuss the use of steganography to covertly communicate
on Bitcoin’s blockchain. However, due to its limitation, the authors of [6] consider
their attack to be a proof of concept rather than a practical attack.

Kleptography and ASA. Our wallet subversion attack scenario falls within
the realm of Algorithm-Substitution Attacks (ASA) [32,33], also called Kleptog-
raphy [29, 30] and Subversion Attacks (SA) [47]. The notion of Kleptography
was introduced by Young and Yung in 1996 [29, 30]. Subsequent work demon-
strated the possible use of ASA in mass surveillance, and the susceptibility of
all randomized symmetric encryption schemes to such attacks [33,59]. Another
demonstration of ASA attacks is found in the work of Goh et al. [60] which
presented practical hidden key-recovery attacks against the SSL/TLS and SSH2
protocols by modifying the implementation of the OpenSSL library. In the con-
text of signature schemes, Young and Yung [31] showed that DSA signature
schemes can be subverted to leak secret information. Another kleptographic
attack was proposed by the work of Tegeleanu [61] which describes a threshold
kleptographic attack on the generalized ElGamal signature that can be extended
to similar DL-based signatures. In addition, as a countermeasure against subver-
sion, Russell et al. [44] modeled and proved a full domain hash-based signature
scheme achieves subversion resilience. Recently, Russell et al. [45,46] proposed
the use of a splitting-randomness technique to secure a randomizable IND-CPA
public-key encryption, but it is unknown how to apply their technique in the
blockchain context with reasonable assumptions. Another countermeasure was
proposed by Ateniese et al. [47] who proposed the use of trusted reverse firewalls
to re-randomize the output of possibly subverted signature algorithms. Finally,
Fischlin and Mazaheri [48] proposed a novel technique that proactively defends
against ASA’s assuming temporary initial trust of the possibly subverted algo-
rithm.

8 Conclusion

The main aim of this work is to highlight the potential threat of maliciously
abusing uncontrolled randomness in randomized cryptographic primitives in
blockchain applications, and design efficient and practical countermeasures. To
illustrate the idea, we designed, implemented, and evaluated our attacks against
the widely-used ECDSA signature scheme, the ring signature used in the CryptoNote
framework, and the Ring Confidential Transaction used in Monero (up to version
0.12.0.0). The demonstrated attacks can be used in three malicious scenarios:
covert communication, persistent storage of objectionable data, and wallet sub-
version attacks. Finally, we emphasize that this line of research is far from being
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completed, and we hope that our work motivates the design of stego-resistant
blockchains.
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Appendices

A Security Proofs

A.1 Proof of Theorem 1
In this section, we provide a full proof of Theorem 1.

Proof. We prove this theorem by reduction. Assume there exists a PPT adver-
sary A who can break ST with an non-negligible AdvfﬂéT(l)‘) advantage w.r.t.
the CHA game. We need to construct a PPT adversary B who can break the
PRF game for F'. During the reduction game, B plays as a challenger for A in
the CHA game. Upon receiving m from A, B picks random rand < {0,1}%* and
sets x := rand||00...0. B then queries = to the PRF game challenger and obtains
IV. Subsequently, B queries IV, IV + 1,1V 4 2 to the PRF game challenger, and
obtains ki, ko, k3. B then compute c1, co, c3 according to the description shown
in Fig. 22. Tt then computes (¢, r) as described in Fig. 7. B flips a coin b « {0, 1}.
If b = 0, B computes a ring signature using (¢, r); otherwise, B computes a ring
signature normally. B then sends the resulting signature to A. Finally, A outputs
a guess b'. Assume the challenge bit in the PRF game is 3, i.e. 8 = 0 is in the
PRF mode; 8 =1 is in the random function mode. If b = ', B outputs 8* = 0;
otherwise, B outputs 8* = 1.

Pr[B win] = Pr[* = 0| =0] - Pr[8 =0] +
PP = 103 = 1] Pifg = 1

= Pr [ExptG(1%)] % + % %
= (ANSE (1Y) +5) 5+
= 5 AN (1Y) 4
Hence, the advtantage of B w.r.t to the PRF game is
Advlpg'?; = |Pr[B] win — ;‘ AdvngT( M.

Since Advj‘jﬁT(l”\) is non-negligible, we have Adleg'?IE is also non-negligible, which
concludes the proof.

A.2 Proof of Theorem 2

In this section, we provide a full proof of Theorem 2.

Proof. We proof this theorem by reduction. Assume there exists a PPT adver-
sary A who can break S* := (Setup, KeyGen, Sign™, Verify*) with at most ¢ sig-
nature queries and at least ¢ advantage. We need to construct a PPT adversary
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,—(Demo Steganographic Bytecoin Transaction) N\

— Block height: 1671177

— Transaction id: 52cababe f4ed716ac8a25681eb3 f380d3d1 fee057ada7ebb
2d687af36 fladdf f

— Sender’s address: 26c6YmZmLJZY xnV At56kRraBhxi EUt8yoJ R3V
VAUVEVeRMI9Pzs5qVTKStQHaaTxkAHej3WTTxtAcl K HbCSPoZ?2
ms3bdUsY 6.

— Receiver’s address: 26c6YmZmLJZY xnV At56kRraBhxziEUt8yoJ R
3VVAUVSEVcRMI9Pzs5qVTKStQHaaTrkAHej3WTTxtAcl1 K HbC' S Po
Z2ms3bdUsY 6.

— Mixin count (ring size): 6

Fig. 20. An example of the stegangraphically-generated bytecoin transaction

B who can break the & := (Setup, KeyGen, Sign, Verify). During the reduction
game, upon receiving query m; from A, B computes m} := hash(m,, s;) with a
randomly sampled s; € {0,1}*, and then query the signing oracle with my. After
getting o; back from the signing oracle, B return o} := (0, s;) to A. Whenever
A can provide a valid pair (1, &) as forgery (6 = (07, s")), since the probability
that A can find a collision on hash is negligible, B can compute m' := hash(rn, s’).
By definition, (6, m’) is a forgery against S.

B Bytecoin Psuedo-code and Demo Transaction

The attack described in Sec. 4 follows the pseudo-code in Fig. 9. This attack
has been executed, and the transaction with the attributes shown in Fig. 20 was
generated. To demonstrate how the hidden message is embedded and extracted
we provide an extraction tool that can be downloaded and tested from: https:
//github.com/NalLancaster/hash_and_extract.git. The repository also con-
tains the actual transaction binary in tx.txt and includes a pair (¢, r) of random
numbers containing a 16-byte hidden message, where (c¢,r) is found in cr.txt.
The transaction hash in Fig. 20 can also be seen in any Bytecoin explorer, like
https://minergate.com/blockchain/ben/blocks, and the provided transac-
tion binary should hash to the same hash value.

C Detailed Implementation of Steganographic Attack in
Monero

The following is the details of our implementation of the generic steganographic
attack in Monero (v0.12.0.0) and older).

Step 1: embedding a hidden message m and generating a signature that contains
st. The sender’s wallet is modified to surreptitiously embed a 32-byte message m


https://github.com/NaLancaster/hash_and_extract.git
https://github.com/NaLancaster/hash_and_extract.git
https://minergate.com/blockchain/bcn/blocks
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,—(Steganographic Monero Transaction) N\

— Block height: 1502164

— Transaction id: e4b7982b081a17892525 f1b1d3011ec06a0820cbf451d3a6
4f8ea998104a753¢

— Sender’s address: 455BulzXzgX EeXxzrjzRSsEif PSWgtLTKY Lre
QTRrAlfcFi2U Kjgtc2U BapB9AcDaitdY7TSAWGFsEZRELL8AInM
nEFRV Zg4T.

— Receiver’s address: 42F5itWceiY AghQJx ZEqW z5hrQN FaySUbx fx
sjedp8Fnr RM68c8N zujm3Uq fscV C6r2c2GwuiP4sRsQu3Z ZU clspjU
HuDH szx.

— Mixin count (ring size): 5

Fig. 21. An example of the steganographically-generated Monero transaction

in the randomly generated s; ; numbers as part of the Borromean ring signature.
Specifically, two vectors of s; ; numbers are generated by the genBorromean()
function: sp; and s; ;. In addition, sg ;’s are randomly generated when the 4t
bit commitment is 1, and two of these randomly generated s ;’s are used in our
attack to embed the stegotext st. For simplicity, we use sp,; and sp2 to denote
the first two randomly generated numbers in sg; vector, although they might
not necessarily correspond to j =1 and j = 2 respectively.

Fig. 10 shows the two subverted numbers, in which sy ; includes 16 bytes of
random |V concatenated with 1 byte representing the index of 502 and 15 bytes
of zeroes, where the last 16 bytes are sent encrypted using AES-CBC. The
second subverted random number, s 2, contains hidden message m encrypted
using AES-CBC under the key z.

This step of the attack is achieved by slightly modifying two functions:
genBorromean() and skGen() in two files: rctSig.cpp and rctOps.cpp. genBorromean()
is modified to pass two extra parameters to skGen(). The first parameter is the
counter that indicates which of the two random numbers is to be generated,
while the second parameter represents the index of j** bit that corresponds to
the second number s¢ 2 within the sg ; vector. When the value of the counter
is 0 or 1, skGen() generates random numbers according to Fig. 10, otherwise
executes as normal.

Step 2: identifying signature containing stegotext st, and extracting hidden mes-
sage m. To identify transactions containing st, the source blockchain.cpp file is
modified to check the randomness within each new transaction and identify sig-
natures containing stegotext. The receiver tests each number in the sg ; vector
by looking for a random IV that decrypts the second half of the tested number
to a similar pattern as sp ; in Fig. 10. Once this pattern is detected, the receiver
concludes that this signature contains st and retrieves the index of sg 2 from the
16" byte of sq 1.
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Table 3. Number of signatures needed to leak bits of the long-term private key in our
rejection-sampling ECDSA subversion attack

Number of Signatures to Leak Key Bits
Exp. # (32|64 | 96 | 128 | 160 | 192 224
1 35| 71 | 117 | 173 | 227 | 314 520
2 33| 73 | 119 | 189 | 253 | 344 485
3 32|74 | 120 | 170 | 230 | 339 471
4 34|70 | 114 | 179 | 238 | 335 491
5 32169 | 119 | 189 | 280 | 385 552
6 32|76 | 122 | 170 | 233 | 333 526
7 36 | 76 | 120 | 180 | 262 | 400 576
8 32| 71 | 127 | 197 | 259 | 368 566
9 33| 72 | 115 | 162 | 242 | 348 528
10 32| 71| 121 | 177 | 243 | 363 498
11 31| 70 | 121 | 180 | 246 | 345 524
12 35| 76 | 120 | 181 | 260 | 386 563
13 33169 | 124 | 190 | 251 | 352 506
14 32| 72| 121 | 180 | 255 | 353 518
15 33| 78 | 124 | 178 | 246 | 355 539
16 34|72 | 113 | 168 | 232 | 331 522
17 35| 72 | 111 | 162 | 228 | 340 512
18 31|79 | 125 | 201 | 281 | 378 544
19 37|76 | 122 | 174 | 243 | 329 475
20 34| 75| 121 | 175 | 260 | 369 570
Average [33.3(73.1/119.8|178.8|248.4|353.4 524.3
Std. dev.| 1.6 29| 3.9 |10.2|15.2 | 21.6 30.5

When a malicious signature is detected, the receiver retrieves the index of sg o
as above. The receiver then extracts the hidden message by decrypting sg 2 using
his key z with AES-CBC. Fig. 21 shows a Monero transaction that has been
steganographically subverted by our attack, and has been successfully posted to
the Monero blockchain

D ECDSA-Signature Rejection-Sampling Experiment

Table 3 illustrates the experimental results on how many signatures needed to
obtain 32,64,96,128,160,192 and 224 bits out of the total 256 key bits. This
experiment was run 20 times to record the number of needed signatures to leak
some bits of the secret key. As seen in Table 3, the average number of signatures
that should be intercepted by the attacker to retrieve 50% of the key, i.e. 128
bits, is about 179 signatures.
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E Signature subversion

In theory, the Setup, KeyGen, Sign algorithms of a signature scheme can be sub-
verted to leak secret information. However, in practice most blockchain plat-
forms do not generate the setup parameters themselves; instead, widely trusted
setup parameters, such as in ED25519, are adopted. Therefore, we don’t con-
sider Setup algorithm in this work. In terms of KeyGen algorithms, they are
usually based on some one-way function, and it is possible to leak O(log \) bits
through rejective sampling. Nevertheless, for most signature schemes, this would
not be sufficient to allow the adversary to forge a signature. See leakage resilient
signatures in [62,63] for more discussion. Therefore, this work focuses on the
subversion of the Sign algorithm. As a result, we adopt the following modified
definition of undetectability from [47].

Public/Secret Undetectability. The undetectability is used to model the fact
that normal users cannot distinguish if a signature is produced by a subverted
signing algorithm or the genuine one.

Definition 3. Let S = (Setup, KeyGen, Sign, Verify) be a signature scheme. Let
M be the message space. We say a subverted Sign™ algorithm is secretly un-
detectable w.r.t. S if for all PPT adversary A we have any {(PK;, SK;)},
output by KeyGen(param) for any integer A € N, any n = poly(\), any param
Setup(1?), any {(PK;, SK;)}™, output by KeyGen(param), and any { € [n], we
have:

Adv3 (17 =

Pr {Exptiu(l)‘)} - ;’ = negl())

w.r.t. the following game/experiment:
Expt’(1*)

1. Pick b+ {0,1};
2. Send ({PK;}1,,SKy) to A;
3. For j € {1,...,k}, A queries m; € M and obtains

o0, + Sign({PK;}11,SK¢, ¢, m;) if b= 0;

oot « Sign*({PK;}7,, SKy, £,my) if b= 1;
4. A outputs a bit b';
6. Return b= b;

We say a subverted Sign™ algorithm is publicly undetectable w.r.t. S if in step

1 of the above game A only receives {PK; ;.

Reverse firewall based stego-resistance. One of our countermeasures utilze
miners as active online watchdogs, a.k.a. reverse firewalls. The reverse firewall
based stego-resistance definition is slightly different from the above one. More
specifically, we say a signature scheme S = (Setup, KeyGen, Sign, Verify, Wrap) is
reverse firewall based stego-resistant if for all PPT adversary and Sign® we have

AdviY (1% =

Pr [Expti‘R(l’\)] - ;‘ = negl(A)
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Fig. 22. Ciphertext Stealing (CTR mode)

w.r.t. the following game/experiment:
ExptilR(l)‘)

1. Pick b+ {0,1};
2. Send ({PKZ‘}?:DSKK) to A;
3. For j € {1,...,k}, A queries m; € M:
o If b=0:
Compute o; < Sign({PK;}I;,SKy, ¢,m;);
Return ¢; < Wrap({PK;}?" ;,m;,0;) to A;
o If b=1:
Compute o7 « Sign"({PK;}7_;, SKy, £, m;);
Return EJ; — Wrap({PK;}_y,mj,07) to A;
4. A outputs a bit V';
6. Return b = v

F Ciphertext Stealing Technique

In our attack, the leaked information is encrypted by a semantically secure
symmetric-key encryption scheme. To minimize the number of lines of code to
be changed, we need to adopt a readily implemented encryption algorithm. In
our experiment, both Bytecoin and Monero wallets already have AES-128 al-
gorithm, which; therefore, can be used as a building block of the semantically
secure encryption. However, the message length is usually not a perfect multiple
of 128 bits. To maximize the subversion channel capacity, one option is to adopt
the concept of Ciphertext Stealing (CTS) [64]. For any given message length,
with ciphertext stealing techniques, the ciphertext length is exactly the same as
the message length (besides the IV). Our generic attack, in Sec. 3, uses CTR-
mode based ciphertext stealing technique, where the last encryption block is
truncated to fit the message length. The encryption algorithm CTS-Encg(IV, m)
is depicted in Fig. 22. We refer interested readers to [64] for more operation
modes with CTS, such as CBC.
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G Summary of Existing Countermeasures

In the following we summarize and discuss the current practices and techniques
that can deter arbitrary content insertion on blockchains.

G.1 ASA-Resistant Techniques

Deterministic Cryptographic Primitives. As identified by many researchers [29,
30,32, 33], the root of such class of subversion attacks is the uncontrolled ran-
dommness. As such, the first intuitive solution is to use deterministic signatures.
However, this approach has limited usage in the blockchain context.

Signature Synthetic Randomness. In a similar manner to deterministic DSA
proposed by RFC 6979 [42], signatures can be made deterministic using synthetic
randomness. More specifically, assume a signature algorithm consumes ¢ random
coins, denoted as rq, . .., r,. Without loss of generality, suppose the signing algo-
rithm takes as input the signing key s and the message m. We can generate the
needed random coins deterministically as r; := hash(s, m, ). Based on heuristics
property and onewayness of the hash function, r; is unpredictable due to the en-
tropy of s. On the other hand, this tweak allows offline watchdogs (verification
algorithms) to compare and test an implementation with its specification.

Note that no probabilistic polynomial time black-box verification mechanism
can ensure an implementation exactly matches its specification. This is because a
malicious functionality may be triggered by a specific input, and it is impossible
to verify that an implementation behaves as expected for all inputs. For instance,
our attack can be modified so that the signing algorithm behaves honestly for
all the inputs, except when the input message m = m* the signing algorithm
switches to our attack version, where m™* is the hidden trigger that has high
entropy. The elimination of such hidden triggers is discussed below.

Instead, the offline implementation verification is only required to check poly-
nomially many randomly sampled inputs (together with randomly sampled ex-
plicit randomness) and compare the corresponding outputs of the implemen-
tation with its specification. The most recommended approach to achieve auto-
matic verification is to use so-called executable specifications [65]. We emphasize
that the offline implementation verification algorithm must be trusted and certi-
fied. Nevertheless, it is universal and only needs simple comparison functionality,
which makes it easy to ensure subversion freeness.

Verifiable Random Function (VRF). VRFs, proposed by Micali et al. [43],
are random functions that non-interactively prove the correctness of their out-
puts. However, due to their randomness, VRF outputs are still susceptible to
rejection sampling attacks. Hence, although their use may decrease the steganog-
raphy throughput, VRF's can not completely deter steganography and subversion
attacks in the context of public blockchains. Similarly, the work presented in [66)
is vulnerable to rejection-sampling subversion attacks.

Split Model. The idea was initially proposed by Russell et al. in [44] to clip the
power of subversion by hashing the output of randomized primitives. This idea
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was developed further in subsequent work [45,46] to decompose each randomness-
generation function RG into two separate components RGy and RG;p, execute
them independently, and compose their output using a deterministic function ¢
to generate the final random number. The authors of [46] emphasize that prac-
tical implementation of such splitting necessitates the independent execution of
the separate components, which can be achieved by executing them in separate
environments, e.g. by running them in different virtual machines or containers

like Docker [67].

G.2 Preventative Trust-Based Countermeasures

Reverse Firewalls (RF). Ateniese et al. [47] proposed the idea of a trusted un-
tamperable reverse firewall (RF). RF is an algorithm that, using public informa-
tion, re-randomizes, and hence sanitizes, that output of possibly subverted ran-
domized signature algorithms. Although this technique is effective against sub-
version attacks on randomized signatures; however, it requires an active trusted
firewall and works only on re-randomizable signatures. Therefore, it might not
be suitable for most signature schemes in the context of blockchains.

Self-Guarding Protocols. Recently Fischlin and Mazaheri [48] have proposed
a novel technique that proactively defends against ASA’s assuming temporary
trust, i.e. ASA happens after a period of an honest initial phase. Namely, they
provided constructions for homomorphic public-key encryption, symmetric-key
encryption, signature schemes and PUF-based key exchange. In general, their
constructions are divided into two phases; a sampling phase, and a challenge
phase. In the sampling phase, or honest initial phase, a sample of ciphers, in the
case of encryption, or signatures, in the case of signature schemes, is honestly
generated. This sample is stored and used in the second phase to obfuscate
ciphers/signatures and detect possible ASA attacks.

To further illustrate this technique, Fig. 23 presents a simplified pseudo-code
for the construction of a self-guarding signature scheme S%9 = (KeyGen®?, Sign®?, Verify*?)
from a deterministic signature scheme & = (KeyGen, Sign, Verify) [48]. As seen
in this figure, the key generation algorithm KeyGen®d is given a security pa-
rameter (1), generates a list of A key pairs (sk;, pk;), and sets the private key
sk®9 := (skq,...,sky) and the public key pk®9 := (pky,...,pky). As part of the
trusted sampling phase, §%9.Sample(sk®9) is executed to generate a queue of A
pairs of randomly generated messages m,; and their corresponding signatures
or,;. When signing a message m with the possibly subverted algorithm S.Sign, the
self-guarding signing algorithm S°9.Sign does the following. For eachi = 1,..., A,

it randomly picks b; & {0, 1}, and execute the original signing algorithm S.Sign
twice, once to sign m,.; and another time to sign (m, ; ® [m||o,;]). The order of
which is signed first is determined by the value of b;, and each time the gener-
ated signature for m, ; is compared with its previously and honestly generated
signature o, ;. This is done to ensure detecting any possible subversion with prob-
ability close to 1/2. If any discrepancy is detected, abort, otherwise return the
signature o := (My1,0,1,01, .., My, Op 2, 0x). The verification §%9.Verifysg is
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,—(Ssg(KeyGen, Sample, Sign,Verify)) \

S%9.KeyGen®? (1*):

— Fori=1...)\: (ski,pki) & S.KeyGen(1*);
(k9 pkT) o= (sht, -, 5En), (D, - o EN));
— Return (sk®*9, pk®9);

S§°9 .Sample(sk*9):

— Empty Q;

— Fori=1...\:
My & {0, l}e; o := S.Sign(ski, );
Store (M., 0r,:) in Q;

— Return Q;

S°%9.Sign®9(sk®9,m, Q):

— if 9 is empty: Return L;
— Fori=1...X\:
Retrieve (M, 0v,:) from Q;
b & {0,1};
if (b=10): (m®,m') := (M, mr; ® [M||or]);
else: (m°,m') := (my; © [m||ori], mri);
o := S.Sign(sk;,m°); o' := S.Sign(ski, m");
if (Ubi # or): Return L;
g = U(l_b");
— 0:=(Mr1,0r,1,01,...,Mrx,0rx,0);
— Return o;

8°9 Verify®d (pk®?,m, 0):

— result := true;
— Fori=1...X\:

result := result A S.Verify(pki, mr i, 0r:);

result := result A S.Verify(pk;, (mr: ® [m]|or], 0:);
— Return result;

Fig.23. Self-guarding signature S°? based on a signature scheme S =
(KeyGen, Sign, Verify). Q represents a queue of pairs of random messages m..; and their
honestly-generated signatures o, ;, and ¢ is the message and signature space length.
Other sanity checks have been omitted for simplicity. For more details refer to [48].

carried out by re-constructing the string (m,; @ [m||o,;]) for each i =1,... A,
and calling the original verification algorithm S.Verify twice, to verify each o;
and or, 4. If all signatures are valid, return true, and false otherwise.
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G.3 Blockchain-based techniques

Light Blockchains. To solve issues related with blockchain size and scalability,
new blockchain designs have emerged. For example, PascalCoin [49] is a cryp-
tocurrency that does not keep the full history of transactions but rather stores
the last 100 blocks in its ledger, and actual account balances are stored in a
another cryptographic structure called the SafeBox. A very similar approach is
used in the mini-blockchain scheme [50] that is implemented by Cryptonite [68]
which stores the actual balances in a structure called the account tree which is up-
dated by the transactions in the blockchain. Because new transactions reference
the account tree and not previous transactions in the blockchain, transactions
in older blocks can be discarded. Note, older block headers are still kept in the
mini-blockchain. Although these solutions are mainly proposed solve scalability
issues, these new designs can deter permanent storage of malicious content.

Redactable Blockchains. Redactable blockchains have been proposed in [5]
to rewrite, remove, and insert new blocks in the blockchain. In their technique,
which is based on the use of Chameleon hashes [69], the redaction could be per-
formed by a trusted central node, or a group of nodes who posses the Chameleon
hash trapdoor. Similarly, pchain [4] proposes a mutable blockchain that is based
on consensus. Hence, if malicious content is identified, mutable blockchains can
effectively deter the persistent storage of such content on the blockchain.

Content Filters. Content filters target human readable strings to detect and
reject unwanted content, e.g. rejecting a transaction if its 20-Byte destination
address has 18 printable characters [3].

Increasing Transaction Fees. Although increasing the transaction fees is not
advisable for promoting blockchain among innocent users, and can unfairly pe-
nalize users who relay on large transactions, e.g. exchange services, minimum
mandatory fees has been proposed as a countermeasure in [3] to render content
insertion economically infeasible for large transactions.

Self-verifying Addresses. The goal of this technique is to deter content in-
sertion in Bitcoin by using arbitrary addresses. The authors of [3] suggested
that instead of sending an address a, ¢, is sent in the transaction, where ¢, =
(G, r,Sign(G*||r,a)), r = CRC32(ty||...||t;), and ¢; is the transaction corre-
sponding to the " input. A similar approach is to limit the address Space.
For example, PascalCoin [49] has a finite address space, and accounts are lim-
ited but can be associated with any public key. Although may not be intended
to stop content-insertion, this practice can deter the arbitrary manipulation of
transactions’ addresses.

H Non-interactive Zero-knowledge

Here we briefly introduce non-interactive zero-knowledge (NIZK) schemes in the
Random Oracle (RO) model. Let R be an efficiently computable binary relation.
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For pairs (z,w) € R we call = the statement and w the witness. Let Lx be the
NP language consisting of statements in R, i.e. Lr = {z|Fw s.t. (z,w) € R}.
An NIZK scheme includes following algorithms: a PPTalgorithm Prov that takes
as input (z,w) € R and outputs a proof 7; a polynomial time algorithm Verify
takes as input (z,7) and outputs 1 if the proof is valid and 0 otherwise.

Definition 4 (NIZK Proof of Membership in the RO Model). NIZK%O.{Prov, Verify,
Sim, Ext} is an NIZK Proof of Membership scheme for the relation R if the fol-
lowing properties hold:

— Completeness: For any (z,w) € R,

Pr ¢+ {0, 1} 7« ProvRo(x,w;C) :

< I(A).
VerifyRo(a:, w)=0]| — negl(})

— Zero-knowledge: If for any PPT distinguisher A we have
| Pr[ARC:O1(1%) = 1] — Pr[AR9:2(1%) = 1] | < negl(A).

The oracles are defined as follows: O1 on query (z,w) € R returns m,
where (m,auz) « SimO(z); Oy on query (z,w) € R returns w, where
T4 ProvRO(:c,w;C) and ¢ + {0,1}*.

— Soundness: For all PPTadversary A,

(z,7) + ARO(1M) :

Pl & L A VerifyRo(z,7) =1

< negl(\).

Definition 5 (NIZK Proof of Knowledge in the RO Model). NIZK%O.{Prov, Verify,
Sim, Ext} is an NIZK Proof of Knowledge scheme for the relation R if the com-
pleteness, zero-knowledge, and extraction properties hold, where the extraction is

defined as follows.

— Extractability: For all PPTadversary A,

(z,m) = ARO(1%);
Pr | w + Ext®O(z,7) : > 1 — negl(A).
VerifyRO(z,7) =0 V (z,w) € R

We need non-interactive zero-knowledge proofs/arguments of knowledge and
non-interactive zero-knowledge proofs/arguments of membership. For simplicity,
we will drop RO from the superscript if the context is clear.

We use NIZK%?.Verify and NIZK%?.Sim) to denote the corresponding verifi-
cation algorithm and simulator, respectively.
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